code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''YolosFeatureExtractor'''] lowercase_ = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
562
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def snake_case_ ( A_ : Optional[Any], A_ : Tuple=False, A_ : Tuple=False, A_ : Optional[Any]=False ): '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def snake_case_ ( A_ : Dict, A_ : Union[str, Any] ): '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) _lowerCamelCase : List[Any] = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase, _lowerCamelCase ) def snake_case_ ( A_ : List[Any], A_ : Union[str, Any], A_ : Any ): '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def snake_case_ ( A_ : Optional[Any], A_ : Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=3_84, patch_size=32, tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 31_29 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase, _lowerCamelCase, repo_type='''dataset''' ), '''r''' ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase, map_location='''cpu''' )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase, _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase, _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase, strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=3_84 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase, _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''', stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''', stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase, _lowerCamelCase, return_tensors='''pt''' ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase, _lowerCamelCase, return_tensors='''pt''' ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids, pixel_values=encoding_a.pixel_values, pixel_values_a=encoding_a.pixel_values, ) else: _lowerCamelCase : str = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''', stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase, _lowerCamelCase, return_tensors='''pt''' ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 3_05_22] ) _lowerCamelCase : Dict = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3], _lowerCamelCase, atol=1E-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 31_29] ) _lowerCamelCase : List[str] = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3], _lowerCamelCase, atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3], _lowerCamelCase, atol=1E-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3], _lowerCamelCase, atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
83
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
0
from __future__ import annotations def lowerCAmelCase_ ( lowercase: Dict , lowercase: Tuple ) -> str: '''simple docstring''' if len(_lowerCamelCase ) <= 1 or n <= 1: return insert_next(_lowerCamelCase , n - 1 ) rec_insertion_sort(_lowerCamelCase , n - 1 ) def lowerCAmelCase_ ( lowercase: Tuple , lowercase: Any ) -> Dict: '''simple docstring''' if index >= len(_lowerCamelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _UpperCamelCase: Dict = ( collection[index], collection[index - 1], ) insert_next(_lowerCamelCase , index + 1 ) if __name__ == "__main__": UpperCAmelCase_ = input('''Enter integers separated by spaces: ''') UpperCAmelCase_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
271
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase__ : Any = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCamelCase__ ( _A , _A=None ): '''simple docstring''' require_version(deps[pkg] , _lowerCamelCase )
376
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class snake_case_ (_a ): UpperCAmelCase__ : List[Any] = 4_2 UpperCAmelCase__ : List[str] = 4_2 class snake_case_ (_a , _a ): UpperCAmelCase__ : str = 1 @register_to_config def __init__( self :List[Any] ,__snake_case :int = 20_00 ,__snake_case :float = 0.15 ,__snake_case :float = 0.01 ,__snake_case :float = 13_48.0 ,__snake_case :float = 1E-5 ,__snake_case :int = 1 ,) -> int: a__ = sigma_max # setable values a__ = None self.set_sigmas(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,__snake_case :Optional[int] = None ) -> Union[str, Any]: return sample def lowerCamelCase__( self :Tuple ,__snake_case :int ,__snake_case :float = None ,__snake_case :Union[str, torch.device] = None ) -> str: a__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps a__ = torch.linspace(1 ,__lowerCAmelCase ,__lowerCAmelCase ,device=__lowerCAmelCase ) def lowerCamelCase__( self :int ,__snake_case :int ,__snake_case :float = None ,__snake_case :float = None ,__snake_case :float = None ) -> int: a__ = sigma_min if sigma_min is not None else self.config.sigma_min a__ = sigma_max if sigma_max is not None else self.config.sigma_max a__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__lowerCAmelCase ,__lowerCAmelCase ) a__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) a__ = torch.exp(torch.linspace(math.log(__lowerCAmelCase ) ,math.log(__lowerCAmelCase ) ,__lowerCAmelCase ) ) a__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any] ) -> str: return torch.where( timesteps == 0 ,torch.zeros_like(t.to(timesteps.device ) ) ,self.discrete_sigmas[timesteps - 1].to(timesteps.device ) ,) def lowerCamelCase__( self :Tuple ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :Optional[torch.Generator] = None ,__snake_case :bool = True ,) -> List[Any]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) a__ = timestep * torch.ones( sample.shape[0] ,device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) a__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda a__ = timesteps.to(self.discrete_sigmas.device ) a__ = self.discrete_sigmas[timesteps].to(sample.device ) a__ = self.get_adjacent_sigma(__lowerCAmelCase ,__lowerCAmelCase ).to(sample.device ) a__ = torch.zeros_like(__lowerCAmelCase ) a__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods a__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): a__ = diffusion.unsqueeze(-1 ) a__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of a__ = randn_tensor( sample.shape ,layout=sample.layout ,generator=__lowerCAmelCase ,device=sample.device ,dtype=sample.dtype ) a__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? a__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__lowerCAmelCase ,prev_sample_mean=__lowerCAmelCase ) def lowerCamelCase__( self :str ,__snake_case :torch.FloatTensor ,__snake_case :torch.FloatTensor ,__snake_case :Optional[torch.Generator] = None ,__snake_case :bool = True ,) -> Optional[Any]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction a__ = randn_tensor(sample.shape ,layout=sample.layout ,generator=__lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr a__ = torch.norm(model_output.reshape(model_output.shape[0] ,-1 ) ,dim=-1 ).mean() a__ = torch.norm(noise.reshape(noise.shape[0] ,-1 ) ,dim=-1 ).mean() a__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 a__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term a__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): a__ = step_size.unsqueeze(-1 ) a__ = sample + step_size * model_output a__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCAmelCase ) def lowerCamelCase__( self :List[str] ,__snake_case :torch.FloatTensor ,__snake_case :torch.FloatTensor ,__snake_case :torch.FloatTensor ,) -> Tuple: a__ = timesteps.to(original_samples.device ) a__ = self.discrete_sigmas.to(original_samples.device )[timesteps] a__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__lowerCAmelCase ) * sigmas[:, None, None, None] ) a__ = noise + original_samples return noisy_samples def __len__( self :List[str] ) -> List[str]: return self.config.num_train_timesteps
335
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
0
def a__ ( A_=28123 ): '''simple docstring''' __magic_name__ = [1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i __magic_name__ = set() __magic_name__ = 0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(_lowerCamelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
529
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Optional[int] = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
636
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
0
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCamelCase_ = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def __lowerCamelCase ( a_ : int , a_ : Optional[int] , a_ : List[str]=None ) -> Optional[int]: if rng is None: __SCREAMING_SNAKE_CASE :List[str] = random.Random() __SCREAMING_SNAKE_CASE :str = 1 for dim in shape: total_dims *= dim __SCREAMING_SNAKE_CASE :Optional[Any] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) __SCREAMING_SNAKE_CASE :str = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def __lowerCamelCase ( a_ : Union[str, Any] , a_ : List[Any]=None ) -> List[Any]: __SCREAMING_SNAKE_CASE :List[Any] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch __SCREAMING_SNAKE_CASE :Optional[int] = 1 return attn_mask @require_flax class _SCREAMING_SNAKE_CASE: SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : int = () def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __SCREAMING_SNAKE_CASE :List[str] = 2 __SCREAMING_SNAKE_CASE :List[Any] = inputs["input_ids"].shape[-1] // 2 __SCREAMING_SNAKE_CASE :str = inputs["input_ids"][:max_batch_size, :sequence_length] __SCREAMING_SNAKE_CASE :Optional[Any] = jnp.ones_like(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __SCREAMING_SNAKE_CASE :str = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __SCREAMING_SNAKE_CASE :int = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self._get_input_ids_and_config() __SCREAMING_SNAKE_CASE :Tuple = False __SCREAMING_SNAKE_CASE :List[str] = max_length __SCREAMING_SNAKE_CASE :Union[str, Any] = 0 for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :str = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning __SCREAMING_SNAKE_CASE :Dict = getattr(__lowerCAmelCase ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :int = pt_model_class(__lowerCAmelCase ).eval() __SCREAMING_SNAKE_CASE :Optional[int] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) __SCREAMING_SNAKE_CASE :Optional[int] = flax_model.generate(__lowerCAmelCase ).sequences __SCREAMING_SNAKE_CASE :Optional[Any] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __SCREAMING_SNAKE_CASE :Dict = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self._get_input_ids_and_config() __SCREAMING_SNAKE_CASE :Tuple = False __SCREAMING_SNAKE_CASE :Any = max_length for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :Optional[int] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = jit(model.generate ) __SCREAMING_SNAKE_CASE :Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self._get_input_ids_and_config() __SCREAMING_SNAKE_CASE :Optional[Any] = True __SCREAMING_SNAKE_CASE :List[Any] = max_length for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :Optional[Any] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = jit(model.generate ) __SCREAMING_SNAKE_CASE :Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self._get_input_ids_and_config() __SCREAMING_SNAKE_CASE :List[Any] = False __SCREAMING_SNAKE_CASE :List[str] = max_length __SCREAMING_SNAKE_CASE :List[Any] = 2 for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :Union[str, Any] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = jit(model.generate ) __SCREAMING_SNAKE_CASE :List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self._get_input_ids_and_config() __SCREAMING_SNAKE_CASE :Optional[int] = False __SCREAMING_SNAKE_CASE :Union[str, Any] = max_length __SCREAMING_SNAKE_CASE :Dict = 2 __SCREAMING_SNAKE_CASE :List[str] = 2 for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :int = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self._get_input_ids_and_config() __SCREAMING_SNAKE_CASE :Optional[Any] = True __SCREAMING_SNAKE_CASE :Tuple = max_length __SCREAMING_SNAKE_CASE :Optional[int] = 0.8 __SCREAMING_SNAKE_CASE :List[str] = 10 __SCREAMING_SNAKE_CASE :Tuple = 0.3 __SCREAMING_SNAKE_CASE :List[str] = 1 __SCREAMING_SNAKE_CASE :Any = 8 __SCREAMING_SNAKE_CASE :List[str] = 9 for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :Union[str, Any] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = jit(model.generate ) __SCREAMING_SNAKE_CASE :Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self._get_input_ids_and_config() __SCREAMING_SNAKE_CASE :Union[str, Any] = max_length __SCREAMING_SNAKE_CASE :Optional[Any] = 1 __SCREAMING_SNAKE_CASE :Any = 8 __SCREAMING_SNAKE_CASE :List[Any] = 9 for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :Union[str, Any] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :List[Any] = jit(model.generate ) __SCREAMING_SNAKE_CASE :Tuple = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self._get_input_ids_and_config() __SCREAMING_SNAKE_CASE :Dict = max_length __SCREAMING_SNAKE_CASE :List[Any] = 2 __SCREAMING_SNAKE_CASE :Optional[Any] = 1 __SCREAMING_SNAKE_CASE :Optional[Any] = 8 __SCREAMING_SNAKE_CASE :Dict = 9 for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :List[str] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :int = jit(model.generate ) __SCREAMING_SNAKE_CASE :int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self._get_input_ids_and_config() # pad attention mask on the left __SCREAMING_SNAKE_CASE :List[str] = attention_mask.at[(0, 0)].set(0 ) __SCREAMING_SNAKE_CASE :Dict = False __SCREAMING_SNAKE_CASE :str = max_length for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :List[str] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = jit(model.generate ) __SCREAMING_SNAKE_CASE :Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self._get_input_ids_and_config() # pad attention mask on the left __SCREAMING_SNAKE_CASE :Optional[Any] = attention_mask.at[(0, 0)].set(0 ) __SCREAMING_SNAKE_CASE :int = True __SCREAMING_SNAKE_CASE :Tuple = max_length for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :Optional[int] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Dict = jit(model.generate ) __SCREAMING_SNAKE_CASE :int = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __SCREAMING_SNAKE_CASE :List[str] = attention_mask.at[(0, 0)].set(0 ) __SCREAMING_SNAKE_CASE :Tuple = 2 __SCREAMING_SNAKE_CASE :List[str] = max_length for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE :List[Any] = model_class(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :List[Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Any = jit(model.generate ) __SCREAMING_SNAKE_CASE :int = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __SCREAMING_SNAKE_CASE :str = "Hello world" __SCREAMING_SNAKE_CASE :List[Any] = tokenizer(__lowerCAmelCase ,return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,'''do_samples''' ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,'''foo''' ): __SCREAMING_SNAKE_CASE :str = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
498
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _a ): lowerCAmelCase__ = 'vivit' def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = num_frames _lowerCamelCase : Optional[int] = tubelet_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = qkv_bias super().__init__(**__lowerCAmelCase )
46
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A : Dict = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' A : Optional[Any] = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' A : Optional[int] = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False , ): if label_map is not None: for old_id, new_id in label_map.items(): snake_case : Union[str, Any] =new_id # turn into Numpy arrays snake_case : Dict =np.array(_lowerCamelCase ) snake_case : str =np.array(_lowerCamelCase ) if reduce_labels: snake_case : Union[str, Any] =2_55 snake_case : Optional[Any] =label - 1 snake_case : Optional[Any] =2_55 snake_case : List[Any] =label != ignore_index snake_case : int =np.not_equal(_lowerCamelCase , _lowerCamelCase ) snake_case : Union[str, Any] =pred_label[mask] snake_case : List[str] =np.array(_lowerCamelCase )[mask] snake_case : Union[str, Any] =pred_label[pred_label == label] snake_case : int =np.histogram(_lowerCamelCase , bins=_lowerCamelCase , range=(0, num_labels - 1) )[0] snake_case : List[Any] =np.histogram(_lowerCamelCase , bins=_lowerCamelCase , range=(0, num_labels - 1) )[0] snake_case : Optional[Any] =np.histogram(_lowerCamelCase , bins=_lowerCamelCase , range=(0, num_labels - 1) )[0] snake_case : List[str] =area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False , ): snake_case : List[Any] =np.zeros((num_labels,) , dtype=np.floataa ) snake_case : List[Any] =np.zeros((num_labels,) , dtype=np.floataa ) snake_case : int =np.zeros((num_labels,) , dtype=np.floataa ) snake_case : Union[str, Any] =np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_lowerCamelCase , _lowerCamelCase ): snake_case : Dict =intersect_and_union( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , ): snake_case : List[Any] =total_intersect_and_union( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # compute metrics snake_case : List[Any] ={} snake_case : Tuple =total_area_intersect.sum() / total_area_label.sum() snake_case : List[Any] =total_area_intersect / total_area_union snake_case : List[str] =total_area_intersect / total_area_label snake_case : List[Any] =np.nanmean(_lowerCamelCase ) snake_case : Dict =np.nanmean(_lowerCamelCase ) snake_case : Union[str, Any] =all_acc snake_case : List[Any] =iou snake_case : Union[str, Any] =acc if nan_to_num is not None: snake_case : str ={metric: np.nan_to_num(_lowerCamelCase , nan=_lowerCamelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def __snake_case ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ), reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ], ) def __snake_case ( self : Any, _snake_case : Union[str, Any], _snake_case : Optional[int], _snake_case : int, _snake_case : bool, _snake_case : Optional[int] = None, _snake_case : Optional[Dict[int, int]] = None, _snake_case : bool = False, ): '''simple docstring''' snake_case : Optional[Any] =mean_iou( results=__lowerCAmelCase, gt_seg_maps=__lowerCAmelCase, num_labels=__lowerCAmelCase, ignore_index=__lowerCAmelCase, nan_to_num=__lowerCAmelCase, label_map=__lowerCAmelCase, reduce_labels=__lowerCAmelCase, ) return iou_result
349
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self: Dict , UpperCamelCase: Tuple , UpperCamelCase: List[str]=7 , UpperCamelCase: int=3 , UpperCamelCase: Union[str, Any]=30 , UpperCamelCase: List[str]=4_00 , UpperCamelCase: List[Any]=True , UpperCamelCase: List[Any]=None , UpperCamelCase: List[str]=True , UpperCamelCase: int=[0.5, 0.5, 0.5] , UpperCamelCase: int=[0.5, 0.5, 0.5] , UpperCamelCase: List[Any]=True , UpperCamelCase: Any=1 / 2_55 , UpperCamelCase: Optional[int]=True , ) -> str: snake_case__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_pad def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: str=False ) -> Dict: if not batched: snake_case__ = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): snake_case__ = image.size else: snake_case__ = image.shape[1], image.shape[2] if w < h: snake_case__ = int(self.size['shortest_edge'] * h / w ) snake_case__ = self.size["shortest_edge"] elif w > h: snake_case__ = self.size["shortest_edge"] snake_case__ = int(self.size['shortest_edge'] * w / h ) else: snake_case__ = self.size["shortest_edge"] snake_case__ = self.size["shortest_edge"] else: snake_case__ = [] for image in image_inputs: snake_case__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ = max(__lowerCAmelCase , key=lambda UpperCamelCase : item[0] )[0] snake_case__ = max(__lowerCAmelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE( _a , unittest.TestCase ): _UpperCAmelCase = YolosImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self: Any ) -> List[str]: snake_case__ = YolosImageProcessingTester(self ) @property def lowerCAmelCase_ ( self: List[Any] ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self: Union[str, Any] ) -> Tuple: snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'size' ) ) def lowerCAmelCase_ ( self: str ) -> int: snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) snake_case__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: pass def lowerCAmelCase_ ( self: int ) -> Optional[int]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) snake_case__ = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values snake_case__ = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(__lowerCAmelCase , return_tensors='pt' ).pixel_values snake_case__ = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: str ) -> Dict: snake_case__ = self.image_processing_class(**self.image_processor_dict ) snake_case__ = self.image_processing_class(do_resize=__lowerCAmelCase , do_normalize=__lowerCAmelCase , do_rescale=__lowerCAmelCase ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors snake_case__ = image_processing_a.pad(__lowerCAmelCase , return_tensors='pt' ) snake_case__ = image_processing_a(__lowerCAmelCase , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self: str ) -> Any: snake_case__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {"image_id": 3_97_69, "annotations": target} # encode them snake_case__ = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) snake_case__ = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='pt' ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , __lowerCAmelCase ) snake_case__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __lowerCAmelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __lowerCAmelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __lowerCAmelCase ) snake_case__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __lowerCAmelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __lowerCAmelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __lowerCAmelCase ) ) # verify class_labels snake_case__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __lowerCAmelCase ) ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __lowerCAmelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __lowerCAmelCase ) ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[Any]: snake_case__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} snake_case__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case__ = YolosImageProcessor(format='coco_panoptic' ) snake_case__ = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='pt' ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , __lowerCAmelCase ) snake_case__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __lowerCAmelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __lowerCAmelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __lowerCAmelCase ) snake_case__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __lowerCAmelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __lowerCAmelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __lowerCAmelCase ) ) # verify class_labels snake_case__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __lowerCAmelCase ) ) # verify masks snake_case__ = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __lowerCAmelCase ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __lowerCAmelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __lowerCAmelCase ) )
328
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
0
from __future__ import annotations from random import random class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : int | None = None ): _a = value _a = random() _a = None _a = None def __repr__( self : Tuple ): from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : List[Any] ): _a = str(self.value ) + " " _a = str(self.left or '' ) _a = str(self.right or '' ) return value + left + right def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _a = split(root.left , _lowerCamelCase ) return left, root else: _a = split(root.right , _lowerCamelCase ) return root, right def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _a = merge(left.right , _lowerCamelCase ) return left else: _a = merge(_lowerCamelCase , right.left ) return right def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Node | None: _a = Node(_lowerCamelCase ) _a = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Node | None: _a = split(_lowerCamelCase , value - 1 ) _a = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Node | None: for arg in args.split(): if arg[0] == "+": _a = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _a = erase(_lowerCamelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def SCREAMING_SNAKE_CASE ( ) -> None: _a = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _a = input() while args != "q": _a = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _a = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
562
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
0
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def snake_case_ ( A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Any = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase, _lowerCamelCase ) def snake_case_ ( A_ : Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = emb.weight.shape _lowerCamelCase : Dict = nn.Linear(_lowerCamelCase, _lowerCamelCase, bias=_lowerCamelCase ) _lowerCamelCase : Any = emb.weight.data return lin_layer def snake_case_ ( A_ : List[Any], A_ : List[Any]=None ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = {} for old_key in state_dict.keys(): _lowerCamelCase : List[str] = old_key if "moe_layer.experts." in key: if expert_idx is not None: _lowerCamelCase : Any = key.replace('''moe_layer.experts.0''', F'''ffn.experts.expert_{expert_idx}''' ) else: _lowerCamelCase : Optional[Any] = key.replace('''moe_layer.experts.''', '''ffn.experts.expert_''' ) if "gate" in key: _lowerCamelCase : int = key.replace('''.moe_layer.gate.wg''', '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: _lowerCamelCase : Tuple = key.replace('''.fc2.''', '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: _lowerCamelCase : Union[str, Any] = key.replace('''.fc1.''', '''.ffn.fc1.''' ) if ".encoder_attn." in key: _lowerCamelCase : Union[str, Any] = key.replace('''.encoder_attn.''', '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: _lowerCamelCase : int = key.replace('''encoder_attn_layer_norm''', '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: _lowerCamelCase : Tuple = key.replace('''final_layer_norm''', '''ff_layer_norm''' ) _lowerCamelCase : List[str] = state_dict[old_key] return new_dict def snake_case_ ( A_ : Any, A_ : Tuple, A_ : str, A_ : List[Any], A_ : Dict = WEIGHTS_NAME ): '''simple docstring''' _lowerCamelCase : List[str] = [] _lowerCamelCase : List[Any] = 0 os.makedirs(_lowerCamelCase, exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): _lowerCamelCase : Dict = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): _lowerCamelCase : List[str] = torch.load(_lowerCamelCase )["model"] remove_ignore_keys_(_lowerCamelCase ) _lowerCamelCase : Any = rename_fairseq_keys(_lowerCamelCase, _lowerCamelCase ) _lowerCamelCase : Tuple = os.path.join( _lowerCamelCase, weights_name.replace('''.bin''', F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase, _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCamelCase, weights_name.replace('''.bin''', F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) _lowerCamelCase : List[str] = torch.load(switch_checkpoint_path + '''-shared.pt''' )["model"] remove_ignore_keys_(_lowerCamelCase ) _lowerCamelCase : int = rename_fairseq_keys(_lowerCamelCase, _lowerCamelCase ) _lowerCamelCase : List[Any] = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCamelCase, _lowerCamelCase ) torch.save(_lowerCamelCase, _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase, _lowerCamelCase ) # Otherwise, let's build the index _lowerCamelCase : Optional[int] = {} for idx, shard in enumerate(_lowerCamelCase ): _lowerCamelCase : int = weights_name.replace('''.bin''', F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) _lowerCamelCase : str = os.path.join(_lowerCamelCase, weights_name.replace('''.bin''', F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase, os.path.join(_lowerCamelCase, _lowerCamelCase ) ) for key in shard: _lowerCamelCase : Optional[Any] = shard_file # Add the metadata _lowerCamelCase : Union[str, Any] = {"total_size": total_size} _lowerCamelCase : Optional[Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCamelCase, _lowerCamelCase ), '''w''', encoding='''utf-8''' ) as f: _lowerCamelCase : Union[str, Any] = json.dumps(_lowerCamelCase, indent=2, sort_keys=_lowerCamelCase ) + "\n" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase__ = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
83
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __magic_name__ : """simple docstring""" def lowerCAmelCase ( self : str ): """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase: Dict = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) _UpperCamelCase: Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) _UpperCamelCase: str = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _UpperCamelCase: Union[str, Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) _UpperCamelCase: Tuple = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase: Dict = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) _UpperCamelCase: Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) _UpperCamelCase: Optional[int] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.414 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _UpperCamelCase: List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) _UpperCamelCase: Any = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) _UpperCamelCase: Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase ( self : Any ): """simple docstring""" _UpperCamelCase: str = self.get_dummy_components() _UpperCamelCase: Union[str, Any] = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCamelCase: Optional[int] = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCamelCase: List[Any] = inputs["prompt"] _UpperCamelCase: List[Any] = inputs["generator"] _UpperCamelCase: str = inputs["num_inference_steps"] _UpperCamelCase: Optional[Any] = inputs["output_type"] if "image" in inputs: _UpperCamelCase: Optional[Any] = inputs["image"] else: _UpperCamelCase: Optional[Any] = None if "mask_image" in inputs: _UpperCamelCase: Dict = inputs["mask_image"] else: _UpperCamelCase: Optional[Any] = None if "original_image" in inputs: _UpperCamelCase: Tuple = inputs["original_image"] else: _UpperCamelCase: Dict = None _UpperCamelCase: int = pipe.encode_prompt(__lowerCAmelCase ) # inputs with prompt converted to embeddings _UpperCamelCase: str = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _UpperCamelCase: Union[str, Any] = image if mask_image is not None: _UpperCamelCase: Union[str, Any] = mask_image if original_image is not None: _UpperCamelCase: Tuple = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCamelCase: List[Any] = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) _UpperCamelCase: Union[str, Any] = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCAmelCase , __lowerCAmelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) _UpperCamelCase: Union[str, Any] = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCamelCase: Tuple = inputs["generator"] _UpperCamelCase: Optional[int] = inputs["num_inference_steps"] _UpperCamelCase: List[Any] = inputs["output_type"] # inputs with prompt converted to embeddings _UpperCamelCase: str = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _UpperCamelCase: Tuple = image if mask_image is not None: _UpperCamelCase: Dict = mask_image if original_image is not None: _UpperCamelCase: List[str] = original_image _UpperCamelCase: List[Any] = pipe_loaded(**__lowerCAmelCase )[0] _UpperCamelCase: str = np.abs(to_np(__lowerCAmelCase ) - to_np(__lowerCAmelCase ) ).max() self.assertLess(__lowerCAmelCase , 1E-4 ) def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Tuple = self.get_dummy_components() _UpperCamelCase: Optional[Any] = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCamelCase: List[Any] = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCamelCase: List[str] = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) _UpperCamelCase: Tuple = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _UpperCamelCase: List[Any] = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCamelCase: Dict = pipe_loaded(**__lowerCAmelCase )[0] _UpperCamelCase: Dict = np.abs(to_np(__lowerCAmelCase ) - to_np(__lowerCAmelCase ) ).max() self.assertLess(__lowerCAmelCase , 1E-4 )
271
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token") ) return token def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = "imagenet-1k-id2label.json" snake_case_ = 1000 snake_case_ = "huggingface/label-files" snake_case_ = num_labels snake_case_ = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) snake_case_ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = CvtConfig(num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": snake_case_ = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": snake_case_ = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ = [2, 2, 20] snake_case_ = [3, 12, 16] snake_case_ = [192, 768, 1024] snake_case_ = CvtForImageClassification(_lowerCamelCase ) snake_case_ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) snake_case_ = image_size snake_case_ = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) snake_case_ = OrderedDict() snake_case_ = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ = list_of_state_dict + cls_token(_lowerCamelCase ) snake_case_ = list_of_state_dict + embeddings(_lowerCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ = list_of_state_dict + attention(_lowerCamelCase , _lowerCamelCase ) snake_case_ = list_of_state_dict + final() for gg in list_of_state_dict: print(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): snake_case_ = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you\'d like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowercase__ : Tuple = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
376
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
0
def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict = 0 , __lowerCAmelCase : Tuple = 0 ): a__ = right or len(_lowerCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowerCamelCase , _lowerCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
335
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
529
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
0
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A : Any = logging.get_logger(__name__) A : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } A : Tuple = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for attribute in key.split("." ): __lowerCAmelCase = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __lowerCAmelCase = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(_lowerCamelCase )[0].split("." )[-2] __lowerCAmelCase = mapped_key.replace("*" , _lowerCamelCase ) if "weight_g" in name: __lowerCAmelCase = "weight_g" elif "weight_v" in name: __lowerCAmelCase = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: __lowerCAmelCase = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase = "weight" else: __lowerCAmelCase = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = full_name.split("conv_layers." )[-1] __lowerCAmelCase = name.split("." ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowerCAmelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowerCAmelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __lowerCAmelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowerCAmelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowerCAmelCase = torch.load(_lowerCamelCase ) __lowerCAmelCase = WavLMConfigOrig(checkpoint["cfg"] ) __lowerCAmelCase = WavLMOrig(_lowerCamelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: __lowerCAmelCase = WavLMConfig.from_pretrained(_lowerCamelCase ) else: __lowerCAmelCase = WavLMConfig() __lowerCAmelCase = WavLMModel(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase ) hf_wavlm.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A : Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
636
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _SCREAMING_SNAKE_CASE (): print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): print('Generating prime p...' ) lowerCAmelCase = rabinMiller.generate_large_prime(_lowerCamelCase ) print('Generating prime q...' ) lowerCAmelCase = rabinMiller.generate_large_prime(_lowerCamelCase ) lowerCAmelCase = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: lowerCAmelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) lowerCAmelCase = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) lowerCAmelCase = (n, e) lowerCAmelCase = (n, d) return (public_key, private_key) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ): if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowerCAmelCase = generate_key(_lowerCamelCase ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
4
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
0
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __lowerCamelCase ( ) -> List[Any]: __SCREAMING_SNAKE_CASE :Optional[int] = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=_lowerCamelCase , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=_lowerCamelCase , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=_lowerCamelCase , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=_lowerCamelCase , default=0 , help='''cuda_id.''' , ) __SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() return args def __lowerCamelCase ( a_ : Optional[Any] , a_ : List[str] , a_ : List[str] ) -> Optional[int]: if not len(_lowerCamelCase ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) __SCREAMING_SNAKE_CASE :str = imgs[0].size __SCREAMING_SNAKE_CASE :List[Any] = Image.new('''RGB''' , size=(cols * w, rows * h) ) __SCREAMING_SNAKE_CASE :List[Any] = grid.size for i, img in enumerate(_lowerCamelCase ): grid.paste(_lowerCamelCase , box=(i % cols * w, i // cols * h) ) return grid def __lowerCamelCase ( a_ : List[Any] , a_ : Any="robotic cat with wings" , a_ : Any=7.5 , a_ : str=50 , a_ : Optional[int]=1 , a_ : Tuple=42 , ) -> Dict: __SCREAMING_SNAKE_CASE :Any = torch.Generator(pipeline.device ).manual_seed(_lowerCamelCase ) __SCREAMING_SNAKE_CASE :str = pipeline( _lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=_lowerCamelCase , generator=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , ).images __SCREAMING_SNAKE_CASE :int = int(math.sqrt(_lowerCamelCase ) ) __SCREAMING_SNAKE_CASE :str = image_grid(_lowerCamelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowerCamelCase_ = parse_args() # Load models and create wrapper for stable diffusion lowerCamelCase_ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") lowerCamelCase_ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") lowerCamelCase_ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") lowerCamelCase_ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") lowerCamelCase_ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowerCamelCase_ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): lowerCamelCase_ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: lowerCamelCase_ = unet.to(torch.device("cuda", args.cuda_id)) lowerCamelCase_ = pipeline.to(unet.device) lowerCamelCase_ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) lowerCamelCase_ = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
498
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self : str, _snake_case : Dict, _snake_case : List[Any]=13, _snake_case : str=32, _snake_case : Any=2, _snake_case : Union[str, Any]=3, _snake_case : str=16, _snake_case : Any=[1, 2, 1], _snake_case : List[Any]=[2, 2, 4], _snake_case : Union[str, Any]=2, _snake_case : List[str]=2.0, _snake_case : Tuple=True, _snake_case : Union[str, Any]=0.0, _snake_case : Dict=0.0, _snake_case : Optional[Any]=0.1, _snake_case : Tuple="gelu", _snake_case : List[str]=False, _snake_case : Union[str, Any]=True, _snake_case : str=0.02, _snake_case : Union[str, Any]=1E-5, _snake_case : Union[str, Any]=True, _snake_case : int=None, _snake_case : Union[str, Any]=True, _snake_case : List[Any]=10, _snake_case : int=8, ): '''simple docstring''' snake_case : Optional[Any] =parent snake_case : str =batch_size snake_case : List[Any] =image_size snake_case : List[str] =patch_size snake_case : str =num_channels snake_case : Optional[int] =embed_dim snake_case : str =depths snake_case : Optional[int] =num_heads snake_case : List[str] =window_size snake_case : Union[str, Any] =mlp_ratio snake_case : Tuple =qkv_bias snake_case : Optional[Any] =hidden_dropout_prob snake_case : str =attention_probs_dropout_prob snake_case : List[str] =drop_path_rate snake_case : Dict =hidden_act snake_case : Optional[int] =use_absolute_embeddings snake_case : Optional[int] =patch_norm snake_case : Union[str, Any] =layer_norm_eps snake_case : Tuple =initializer_range snake_case : Optional[int] =is_training snake_case : int =scope snake_case : Any =use_labels snake_case : int =type_sequence_label_size snake_case : Dict =encoder_stride def __snake_case ( self : List[Any] ): '''simple docstring''' snake_case : Dict =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : List[Any] =None if self.use_labels: snake_case : Union[str, Any] =ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case : Tuple =self.get_config() return config, pixel_values, labels def __snake_case ( self : Tuple ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def __snake_case ( self : Dict, _snake_case : Any, _snake_case : Tuple, _snake_case : List[str] ): '''simple docstring''' snake_case : Optional[Any] =SwinvaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() snake_case : List[Any] =model(__lowerCAmelCase ) snake_case : int =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case : int =int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def __snake_case ( self : List[str], _snake_case : Optional[Any], _snake_case : Optional[int], _snake_case : Union[str, Any] ): '''simple docstring''' snake_case : Tuple =SwinvaForMaskedImageModeling(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() snake_case : Tuple =model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case : str =1 snake_case : Optional[Any] =SwinvaForMaskedImageModeling(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() snake_case : Dict =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : List[Any] =model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def __snake_case ( self : List[Any], _snake_case : Dict, _snake_case : str, _snake_case : List[Any] ): '''simple docstring''' snake_case : int =self.type_sequence_label_size snake_case : Tuple =SwinvaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() snake_case : Optional[Any] =model(__lowerCAmelCase, labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : List[str] =self.prepare_config_and_inputs() snake_case : List[Any] =config_and_inputs snake_case : Union[str, Any] ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _a , _a , unittest.TestCase ): __UpperCAmelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCAmelCase = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __snake_case ( self : str ): '''simple docstring''' snake_case : Optional[int] =SwinvaModelTester(self ) snake_case : Dict =ConfigTester(self, config_class=__lowerCAmelCase, embed_dim=37 ) def __snake_case ( self : List[str] ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Any ): '''simple docstring''' snake_case : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def __snake_case ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def __snake_case ( self : List[str] ): '''simple docstring''' pass def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Union[str, Any] =model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) snake_case : int =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase, nn.Linear ) ) def __snake_case ( self : Any ): '''simple docstring''' snake_case : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : List[str] =model_class(__lowerCAmelCase ) snake_case : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : List[str] =[*signature.parameters.keys()] snake_case : Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1], __lowerCAmelCase ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : int =self.model_tester.prepare_config_and_inputs_for_common() snake_case : List[Any] =True for model_class in self.all_model_classes: snake_case : Optional[int] =True snake_case : Tuple =False snake_case : int =True snake_case : Union[str, Any] =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case : List[Any] =model(**self._prepare_for_class(__lowerCAmelCase, __lowerCAmelCase ) ) snake_case : int =outputs.attentions snake_case : int =len(self.model_tester.depths ) self.assertEqual(len(__lowerCAmelCase ), __lowerCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : int =True snake_case : Any =config.window_size**2 snake_case : Tuple =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case : Optional[int] =model(**self._prepare_for_class(__lowerCAmelCase, __lowerCAmelCase ) ) snake_case : Dict =outputs.attentions self.assertEqual(len(__lowerCAmelCase ), __lowerCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) snake_case : Union[str, Any] =len(__lowerCAmelCase ) # Check attention is always last and order is fine snake_case : Tuple =True snake_case : List[Any] =True snake_case : Tuple =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case : List[Any] =model(**self._prepare_for_class(__lowerCAmelCase, __lowerCAmelCase ) ) if hasattr(self.model_tester, '''num_hidden_states_types''' ): snake_case : Optional[int] =self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case : Union[str, Any] =2 self.assertEqual(out_len + added_hidden_states, len(__lowerCAmelCase ) ) snake_case : Optional[int] =outputs.attentions self.assertEqual(len(__lowerCAmelCase ), __lowerCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) def __snake_case ( self : Tuple, _snake_case : Union[str, Any], _snake_case : Union[str, Any], _snake_case : Optional[Any], _snake_case : int ): '''simple docstring''' snake_case : List[Any] =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case : Union[str, Any] =model(**self._prepare_for_class(__lowerCAmelCase, __lowerCAmelCase ) ) snake_case : int =outputs.hidden_states snake_case : Optional[Any] =getattr( self.model_tester, '''expected_num_hidden_layers''', len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__lowerCAmelCase ), __lowerCAmelCase ) # Swinv2 has a different seq_length snake_case : Union[str, Any] =( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case : Optional[Any] =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) snake_case : int =outputs.reshaped_hidden_states self.assertEqual(len(__lowerCAmelCase ), __lowerCAmelCase ) snake_case : Tuple =reshaped_hidden_states[0].shape snake_case : Tuple =( reshaped_hidden_states[0].view(__lowerCAmelCase, __lowerCAmelCase, height * width ).permute(0, 2, 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def __snake_case ( self : List[Any] ): '''simple docstring''' snake_case : Dict =self.model_tester.prepare_config_and_inputs_for_common() snake_case : Optional[int] =( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case : Union[str, Any] =True self.check_hidden_states_output(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : List[Any] =True self.check_hidden_states_output(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) def __snake_case ( self : int ): '''simple docstring''' snake_case : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() snake_case : Union[str, Any] =3 snake_case : Any =( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case : Dict =( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case : Union[str, Any] =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case : List[Any] =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case : Optional[int] =True self.check_hidden_states_output(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Tuple =True self.check_hidden_states_output(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, (padded_height, padded_width) ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase ) def __snake_case ( self : Any ): '''simple docstring''' snake_case : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def __snake_case ( self : Optional[int] ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : str =SwinvaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : Tuple =self.model_tester.prepare_config_and_inputs_for_common() snake_case : Tuple =_config_zero_init(__lowerCAmelCase ) for model_class in self.all_model_classes: snake_case : Optional[int] =model_class(config=__lowerCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f'''Parameter {name} of model {model_class} seems not properly initialized''', ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __snake_case ( self : Optional[int] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : List[str] =SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( __lowerCAmelCase ) snake_case : Union[str, Any] =self.default_image_processor snake_case : Optional[int] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) snake_case : str =image_processor(images=__lowerCAmelCase, return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): snake_case : Dict =model(**__lowerCAmelCase ) # verify the logits snake_case : Optional[int] =torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, __lowerCAmelCase ) snake_case : Optional[Any] =torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __lowerCAmelCase, atol=1E-4 ) )
349
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Union[str, Any] = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
328
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> str | Literal[False]: _a = list(_lowerCamelCase ) _a = list(_lowerCamelCase ) _a = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _a = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[str]: _a = [] while True: _a = ["$"] * len(_lowerCamelCase ) _a = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _a = compare_string(binary[i] , binary[j] ) if k is False: _a = "*" _a = "*" temp.append('X' ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _a = list(set(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[str]: _a = [] for minterm in minterms: _a = "" for _ in range(_lowerCamelCase ): _a = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: _a = list(_lowerCamelCase ) _a = list(_lowerCamelCase ) _a = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[str]: _a = [] _a = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _a = 0 _a = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _a = j if count == 1: _a = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _a = 0 temp.append(prime_implicants[i] ) while True: _a = 0 _a = -1 _a = 0 for i in range(len(_lowerCamelCase ) ): _a = chart[i].count(1 ) if count_n > max_n: _a = count_n _a = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _a = 0 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[list[int]]: _a = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _a = prime_implicants[i].count('_' ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _a = 1 return chart def SCREAMING_SNAKE_CASE ( ) -> None: _a = int(input('Enter the no. of variables\n' ) ) _a = [ float(_lowerCamelCase ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _a = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _a = check(_lowerCamelCase ) print('Prime Implicants are:' ) print(_lowerCamelCase ) _a = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _a = selection(_lowerCamelCase , _lowerCamelCase ) print('Essential Prime Implicants are:' ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
562
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class __snake_case : snake_case__ : Dict = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"}) snake_case__ : Optional[Any] = field( default=_a , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}) snake_case__ : Tuple = field( default=_a , metadata={"help": "The column name of the images in the files."}) snake_case__ : Tuple = field(default=_a , metadata={"help": "A folder containing the training data."}) snake_case__ : Union[str, Any] = field(default=_a , metadata={"help": "A folder containing the validation data."}) snake_case__ : Union[str, Any] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."}) snake_case__ : List[str] = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case__ : List[Any] = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = {} if self.train_dir is not None: _lowerCamelCase : Optional[Any] = self.train_dir if self.validation_dir is not None: _lowerCamelCase : str = self.validation_dir _lowerCamelCase : Any = data_files if data_files else None @dataclass class __snake_case : snake_case__ : Tuple = field( default=_a , metadata={ "help": ( "The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch." ) } , ) snake_case__ : Optional[Any] = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"}) snake_case__ : Union[str, Any] = field( default=_a , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) snake_case__ : Optional[int] = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}) snake_case__ : Union[str, Any] = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case__ : Any = field(default=_a , metadata={"help": "Name or path of preprocessor config."}) snake_case__ : str = field( default=_a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case__ : Tuple = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."}) snake_case__ : Dict = field( default=_a , metadata={"help": "Whether or not to train with normalized pixel values as target."}) @dataclass class __snake_case ( _a): snake_case__ : Union[str, Any] = field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."}) def snake_case_ ( A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : int = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''', _lowerCamelCase, _lowerCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowerCamelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. _lowerCamelCase : Optional[int] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCamelCase : int = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _lowerCamelCase ) and data_args.train_val_split > 0.0: _lowerCamelCase : Dict = ds["train"].train_test_split(data_args.train_val_split ) _lowerCamelCase : List[Any] = split["train"] _lowerCamelCase : List[str] = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Tuple = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: _lowerCamelCase : Dict = ViTMAEConfig.from_pretrained(model_args.config_name, **_lowerCamelCase ) elif model_args.model_name_or_path: _lowerCamelCase : Optional[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **_lowerCamelCase ) else: _lowerCamelCase : str = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _lowerCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name, **_lowerCamelCase ) elif model_args.model_name_or_path: _lowerCamelCase : Tuple = ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **_lowerCamelCase ) else: _lowerCamelCase : Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: _lowerCamelCase : Dict = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('''Training new model from scratch''' ) _lowerCamelCase : Optional[Any] = ViTMAEForPreTraining(_lowerCamelCase ) if training_args.do_train: _lowerCamelCase : int = ds["train"].column_names else: _lowerCamelCase : List[Any] = ds["validation"].column_names if data_args.image_column_name is not None: _lowerCamelCase : List[Any] = data_args.image_column_name elif "image" in column_names: _lowerCamelCase : int = "image" elif "img" in column_names: _lowerCamelCase : Tuple = "img" else: _lowerCamelCase : Tuple = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _lowerCamelCase : Dict = image_processor.size["shortest_edge"] else: _lowerCamelCase : Optional[int] = (image_processor.size["height"], image_processor.size["width"]) _lowerCamelCase : Optional[Any] = Compose( [ Lambda(lambda A_ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(_lowerCamelCase, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) def preprocess_images(A_ : Any ): _lowerCamelCase : Optional[Any] = [transforms(_lowerCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: _lowerCamelCase : int = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: _lowerCamelCase : Optional[int] = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_lowerCamelCase ) # Compute absolute learning rate _lowerCamelCase : List[str] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _lowerCamelCase : int = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _lowerCamelCase : Any = Trainer( model=_lowerCamelCase, args=_lowerCamelCase, train_dataset=ds['''train'''] if training_args.do_train else None, eval_dataset=ds['''validation'''] if training_args.do_eval else None, tokenizer=_lowerCamelCase, data_collator=_lowerCamelCase, ) # Training if training_args.do_train: _lowerCamelCase : str = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : Union[str, Any] = last_checkpoint _lowerCamelCase : List[Any] = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCamelCase : Dict = trainer.evaluate() trainer.log_metrics('''eval''', _lowerCamelCase ) trainer.save_metrics('''eval''', _lowerCamelCase ) # Write model card and (optionally) push to hub _lowerCamelCase : int = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) def snake_case_ ( A_ : List[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
83
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCAmelCase_ = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' UpperCAmelCase_ = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' UpperCAmelCase_ = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def lowerCAmelCase ( self : Tuple , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Tuple=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , _lowercase : str=None , _lowercase : Optional[Any]="auto" , _lowercase : Union[str, Any]=-1 , _lowercase : List[Any]=0.9 , _lowercase : Dict=5 , _lowercase : Union[str, Any]=500 , _lowercase : int="gpt2-large" , _lowercase : Tuple=-1 , _lowercase : Tuple=1_024 , _lowercase : int=25 , _lowercase : Optional[Any]=5 , _lowercase : List[Any]=True , _lowercase : List[str]=25 , ): """simple docstring""" _UpperCamelCase: Tuple = compute_mauve( p_text=__lowerCAmelCase , q_text=__lowerCAmelCase , p_features=__lowerCAmelCase , q_features=__lowerCAmelCase , p_tokens=__lowerCAmelCase , q_tokens=__lowerCAmelCase , num_buckets=__lowerCAmelCase , pca_max_data=__lowerCAmelCase , kmeans_explained_var=__lowerCAmelCase , kmeans_num_redo=__lowerCAmelCase , kmeans_max_iter=__lowerCAmelCase , featurize_model_name=__lowerCAmelCase , device_id=__lowerCAmelCase , max_text_length=__lowerCAmelCase , divergence_curve_discretization_size=__lowerCAmelCase , mauve_scaling_factor=__lowerCAmelCase , verbose=__lowerCAmelCase , seed=__lowerCAmelCase , ) return out
271
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase__ : str = '''src/diffusers''' lowercase__ : List[Any] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowercase__ : Union[str, Any] = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase__ : Union[str, Any] = spec.loader.load_module() def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return line.startswith(_lowerCamelCase ) or len(_lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , _lowerCamelCase ) is not None def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = object_name.split("." ) snake_case_ = 0 # First let's find the module where our object lives. snake_case_ = parts[i] while i < len(_lowerCamelCase ) and not os.path.isfile(os.path.join(_lowerCamelCase , f"{module}.py" ) ): i += 1 if i < len(_lowerCamelCase ): snake_case_ = os.path.join(_lowerCamelCase , parts[i] ) if i >= len(_lowerCamelCase ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(_lowerCamelCase , f"{module}.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case_ = f.readlines() # Now let's find the class / func in the code! snake_case_ = "" snake_case_ = 0 for name in parts[i + 1 :]: while ( line_index < len(_lowerCamelCase ) and re.search(Rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_lowerCamelCase ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). snake_case_ = line_index while line_index < len(_lowerCamelCase ) and _should_continue(lines[line_index] , _lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ = lines[start_index:line_index] return "".join(_lowerCamelCase ) lowercase__ : Optional[int] = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") lowercase__ : str = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") lowercase__ : List[Any] = re.compile(R"<FILL\s+[^>]*>") def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = code.split("\n" ) snake_case_ = 0 while idx < len(_lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_lowerCamelCase ): return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0] return "" def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = len(get_indent(_lowerCamelCase ) ) > 0 if has_indent: snake_case_ = f"class Bla:\n{code}" snake_case_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_lowerCamelCase ) snake_case_ = black.format_str(_lowerCamelCase , mode=_lowerCamelCase ) snake_case_ = style_docstrings_in_code(_lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ ( _A , _A=False ): '''simple docstring''' with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case_ = f.readlines() snake_case_ = [] snake_case_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_lowerCamelCase ): snake_case_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. snake_case_ = search.groups() snake_case_ = find_code_in_diffusers(_lowerCamelCase ) snake_case_ = get_indent(_lowerCamelCase ) snake_case_ = line_index + 1 if indent == theoretical_indent else line_index + 2 snake_case_ = theoretical_indent snake_case_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. snake_case_ = True while line_index < len(_lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(_lowerCamelCase ): break snake_case_ = lines[line_index] snake_case_ = _should_continue(_lowerCamelCase , _lowerCamelCase ) and re.search(f"^{indent}# End copy" , _lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ = lines[start_index:line_index] snake_case_ = "".join(_lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies snake_case_ = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(_lowerCamelCase ) is None] snake_case_ = "\n".join(_lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_lowerCamelCase ) > 0: snake_case_ = replace_pattern.replace("with" , "" ).split("," ) snake_case_ = [_re_replace_pattern.search(_lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue snake_case_ = pattern.groups() snake_case_ = re.sub(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if option.strip() == "all-casing": snake_case_ = re.sub(obja.lower() , obja.lower() , _lowerCamelCase ) snake_case_ = re.sub(obja.upper() , obja.upper() , _lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line snake_case_ = blackify(lines[start_index - 1] + theoretical_code ) snake_case_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: snake_case_ = lines[:start_index] + [theoretical_code] + lines[line_index:] snake_case_ = start_index + 1 if overwrite and len(_lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_lowerCamelCase ) return diffs def lowerCamelCase__ ( _A = False ): '''simple docstring''' snake_case_ = glob.glob(os.path.join(_lowerCamelCase , "**/*.py" ) , recursive=_lowerCamelCase ) snake_case_ = [] for filename in all_files: snake_case_ = is_copy_consistent(_lowerCamelCase , _lowerCamelCase ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(_lowerCamelCase ) > 0: snake_case_ = "\n".join(_lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowercase__ : Union[str, Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
376
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): snake_case : Optional[Any] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) snake_case : Any = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } snake_case : str = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' snake_case : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' snake_case : List[str] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } snake_case : Dict = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' snake_case : Any = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) snake_case : Any = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' snake_case : int = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) snake_case : List[str] = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' snake_case : Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' snake_case : Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' snake_case : Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' snake_case : List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' snake_case : str = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' snake_case : List[str] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' snake_case : List[Any] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' snake_case : List[str] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' snake_case : List[Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' snake_case : Optional[int] = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' snake_case : Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' snake_case : List[str] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' snake_case : Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' snake_case : Any = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' snake_case : Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' snake_case : str = '''''' snake_case : List[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' snake_case : str = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' snake_case : Optional[Any] = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any ): assert ReadMe.from_string(_lowerCamelCase , _lowerCamelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ): with pytest.raises(_lowerCamelCase , match=re.escape(expected_error.format(path='root' ) ) ): a__ = ReadMe.from_string(_lowerCamelCase , _lowerCamelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str ): with pytest.raises(_lowerCamelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowercase ( __lowerCAmelCase : str ): ReadMe.from_string(_lowerCamelCase , _lowerCamelCase , suppress_parsing_errors=_lowerCamelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str ): with tempfile.TemporaryDirectory() as tmp_dir: a__ = Path(_lowerCamelCase ) / "README.md" with open(_lowerCamelCase , 'w+' ) as readme_file: readme_file.write(_lowerCamelCase ) a__ = ReadMe.from_readme(_lowerCamelCase , _lowerCamelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: a__ = Path(_lowerCamelCase ) / "README.md" with open(_lowerCamelCase , 'w+' ) as readme_file: readme_file.write(_lowerCamelCase ) a__ = expected_error.format(path=_lowerCamelCase ) with pytest.raises(_lowerCamelCase , match=re.escape(_lowerCamelCase ) ): a__ = ReadMe.from_readme(_lowerCamelCase , _lowerCamelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: a__ = Path(_lowerCamelCase ) / "README.md" with open(_lowerCamelCase , 'w+' ) as readme_file: readme_file.write(_lowerCamelCase ) a__ = expected_error.format(path=_lowerCamelCase ) with pytest.raises(_lowerCamelCase , match=re.escape(_lowerCamelCase ) ): ReadMe.from_readme(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __lowercase ( __lowerCAmelCase : List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: a__ = Path(_lowerCamelCase ) / "README.md" with open(_lowerCamelCase , 'w+' ) as readme_file: readme_file.write(_lowerCamelCase ) ReadMe.from_readme(_lowerCamelCase , _lowerCamelCase , suppress_parsing_errors=_lowerCamelCase )
335
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __lowerCAmelCase : str = re.compile(R'\s+') def a__ ( A_ ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(_lowerCamelCase, """""", example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def a__ ( A_ ): '''simple docstring''' __magic_name__ = [len(_lowerCamelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCamelCase ), "line_max": max(_lowerCamelCase )} def a__ ( A_ ): '''simple docstring''' __magic_name__ = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def a__ ( A_, A_ ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def a__ ( A_, A_=5 ): '''simple docstring''' __magic_name__ = ["auto-generated", "autogenerated", "automatically generated"] __magic_name__ = example["content"].splitlines() for _, line in zip(range(_lowerCamelCase ), _lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a__ ( A_, A_=5, A_=0.05 ): '''simple docstring''' __magic_name__ = ["unit tests", "test file", "configuration file"] __magic_name__ = example["content"].splitlines() __magic_name__ = 0 __magic_name__ = 0 # first test for _, line in zip(range(_lowerCamelCase ), _lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __magic_name__ = example["content"].count("""\n""" ) __magic_name__ = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a__ ( A_ ): '''simple docstring''' __magic_name__ = ["def ", "class ", "for ", "while "] __magic_name__ = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a__ ( A_, A_=4 ): '''simple docstring''' __magic_name__ = example["content"].splitlines() __magic_name__ = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a__ ( A_ ): '''simple docstring''' __magic_name__ = tokenizer(example["""content"""], truncation=_lowerCamelCase )["input_ids"] __magic_name__ = len(example["""content"""] ) / len(_lowerCamelCase ) return {"ratio": ratio} def a__ ( A_ ): '''simple docstring''' __magic_name__ = {} results.update(get_hash(_lowerCamelCase ) ) results.update(line_stats(_lowerCamelCase ) ) results.update(alpha_stats(_lowerCamelCase ) ) results.update(char_token_ratio(_lowerCamelCase ) ) results.update(is_autogenerated(_lowerCamelCase ) ) results.update(is_config_or_test(_lowerCamelCase ) ) results.update(has_no_keywords(_lowerCamelCase ) ) results.update(has_few_assignments(_lowerCamelCase ) ) return results def a__ ( A_, A_, A_ ): '''simple docstring''' if not check_uniques(_lowerCamelCase, _lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a__ ( A_ ): '''simple docstring''' with open(_lowerCamelCase, """rb""" ) as f_in: with gzip.open(str(_lowerCamelCase ) + """.gz""", """wb""", compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCamelCase, _lowerCamelCase ) os.unlink(_lowerCamelCase ) # Settings __lowerCAmelCase : Dict = HfArgumentParser(PreprocessingArguments) __lowerCAmelCase : List[str] = parser.parse_args() if args.num_workers is None: __lowerCAmelCase : Optional[Any] = multiprocessing.cpu_count() __lowerCAmelCase : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __lowerCAmelCase : Union[str, Any] = time.time() __lowerCAmelCase : str = load_dataset(args.dataset_name, split='train') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __lowerCAmelCase : List[Any] = time.time() __lowerCAmelCase : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __lowerCAmelCase : Dict = set(ds.unique('hash')) __lowerCAmelCase : Union[str, Any] = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __lowerCAmelCase : Tuple = time.time() __lowerCAmelCase : List[Any] = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __lowerCAmelCase : Union[str, Any] = time.time() __lowerCAmelCase : Optional[int] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __lowerCAmelCase : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) __lowerCAmelCase : Optional[int] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) __lowerCAmelCase : Optional[int] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __lowerCAmelCase : Tuple = str(data_dir / F'''file-{file_number+1:012}.json''') __lowerCAmelCase : Optional[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
529
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCamelCase ( _a ): '''simple docstring''' __UpperCAmelCase : Optional[int] ="""vivit""" def __init__( self , __a=2_24 , __a=32 , __a=[2, 16, 16] , __a=3 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu_fast" , __a=0.0 , __a=0.0 , __a=0.0_2 , __a=1e-0_6 , __a=True , **__a , ): __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = num_frames __lowerCAmelCase = tubelet_size __lowerCAmelCase = num_channels __lowerCAmelCase = qkv_bias super().__init__(**__lowerCAmelCase )
636
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) lowerCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ): if metric == "rouge2": lowerCAmelCase = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": lowerCAmelCase = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": lowerCAmelCase = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": lowerCAmelCase = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) lowerCAmelCase = ModelCheckpoint( dirpath=_lowerCamelCase , filename=_lowerCamelCase , monitor=F'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ): return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=_lowerCamelCase , verbose=_lowerCamelCase , ) class a ( pl.Callback ): def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = {F'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__lowerCAmelCase ) @rank_zero_only def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case=True ): """simple docstring""" logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) lowerCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results lowerCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": lowerCAmelCase = od / "test_results.txt" lowerCAmelCase = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowerCAmelCase = od / F'{type_path}_results/{trainer.global_step:05d}.txt' lowerCAmelCase = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__lowerCAmelCase ) generations_file.parent.mkdir(exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , 'a+' ) as writer: for key in sorted(__lowerCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue lowerCAmelCase = metrics[key] if isinstance(__lowerCAmelCase , torch.Tensor ): lowerCAmelCase = val.item() lowerCAmelCase = F'{key}: {val:.6f}\n' writer.write(__lowerCAmelCase ) if not save_generations: return if "preds" in metrics: lowerCAmelCase = "\n".join(metrics['preds'] ) generations_file.open('w+' ).write(__lowerCAmelCase ) @rank_zero_only def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" try: lowerCAmelCase = pl_module.model.model.num_parameters() except AttributeError: lowerCAmelCase = pl_module.model.num_parameters() lowerCAmelCase = count_trainable_parameters(__lowerCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__lowerCAmelCase , __lowerCAmelCase , 'test' ) @rank_zero_only def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') ,up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') ,) return model def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE :Optional[Any] = ScoreSdeVeScheduler() __SCREAMING_SNAKE_CASE :str = ScoreSdeVePipeline(unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ) sde_ve.to(__lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE :List[Any] = sde_ve(num_inference_steps=2 ,output_type='''numpy''' ,generator=__lowerCAmelCase ).images __SCREAMING_SNAKE_CASE :Any = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE :int = sde_ve(num_inference_steps=2 ,output_type='''numpy''' ,generator=__lowerCAmelCase ,return_dict=__lowerCAmelCase )[ 0 ] __SCREAMING_SNAKE_CASE :Tuple = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :List[str] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = "google/ncsnpp-church-256" __SCREAMING_SNAKE_CASE :str = UNetaDModel.from_pretrained(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[Any] = ScoreSdeVeScheduler.from_pretrained(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :str = ScoreSdeVePipeline(unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ) sde_ve.to(__lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :str = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE :Tuple = sde_ve(num_inference_steps=10 ,output_type='''numpy''' ,generator=__lowerCAmelCase ).images __SCREAMING_SNAKE_CASE :int = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __SCREAMING_SNAKE_CASE :Optional[int] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
498
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _a ): lowerCAmelCase__ = 'vivit' def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = num_frames _lowerCamelCase : Optional[int] = tubelet_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = qkv_bias super().__init__(**__lowerCAmelCase )
46
0
'''simple docstring''' import operator as op def _a ( lowerCamelCase_ ): snake_case : Optional[int] =[] snake_case : Union[str, Any] =lambda lowerCamelCase_ , lowerCamelCase_ : int(x / y ) # noqa: E731 integer division operation snake_case : Optional[int] ={ "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(_lowerCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_lowerCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(_lowerCamelCase ) , sep=''' | ''' ) else: snake_case : Optional[Any] =stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(_lowerCamelCase ) , sep=''' | ''' ) snake_case : Tuple =stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(_lowerCamelCase ) , sep=''' | ''' ) stack.append( str(opr[x](int(_lowerCamelCase ) , int(_lowerCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(_lowerCamelCase ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": A : Optional[Any] = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
349
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def lowerCAmelCase_ ( self: List[str] ) -> List[str]: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCAmelCase ): snake_case__ = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def lowerCAmelCase_ ( self: int ) -> Optional[int]: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCAmelCase ): snake_case__ = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def lowerCAmelCase_ ( self: int ) -> int: for model_name in ["bert-base-cased", "bert-large-uncased"]: snake_case__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) snake_case__ = FlaxBertModel.from_pretrained(__lowerCAmelCase ) snake_case__ = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase: Union[str, Any] ): return model(**__lowerCAmelCase ) eval(**__lowerCAmelCase ).block_until_ready() @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: for model_name in ["roberta-base", "roberta-large"]: snake_case__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) snake_case__ = FlaxRobertaModel.from_pretrained(__lowerCAmelCase ) snake_case__ = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase: int ): return model(**__lowerCAmelCase ) eval(**__lowerCAmelCase ).block_until_ready() def lowerCAmelCase_ ( self: Any ) -> int: with self.assertRaisesRegex( __lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ): snake_case__ = FlaxAutoModel.from_pretrained('bert-base' ) def lowerCAmelCase_ ( self: int ) -> List[str]: with self.assertRaisesRegex( __lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): snake_case__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self: int ) -> List[str]: with self.assertRaisesRegex( __lowerCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): snake_case__ = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def lowerCAmelCase_ ( self: Optional[int] ) -> Any: with self.assertRaisesRegex(__lowerCAmelCase , 'Use `from_pt=True` to load this model' ): snake_case__ = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
328
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[List[ImageInput]]: if isinstance(_lowerCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCamelCase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class _UpperCamelCase ( _a ): '''simple docstring''' _A = ["pixel_values"] def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE_ : str , ): super().__init__(**__lowerCAmelCase ) _a = size if size is not None else {"shortest_edge": 2_2_4} _a = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) _a = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _a = get_size_dict(__lowerCAmelCase , param_name='crop_size' ) _a = do_resize _a = size _a = do_center_crop _a = crop_size _a = resample _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : int , ): _a = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" in size: _a = get_resize_output_image_size(__lowerCAmelCase , size['shortest_edge'] , default_to_square=__lowerCAmelCase ) elif "height" in size and "width" in size: _a = (size["height"], size["width"]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Any , ): _a = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__lowerCAmelCase , size=(size['height'], size['width']) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[int, float] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ): return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Dict , ): return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _a = to_numpy_array(__lowerCAmelCase ) if do_resize: _a = self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) if do_center_crop: _a = self.center_crop(__lowerCAmelCase , size=__lowerCAmelCase ) if do_rescale: _a = self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) if do_normalize: _a = self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) _a = to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) return image def _UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : str , ): _a = do_resize if do_resize is not None else self.do_resize _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = size if size is not None else self.size _a = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__lowerCAmelCase , param_name='crop_size' ) if not valid_images(__lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) _a = make_batched(__lowerCAmelCase ) _a = [ [ self._preprocess_image( image=__lowerCAmelCase , do_resize=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , do_center_crop=__lowerCAmelCase , crop_size=__lowerCAmelCase , do_rescale=__lowerCAmelCase , rescale_factor=__lowerCAmelCase , do_normalize=__lowerCAmelCase , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase , data_format=__lowerCAmelCase , ) for img in video ] for video in videos ] _a = {"pixel_values": videos} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
562
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( _a): def __init__( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): """simple docstring""" super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self : Dict , __lowerCAmelCase : int = 1 , __lowerCAmelCase : int = 1_0_0 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[float] = None , __lowerCAmelCase : bool = True , ): """simple docstring""" if audio_length_in_s is None: _lowerCamelCase : Dict = self.unet.config.sample_size / self.unet.config.sample_rate _lowerCamelCase : List[str] = audio_length_in_s * self.unet.config.sample_rate _lowerCamelCase : List[str] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) _lowerCamelCase : Optional[Any] = int(__lowerCAmelCase ) if sample_size % down_scale_factor != 0: _lowerCamelCase : Tuple = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) _lowerCamelCase : Union[str, Any] = int(__lowerCAmelCase ) _lowerCamelCase : Tuple = next(iter(self.unet.parameters() ) ).dtype _lowerCamelCase : Tuple = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowerCamelCase : Union[str, Any] = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase , device=audio.device ) _lowerCamelCase : str = self.scheduler.timesteps.to(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCamelCase : int = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 _lowerCamelCase : Any = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample _lowerCamelCase : str = audio.clamp(-1 , 1 ).float().cpu().numpy() _lowerCamelCase : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__lowerCAmelCase )
83
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
0
def lowerCAmelCase_ ( lowercase: List[str] = 1_000 ) -> int: '''simple docstring''' _UpperCamelCase: Dict = 1, 1 _UpperCamelCase: Optional[int] = [] for i in range(1 , n + 1 ): _UpperCamelCase: Any = prev_numerator + 2 * prev_denominator _UpperCamelCase: Union[str, Any] = prev_numerator + prev_denominator if len(str(_lowerCamelCase ) ) > len(str(_lowerCamelCase ) ): result.append(_lowerCamelCase ) _UpperCamelCase: List[Any] = numerator _UpperCamelCase: Any = denominator return len(_lowerCamelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
271
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
0
import math class UpperCAmelCase : '''simple docstring''' def snake_case__ ( self : Tuple , __lowercase : list[list[float]] , __lowercase : list[int] ): """simple docstring""" snake_case_ = 0.0 snake_case_ = 0.0 for i in range(len(__lowerCAmelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def snake_case__ ( self : str , __lowercase : list[list[int | float]] , __lowercase : list[int] , __lowercase : int , __lowercase : float ): """simple docstring""" for i in range(len(__lowerCAmelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case_ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case_ = SelfOrganizingMap() snake_case_ = 3 snake_case_ = 0.5 for _ in range(_lowerCamelCase ): for j in range(len(_lowerCamelCase ) ): # training sample snake_case_ = training_samples[j] # Compute the winning vector snake_case_ = self_organizing_map.get_winner(_lowerCamelCase , _lowerCamelCase ) # Update the winning vector snake_case_ = self_organizing_map.update(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # classify test sample snake_case_ = [0, 0, 0, 1] snake_case_ = self_organizing_map.get_winner(_lowerCamelCase , _lowerCamelCase ) # results print(f"Clusters that the test sample belongs to : {winner}" ) print(f"Weights that have been trained : {weights}" ) # running the main() function if __name__ == "__main__": main()
376
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
0
from math import sqrt def __lowercase ( __lowerCAmelCase : Optional[int] = 1_0_0_0_0_0_0 ): a__ = 0 a__ = 0 a__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCamelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
335
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
0
from PIL import Image def a__ ( A_ ): '''simple docstring''' __magic_name__ = image.size __magic_name__ = 0 __magic_name__ = image.load() for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): __magic_name__ = pixels[j, i] mean += pixel mean //= width * height for j in range(_lowerCamelCase ): for i in range(_lowerCamelCase ): __magic_name__ = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
529
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_a ) ,"""Tatoeba directory does not exist.""" ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowerCAmelCase ) @slow def snake_case ( self ): self.resolver.convert_models(["heb-eng"] ) @slow def snake_case ( self ): __lowerCAmelCase = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__lowerCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
636
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : int = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
0
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _SCREAMING_SNAKE_CASE: def __init__( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = "" __SCREAMING_SNAKE_CASE :int = "" __SCREAMING_SNAKE_CASE :Optional[Any] = [] __SCREAMING_SNAKE_CASE :Any = 0 __SCREAMING_SNAKE_CASE :List[Any] = 2_56 __SCREAMING_SNAKE_CASE :Union[str, Any] = 0 __SCREAMING_SNAKE_CASE :int = 0 __SCREAMING_SNAKE_CASE :List[str] = 0 __SCREAMING_SNAKE_CASE :List[str] = 0 def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = cva.imread(__lowerCAmelCase ,0 ) __SCREAMING_SNAKE_CASE :List[str] = copy.deepcopy(self.img ) __SCREAMING_SNAKE_CASE :str = plt.hist(self.img.ravel() ,2_56 ,[0, 2_56] ,label='''x''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.sum(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): __SCREAMING_SNAKE_CASE :Tuple = x[i] / self.k self.sk += prk __SCREAMING_SNAKE_CASE :Tuple = (self.L - 1) * self.sk if self.rem != 0: __SCREAMING_SNAKE_CASE :Tuple = int(last % last ) __SCREAMING_SNAKE_CASE :str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[Any] = int(np.ma.count(self.img ) / self.img[1].size ) __SCREAMING_SNAKE_CASE :Union[str, Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __SCREAMING_SNAKE_CASE :Union[str, Any] = self.img[j][i] if num != self.last_list[num]: __SCREAMING_SNAKE_CASE :Optional[Any] = self.last_list[num] cva.imwrite('''output_data/output.jpg''' ,self.img ) def _UpperCamelCase ( self ) -> int: """simple docstring""" plt.hist(self.img.ravel() ,2_56 ,[0, 2_56] ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" cva.imshow('''Output-Image''' ,self.img ) cva.imshow('''Input-Image''' ,self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCamelCase_ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowerCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
498
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin A : Dict = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( _a , unittest.TestCase ): __UpperCAmelCase = SpeechTaTokenizer __UpperCAmelCase = False __UpperCAmelCase = True def __snake_case ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case : str =SpeechTaTokenizer(__lowerCAmelCase ) snake_case : Tuple =AddedToken('''<mask>''', lstrip=__lowerCAmelCase, rstrip=__lowerCAmelCase ) snake_case : Optional[int] =mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[str], _snake_case : str ): '''simple docstring''' snake_case : Dict ="this is a test" snake_case : Optional[Any] ="this is a test" return input_text, output_text def __snake_case ( self : List[str], _snake_case : List[Any], _snake_case : Any=False, _snake_case : str=20, _snake_case : List[Any]=5 ): '''simple docstring''' snake_case : List[str] =self.get_input_output_texts(__lowerCAmelCase ) snake_case : Optional[int] =tokenizer.encode(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ) snake_case : Tuple =tokenizer.decode(__lowerCAmelCase, clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def __snake_case ( self : Optional[int] ): '''simple docstring''' snake_case : Union[str, Any] ="<pad>" snake_case : List[str] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ), __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ), __lowerCAmelCase ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : Any =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<s>''' ) self.assertEqual(vocab_keys[1], '''<pad>''' ) self.assertEqual(vocab_keys[-4], '''œ''' ) self.assertEqual(vocab_keys[-2], '''<mask>''' ) self.assertEqual(vocab_keys[-1], '''<ctc_blank>''' ) self.assertEqual(len(__lowerCAmelCase ), 81 ) def __snake_case ( self : Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 79 ) def __snake_case ( self : Any ): '''simple docstring''' snake_case : Union[str, Any] =self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): snake_case : Tuple =tokenizer.vocab_size snake_case : Optional[Any] =len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase, 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case : Optional[int] =["aaaaa bbbbbb", "cccccccccdddddddd"] snake_case : Any =tokenizer.add_tokens(__lowerCAmelCase ) snake_case : Tuple =tokenizer.vocab_size snake_case : Union[str, Any] =len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase, 0 ) self.assertEqual(__lowerCAmelCase, __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase, len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase, all_size + len(__lowerCAmelCase ) ) snake_case : Any =tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''', add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ), 4 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) snake_case : List[Any] ={"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} snake_case : str =tokenizer.add_special_tokens(__lowerCAmelCase ) snake_case : int =tokenizer.vocab_size snake_case : str =len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase, 0 ) self.assertEqual(__lowerCAmelCase, __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase, len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase, all_size_a + len(__lowerCAmelCase ) ) snake_case : Optional[int] =tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''', add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ), 6 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0], tokens[1] ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokens[-4] ) self.assertEqual(tokens[0], tokenizer.eos_token_id ) self.assertEqual(tokens[-3], tokenizer.pad_token_id ) def __snake_case ( self : Any ): '''simple docstring''' pass def __snake_case ( self : Tuple ): '''simple docstring''' pass def __snake_case ( self : str ): '''simple docstring''' snake_case : Tuple =self.get_tokenizer() snake_case : Optional[int] =tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(__lowerCAmelCase, [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ), [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6], ) snake_case : int =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCAmelCase, [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) snake_case : List[str] =tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase, [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case : Any =tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase, [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def __snake_case ( self : List[Any] ): '''simple docstring''' snake_case : Optional[int] =[ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off snake_case : Tuple ={ "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase, model_name='''microsoft/speecht5_asr''', revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''', sequences=__lowerCAmelCase, )
349
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __SCREAMING_SNAKE_CASE( _a ): def __init__( self: List[Any] , UpperCamelCase: Dict=0.01 , UpperCamelCase: Optional[Any]=10_00 ) -> List[Any]: snake_case__ = p_stop snake_case__ = max_length def __iter__( self: List[Any] ) -> Optional[Any]: snake_case__ = 0 snake_case__ = False while not stop and count < self.max_length: yield count count += 1 snake_case__ = random.random() < self.p_stop class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: Tuple , UpperCamelCase: Any , UpperCamelCase: Union[str, Any]=False , UpperCamelCase: Union[str, Any]=True ) -> Union[str, Any]: snake_case__ = [ BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 ) ] snake_case__ = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] , [len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> List[str]: snake_case__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is very small. snake_case__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self: Any ) -> Union[str, Any]: snake_case__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. snake_case__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. snake_case__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[int]: snake_case__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. snake_case__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) snake_case__ = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) def lowerCAmelCase_ ( self: Tuple ) -> Any: snake_case__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. snake_case__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. snake_case__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) snake_case__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) def lowerCAmelCase_ ( self: Dict ) -> List[Any]: snake_case__ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] snake_case__ = [BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: Optional[Any] , UpperCamelCase: Dict=False , UpperCamelCase: List[Any]=2 , UpperCamelCase: int=False ) -> Any: random.seed(__lowerCAmelCase ) snake_case__ = list(__lowerCAmelCase ) snake_case__ = [ IterableDatasetShard( __lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase , num_processes=__lowerCAmelCase , process_index=__lowerCAmelCase , split_batches=__lowerCAmelCase , ) for i in range(__lowerCAmelCase ) ] snake_case__ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) snake_case__ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size snake_case__ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) snake_case__ = [] for idx in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase , reference[: len(__lowerCAmelCase )] ) def lowerCAmelCase_ ( self: str ) -> Dict: snake_case__ = 42 snake_case__ = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) # Edge case with a very small dataset snake_case__ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) def lowerCAmelCase_ ( self: str ) -> Dict: snake_case__ = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCAmelCase ) snake_case__ = SkipBatchSampler(__lowerCAmelCase , 2 ) self.assertListEqual(list(__lowerCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: snake_case__ = DataLoader(list(range(16 ) ) , batch_size=4 ) snake_case__ = skip_first_batches(__lowerCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: Accelerator() snake_case__ = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
328
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
0
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any]=1_3 , SCREAMING_SNAKE_CASE_ : Tuple=7 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=9_9 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_2 , SCREAMING_SNAKE_CASE_ : Dict=5 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : int=3_7 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_6 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : Tuple=4 , SCREAMING_SNAKE_CASE_ : List[str]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def _UpperCAmelCase ( self : List[Any] ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Any ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict ): _a = NystromformerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _a = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _a = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): _a = NystromformerForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ): _a = NystromformerForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ): _a = self.num_labels _a = NystromformerForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] ): _a = self.num_labels _a = NystromformerForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str ): _a = self.num_choices _a = NystromformerForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self : Any ): _a = self.prepare_config_and_inputs() ( _a ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( _a , _a , unittest.TestCase ): '''simple docstring''' _A = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _A = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) _A = False _A = False def _UpperCAmelCase ( self : Optional[Any] ): _a = NystromformerModelTester(self ) _a = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def _UpperCAmelCase ( self : Optional[int] ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _UpperCAmelCase ( self : Any ): _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _UpperCAmelCase ( self : Optional[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def _UpperCAmelCase ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def _UpperCAmelCase ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def _UpperCAmelCase ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def _UpperCAmelCase ( self : Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def _UpperCAmelCase ( self : List[Any] ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = NystromformerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self : List[str] ): _a = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _a = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _a = model(__lowerCAmelCase )[0] _a = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , __lowerCAmelCase ) _a = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self : Tuple ): _a = "the [MASK] of Belgium is Brussels" _a = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _a = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _a = tokenizer(__lowerCAmelCase , return_tensors='pt' ) with torch.no_grad(): _a = model(encoding.input_ids ).logits _a = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , 'capital' )
562
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase__ = ['''gpt2'''] lowerCAmelCase__ = '''gpt2''' if is_tf_available(): class __snake_case ( tf.Module): def __init__( self : List[str] , __lowerCAmelCase : Dict ): """simple docstring""" super().__init__() _lowerCamelCase : str = tokenizer _lowerCamelCase : Dict = AutoConfig.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = TFGPTaLMHeadModel.from_config(__lowerCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = self.tokenizer(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = tokenized["input_ids"].to_tensor() _lowerCamelCase : List[str] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _lowerCamelCase : str = self.model(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase )["logits"] return outputs @require_tf @require_keras_nlp class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" super().setUp() _lowerCamelCase : Optional[Any] = [GPTaTokenizer.from_pretrained(__lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _lowerCamelCase : str = [TFGPTaTokenizer.from_pretrained(__lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _lowerCamelCase : Any = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] _lowerCamelCase : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _lowerCamelCase : Any = tokenizer([test_inputs] , return_tensors='''tf''' ) _lowerCamelCase : Optional[Any] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _lowerCamelCase : Optional[Any] = python_outputs[key].numpy() _lowerCamelCase : Tuple = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__lowerCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : Optional[int] = tf.function(__lowerCAmelCase ) for test_inputs in self.test_sentences: _lowerCamelCase : Union[str, Any] = tf.constant(__lowerCAmelCase ) _lowerCamelCase : str = compiled_tokenizer(__lowerCAmelCase ) _lowerCamelCase : Dict = tf_tokenizer(__lowerCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : str = ModelToSave(tokenizer=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCamelCase : Optional[int] = model.serving(__lowerCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) / "saved.model" tf.saved_model.save(__lowerCAmelCase , __lowerCAmelCase , signatures={'''serving_default''': model.serving} ) _lowerCamelCase : Union[str, Any] = tf.saved_model.load(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = loaded_model.signatures["serving_default"](__lowerCAmelCase )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : str = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCamelCase : Optional[Any] = tf_tokenizer(__lowerCAmelCase ) # Build model with some sample inputs _lowerCamelCase : Dict = tf_tokenizer.get_config() _lowerCamelCase : int = TFGPTaTokenizer.from_config(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model_from_config(__lowerCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run _lowerCamelCase : Tuple = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: _lowerCamelCase : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCamelCase : Any = tf_tokenizer(__lowerCAmelCase , max_length=__lowerCAmelCase ) _lowerCamelCase : Dict = out["input_ids"].numpy().shape[1] assert out_length == max_length
83
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( lowercase: Any , lowercase: Any ) -> Dict: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase_ ( lowercase: Optional[Any] , lowercase: Union[str, Any] , lowercase: Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase: Tuple = tmp_path / "cache" _UpperCamelCase: Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCamelCase: Dict = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase_ ( lowercase: Dict , lowercase: Any , lowercase: Any ) -> Dict: '''simple docstring''' _UpperCamelCase: Optional[Any] = tmp_path / "cache" _UpperCamelCase: List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCamelCase: Optional[Any] = features.copy() if features else default_expected_features _UpperCamelCase: Optional[Any] = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase: Any = ParquetDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase_ ( lowercase: Tuple , lowercase: List[str] , lowercase: Optional[int] ) -> str: '''simple docstring''' _UpperCamelCase: Any = tmp_path / "cache" _UpperCamelCase: Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCamelCase: List[str] = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase_ ( lowercase: List[Any] , lowercase: Dict , lowercase: str ) -> List[str]: '''simple docstring''' if issubclass(_lowerCamelCase , _lowerCamelCase ): _UpperCamelCase: Tuple = parquet_path elif issubclass(_lowerCamelCase , _lowerCamelCase ): _UpperCamelCase: Any = [parquet_path] _UpperCamelCase: Any = tmp_path / "cache" _UpperCamelCase: Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCamelCase: Union[str, Any] = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) def lowerCAmelCase_ ( lowercase: List[str] , lowercase: Tuple , lowercase: List[Any]=("train",) ) -> Dict: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) for split in splits: _UpperCamelCase: List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase_ ( lowercase: Dict , lowercase: Optional[int] , lowercase: Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase: Any = tmp_path / "cache" _UpperCamelCase: Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCamelCase: Any = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase_ ( lowercase: Union[str, Any] , lowercase: Dict , lowercase: str ) -> List[Any]: '''simple docstring''' _UpperCamelCase: int = tmp_path / "cache" _UpperCamelCase: List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCamelCase: Union[str, Any] = features.copy() if features else default_expected_features _UpperCamelCase: str = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase: str = ParquetDatasetReader({'''train''': parquet_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase_ ( lowercase: str , lowercase: Optional[int] , lowercase: List[Any] ) -> Dict: '''simple docstring''' if split: _UpperCamelCase: Union[str, Any] = {split: parquet_path} else: _UpperCamelCase: Optional[Any] = "train" _UpperCamelCase: Optional[Any] = {"train": parquet_path, "test": parquet_path} _UpperCamelCase: Optional[int] = tmp_path / "cache" _UpperCamelCase: List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCamelCase: Tuple = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( lowercase: Union[str, Any] , lowercase: int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase: Dict = ParquetDatasetWriter(_lowerCamelCase , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 _UpperCamelCase: Tuple = pq.ParquetFile(tmp_path / '''foo.parquet''' ) _UpperCamelCase: List[Any] = pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( lowercase: List[str] , lowercase: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase: Any = str(shared_datadir / '''test_image_rgb.jpg''' ) _UpperCamelCase: Optional[Any] = {"image": [image_path]} _UpperCamelCase: List[str] = Features({'''image''': Image()} ) _UpperCamelCase: List[str] = Dataset.from_dict(_lowerCamelCase , features=_lowerCamelCase ) _UpperCamelCase: List[Any] = ParquetDatasetWriter(_lowerCamelCase , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 _UpperCamelCase: List[Any] = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features _UpperCamelCase: List[str] = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=_lowerCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( lowercase: Optional[int] , lowercase: List[str] ) -> Any: '''simple docstring''' assert get_writer_batch_size(_lowerCamelCase ) == expected
271
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
def lowerCamelCase__ ( _A = 50 ): '''simple docstring''' snake_case_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
376
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class snake_case_ (_a ): UpperCAmelCase__ : List[str] = (DDIMParallelScheduler,) UpperCAmelCase__ : List[Any] = (('''eta''', 0.0), ('''num_inference_steps''', 5_0)) def lowerCamelCase__( self :List[str] ,**__snake_case :Tuple ) -> List[Any]: a__ = { "num_train_timesteps": 10_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def lowerCamelCase__( self :int ,**__snake_case :Optional[Any] ) -> Optional[Any]: a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config(**__lowerCAmelCase ) a__ = scheduler_class(**__lowerCAmelCase ) a__ = 10, 0.0 a__ = self.dummy_model() a__ = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: a__ = model(__lowerCAmelCase ,__lowerCAmelCase ) a__ = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def lowerCamelCase__( self :List[str] ) -> List[str]: for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def lowerCamelCase__( self :Dict ) -> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config(steps_offset=1 ) a__ = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def lowerCamelCase__( self :Any ) -> str: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def lowerCamelCase__( self :List[str] ) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def lowerCamelCase__( self :List[Any] ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def lowerCamelCase__( self :Dict ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def lowerCamelCase__( self :Union[str, Any] ) -> int: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def lowerCamelCase__( self :Union[str, Any] ) -> Union[str, Any]: for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def lowerCamelCase__( self :Dict ) -> Tuple: for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 5_00] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def lowerCamelCase__( self :Optional[Any] ) -> str: for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def lowerCamelCase__( self :Dict ) -> List[str]: a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config() a__ = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 ,4_00 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 ,9_60 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ,4_86 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ,9_98 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__( self :Dict ) -> Optional[int]: a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config() a__ = scheduler_class(**__lowerCAmelCase ) a__ = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) a__ = self.dummy_model() a__ = self.dummy_sample_deter a__ = self.dummy_sample_deter + 0.1 a__ = self.dummy_sample_deter - 0.1 a__ = samplea.shape[0] a__ = torch.stack([samplea, samplea, samplea] ,dim=0 ) a__ = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) a__ = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) a__ = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) a__ = torch.sum(torch.abs(__lowerCAmelCase ) ) a__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def lowerCamelCase__( self :str ) -> Dict: a__ = self.full_loop() a__ = torch.sum(torch.abs(__lowerCAmelCase ) ) a__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def lowerCamelCase__( self :Any ) -> str: a__ = self.full_loop(prediction_type='v_prediction' ) a__ = torch.sum(torch.abs(__lowerCAmelCase ) ) a__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def lowerCamelCase__( self :List[Any] ) -> Optional[int]: a__ = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) a__ = torch.sum(torch.abs(__lowerCAmelCase ) ) a__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def lowerCamelCase__( self :str ) -> Optional[Any]: a__ = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) a__ = torch.sum(torch.abs(__lowerCAmelCase ) ) a__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
335
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
0
from typing import Any def a__ ( A_ ): '''simple docstring''' if not input_list: return [] __magic_name__ = [input_list.count(_lowerCamelCase ) for value in input_list] __magic_name__ = max(_lowerCamelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_lowerCamelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
529
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A : int = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
636
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
0
"""simple docstring""" import math def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = [True] * n lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowerCAmelCase = i * 2 while index < n: lowerCAmelCase = False lowerCAmelCase = index + i lowerCAmelCase = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = 9999_6666_3333 ): lowerCAmelCase = math.floor(math.sqrt(_lowerCamelCase ) ) + 100 lowerCAmelCase = prime_sieve(_lowerCamelCase ) lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = primes[prime_index] while (last_prime**2) <= limit: lowerCAmelCase = primes[prime_index + 1] lowerCAmelCase = last_prime**2 lowerCAmelCase = next_prime**2 # Get numbers divisible by lps(current) lowerCAmelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCAmelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCAmelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCAmelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( _a ): def __init__( self ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' ,__lowerCAmelCase ,) super().__init__(*__lowerCAmelCase ,**__lowerCAmelCase )
498
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _a ): lowerCAmelCase__ = 'vivit' def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = num_frames _lowerCamelCase : Optional[int] = tubelet_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = qkv_bias super().__init__(**__lowerCAmelCase )
46
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A : Optional[Any] = get_tests_dir("""fixtures""") class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : int ): '''simple docstring''' snake_case : List[str] =mock.Mock() snake_case : Union[str, Any] =500 snake_case : Optional[int] ={} snake_case : str =HTTPError snake_case : Dict ={} # Download this model to make sure it's in the cache. snake_case : Optional[int] =WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''', return_value=__lowerCAmelCase ) as mock_head: snake_case : Optional[int] =WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : int =WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): @classmethod def __snake_case ( cls : int ): '''simple docstring''' snake_case : Optional[Any] =TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def __snake_case ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __snake_case ( self : str ): '''simple docstring''' snake_case : List[Any] =WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub('''test-feature-extractor''', use_auth_token=self._token ) snake_case : List[Any] =WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase, getattr(__lowerCAmelCase, __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCAmelCase, repo_id='''test-feature-extractor''', push_to_hub=__lowerCAmelCase, use_auth_token=self._token ) snake_case : Tuple =WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase, getattr(__lowerCAmelCase, __lowerCAmelCase ) ) def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Dict =WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''', use_auth_token=self._token ) snake_case : Optional[int] =WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase, getattr(__lowerCAmelCase, __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCAmelCase, repo_id='''valid_org/test-feature-extractor-org''', push_to_hub=__lowerCAmelCase, use_auth_token=self._token ) snake_case : str =WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase, getattr(__lowerCAmelCase, __lowerCAmelCase ) ) def __snake_case ( self : List[str] ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() snake_case : Optional[Any] =CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map, {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''}, ) snake_case : Optional[int] =AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''', trust_remote_code=__lowerCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__, '''CustomFeatureExtractor''' )
349
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
def a_ ( _A , _A ) -> int: """simple docstring""" snake_case__ = "" for i in table: res += inp[i - 1] return res def a_ ( _A ) -> Dict: """simple docstring""" return data[1:] + data[0] def a_ ( _A , _A ) -> int: """simple docstring""" snake_case__ = "" for i in range(len(_lowerCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a_ ( _A , _A ) -> Tuple: """simple docstring""" snake_case__ = int('0b' + data[0] + data[-1] , 2 ) snake_case__ = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def a_ ( _A , _A , _A , _A , _A ) -> Dict: """simple docstring""" snake_case__ = message[:4] snake_case__ = message[4:] snake_case__ = apply_table(_lowerCamelCase , _lowerCamelCase ) snake_case__ = xor(_lowerCamelCase , _lowerCamelCase ) snake_case__ = apply_sbox(_lowerCamelCase , temp[:4] ) # noqa: E741 snake_case__ = apply_sbox(_lowerCamelCase , temp[4:] ) snake_case__ = "0" * (2 - len(_lowerCamelCase )) + l # noqa: E741 snake_case__ = "0" * (2 - len(_lowerCamelCase )) + r snake_case__ = apply_table(l + r , _lowerCamelCase ) snake_case__ = xor(_lowerCamelCase , _lowerCamelCase ) return temp + right if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = input("""Enter 10 bit key: """) __UpperCamelCase : Tuple = input("""Enter 8 bit message: """) __UpperCamelCase : Tuple = [6, 3, 7, 4, 8, 5, 10, 9] __UpperCamelCase : Optional[int] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __UpperCamelCase : Tuple = [2, 4, 3, 1] __UpperCamelCase : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCamelCase : int = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCamelCase : int = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCamelCase : str = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCamelCase : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCamelCase : int = apply_table(key, paa_table) __UpperCamelCase : int = temp[:5] __UpperCamelCase : Dict = temp[5:] __UpperCamelCase : int = left_shift(left) __UpperCamelCase : List[Any] = left_shift(right) __UpperCamelCase : List[Any] = apply_table(left + right, pa_table) __UpperCamelCase : Tuple = left_shift(left) __UpperCamelCase : Union[str, Any] = left_shift(right) __UpperCamelCase : Any = left_shift(left) __UpperCamelCase : List[Any] = left_shift(right) __UpperCamelCase : Optional[Any] = apply_table(left + right, pa_table) # encryption __UpperCamelCase : Any = apply_table(message, IP) __UpperCamelCase : Optional[int] = function(expansion, sa, sa, keya, temp) __UpperCamelCase : Optional[int] = temp[4:] + temp[:4] __UpperCamelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCamelCase : str = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption __UpperCamelCase : Tuple = apply_table(CT, IP) __UpperCamelCase : str = function(expansion, sa, sa, keya, temp) __UpperCamelCase : Any = temp[4:] + temp[:4] __UpperCamelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCamelCase : int = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
328
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
0
from math import isqrt, loga def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: _a = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCamelCase , _lowerCamelCase ): _a = False return [i for i in range(2 , _lowerCamelCase ) if is_prime[i]] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 800800 , _UpperCAmelCase = 800800 ) -> int: _a = degree * loga(_lowerCamelCase ) _a = int(_lowerCamelCase ) _a = calculate_prime_numbers(_lowerCamelCase ) _a = 0 _a = 0 _a = len(_lowerCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
562
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCAmelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( A_ : Dict, A_ : Dict, A_ : Tuple, A_ : List[Any], A_ : Optional[Any] ): '''simple docstring''' for attribute in key.split('''.''' ): _lowerCamelCase : str = getattr(_lowerCamelCase, _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : List[str] = getattr(_lowerCamelCase, _lowerCamelCase ).shape else: _lowerCamelCase : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCamelCase : List[Any] = value elif weight_type == "weight_g": _lowerCamelCase : str = value elif weight_type == "weight_v": _lowerCamelCase : Any = value elif weight_type == "bias": _lowerCamelCase : Union[str, Any] = value elif weight_type == "running_mean": _lowerCamelCase : Union[str, Any] = value elif weight_type == "running_var": _lowerCamelCase : Any = value elif weight_type == "num_batches_tracked": _lowerCamelCase : Optional[int] = value elif weight_type == "inv_freq": _lowerCamelCase : List[Any] = value else: _lowerCamelCase : int = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def snake_case_ ( A_ : List[Any], A_ : Union[str, Any], A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = [] _lowerCamelCase : str = fairseq_model.state_dict() _lowerCamelCase : Union[str, Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : str = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, hf_model.config.feat_extract_norm == '''group''', ) _lowerCamelCase : Dict = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Optional[Any] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase : List[str] = True if "*" in mapped_key: _lowerCamelCase : int = name.split(_lowerCamelCase )[0].split('''.''' )[-2] _lowerCamelCase : Tuple = mapped_key.replace('''*''', _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : List[str] = None elif "pos_bias_v" in name: _lowerCamelCase : Optional[int] = None elif "weight_g" in name: _lowerCamelCase : Optional[Any] = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : int = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[str] = "inv_freq" elif "running_var" in name: _lowerCamelCase : str = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : List[Any] = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case_ ( A_ : Dict, A_ : Dict, A_ : Any, A_ : List[Any], A_ : str ): '''simple docstring''' _lowerCamelCase : List[Any] = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase : List[Any] = name.split('''.''' ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCamelCase : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCamelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _lowerCamelCase : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def snake_case_ ( A_ : Union[str, Any], A_ : Optional[Any], A_ : str=None, A_ : List[Any]=None, A_ : str=True ): '''simple docstring''' if config_path is not None: _lowerCamelCase : Optional[Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase, hidden_act='''swish''' ) else: _lowerCamelCase : Optional[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : Optional[int] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : List[Any] = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : List[str] = target_dict.pad_index _lowerCamelCase : List[Any] = target_dict.bos_index _lowerCamelCase : Dict = target_dict.eos_index _lowerCamelCase : List[str] = len(target_dict.symbols ) _lowerCamelCase : Optional[int] = os.path.join(_lowerCamelCase, '''vocab.json''' ) if not os.path.isdir(_lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase, exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCamelCase, _lowerCamelCase ) _lowerCamelCase : Any = WavaVecaCTCTokenizer( _lowerCamelCase, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token='''|''', do_lower_case=_lowerCamelCase, ) _lowerCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_60_00, padding_value=0, do_normalize=_lowerCamelCase, return_attention_mask=_lowerCamelCase, ) _lowerCamelCase : str = WavaVecaProcessor(feature_extractor=_lowerCamelCase, tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : Tuple = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Tuple = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task='''audio_pretraining''' ) _lowerCamelCase : Optional[int] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCamelCase, _lowerCamelCase, not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase__ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
83
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
0
def lowerCAmelCase_ ( lowercase: List[str] ) -> list: '''simple docstring''' for i in range(len(_lowerCamelCase ) - 1 , 0 , -1 ): _UpperCamelCase: Dict = False for j in range(_lowerCamelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _UpperCamelCase: Optional[int] = unsorted[j - 1], unsorted[j] _UpperCamelCase: List[Any] = True for j in range(_lowerCamelCase ): if unsorted[j] > unsorted[j + 1]: _UpperCamelCase: str = unsorted[j + 1], unsorted[j] _UpperCamelCase: Union[str, Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(''',''')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
271
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
0
import re def lowerCamelCase__ ( _A ): '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
376
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
0
from math import log from scipy.constants import Boltzmann, physical_constants snake_case : List[str] = 3_00 # TEMPERATURE (unit = K) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , ): if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
335
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowerCAmelCase : Tuple = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
529
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
46
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) # TODO Update this A : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class _UpperCamelCase ( _a ): '''simple docstring''' __UpperCAmelCase : int ="""esm""" def __init__( self , __a=None , __a=None , __a=None , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a=0.1 , __a=0.1 , __a=10_26 , __a=0.0_2 , __a=1e-1_2 , __a="absolute" , __a=True , __a=None , __a=False , __a=False , __a=None , __a=None , **__a , ): super().__init__(pad_token_id=__lowerCAmelCase , mask_token_id=__lowerCAmelCase , **__lowerCAmelCase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = emb_layer_norm_before __lowerCAmelCase = token_dropout __lowerCAmelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) __lowerCAmelCase = EsmFoldConfig() elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase = EsmFoldConfig(**__lowerCAmelCase ) __lowerCAmelCase = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) __lowerCAmelCase = get_default_vocab_list() else: __lowerCAmelCase = vocab_list else: __lowerCAmelCase = None __lowerCAmelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , __lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def snake_case ( self ): __lowerCAmelCase = super().to_dict() if isinstance(self.esmfold_config , __lowerCAmelCase ): __lowerCAmelCase = self.esmfold_config.to_dict() return output @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : List[Any] =None __UpperCAmelCase : Dict =True __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Dict =False __UpperCAmelCase : str =False __UpperCAmelCase : int =0 __UpperCAmelCase : List[str] =True __UpperCAmelCase : Optional[int] =False __UpperCAmelCase : Optional[Any] =1_2_8 __UpperCAmelCase : Dict =None def snake_case ( self ): if self.trunk is None: __lowerCAmelCase = TrunkConfig() elif isinstance(self.trunk , __lowerCAmelCase ): __lowerCAmelCase = TrunkConfig(**self.trunk ) def snake_case ( self ): __lowerCAmelCase = asdict(self ) __lowerCAmelCase = self.trunk.to_dict() return output @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : int =4_8 __UpperCAmelCase : Any =1_0_2_4 __UpperCAmelCase : List[str] =1_2_8 __UpperCAmelCase : Union[str, Any] =3_2 __UpperCAmelCase : Optional[Any] =3_2 __UpperCAmelCase : Optional[int] =3_2 __UpperCAmelCase : List[str] =0 __UpperCAmelCase : Union[str, Any] =0 __UpperCAmelCase : Optional[int] =False __UpperCAmelCase : str =4 __UpperCAmelCase : Union[str, Any] =1_2_8 __UpperCAmelCase : Any =None def snake_case ( self ): if self.structure_module is None: __lowerCAmelCase = StructureModuleConfig() elif isinstance(self.structure_module , __lowerCAmelCase ): __lowerCAmelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) __lowerCAmelCase = self.sequence_state_dim // self.sequence_head_width __lowerCAmelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def snake_case ( self ): __lowerCAmelCase = asdict(self ) __lowerCAmelCase = self.structure_module.to_dict() return output @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : Union[str, Any] =3_8_4 __UpperCAmelCase : Optional[int] =1_2_8 __UpperCAmelCase : List[Any] =1_6 __UpperCAmelCase : Union[str, Any] =1_2_8 __UpperCAmelCase : Optional[Any] =1_2 __UpperCAmelCase : List[str] =4 __UpperCAmelCase : Any =8 __UpperCAmelCase : Union[str, Any] =0.1 __UpperCAmelCase : str =8 __UpperCAmelCase : str =1 __UpperCAmelCase : str =2 __UpperCAmelCase : str =7 __UpperCAmelCase : str =1_0 __UpperCAmelCase : int =1E-8 __UpperCAmelCase : Any =1E5 def snake_case ( self ): return asdict(self ) def _lowerCamelCase ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
636
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable __UpperCamelCase : Union[str, Any] = list[list[float | int]] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ): lowerCAmelCase = len(_lowerCamelCase ) lowerCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): lowerCAmelCase = matrix[row][col] lowerCAmelCase = vector[row][0] lowerCAmelCase = 0 lowerCAmelCase = 0 while row < size and col < size: # pivoting lowerCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCAmelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): lowerCAmelCase = augmented[rowa][col] / augmented[row][col] lowerCAmelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): lowerCAmelCase = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ): lowerCAmelCase = len(_lowerCamelCase ) lowerCAmelCase = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] lowerCAmelCase = [[0] for _ in range(_lowerCamelCase )] lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): lowerCAmelCase = (x_val + 1) ** (size - col - 1) lowerCAmelCase = y_val lowerCAmelCase = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_UpperCAmelCase : Optional[Any] ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = question_function , _UpperCAmelCase : Any = 10 ): lowerCAmelCase = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] lowerCAmelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCAmelCase = 0 lowerCAmelCase = 42 lowerCAmelCase = 42 for poly in polynomials: lowerCAmelCase = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
4
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
498
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self : Any, _snake_case : List[str], _snake_case : Union[str, Any]=7, _snake_case : Tuple=3, _snake_case : List[Any]=30, _snake_case : Any=400, _snake_case : Dict=True, _snake_case : Optional[int]=None, _snake_case : Any=0.9, _snake_case : Optional[int]=None, _snake_case : Any=True, _snake_case : Tuple=[0.5, 0.5, 0.5], _snake_case : Union[str, Any]=[0.5, 0.5, 0.5], ): '''simple docstring''' snake_case : List[str] =size if size is not None else {"shortest_edge": 30} snake_case : List[Any] =crop_size if crop_size is not None else {"height": 30, "width": 30} snake_case : List[str] =parent snake_case : int =batch_size snake_case : Union[str, Any] =num_channels snake_case : Optional[int] =min_resolution snake_case : Dict =max_resolution snake_case : Dict =do_resize_and_center_crop snake_case : int =size snake_case : List[str] =crop_pct snake_case : Tuple =crop_size snake_case : List[str] =do_normalize snake_case : str =image_mean snake_case : Optional[Any] =image_std def __snake_case ( self : List[str] ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase_ ( _a , unittest.TestCase ): __UpperCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : str =PoolFormerImageProcessingTester(self ) @property def __snake_case ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Dict =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase, '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__lowerCAmelCase, '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase, '''crop_pct''' ) ) self.assertTrue(hasattr(__lowerCAmelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase, '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase, '''image_std''' ) ) def __snake_case ( self : Any ): '''simple docstring''' snake_case : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size, {'''height''': 30, '''width''': 30} ) snake_case : str =self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def __snake_case ( self : Tuple ): '''simple docstring''' pass def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : int =prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase, Image.Image ) # Test not batched input snake_case : int =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched snake_case : List[Any] =image_processing(__lowerCAmelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : List[str] =prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowerCAmelCase, numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase, np.ndarray ) # Test not batched input snake_case : int =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched snake_case : Tuple =image_processing(__lowerCAmelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def __snake_case ( self : List[str] ): '''simple docstring''' snake_case : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Optional[int] =prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowerCAmelCase, torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase, torch.Tensor ) # Test not batched input snake_case : Optional[int] =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched snake_case : Optional[Any] =image_processing(__lowerCAmelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
349
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
0
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE( metaclass=_a ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: List[Any] , *UpperCamelCase: List[Any] , **UpperCamelCase: List[Any] ) -> Any: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Dict , *UpperCamelCase: Tuple , **UpperCamelCase: Dict ) -> Dict: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Optional[int] , *UpperCamelCase: Tuple , **UpperCamelCase: Any ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE( metaclass=_a ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: Union[str, Any] , *UpperCamelCase: Tuple , **UpperCamelCase: Optional[int] ) -> Dict: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: int , *UpperCamelCase: List[str] , **UpperCamelCase: int ) -> List[Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Optional[Any] , *UpperCamelCase: int , **UpperCamelCase: str ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE( metaclass=_a ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: List[Any] , *UpperCamelCase: str , **UpperCamelCase: List[str] ) -> Tuple: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Union[str, Any] , *UpperCamelCase: Union[str, Any] , **UpperCamelCase: Optional[Any] ) -> Dict: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Union[str, Any] , *UpperCamelCase: str , **UpperCamelCase: Union[str, Any] ) -> str: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE( metaclass=_a ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: Optional[Any] , *UpperCamelCase: Union[str, Any] , **UpperCamelCase: str ) -> Tuple: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: List[str] , *UpperCamelCase: Union[str, Any] , **UpperCamelCase: Tuple ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Tuple , *UpperCamelCase: int , **UpperCamelCase: List[str] ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE( metaclass=_a ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: Optional[Any] , *UpperCamelCase: Any , **UpperCamelCase: Tuple ) -> Optional[Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Union[str, Any] , *UpperCamelCase: Union[str, Any] , **UpperCamelCase: Optional[int] ) -> Optional[Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Dict , *UpperCamelCase: int , **UpperCamelCase: List[str] ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE( metaclass=_a ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: Optional[Any] , *UpperCamelCase: List[Any] , **UpperCamelCase: Dict ) -> List[Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Dict , *UpperCamelCase: Dict , **UpperCamelCase: int ) -> str: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: str , *UpperCamelCase: Optional[Any] , **UpperCamelCase: Optional[int] ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] )
328
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase_ = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') lowercase_ = parser.parse_args() lowercase_ = '''cpu''' lowercase_ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowercase_ = '''path-to-your-trained-model''' lowercase_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase_ = pipe.to(device) # to channels last lowercase_ = pipe.unet.to(memory_format=torch.channels_last) lowercase_ = pipe.vae.to(memory_format=torch.channels_last) lowercase_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase_ = torch.randn(2, 4, 64, 64) lowercase_ = torch.rand(1) * 9_99 lowercase_ = torch.randn(2, 77, 7_68) lowercase_ = (sample, timestep, encoder_hidden_status) try: lowercase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase_ = 6_66 lowercase_ = torch.Generator(device).manual_seed(seed) lowercase_ = {'''generator''': generator} if args.steps is not None: lowercase_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
562
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCAmelCase__ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ = F"""down_blocks.{i}.resnets.{j}.""" lowerCAmelCase__ = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ = F"""down_blocks.{i}.attentions.{j}.""" lowerCAmelCase__ = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ = F"""up_blocks.{i}.resnets.{j}.""" lowerCAmelCase__ = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ = F"""up_blocks.{i}.attentions.{j}.""" lowerCAmelCase__ = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ = F"""down_blocks.{i}.downsamplers.0.conv.""" lowerCAmelCase__ = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ = F"""up_blocks.{i}.upsamplers.0.""" lowerCAmelCase__ = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ = '''mid_block.attentions.0.''' lowerCAmelCase__ = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ = F"""mid_block.resnets.{j}.""" lowerCAmelCase__ = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def snake_case_ ( A_ : List[str] ): '''simple docstring''' _lowerCamelCase : int = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _lowerCamelCase : Any = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _lowerCamelCase : int = v.replace(_lowerCamelCase, _lowerCamelCase ) _lowerCamelCase : Optional[Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _lowerCamelCase : List[Any] = v.replace(_lowerCamelCase, _lowerCamelCase ) _lowerCamelCase : str = v _lowerCamelCase : List[str] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ = F"""encoder.down_blocks.{i}.resnets.{j}.""" lowerCAmelCase__ = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ = F"""down_blocks.{i}.downsamplers.0.""" lowerCAmelCase__ = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ = F"""up_blocks.{i}.upsamplers.0.""" lowerCAmelCase__ = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ = F"""decoder.up_blocks.{i}.resnets.{j}.""" lowerCAmelCase__ = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ = F"""mid_block.resnets.{i}.""" lowerCAmelCase__ = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def snake_case_ ( A_ : str ): '''simple docstring''' return w.reshape(*w.shape, 1, 1 ) def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : int = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _lowerCamelCase : str = v.replace(_lowerCamelCase, _lowerCamelCase ) _lowerCamelCase : int = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _lowerCamelCase : Any = v.replace(_lowerCamelCase, _lowerCamelCase ) _lowerCamelCase : int = v _lowerCamelCase : List[Any] = {v: vae_state_dict[k] for k, v in mapping.items()} _lowerCamelCase : str = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) _lowerCamelCase : Union[str, Any] = reshape_weight_for_sd(_lowerCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCAmelCase__ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ = {'''q''': 0, '''k''': 1, '''v''': 2} def snake_case_ ( A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[str] = {} _lowerCamelCase : Dict = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): _lowerCamelCase : Dict = k[: -len('''.q_proj.weight''' )] _lowerCamelCase : Optional[int] = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: _lowerCamelCase : Optional[Any] = [None, None, None] _lowerCamelCase : Optional[Any] = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): _lowerCamelCase : str = k[: -len('''.q_proj.bias''' )] _lowerCamelCase : Optional[Any] = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: _lowerCamelCase : Union[str, Any] = [None, None, None] _lowerCamelCase : str = v continue _lowerCamelCase : Any = textenc_pattern.sub(lambda A_ : protected[re.escape(m.group(0 ) )], _lowerCamelCase ) _lowerCamelCase : Dict = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _lowerCamelCase : Dict = textenc_pattern.sub(lambda A_ : protected[re.escape(m.group(0 ) )], _lowerCamelCase ) _lowerCamelCase : str = torch.cat(_lowerCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _lowerCamelCase : Any = textenc_pattern.sub(lambda A_ : protected[re.escape(m.group(0 ) )], _lowerCamelCase ) _lowerCamelCase : Union[str, Any] = torch.cat(_lowerCamelCase ) return new_state_dict def snake_case_ ( A_ : List[Any] ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCAmelCase__ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ = load_file(unet_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCAmelCase__ = load_file(vae_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCAmelCase__ = load_file(text_enc_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCAmelCase__ = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCAmelCase__ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
83
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __magic_name__ : """simple docstring""" lowerCAmelCase : Optional[int] = None def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: int = self.feature_extraction_class(**self.feat_extract_dict ) _UpperCamelCase: str = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __lowerCAmelCase ) def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase: Any = os.path.join(__lowerCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(__lowerCAmelCase ) _UpperCamelCase: List[Any] = self.feature_extraction_class.from_json_file(__lowerCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase: int = feat_extract_first.save_pretrained(__lowerCAmelCase )[0] check_json_file_has_correct_format(__lowerCAmelCase ) _UpperCamelCase: Optional[Any] = self.feature_extraction_class.from_pretrained(__lowerCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: Tuple = self.feature_extraction_class() self.assertIsNotNone(__lowerCAmelCase )
271
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str | Literal[False]: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Any = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _lowerCamelCase : List[str] = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] while True: _lowerCamelCase : Tuple = ["$"] * len(_lowerCamelCase ) _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): _lowerCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: _lowerCamelCase : Any = "*" _lowerCamelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi _lowerCamelCase : List[Any] = list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = [] for minterm in minterms: _lowerCamelCase : List[Any] = "" for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list(_lowerCamelCase ) _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Dict = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _lowerCamelCase : Any = j if count == 1: _lowerCamelCase : Union[str, Any] = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = 0 temp.append(prime_implicants[i] ) while True: _lowerCamelCase : str = 0 _lowerCamelCase : int = -1 _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _lowerCamelCase : Any = count_n _lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): _lowerCamelCase : Any = 0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[list[int]]: '''simple docstring''' _lowerCamelCase : str = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = prime_implicants[i].count("_" ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): _lowerCamelCase : Optional[Any] = 1 return chart def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Optional[int] = int(input("Enter the no. of variables\n" ) ) _lowerCamelCase : str = [ float(_lowerCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _lowerCamelCase : Tuple = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = check(_lowerCamelCase ) print("Prime Implicants are:" ) print(_lowerCamelCase ) _lowerCamelCase : Any = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = selection(_lowerCamelCase , _lowerCamelCase ) print("Essential Prime Implicants are:" ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowercase__ : Dict = '''facebook/wmt19-en-de''' lowercase__ : int = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowercase__ : List[Any] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowercase__ : Any = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test lowercase__ : List[str] = tokenizer(["Making tiny model"], return_tensors="pt") lowercase__ : Union[str, Any] = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save lowercase__ : int = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
376
"""simple docstring""" from __future__ import annotations from random import random class A_ : def __init__( self: List[str] ,__lowerCAmelCase: int | None = None ): '''simple docstring''' _lowerCamelCase : Any = value _lowerCamelCase : Optional[int] = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self: Tuple ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = str(self.value ) + " " _lowerCamelCase : Optional[Any] = str(self.left or "" ) _lowerCamelCase : int = str(self.right or "" ) return value + left + right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase, _lowerCamelCase : int = split(root.left , _lowerCamelCase ) return left, root else: _lowerCamelCase, _lowerCamelCase : Optional[int] = split(root.right , _lowerCamelCase ) return root, right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : Any = merge(left.right , _lowerCamelCase ) return left else: _lowerCamelCase : Optional[Any] = merge(_lowerCamelCase , right.left ) return right def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase : int = Node(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase : Tuple = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , value - 1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Optional[Any] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(_lowerCamelCase , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) _lowerCamelCase : int = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) _lowerCamelCase : Tuple = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
46
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class snake_case_ (nn.Module ): def __init__( self :int ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :Optional[Any]=0.0 ,__snake_case :Optional[int] = None ,__snake_case :str = "geglu" ,__snake_case :Optional[int] = None ,__snake_case :bool = False ,__snake_case :bool = False ,__snake_case :bool = False ,__snake_case :bool = False ,__snake_case :bool = True ,__snake_case :str = "layer_norm" ,__snake_case :bool = False ,) -> Optional[Any]: super().__init__() a__ = only_cross_attention a__ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" a__ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: a__ = AdaLayerNorm(__lowerCAmelCase ,__lowerCAmelCase ) elif self.use_ada_layer_norm_zero: a__ = AdaLayerNormZero(__lowerCAmelCase ,__lowerCAmelCase ) else: a__ = nn.LayerNorm(__lowerCAmelCase ,elementwise_affine=__lowerCAmelCase ) a__ = Attention( query_dim=__lowerCAmelCase ,heads=__lowerCAmelCase ,dim_head=__lowerCAmelCase ,dropout=__lowerCAmelCase ,bias=__lowerCAmelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=__lowerCAmelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. a__ = ( AdaLayerNorm(__lowerCAmelCase ,__lowerCAmelCase ) if self.use_ada_layer_norm else nn.LayerNorm(__lowerCAmelCase ,elementwise_affine=__lowerCAmelCase ) ) a__ = Attention( query_dim=__lowerCAmelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=__lowerCAmelCase ,dim_head=__lowerCAmelCase ,dropout=__lowerCAmelCase ,bias=__lowerCAmelCase ,upcast_attention=__lowerCAmelCase ,) # is self-attn if encoder_hidden_states is none else: a__ = None a__ = None # 3. Feed-forward a__ = nn.LayerNorm(__lowerCAmelCase ,elementwise_affine=__lowerCAmelCase ) a__ = FeedForward(__lowerCAmelCase ,dropout=__lowerCAmelCase ,activation_fn=__lowerCAmelCase ,final_dropout=__lowerCAmelCase ) # let chunk size default to None a__ = None a__ = 0 def lowerCamelCase__( self :int ,__snake_case :Optional[int] ,__snake_case :int ) -> Dict: a__ = chunk_size a__ = dim def lowerCamelCase__( self :Tuple ,__snake_case :torch.FloatTensor ,__snake_case :Optional[torch.FloatTensor] = None ,__snake_case :Optional[torch.FloatTensor] = None ,__snake_case :Optional[torch.FloatTensor] = None ,__snake_case :Optional[torch.LongTensor] = None ,__snake_case :Dict[str, Any] = None ,__snake_case :Optional[torch.LongTensor] = None ,) -> Any: if self.use_ada_layer_norm: a__ = self.norma(__lowerCAmelCase ,__lowerCAmelCase ) elif self.use_ada_layer_norm_zero: a__ = self.norma( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,hidden_dtype=hidden_states.dtype ) else: a__ = self.norma(__lowerCAmelCase ) a__ = cross_attention_kwargs if cross_attention_kwargs is not None else {} a__ = self.attna( __lowerCAmelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=__lowerCAmelCase ,**__lowerCAmelCase ,) if self.use_ada_layer_norm_zero: a__ = gate_msa.unsqueeze(1 ) * attn_output a__ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: a__ = ( self.norma(__lowerCAmelCase ,__lowerCAmelCase ) if self.use_ada_layer_norm else self.norma(__lowerCAmelCase ) ) a__ = self.attna( __lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,**__lowerCAmelCase ,) a__ = attn_output + hidden_states # 3. Feed-forward a__ = self.norma(__lowerCAmelCase ) if self.use_ada_layer_norm_zero: a__ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) a__ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size a__ = torch.cat( [self.ff(__lowerCAmelCase ) for hid_slice in norm_hidden_states.chunk(__lowerCAmelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: a__ = self.ff(__lowerCAmelCase ) if self.use_ada_layer_norm_zero: a__ = gate_mlp.unsqueeze(1 ) * ff_output a__ = ff_output + hidden_states return hidden_states class snake_case_ (nn.Module ): def __init__( self :Any ,__snake_case :int ,__snake_case :Optional[int] = None ,__snake_case :int = 4 ,__snake_case :float = 0.0 ,__snake_case :str = "geglu" ,__snake_case :bool = False ,) -> Optional[int]: super().__init__() a__ = int(dim * mult ) a__ = dim_out if dim_out is not None else dim if activation_fn == "gelu": a__ = GELU(__lowerCAmelCase ,__lowerCAmelCase ) if activation_fn == "gelu-approximate": a__ = GELU(__lowerCAmelCase ,__lowerCAmelCase ,approximate='tanh' ) elif activation_fn == "geglu": a__ = GEGLU(__lowerCAmelCase ,__lowerCAmelCase ) elif activation_fn == "geglu-approximate": a__ = ApproximateGELU(__lowerCAmelCase ,__lowerCAmelCase ) a__ = nn.ModuleList([] ) # project in self.net.append(__lowerCAmelCase ) # project dropout self.net.append(nn.Dropout(__lowerCAmelCase ) ) # project out self.net.append(nn.Linear(__lowerCAmelCase ,__lowerCAmelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__lowerCAmelCase ) ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ) -> str: for module in self.net: a__ = module(__lowerCAmelCase ) return hidden_states class snake_case_ (nn.Module ): def __init__( self :Any ,__snake_case :int ,__snake_case :int ,__snake_case :str = "none" ) -> List[Any]: super().__init__() a__ = nn.Linear(__lowerCAmelCase ,__lowerCAmelCase ) a__ = approximate def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ) -> Any: if gate.device.type != "mps": return F.gelu(__lowerCAmelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def lowerCamelCase__( self :Dict ,__snake_case :Dict ) -> Any: a__ = self.proj(__lowerCAmelCase ) a__ = self.gelu(__lowerCAmelCase ) return hidden_states class snake_case_ (nn.Module ): def __init__( self :str ,__snake_case :int ,__snake_case :int ) -> List[Any]: super().__init__() a__ = nn.Linear(__lowerCAmelCase ,dim_out * 2 ) def lowerCamelCase__( self :List[str] ,__snake_case :Optional[Any] ) -> Optional[int]: if gate.device.type != "mps": return F.gelu(__lowerCAmelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowerCamelCase__( self :Optional[int] ,__snake_case :str ) -> Tuple: a__ = self.proj(__lowerCAmelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(__lowerCAmelCase ) class snake_case_ (nn.Module ): def __init__( self :Tuple ,__snake_case :int ,__snake_case :int ) -> Any: super().__init__() a__ = nn.Linear(__lowerCAmelCase ,__lowerCAmelCase ) def lowerCamelCase__( self :List[Any] ,__snake_case :Union[str, Any] ) -> int: a__ = self.proj(__lowerCAmelCase ) return x * torch.sigmoid(1.7_02 * x ) class snake_case_ (nn.Module ): def __init__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :Tuple ) -> Optional[Any]: super().__init__() a__ = nn.Embedding(__lowerCAmelCase ,__lowerCAmelCase ) a__ = nn.SiLU() a__ = nn.Linear(__lowerCAmelCase ,embedding_dim * 2 ) a__ = nn.LayerNorm(__lowerCAmelCase ,elementwise_affine=__lowerCAmelCase ) def lowerCamelCase__( self :Dict ,__snake_case :List[str] ,__snake_case :Dict ) -> Dict: a__ = self.linear(self.silu(self.emb(__lowerCAmelCase ) ) ) a__ = torch.chunk(__lowerCAmelCase ,2 ) a__ = self.norm(__lowerCAmelCase ) * (1 + scale) + shift return x class snake_case_ (nn.Module ): def __init__( self :Tuple ,__snake_case :Union[str, Any] ,__snake_case :str ) -> int: super().__init__() a__ = CombinedTimestepLabelEmbeddings(__lowerCAmelCase ,__lowerCAmelCase ) a__ = nn.SiLU() a__ = nn.Linear(__lowerCAmelCase ,6 * embedding_dim ,bias=__lowerCAmelCase ) a__ = nn.LayerNorm(__lowerCAmelCase ,elementwise_affine=__lowerCAmelCase ,eps=1E-6 ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[Any] ,__snake_case :Optional[Any] ,__snake_case :Dict ,__snake_case :Tuple=None ) -> str: a__ = self.linear(self.silu(self.emb(__lowerCAmelCase ,__lowerCAmelCase ,hidden_dtype=__lowerCAmelCase ) ) ) a__ = emb.chunk(6 ,dim=1 ) a__ = self.norm(__lowerCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class snake_case_ (nn.Module ): def __init__( self :List[str] ,__snake_case :int ,__snake_case :int ,__snake_case :int ,__snake_case :Optional[str] = None ,__snake_case :float = 1E-5 ) -> Tuple: super().__init__() a__ = num_groups a__ = eps if act_fn is None: a__ = None else: a__ = get_activation(__lowerCAmelCase ) a__ = nn.Linear(__lowerCAmelCase ,out_dim * 2 ) def lowerCamelCase__( self :Optional[int] ,__snake_case :Any ,__snake_case :Optional[Any] ) -> Union[str, Any]: if self.act: a__ = self.act(__lowerCAmelCase ) a__ = self.linear(__lowerCAmelCase ) a__ = emb[:, :, None, None] a__ = emb.chunk(2 ,dim=1 ) a__ = F.group_norm(__lowerCAmelCase ,self.num_groups ,eps=self.eps ) a__ = x * (1 + scale) + shift return x
335
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase : Tuple = logging.getLogger() def a__ ( ): '''simple docstring''' __magic_name__ = argparse.ArgumentParser() parser.add_argument("""-f""" ) __magic_name__ = parser.parse_args() return args.f def a__ ( A_ ): '''simple docstring''' __magic_name__ = {} __magic_name__ = os.path.join(_lowerCamelCase, """all_results.json""" ) if os.path.exists(_lowerCamelCase ): with open(_lowerCamelCase, """r""" ) as f: __magic_name__ = json.load(_lowerCamelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results def a__ ( ): '''simple docstring''' __magic_name__ = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() __lowerCAmelCase : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( _a ): '''simple docstring''' @classmethod def _lowercase ( cls : List[str] ) -> Tuple: """simple docstring""" __magic_name__ = tempfile.mkdtemp() __magic_name__ = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) __magic_name__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def _lowercase ( cls : Union[str, Any] ) -> int: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) __magic_name__ = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __magic_name__ = get_results(__lowerCAmelCase ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ = get_results(__lowerCAmelCase ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Union[str, Any] ) -> int: """simple docstring""" __magic_name__ = 7 if get_gpu_count() > 1 else 2 __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ = get_results(__lowerCAmelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Dict ) -> Dict: """simple docstring""" __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : List[Any] ) -> List[str]: """simple docstring""" __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """translation_no_trainer""" ) ) ) @slow def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __magic_name__ = logging.StreamHandler(sys.stdout ) logger.addHandler(__lowerCAmelCase ) __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) __magic_name__ = get_results(__lowerCAmelCase ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.10 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) __magic_name__ = get_results(__lowerCAmelCase ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """image_classification_no_trainer""" ) ) )
529
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
46
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A : str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = state_dict.pop(_lowerCamelCase ) __lowerCAmelCase = val def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowerCAmelCase = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) __lowerCAmelCase = value else: __lowerCAmelCase = value return new_state_dict def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' __lowerCAmelCase = "" if is_panoptic: __lowerCAmelCase = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __lowerCAmelCase = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:256, :] __lowerCAmelCase = in_proj_bias[:256] __lowerCAmelCase = in_proj_weight[256:512, :] __lowerCAmelCase = in_proj_bias[256:512] __lowerCAmelCase = in_proj_weight[-256:, :] __lowerCAmelCase = in_proj_bias[-256:] def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowerCAmelCase = "resnet101" if "dc5" in model_name: __lowerCAmelCase = True __lowerCAmelCase = "panoptic" in model_name if is_panoptic: __lowerCAmelCase = 250 else: __lowerCAmelCase = 91 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "coco-detection-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # load image processor __lowerCAmelCase = "coco_panoptic" if is_panoptic else "coco_detection" __lowerCAmelCase = ConditionalDetrImageProcessor(format=_lowerCamelCase ) # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_lowerCamelCase , return_tensors="pt" ) __lowerCAmelCase = encoding["pixel_values"] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub __lowerCAmelCase = torch.hub.load("DeppMeng/ConditionalDETR" , _lowerCamelCase , pretrained=_lowerCamelCase ).eval() __lowerCAmelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowerCAmelCase = "conditional_detr." + src rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __lowerCAmelCase = rename_backbone_keys(_lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCamelCase , is_panoptic=_lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCAmelCase = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): __lowerCAmelCase = state_dict.pop(_lowerCamelCase ) __lowerCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCAmelCase = state_dict.pop(_lowerCamelCase ) __lowerCAmelCase = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: __lowerCAmelCase = state_dict.pop(_lowerCamelCase ) __lowerCAmelCase = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __lowerCAmelCase = state_dict.pop(_lowerCamelCase ) __lowerCAmelCase = val # finally, create HuggingFace model and load state dict __lowerCAmelCase = ConditionalDetrForSegmentation(_lowerCamelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() model.push_to_hub(repo_id=_lowerCamelCase , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion __lowerCAmelCase = conditional_detr(_lowerCamelCase ) __lowerCAmelCase = model(_lowerCamelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A : Tuple = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
636
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
0
"""simple docstring""" import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class a ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): def __init__( self , _snake_case=None , **_snake_case ): """simple docstring""" super().__init__(features=__lowerCAmelCase ) lowerCAmelCase = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" import torch if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and column: if all( isinstance(__lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__lowerCAmelCase ) return column def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" import torch if isinstance(__lowerCAmelCase , (str, bytes, type(__lowerCAmelCase )) ): return value elif isinstance(__lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase = {} if isinstance(__lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowerCAmelCase = {"dtype": torch.intaa} elif isinstance(__lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCAmelCase , PIL.Image.Image ): lowerCAmelCase = np.asarray(__lowerCAmelCase ) return torch.tensor(__lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(__lowerCAmelCase , '__array__' ) and not isinstance(__lowerCAmelCase , torch.Tensor ): lowerCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(__lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCAmelCase ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return map_nested(self._recursive_tensorize , __lowerCAmelCase , map_list=__lowerCAmelCase ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.numpy_arrow_extractor().extract_row(__lowerCAmelCase ) lowerCAmelCase = self.python_features_decoder.decode_row(__lowerCAmelCase ) return self.recursive_tensorize(__lowerCAmelCase ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.numpy_arrow_extractor().extract_column(__lowerCAmelCase ) lowerCAmelCase = self.python_features_decoder.decode_column(__lowerCAmelCase , pa_table.column_names[0] ) lowerCAmelCase = self.recursive_tensorize(__lowerCAmelCase ) lowerCAmelCase = self._consolidate(__lowerCAmelCase ) return column def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.numpy_arrow_extractor().extract_batch(__lowerCAmelCase ) lowerCAmelCase = self.python_features_decoder.decode_batch(__lowerCAmelCase ) lowerCAmelCase = self.recursive_tensorize(__lowerCAmelCase ) for column_name in batch: lowerCAmelCase = self._consolidate(batch[column_name] ) return batch
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class A_ ( _a , _a ): lowerCAmelCase__ = 'bit' lowerCAmelCase__ = ['preactivation', 'bottleneck'] lowerCAmelCase__ = ['SAME', 'VALID'] def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: List[str]=64 ,__lowerCAmelCase: Union[str, Any]=[256, 512, 1_024, 2_048] ,__lowerCAmelCase: Optional[int]=[3, 4, 6, 3] ,__lowerCAmelCase: str="preactivation" ,__lowerCAmelCase: Tuple="relu" ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCamelCase : List[Any] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCamelCase : str = num_channels _lowerCamelCase : str = embedding_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : Any = layer_type _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[str] = global_padding _lowerCamelCase : Tuple = num_groups _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : List[Any] = embedding_dynamic_padding _lowerCamelCase : Any = output_stride _lowerCamelCase : List[str] = width_factor _lowerCamelCase : List[Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(__lowerCAmelCase ) + 1 )] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase ,out_indices=__lowerCAmelCase ,stage_names=self.stage_names )
46
0
"""simple docstring""" def __lowerCamelCase ( a_ : Any , a_ : str ) -> str: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be\n and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) __SCREAMING_SNAKE_CASE :int = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
498
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A_ ( _a ): lowerCAmelCase__ = 'vivit' def __init__( self: List[Any] ,__lowerCAmelCase: int=224 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: str=[2, 16, 16] ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Any="gelu_fast" ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: List[str]=1e-06 ,__lowerCAmelCase: Optional[Any]=True ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = num_frames _lowerCamelCase : Optional[int] = tubelet_size _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = qkv_bias super().__init__(**__lowerCAmelCase )
46
0
'''simple docstring''' def _a ( lowerCamelCase_ ): if isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" snake_case : Optional[Any] =False if num < 0: snake_case : Tuple =True snake_case : str =-num snake_case : list[int] =[] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCamelCase ) for e in binary ) return "0b" + "".join(str(_lowerCamelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
349
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
def a_ ( _A , _A , _A ) -> float: """simple docstring""" snake_case__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def a_ ( ) -> Optional[Any]: """simple docstring""" print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
328
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCamelCase ( _a , _a ): '''simple docstring''' _A = "pixel_values" _A = False _A = TimmBackboneConfig def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(self , 'timm' ) super().__init__(__lowerCAmelCase ) _a = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(__lowerCAmelCase , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) _a = getattr(__lowerCAmelCase , 'use_pretrained_backbone' , __lowerCAmelCase ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. _a = config.out_indices if getattr(__lowerCAmelCase , 'out_indices' , __lowerCAmelCase ) is not None else (-1,) _a = timm.create_model( config.backbone , pretrained=__lowerCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__lowerCAmelCase , **__lowerCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _a = self._backbone.return_layers _a = {layer["module"]: str(__lowerCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__lowerCAmelCase ) @classmethod def _UpperCAmelCase ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig _a = kwargs.pop('config' , TimmBackboneConfig() ) _a = kwargs.pop('use_timm_backbone' , __lowerCAmelCase ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) _a = kwargs.pop('num_channels' , config.num_channels ) _a = kwargs.pop('features_only' , config.features_only ) _a = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) _a = kwargs.pop('out_indices' , config.out_indices ) _a = TimmBackboneConfig( backbone=__lowerCAmelCase , num_channels=__lowerCAmelCase , features_only=__lowerCAmelCase , use_pretrained_backbone=__lowerCAmelCase , out_indices=__lowerCAmelCase , ) return super()._from_config(__lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ): pass def _UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : List[str]=None , **SCREAMING_SNAKE_CASE_ : Tuple ): _a = return_dict if return_dict is not None else self.config.use_return_dict _a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _a = self._all_layers _a = self._backbone(__lowerCAmelCase , **__lowerCAmelCase ) _a = self._return_layers _a = tuple(hidden_states[i] for i in self.out_indices ) else: _a = self._backbone(__lowerCAmelCase , **__lowerCAmelCase ) _a = None _a = tuple(__lowerCAmelCase ) _a = tuple(__lowerCAmelCase ) if hidden_states is not None else None if not return_dict: _a = (feature_maps,) if output_hidden_states: _a = output + (hidden_states,) return output return BackboneOutput(feature_maps=__lowerCAmelCase , hidden_states=__lowerCAmelCase , attentions=__lowerCAmelCase )
562
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def lowerCamelCase_( _lowerCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowerCamelCase : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) _lowerCamelCase : Tuple = rabinMiller.generate_large_prime(_lowerCamelCase ) _lowerCamelCase : Dict = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: _lowerCamelCase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) _lowerCamelCase : str = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) _lowerCamelCase : Dict = (n, e) _lowerCamelCase : Dict = (n, d) return (public_key, private_key) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowerCamelCase, _lowerCamelCase : Dict = generate_key(_lowerCamelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
46
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( _a): snake_case__ : int = ["image_processor", "tokenizer"] snake_case__ : List[str] = "ViltImageProcessor" snake_case__ : Optional[Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : str=None , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = kwargs.pop('''feature_extractor''' ) _lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.image_processor def __call__( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : int , ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) # add pixel_values + pixel_mask _lowerCamelCase : int = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) encoding.update(__lowerCAmelCase ) return encoding def SCREAMING_SNAKE_CASE ( self : Any , *__lowerCAmelCase : str , **__lowerCAmelCase : int ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , *__lowerCAmelCase : int , **__lowerCAmelCase : List[str] ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Optional[int] = self.tokenizer.model_input_names _lowerCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCAmelCase , ) return self.image_processor
83
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : """simple docstring""" def __init__( self : Optional[int] , _lowercase : Tuple , _lowercase : Optional[Any]=12 , _lowercase : List[Any]=7 , _lowercase : str=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[Any]=True , _lowercase : str=99 , _lowercase : Any=32 , _lowercase : Dict=32 , _lowercase : List[Any]=2 , _lowercase : List[Any]=4 , _lowercase : Optional[Any]=37 , _lowercase : Dict=0.1 , _lowercase : List[Any]=0.1 , _lowercase : List[str]=512 , _lowercase : List[str]=0.02 , _lowercase : int=0 , _lowercase : Optional[int]=None , ): """simple docstring""" _UpperCamelCase: Optional[int] = parent _UpperCamelCase: Dict = batch_size _UpperCamelCase: str = seq_length _UpperCamelCase: Any = is_training _UpperCamelCase: List[str] = use_input_mask _UpperCamelCase: Optional[int] = use_labels _UpperCamelCase: List[str] = vocab_size _UpperCamelCase: List[str] = hidden_size _UpperCamelCase: Any = projection_dim _UpperCamelCase: Optional[Any] = num_hidden_layers _UpperCamelCase: Union[str, Any] = num_attention_heads _UpperCamelCase: List[Any] = intermediate_size _UpperCamelCase: Dict = dropout _UpperCamelCase: Union[str, Any] = attention_dropout _UpperCamelCase: str = max_position_embeddings _UpperCamelCase: Optional[Any] = initializer_range _UpperCamelCase: Optional[Any] = scope _UpperCamelCase: Optional[int] = bos_token_id def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase: List[str] = None if self.use_input_mask: _UpperCamelCase: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase: Optional[int] = input_mask.numpy() _UpperCamelCase: str = input_mask.shape _UpperCamelCase: Tuple = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__lowerCAmelCase ): _UpperCamelCase: List[Any] = 1 _UpperCamelCase: int = 0 _UpperCamelCase: Dict = self.get_config() return config, input_ids, tf.convert_to_tensor(__lowerCAmelCase ) def lowerCAmelCase ( self : Any ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowerCAmelCase ( self : Optional[Any] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] ): """simple docstring""" _UpperCamelCase: str = TFBlipTextModel(config=__lowerCAmelCase ) _UpperCamelCase: str = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , training=__lowerCAmelCase ) _UpperCamelCase: List[str] = model(__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: Tuple = self.prepare_config_and_inputs() _UpperCamelCase: Any = config_and_inputs _UpperCamelCase: Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __magic_name__ ( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Union[str, Any] = (TFBlipTextModel,) if is_tf_available() else () lowerCAmelCase : List[str] = False lowerCAmelCase : List[str] = False lowerCAmelCase : Dict = False def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Union[str, Any] = BlipTextModelTester(self ) _UpperCamelCase: Dict = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" pass def lowerCAmelCase ( self : int ): """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def lowerCAmelCase ( self : Any ): """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" pass @slow def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase: int = TFBlipTextModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCAmelCase ( self : Any , _lowercase : Dict=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=__lowerCAmelCase )
271
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = (left + right) // 3 + 1 _lowerCamelCase : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCamelCase : Union[str, Any] = one_third - 1 elif array[two_third] < target: _lowerCamelCase : Any = two_third + 1 else: _lowerCamelCase : List[str] = one_third + 1 _lowerCamelCase : int = two_third - 1 else: return -1 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = (left + right) // 3 + 1 _lowerCamelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowerCAmelCase : Any = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCAmelCase : Union[str, Any] = ite_ternary_search(collection, target) _lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
46
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) SCREAMING_SNAKE_CASE__ = _symbol_database.Default() SCREAMING_SNAKE_CASE__ = _descriptor_pool.Default().AddSerializedFile( B'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) SCREAMING_SNAKE_CASE__ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = B'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" SCREAMING_SNAKE_CASE__ = 45 SCREAMING_SNAKE_CASE__ = 1581 SCREAMING_SNAKE_CASE__ = 1517 SCREAMING_SNAKE_CASE__ = 1570 SCREAMING_SNAKE_CASE__ = 1584 SCREAMING_SNAKE_CASE__ = 1793 SCREAMING_SNAKE_CASE__ = 1795 SCREAMING_SNAKE_CASE__ = 1916 SCREAMING_SNAKE_CASE__ = 1864 SCREAMING_SNAKE_CASE__ = 1905 SCREAMING_SNAKE_CASE__ = 1919 SCREAMING_SNAKE_CASE__ = 2429 SCREAMING_SNAKE_CASE__ = 2208 SCREAMING_SNAKE_CASE__ = 2418 SCREAMING_SNAKE_CASE__ = 2323 SCREAMING_SNAKE_CASE__ = 2407 # @@protoc_insertion_point(module_scope)
47
from string import ascii_lowercase, ascii_uppercase def UpperCAmelCase__ ( lowerCamelCase_ : str ): if not sentence: return "" __a : Union[str, Any] = dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
47
1
def UpperCAmelCase__ ( lowerCamelCase_ : list[int] , lowerCamelCase_ : list[int] ): # Check if the input is valid if not len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients __a , __a , __a : Optional[Any] = equationa __a , __a , __a : Optional[int] = equationa # Calculate the determinants of the matrices __a : str = aa * ba - aa * ba __a : Tuple = ca * ba - ca * ba __a : Union[str, Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __a : Any = determinant_x / determinant __a : Optional[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
47
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''sew-d''' def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=2_5_6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=("p2c", "c2p") , SCREAMING_SNAKE_CASE__ : str="layer_norm" , SCREAMING_SNAKE_CASE__ : Tuple="gelu_python" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-7 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Optional[int]="group" , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : str=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]="mean" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=2_5_6 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , **SCREAMING_SNAKE_CASE__ : Any , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = hidden_size __a : Optional[Any] = feat_extract_norm __a : List[str] = feat_extract_activation __a : Dict = list(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ ) __a : List[str] = list(SCREAMING_SNAKE_CASE__ ) __a : int = conv_bias __a : Tuple = num_conv_pos_embeddings __a : List[str] = num_conv_pos_embedding_groups __a : Optional[Any] = len(self.conv_dim ) __a : Union[str, Any] = num_hidden_layers __a : Optional[Any] = intermediate_size __a : Union[str, Any] = squeeze_factor __a : List[Any] = max_position_embeddings __a : Tuple = position_buckets __a : Optional[int] = share_att_key __a : List[str] = relative_attention __a : Any = norm_rel_ebd __a : Any = list(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = hidden_act __a : str = num_attention_heads __a : Union[str, Any] = hidden_dropout __a : Optional[int] = attention_dropout __a : List[str] = activation_dropout __a : int = feat_proj_dropout __a : int = final_dropout __a : Dict = layer_norm_eps __a : Tuple = feature_layer_norm_eps __a : str = initializer_range __a : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a : Tuple = apply_spec_augment __a : Optional[Any] = mask_time_prob __a : Any = mask_time_length __a : List[str] = mask_time_min_masks __a : List[str] = mask_feature_prob __a : Tuple = mask_feature_length __a : Any = mask_feature_min_masks # ctc loss __a : Optional[int] = ctc_loss_reduction __a : List[Any] = ctc_zero_infinity # sequence classification __a : Dict = use_weighted_layer_sum __a : Optional[Any] = classifier_proj_size @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
47
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def UpperCAmelCase__ ( lowerCamelCase_ : str ): # word like '180' or '身高' or '神' for char in word: __a : Optional[int] = ord(lowerCamelCase_ ) if not _is_chinese_char(lowerCamelCase_ ): return 0 return 1 def UpperCAmelCase__ ( lowerCamelCase_ : List[str] ): __a : Union[str, Any] = set() for token in tokens: __a : Any = len(lowerCamelCase_ ) > 1 and is_chinese(lowerCamelCase_ ) if chinese_word: word_set.add(lowerCamelCase_ ) __a : str = list(lowerCamelCase_ ) return word_list def UpperCAmelCase__ ( lowerCamelCase_ : List[str] , lowerCamelCase_ : set() ): if not chinese_word_set: return bert_tokens __a : Tuple = max([len(lowerCamelCase_ ) for w in chinese_word_set] ) __a : List[str] = bert_tokens __a , __a : Tuple = 0, len(lowerCamelCase_ ) while start < end: __a : List[str] = True if is_chinese(bert_word[start] ): __a : List[str] = min(end - start , lowerCamelCase_ ) for i in range(lowerCamelCase_ , 1 , -1 ): __a : Optional[int] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __a : Optional[Any] = '##' + bert_word[j] __a : List[Any] = start + i __a : Tuple = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( lowerCamelCase_ : List[str] , lowerCamelCase_ : LTP , lowerCamelCase_ : BertTokenizer ): __a : Union[str, Any] = [] for i in range(0 , len(lowerCamelCase_ ) , 1_0_0 ): __a : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['cws'] ).cws __a : Optional[int] = [get_chinese_word(lowerCamelCase_ ) for r in res] ltp_res.extend(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) __a : Optional[Any] = [] for i in range(0 , len(lowerCamelCase_ ) , 1_0_0 ): __a : Union[str, Any] = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) __a : Union[str, Any] = [] for input_ids, chinese_word in zip(lowerCamelCase_ , lowerCamelCase_ ): __a : str = [] for id in input_ids: __a : Optional[int] = bert_tokenizer._convert_id_to_token(lowerCamelCase_ ) input_tokens.append(lowerCamelCase_ ) __a : int = add_sub_symbol(lowerCamelCase_ , lowerCamelCase_ ) __a : List[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase_ ): if token[:2] == "##": __a : Dict = token[2:] # save chinese tokens' pos if len(lowerCamelCase_ ) == 1 and _is_chinese_char(ord(lowerCamelCase_ ) ): ref_id.append(lowerCamelCase_ ) ref_ids.append(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) return ref_ids def UpperCAmelCase__ ( lowerCamelCase_ : str ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: __a : int = f.readlines() __a : Optional[Any] = [line.strip() for line in data if len(lowerCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __a : int = LTP(args.ltp ) # faster in GPU device __a : Dict = BertTokenizer.from_pretrained(args.bert ) __a : Union[str, Any] = prepare_ref(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: __a : Union[str, Any] = [json.dumps(lowerCamelCase_ ) + '\n' for ref in ref_ids] f.writelines(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
47
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ = TypeVar('''T''') def UpperCAmelCase__ ( lowerCamelCase_ : int ): return (position - 1) // 2 def UpperCAmelCase__ ( lowerCamelCase_ : int ): return (2 * position) + 1 def UpperCAmelCase__ ( lowerCamelCase_ : int ): return (2 * position) + 2 class _UpperCamelCase( Generic[T] ): def __init__( self : List[str] ): '''simple docstring''' __a : list[tuple[T, int]] = [] __a : dict[T, int] = {} __a : int = 0 def __len__( self : Any ): '''simple docstring''' return self.elements def __repr__( self : Any ): '''simple docstring''' return str(self.heap ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.elements == 0 def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' self.heap.append((elem, weight) ) __a : List[Any] = self.elements self.elements += 1 self._bubble_up(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __a , __a : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __a , __a : Dict = self.heap[0] self._bubble_down(SCREAMING_SNAKE_CASE__ ) return elem def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : List[Any] = self.position_map[elem] __a : str = (elem, weight) if position > 0: __a : Tuple = get_parent_position(SCREAMING_SNAKE_CASE__ ) __a , __a : Dict = self.heap[parent_position] if parent_weight > weight: self._bubble_up(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T ): '''simple docstring''' __a : List[Any] = self.position_map[elem] if curr_pos == 0: return None __a : List[str] = get_parent_position(SCREAMING_SNAKE_CASE__ ) __a , __a : str = self.heap[curr_pos] __a , __a : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_up(SCREAMING_SNAKE_CASE__ ) return None def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T ): '''simple docstring''' __a : int = self.position_map[elem] __a , __a : Optional[Any] = self.heap[curr_pos] __a : Tuple = get_child_left_position(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = get_child_right_position(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements and child_right_position < self.elements: __a , __a : str = self.heap[child_left_position] __a , __a : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements: __a , __a : Any = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: return None if child_right_position < self.elements: __a , __a : Union[str, Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) return None def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Optional[Any] = self.heap[nodea_pos][0] __a : str = self.heap[nodea_pos][0] __a , __a : int = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __a : str = nodea_pos __a : Optional[int] = nodea_pos class _UpperCamelCase( Generic[T] ): def __init__( self : List[Any] ): '''simple docstring''' __a : dict[T, dict[T, int]] = {} __a : int = 0 def __repr__( self : Tuple ): '''simple docstring''' return str(self.connections ) def __len__( self : Dict ): '''simple docstring''' return self.nodes def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ): '''simple docstring''' if node not in self.connections: __a : Tuple = {} self.nodes += 1 def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' self.add_node(SCREAMING_SNAKE_CASE__ ) self.add_node(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = weight __a : Any = weight def UpperCAmelCase__ ( lowerCamelCase_ : GraphUndirectedWeighted[T] , ): __a : dict[T, int] = {node: maxsize for node in graph.connections} __a : dict[T, T | None] = {node: None for node in graph.connections} __a : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCamelCase_ , lowerCamelCase_ ) if priority_queue.is_empty(): return dist, parent # initialization __a : Optional[int] = priority_queue.extract_min() __a : int = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __a : str = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCamelCase_ , dist[neighbour] ) __a : Optional[int] = node # running prim's algorithm while not priority_queue.is_empty(): __a : Any = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __a : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCamelCase_ , dist[neighbour] ) __a : Dict = node return dist, parent
47
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE__ = { '''RUCAIBox/mvp''': 1024, } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE : Optional[int] = MvpTokenizer def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : int="replace" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE__ : Dict="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<unk>" , SCREAMING_SNAKE_CASE__ : Dict="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : str=True , **SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __a : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: __a : Dict = getattr(SCREAMING_SNAKE_CASE__ , pre_tok_state.pop('type' ) ) __a : Optional[Any] = add_prefix_space __a : Any = pre_tok_class(**SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __a : List[Any] = 'post_processor' __a : Dict = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if tokenizer_component_instance: __a : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a : List[Any] = tuple(state['sep'] ) if "cls" in state: __a : Tuple = tuple(state['cls'] ) __a : List[Any] = False if state.get('add_prefix_space' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: __a : str = add_prefix_space __a : List[str] = True if state.get('trim_offsets' , SCREAMING_SNAKE_CASE__ ) != trim_offsets: __a : str = trim_offsets __a : Optional[int] = True if changes_to_apply: __a : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , state.pop('type' ) ) __a : Optional[Any] = component_class(**SCREAMING_SNAKE_CASE__ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else value __a : Dict = value def __lowerCAmelCase ( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' __a : Union[str, Any] = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a : Dict = kwargs.get('is_split_into_words' , SCREAMING_SNAKE_CASE__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' __a : int = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=None ): '''simple docstring''' __a : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' __a : Tuple = [self.sep_token_id] __a : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
47
from collections.abc import Sequence from queue import Queue class _UpperCamelCase: def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None ): '''simple docstring''' __a : Tuple = start __a : Dict = end __a : List[str] = val __a : List[Any] = (start + end) // 2 __a : Optional[Any] = left __a : List[str] = right def __repr__( self : Dict ): '''simple docstring''' return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class _UpperCamelCase: def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Sequence , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' __a : Tuple = collection __a : Dict = function if self.collection: __a : int = self._build_tree(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' self._update_tree(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' return self._query_range(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' if start == end: return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.collection[start] ) __a : Tuple = (start + end) // 2 __a : Optional[int] = self._build_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Tuple = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE__ ) return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' if node.start == i and node.end == i: __a : Optional[Any] = val return if i <= node.mid: self._update_tree(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: self._update_tree(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : int = self.fn(node.left.val , node.right.val ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , SCREAMING_SNAKE_CASE__ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE__ ) , ) else: # range in right child tree return self._query_range(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.root is not None: __a : Tuple = Queue() queue.put(self.root ) while not queue.empty(): __a : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) SCREAMING_SNAKE_CASE__ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
47
1
from math import pow, sqrt def UpperCAmelCase__ ( *lowerCamelCase_ : float ): __a : Optional[Any] = len(lowerCamelCase_ ) > 0 and all(value > 0.0 for value in values ) return result def UpperCAmelCase__ ( lowerCamelCase_ : float , lowerCamelCase_ : float ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase_ , lowerCamelCase_ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def UpperCAmelCase__ ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def UpperCAmelCase__ ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def UpperCAmelCase__ ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def UpperCAmelCase__ ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
47
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _UpperCamelCase( datasets.BuilderConfig ): __SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None def UpperCAmelCase__ ( lowerCamelCase_ : "pyspark.sql.DataFrame" , lowerCamelCase_ : List[int] , ): import pyspark def generate_fn(): __a : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: __a : Optional[int] = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) __a : Optional[Any] = partition_df.collect() __a : Union[str, Any] = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _UpperCamelCase( _BaseExamplesIterable ): def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Dict=None , ): '''simple docstring''' __a : List[str] = df __a : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) __a : List[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Tuple ): '''simple docstring''' yield from self.generate_examples_fn() def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.random.Generator ): '''simple docstring''' __a : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return len(self.partition_order ) class _UpperCamelCase( datasets.DatasetBuilder ): __SCREAMING_SNAKE_CASE : List[str] = SparkConfig def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' import pyspark __a : int = pyspark.sql.SparkSession.builder.getOrCreate() __a : Optional[int] = df __a : List[Any] = working_dir super().__init__( cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : List[str] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(SCREAMING_SNAKE_CASE__ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __a : List[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' import pyspark def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) __a : List[str] = self.df.count() __a : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __a : List[str] = ( self.df.limit(SCREAMING_SNAKE_CASE__ ) .repartition(1 ) .mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __a : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __a : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) ) __a : int = self.df.repartition(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ): '''simple docstring''' import pyspark __a : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter __a : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath __a : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __a : List[str] = self.config.features __a : int = self._writer_batch_size __a : Union[str, Any] = self._fs.storage_options def write_arrow(SCREAMING_SNAKE_CASE__ : Optional[int] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __a : Any = pyspark.TaskContext().taskAttemptId() __a : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) __a : Any = 0 __a : List[str] = writer_class( features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __a : Optional[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __a , __a : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 __a : Optional[Any] = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __a : Union[str, Any] = pa.Table.from_batches([batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) if writer._num_bytes > 0: __a , __a : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ): __a : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Dict = ( self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' self._validate_cache_dir() __a : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = not is_remote_filesystem(self._fs ) __a : Optional[Any] = os.path.join if is_local else posixpath.join __a : Any = '-TTTTT-SSSSS-of-NNNNN' __a : Union[str, Any] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' __a : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ ) __a : Any = 0 __a : Dict = 0 __a : int = 0 __a : List[str] = [] __a : Optional[int] = [] for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[int] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ ) __a : List[str] = total_num_examples __a : Optional[int] = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: __a : Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __a : Dict = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ): rename( SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , ) __a : Union[str, Any] = [] __a : List[str] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __a , __a : Union[str, Any] = task_id_and_num_shards[i] for shard_id in range(SCREAMING_SNAKE_CASE__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect() else: # don't use any pattern __a : List[Any] = 0 __a : Any = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ): '''simple docstring''' return SparkExamplesIterable(self.df )
47
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[List[PIL.Image.Image], np.ndarray] __SCREAMING_SNAKE_CASE : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : np.ndarray __SCREAMING_SNAKE_CASE : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
47
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ): # save results if os.path.exists(lowerCamelCase_ ): if os.path.exists(os.path.join(lowerCamelCase_ , 'config.json' ) ) and os.path.isfile( os.path.join(lowerCamelCase_ , 'config.json' ) ): os.remove(os.path.join(lowerCamelCase_ , 'config.json' ) ) if os.path.exists(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ): os.remove(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) else: os.makedirs(lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Any=False ): __a : Dict = 2 if unlogit: __a : Optional[Any] = torch.pow(lowerCamelCase_ , lowerCamelCase_ ) __a : Any = p * torch.log(lowerCamelCase_ ) __a : Union[str, Any] = 0 return -plogp.sum(dim=-1 ) def UpperCAmelCase__ ( lowerCamelCase_ : Any ): logger.info('lv, h >\t' + '\t'.join(f'''{x + 1}''' for x in range(len(lowerCamelCase_ ) ) ) ) for row in range(len(lowerCamelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=False ): __a , __a : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads __a : str = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) __a : int = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) if head_mask is None: __a : Union[str, Any] = torch.ones(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCamelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __a : Any = None __a : Optional[int] = 0.0 __a : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(lowerCamelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): __a : Dict = tuple(t.to(args.device ) for t in inputs ) ((__a) , ) : Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __a : List[Any] = model(lowerCamelCase_ , labels=lowerCamelCase_ , head_mask=lowerCamelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __a , __a , __a : int = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCamelCase_ ): __a : List[str] = entropy(attn.detach() , lowerCamelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCamelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __a : Optional[Any] = 2 __a : Union[str, Any] = torch.pow(torch.pow(lowerCamelCase_ , lowerCamelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: __a : List[str] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(lowerCamelCase_ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(lowerCamelCase_ ) logger.info('Head ranked by importance scores' ) __a : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __a : str = torch.arange( head_importance.numel() , device=args.device ) __a : Tuple = head_ranks.view_as(lowerCamelCase_ ) print_ad_tensor(lowerCamelCase_ ) return attn_entropy, head_importance, total_loss def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ): __a , __a , __a : Optional[int] = compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ ) __a : Tuple = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , lowerCamelCase_ , original_score * args.masking_threshold ) __a : Tuple = torch.ones_like(lowerCamelCase_ ) __a : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __a : Tuple = original_score while current_score >= original_score * args.masking_threshold: __a : Optional[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __a : List[str] = float('Inf' ) __a : List[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCamelCase_ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads __a : Any = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) __a : int = new_head_mask.view(-1 ) __a : Tuple = 0.0 __a : int = new_head_mask.view_as(lowerCamelCase_ ) __a : Optional[int] = new_head_mask.clone().detach() print_ad_tensor(lowerCamelCase_ ) # Compute metric and head importance again __a , __a , __a : int = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , head_mask=lowerCamelCase_ ) __a : List[Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , lowerCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('Final head mask' ) print_ad_tensor(lowerCamelCase_ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): __a : List[Any] = datetime.now() __a , __a , __a : List[str] = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ ) __a : List[str] = 1 / loss __a : List[Any] = datetime.now() - before_time __a : List[str] = sum(p.numel() for p in model.parameters() ) __a : Dict = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __a : Tuple = [ v, ] assert sum(len(lowerCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCamelCase_ ) __a : Optional[Any] = sum(p.numel() for p in model.parameters() ) __a : Tuple = datetime.now() __a , __a , __a : Tuple = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ , actually_pruned=lowerCamelCase_ , ) __a : Optional[Any] = 1 / loss __a : List[Any] = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , lowerCamelCase_ , lowerCamelCase_ , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , lowerCamelCase_ , lowerCamelCase_ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 ) save_model(lowerCamelCase_ , args.output_dir ) def UpperCAmelCase__ ( ): __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=lowerCamelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=lowerCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=lowerCamelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=lowerCamelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=lowerCamelCase_ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=lowerCamelCase_ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=lowerCamelCase_ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=lowerCamelCase_ , help='Batch size.' ) parser.add_argument('--seed' , type=lowerCamelCase_ , default=4_2 ) parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' ) __a : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __a : List[str] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) __a : Tuple = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __a : Union[str, Any] = torch.device('cuda' , args.local_rank ) __a : Any = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __a : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __a : List[Any] = nn.parallel.DistributedDataParallel( lowerCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase_ ) elif args.n_gpu > 1: __a : Union[str, Any] = nn.DataParallel(lowerCamelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCamelCase_ ) torch.save(lowerCamelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , lowerCamelCase_ ) # Prepare dataset __a : Tuple = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __a : str = (torch.from_numpy(lowerCamelCase_ ),) __a : List[str] = TensorDataset(*lowerCamelCase_ ) __a : Optional[Any] = RandomSampler(lowerCamelCase_ ) __a : Union[str, Any] = DataLoader(lowerCamelCase_ , sampler=lowerCamelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __a : Union[str, Any] = mask_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) prune_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
47
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class _UpperCamelCase( __lowerCamelCase ): def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
47
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ): __a : List[Any] = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_0_2_4, 'hidden_size': 7_6_8, 'max_length': 5_1_2, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_0_2_4, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __a : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __a : List[str] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __a : int = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __a : Optional[Any] = os.path.join(get_home_dir() , 'models' ) __a : Optional[Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ ) __a : Any = nlp.model.BERTModel( lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , ) original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ ) __a : Dict = original_bort._collect_params_with_prefix() # Build our config 🤗 __a : Optional[Any] = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowerCamelCase_ ), } __a : str = BertConfig.from_dict(lowerCamelCase_ ) __a : Optional[int] = BertForMaskedLM(lowerCamelCase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase_ : Optional[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): __a : Optional[int] = hf_param.shape __a : int = to_torch(params[gluon_param] ) __a : int = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __a : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __a : str = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __a : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __a : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __a : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __a : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __a : BertSelfAttention = layer.attention.self __a : Optional[int] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __a : str = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __a : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __a : str = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __a : Dict = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __a : str = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __a : BertSelfOutput = layer.attention.output __a : Tuple = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) __a : Dict = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) __a : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __a : Optional[Any] = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __a : BertIntermediate = layer.intermediate __a : List[str] = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __a : Optional[Any] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __a : BertOutput = layer.output __a : str = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __a : List[Any] = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __a : str = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __a : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __a : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-base' ) __a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ )['input_ids'] # Get gluon output __a : Optional[int] = mx.nd.array([input_ids] ) __a : Tuple = original_bort(inputs=lowerCamelCase_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase_ ) __a : Optional[Any] = BertModel.from_pretrained(lowerCamelCase_ ) hf_bort_model.eval() __a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' ) __a : int = hf_bort_model(**lowerCamelCase_ )[0] __a : Dict = output_gluon[0].asnumpy() __a : str = output_hf[0].detach().numpy() __a : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() __a : str = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
47
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCAmelCase__ ( lowerCamelCase_ : int ): if not is_accelerate_available(): return method __a : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(lowerCamelCase_ ) < version.parse('0.17.0' ): return method def wrapper(self : str , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Union[str, Any] ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *lowerCamelCase_ , **lowerCamelCase_ ) return wrapper
47
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): __a : Any = '' for i in table: res += inp[i - 1] return res def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ): return data[1:] + data[0] def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ): __a : Optional[int] = '' for i in range(len(lowerCamelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): __a : List[str] = int('0b' + data[0] + data[-1] , 2 ) __a : List[str] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): __a : List[Any] = message[:4] __a : str = message[4:] __a : Any = apply_table(lowerCamelCase_ , lowerCamelCase_ ) __a : int = xor(lowerCamelCase_ , lowerCamelCase_ ) __a : Dict = apply_sbox(lowerCamelCase_ , temp[:4] ) # noqa: E741 __a : Tuple = apply_sbox(lowerCamelCase_ , temp[4:] ) __a : List[Any] = '0' * (2 - len(lowerCamelCase_ )) + l # noqa: E741 __a : List[str] = '0' * (2 - len(lowerCamelCase_ )) + r __a : List[Any] = apply_table(l + r , lowerCamelCase_ ) __a : Dict = xor(lowerCamelCase_ , lowerCamelCase_ ) return temp + right if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input('''Enter 10 bit key: ''') SCREAMING_SNAKE_CASE__ = input('''Enter 8 bit message: ''') SCREAMING_SNAKE_CASE__ = [6, 3, 7, 4, 8, 5, 10, 9] SCREAMING_SNAKE_CASE__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] SCREAMING_SNAKE_CASE__ = [2, 4, 3, 1] SCREAMING_SNAKE_CASE__ = [2, 6, 3, 1, 4, 8, 5, 7] SCREAMING_SNAKE_CASE__ = [4, 1, 3, 5, 7, 2, 8, 6] SCREAMING_SNAKE_CASE__ = [4, 1, 2, 3, 2, 3, 4, 1] SCREAMING_SNAKE_CASE__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] SCREAMING_SNAKE_CASE__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation SCREAMING_SNAKE_CASE__ = apply_table(key, paa_table) SCREAMING_SNAKE_CASE__ = temp[:5] SCREAMING_SNAKE_CASE__ = temp[5:] SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table) SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table) # encryption SCREAMING_SNAKE_CASE__ = apply_table(message, IP) SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption SCREAMING_SNAKE_CASE__ = apply_table(CT, IP) SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
47
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] SCREAMING_SNAKE_CASE__ = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] ): __a : str = torch.load(lowerCamelCase_ , map_location='cpu' ) return sd def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=rename_keys_prefix ): __a : Optional[Any] = OrderedDict() __a : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __a : List[Any] = key for name_pair in rename_keys_prefix: __a : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __a : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __a : int = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ): assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __a : Dict = 'pretraining' if "vcr" in checkpoint_path: __a : int = {'visual_embedding_dim': 5_1_2} elif "vqa_advanced" in checkpoint_path: __a : int = {'visual_embedding_dim': 2_0_4_8} elif "vqa" in checkpoint_path: __a : Tuple = {'visual_embedding_dim': 2_0_4_8} elif "nlvr" in checkpoint_path: __a : List[Any] = {'visual_embedding_dim': 1_0_2_4} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __a : int = {'visual_embedding_dim': 5_1_2} __a : Any = 'multichoice' elif "vqa_advanced" in checkpoint_path: __a : Any = {'visual_embedding_dim': 2_0_4_8} __a : List[str] = 'vqa_advanced' elif "vqa" in checkpoint_path: __a : List[Any] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9} __a : List[Any] = 'vqa' elif "nlvr" in checkpoint_path: __a : Optional[int] = { 'visual_embedding_dim': 1_0_2_4, 'num_labels': 2, } __a : Optional[Any] = 'nlvr' __a : str = VisualBertConfig(**lowerCamelCase_ ) # Load State Dict __a : str = load_state_dict(lowerCamelCase_ ) __a : str = get_new_dict(lowerCamelCase_ , lowerCamelCase_ ) if model_type == "pretraining": __a : Optional[Any] = VisualBertForPreTraining(lowerCamelCase_ ) elif model_type == "vqa": __a : Any = VisualBertForQuestionAnswering(lowerCamelCase_ ) elif model_type == "nlvr": __a : int = VisualBertForVisualReasoning(lowerCamelCase_ ) elif model_type == "multichoice": __a : Optional[int] = VisualBertForMultipleChoice(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # Save Checkpoints Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
47
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : List[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : int = None ops.enable_eager_execution_internal() __a : Optional[Any] = tf.config.list_physical_devices('CPU' ) if len(SCREAMING_SNAKE_CASE__ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a : int = tf.config.list_logical_devices(device_type='CPU' ) __a : str = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a : List[str] = GradientAccumulator() __a : Tuple = tf.Variable([4.0, 3.0] ) __a , __a : int = create_optimizer(5e-5 , 1_0 , 5 ) __a : List[Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE__ ) def accumulate_on_replica(SCREAMING_SNAKE_CASE__ : Optional[Any] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): with strategy.scope(): __a : Optional[Any] = strategy.experimental_local_results(SCREAMING_SNAKE_CASE__ ) local_variables[0].assign(SCREAMING_SNAKE_CASE__ ) local_variables[1].assign(SCREAMING_SNAKE_CASE__ ) strategy.run(SCREAMING_SNAKE_CASE__ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(SCREAMING_SNAKE_CASE__ ) def _check_local_values(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ): __a : Union[str, Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
47
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE__ = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ): __a : Dict = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): __a : Union[str, Any] = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , lowerCamelCase_ , ) is not None ): __a : Dict = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __a : Dict = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __a : List[Any] = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] __a : Optional[Any] = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed __a : Optional[Any] = True if not attribute_used: __a : Any = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __a : int = True elif attribute in ["tie_word_embeddings"] and default_value is False: __a : List[str] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __a : Tuple = True elif attribute.endswith('_token_id' ): __a : Dict = True # configuration class specific cases if not case_allowed: __a : Tuple = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __a : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCAmelCase__ ( lowerCamelCase_ : Any ): __a : str = dict(inspect.signature(config_class.__init__ ).parameters ) __a : Optional[Any] = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] __a : List[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __a : Any = {} if len(config_class.attribute_map ) > 0: __a : Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __a : Union[str, Any] = inspect.getsourcefile(lowerCamelCase_ ) __a : str = os.path.dirname(lowerCamelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __a : Dict = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for fn in os.listdir(lowerCamelCase_ ) if fn.startswith('modeling_' )] # Get the source code strings __a : str = [] for path in modeling_paths: if os.path.isfile(lowerCamelCase_ ): with open(lowerCamelCase_ ) as fp: modeling_sources.append(fp.read() ) __a : str = [] for config_param, default_value in zip(lowerCamelCase_ , lowerCamelCase_ ): # `attributes` here is all the variant names for `config_param` __a : Dict = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): unused_attributes.append(attributes[0] ) return sorted(lowerCamelCase_ ) def UpperCAmelCase__ ( ): __a : Dict = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __a : List[Any] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCamelCase_ : inspect.isclass(lowerCamelCase_ ) and issubclass(lowerCamelCase_ , lowerCamelCase_ ) and inspect.getmodule(lowerCamelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __a : List[Any] = check_config_attributes_being_used(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: __a : Optional[Any] = unused_attributes if len(lowerCamelCase_ ) > 0: __a : str = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(lowerCamelCase_ ) if __name__ == "__main__": check_config_attributes()
47
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''roberta''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : str=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Tuple="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Any , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = vocab_size __a : Tuple = hidden_size __a : List[str] = num_hidden_layers __a : List[Any] = num_attention_heads __a : str = hidden_act __a : Optional[Any] = intermediate_size __a : Dict = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[Any] = max_position_embeddings __a : Dict = type_vocab_size __a : str = initializer_range __a : List[str] = layer_norm_eps __a : Optional[int] = position_embedding_type __a : Union[str, Any] = use_cache __a : str = classifier_dropout class _UpperCamelCase( __lowerCamelCase ): @property def __lowerCAmelCase ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": __a : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
47
1
def UpperCAmelCase__ ( ): __a : Union[str, Any] = 0 for i in range(1 , 1_0_0_1 ): total += i**i return str(lowerCamelCase_ )[-1_0:] if __name__ == "__main__": print(solution())
47
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '''▁''' SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } SCREAMING_SNAKE_CASE__ = { '''facebook/xglm-564M''': 2048, } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : Dict="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ): '''simple docstring''' __a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __a : Any = 7 __a : Union[str, Any] = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] __a : Union[str, Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) __a : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __a : Any = 1 # Mimic fairseq token-to-id alignment for the first 4 token __a : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __a : List[str] = len(self.sp_model ) __a : Optional[int] = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) __a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ): '''simple docstring''' __a : Tuple = self.__dict__.copy() __a : List[str] = None __a : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a : Dict = {} __a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __a : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' __a : Optional[int] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __a : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' __a : Optional[int] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a : Any = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: __a : List[Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
47
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Tuple = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) SCREAMING_SNAKE_CASE__ = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) SCREAMING_SNAKE_CASE__ = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(__lowerCamelCase ) class _UpperCamelCase: def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Union[bool, str] = False , SCREAMING_SNAKE_CASE__ : Union[bool, str] = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) elif titles is None or texts is None: __a : Dict = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __a : Optional[Any] = titles if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [titles] __a : List[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [texts] __a : Dict = len(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = questions if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [questions] * n_passages if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( f'''There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE__ )} titles and {len(SCREAMING_SNAKE_CASE__ )} texts.''' ) __a : Union[str, Any] = super().__call__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )['input_ids'] __a : List[str] = super().__call__(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )['input_ids'] __a : str = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] } if return_attention_mask is not False: __a : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __a : str = attention_mask return self.pad(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : BatchEncoding , SCREAMING_SNAKE_CASE__ : DPRReaderOutput , SCREAMING_SNAKE_CASE__ : int = 1_6 , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 4 , ): '''simple docstring''' __a : Optional[int] = reader_input['input_ids'] __a , __a , __a : Optional[Any] = reader_output[:3] __a : str = len(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = sorted(range(SCREAMING_SNAKE_CASE__ ) , reverse=SCREAMING_SNAKE_CASE__ , key=relevance_logits.__getitem__ ) __a : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __a : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __a : Union[str, Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __a : Optional[Any] = sequence_ids.index(self.pad_token_id ) else: __a : Any = len(SCREAMING_SNAKE_CASE__ ) __a : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE__ , top_spans=SCREAMING_SNAKE_CASE__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE__ , start_index=SCREAMING_SNAKE_CASE__ , end_index=SCREAMING_SNAKE_CASE__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ): '''simple docstring''' __a : str = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __a : Dict = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[1] , reverse=SCREAMING_SNAKE_CASE__ ) __a : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) __a : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowerCamelCase ) class _UpperCamelCase( __lowerCamelCase , __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[Any] = READER_PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Dict = READER_PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask''']
47
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] SCREAMING_SNAKE_CASE__ = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] ): __a : str = torch.load(lowerCamelCase_ , map_location='cpu' ) return sd def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=rename_keys_prefix ): __a : Optional[Any] = OrderedDict() __a : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __a : List[Any] = key for name_pair in rename_keys_prefix: __a : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __a : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __a : int = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ): assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __a : Dict = 'pretraining' if "vcr" in checkpoint_path: __a : int = {'visual_embedding_dim': 5_1_2} elif "vqa_advanced" in checkpoint_path: __a : int = {'visual_embedding_dim': 2_0_4_8} elif "vqa" in checkpoint_path: __a : Tuple = {'visual_embedding_dim': 2_0_4_8} elif "nlvr" in checkpoint_path: __a : List[Any] = {'visual_embedding_dim': 1_0_2_4} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __a : int = {'visual_embedding_dim': 5_1_2} __a : Any = 'multichoice' elif "vqa_advanced" in checkpoint_path: __a : Any = {'visual_embedding_dim': 2_0_4_8} __a : List[str] = 'vqa_advanced' elif "vqa" in checkpoint_path: __a : List[Any] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9} __a : List[Any] = 'vqa' elif "nlvr" in checkpoint_path: __a : Optional[int] = { 'visual_embedding_dim': 1_0_2_4, 'num_labels': 2, } __a : Optional[Any] = 'nlvr' __a : str = VisualBertConfig(**lowerCamelCase_ ) # Load State Dict __a : str = load_state_dict(lowerCamelCase_ ) __a : str = get_new_dict(lowerCamelCase_ , lowerCamelCase_ ) if model_type == "pretraining": __a : Optional[Any] = VisualBertForPreTraining(lowerCamelCase_ ) elif model_type == "vqa": __a : Any = VisualBertForQuestionAnswering(lowerCamelCase_ ) elif model_type == "nlvr": __a : int = VisualBertForVisualReasoning(lowerCamelCase_ ) elif model_type == "multichoice": __a : Optional[int] = VisualBertForMultipleChoice(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # Save Checkpoints Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
47
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase( __lowerCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = XLMTokenizer __SCREAMING_SNAKE_CASE : Tuple = False def __lowerCAmelCase ( self : str ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __a : List[str] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a : Optional[int] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' __a : int = 'lower newer' __a : Tuple = 'lower newer' return input_text, output_text def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' __a : str = XLMTokenizer(self.vocab_file , self.merges_file ) __a : Union[str, Any] = 'lower' __a : Any = ['low', 'er</w>'] __a : str = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Tuple = tokens + ['<unk>'] __a : Union[str, Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) @slow def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Optional[Any] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) __a : List[Any] = tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) __a : Tuple = tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
47
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
47
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''xlm-roberta-xl''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=2_5_0_8_8_0 , SCREAMING_SNAKE_CASE__ : Any=2_5_6_0 , SCREAMING_SNAKE_CASE__ : List[Any]=3_6 , SCREAMING_SNAKE_CASE__ : Tuple=3_2 , SCREAMING_SNAKE_CASE__ : str=1_0_2_4_0 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_1_4 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1e-05 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = vocab_size __a : int = hidden_size __a : Any = num_hidden_layers __a : Optional[Any] = num_attention_heads __a : Any = hidden_act __a : int = intermediate_size __a : int = hidden_dropout_prob __a : Dict = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Any = initializer_range __a : Any = layer_norm_eps __a : List[str] = position_embedding_type __a : Dict = use_cache __a : Dict = classifier_dropout class _UpperCamelCase( __lowerCamelCase ): @property def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
47
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _UpperCamelCase( __lowerCamelCase ): def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : List[Any] = tempfile.mkdtemp() __a : int = 8 # DPR tok __a : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __a : int = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __a : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : List[str] = {'unk_token': '<unk>'} __a : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['vocab_file'] ) __a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowerCAmelCase ( self : str ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : Tuple = os.path.join(self.tmpdirname , 'rag_tokenizer' ) __a : Optional[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __a : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) rag_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , SCREAMING_SNAKE_CASE__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , SCREAMING_SNAKE_CASE__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : Optional[Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) __a : List[Any] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __a : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Any = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) __a : Union[str, Any] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __a : str = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
47
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow SCREAMING_SNAKE_CASE__ = False class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_2 ): '''simple docstring''' set_seed(0 ) __a : Optional[int] = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , in_channels=3 , out_channels=3 ) __a : Tuple = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Any = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __a : int = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=SCREAMING_SNAKE_CASE__ , ) __a : Dict = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=SCREAMING_SNAKE_CASE__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) __a : Union[str, Any] = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(SCREAMING_SNAKE_CASE__ ) for _ in range(4 )] __a : Union[str, Any] = [torch.randn((4, 3, 3_2, 3_2) ).to(SCREAMING_SNAKE_CASE__ ) for _ in range(4 )] __a : int = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(SCREAMING_SNAKE_CASE__ ) for _ in range(4 )] # train with a DDPM scheduler __a , __a : List[str] = self.get_model_optimizer(resolution=3_2 ) model.train().to(SCREAMING_SNAKE_CASE__ ) for i in range(4 ): optimizer.zero_grad() __a : Union[str, Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __a : int = model(SCREAMING_SNAKE_CASE__ , timesteps[i] ).sample __a : Union[str, Any] = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __a , __a : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(SCREAMING_SNAKE_CASE__ ) for i in range(4 ): optimizer.zero_grad() __a : Optional[int] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __a : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , timesteps[i] ).sample __a : List[Any] = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) )
47
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } SCREAMING_SNAKE_CASE__ = {'''bert_for_seq_generation''': 512} class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask'''] def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<::::>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __a : int = vocab_file __a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): '''simple docstring''' __a : Union[str, Any] = self.__dict__.copy() __a : Any = None return state def __setstate__( self : int , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' __a : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a : str = {} __a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : int = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : Optional[Any] = [] __a : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token __a : Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a : Tuple = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: __a : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
47
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 SCREAMING_SNAKE_CASE__ = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class _UpperCamelCase: def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) __a : List[str] = primes[group]['prime'] __a : Optional[Any] = primes[group]['generator'] __a : List[Any] = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def __lowerCAmelCase ( self : int ): '''simple docstring''' return hex(self.__private_key )[2:] def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : List[Any] = pow(self.generator , self.__private_key , self.prime ) return hex(SCREAMING_SNAKE_CASE__ )[2:] def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(SCREAMING_SNAKE_CASE__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : int = int(SCREAMING_SNAKE_CASE__ , base=1_6 ) if not self.is_valid_public_key(SCREAMING_SNAKE_CASE__ ): raise ValueError('Invalid public key' ) __a : Optional[int] = pow(SCREAMING_SNAKE_CASE__ , self.__private_key , self.prime ) return shaaaa(str(SCREAMING_SNAKE_CASE__ ).encode() ).hexdigest() @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(SCREAMING_SNAKE_CASE__ , (prime - 1) // 2 , SCREAMING_SNAKE_CASE__ ) == 1 ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 1_4 ): '''simple docstring''' __a : Optional[int] = int(SCREAMING_SNAKE_CASE__ , base=1_6 ) __a : Any = int(SCREAMING_SNAKE_CASE__ , base=1_6 ) __a : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('Invalid public key' ) __a : Any = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return shaaaa(str(SCREAMING_SNAKE_CASE__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
47
from ..utils import DummyObject, requires_backends class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Dict , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Dict = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
47
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed SCREAMING_SNAKE_CASE__ = '''true''' def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int]=8_2 , lowerCamelCase_ : str=1_6 ): set_seed(4_2 ) __a : Any = RegressionModel() __a : int = deepcopy(lowerCamelCase_ ) __a : Tuple = RegressionDataset(length=lowerCamelCase_ ) __a : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ ) model.to(accelerator.device ) __a , __a : Union[str, Any] = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_ ) return model, ddp_model, dataloader def UpperCAmelCase__ ( lowerCamelCase_ : Accelerator , lowerCamelCase_ : Dict=False ): __a : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) __a : List[Any] = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(lowerCamelCase_ : Optional[int] ): __a : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs with accelerator.main_process_first(): __a : Tuple = dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) __a : Optional[int] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ : Union[str, Any] ): if use_longest: return tokenizer.pad(lowerCamelCase_ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(lowerCamelCase_ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(lowerCamelCase_ , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=1_6 ) def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): __a : Optional[int] = Accelerator(dispatch_batches=lowerCamelCase_ , split_batches=lowerCamelCase_ ) __a : List[Any] = get_dataloader(lowerCamelCase_ , not dispatch_batches ) __a : str = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=lowerCamelCase_ ) __a , __a : List[str] = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): __a : List[str] = [] for batch in dataloader: __a , __a : Tuple = batch.values() with torch.no_grad(): __a : Union[str, Any] = model(lowerCamelCase_ ) __a , __a : int = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __a , __a : Dict = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase_ ) targs.append(lowerCamelCase_ ) __a , __a : str = torch.cat(lowerCamelCase_ ), torch.cat(lowerCamelCase_ ) return logits, targs def UpperCAmelCase__ ( lowerCamelCase_ : Accelerator , lowerCamelCase_ : Tuple=8_2 , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : int=False , lowerCamelCase_ : Union[str, Any]=1_6 ): __a , __a , __a : Tuple = get_basic_setup(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __a , __a : List[str] = generate_predictions(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) assert ( len(lowerCamelCase_ ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase_ )}''' def UpperCAmelCase__ ( lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False ): __a : List[Any] = evaluate.load('glue' , 'mrpc' ) __a , __a : Tuple = get_mrpc_setup(lowerCamelCase_ , lowerCamelCase_ ) # First do baseline __a , __a , __a : Optional[Any] = setup['no'] model.to(lowerCamelCase_ ) model.eval() for batch in dataloader: batch.to(lowerCamelCase_ ) with torch.inference_mode(): __a : List[Any] = model(**lowerCamelCase_ ) __a : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCamelCase_ , references=batch['labels'] ) __a : Union[str, Any] = metric.compute() # Then do distributed __a , __a , __a : Any = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): __a : str = model(**lowerCamelCase_ ) __a : Optional[Any] = outputs.logits.argmax(dim=-1 ) __a : int = batch['labels'] __a , __a : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCamelCase_ , references=lowerCamelCase_ ) __a : Tuple = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def UpperCAmelCase__ ( ): __a : str = Accelerator(split_batches=lowerCamelCase_ , dispatch_batches=lowerCamelCase_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowerCamelCase_ , lowerCamelCase_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __a : Optional[int] = Accelerator(split_batches=lowerCamelCase_ , dispatch_batches=lowerCamelCase_ ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowerCamelCase_ , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) __a : Dict = Accelerator() test_torch_metrics(lowerCamelCase_ , 5_1_2 ) accelerator.state._reset_state() def UpperCAmelCase__ ( lowerCamelCase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
47
import math from datetime import datetime, timedelta def UpperCAmelCase__ ( lowerCamelCase_ : int ): __a : Union[str, Any] = year % 1_9 __a : int = year % 4 __a : Optional[int] = year % 7 __a : Dict = math.floor(year / 1_0_0 ) __a : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __a : Union[str, Any] = leap_day_inhibits / 4 __a : str = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __a : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __a : List[Any] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __a : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase_ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase_ , 4 , 1_8 ) else: return datetime(lowerCamelCase_ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): SCREAMING_SNAKE_CASE__ = '''will be''' if year > datetime.now().year else '''was''' print(F"Easter in {year} {tense} {gauss_easter(year)}")
47
1
SCREAMING_SNAKE_CASE__ = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) SCREAMING_SNAKE_CASE__ = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def UpperCAmelCase__ ( lowerCamelCase_ : float , lowerCamelCase_ : str , lowerCamelCase_ : str ): __a : Any = from_type.lower().strip('s' ) __a : Tuple = to_type.lower().strip('s' ) __a : Any = UNIT_SYMBOL.get(lowerCamelCase_ , lowerCamelCase_ ) __a : Optional[Any] = UNIT_SYMBOL.get(lowerCamelCase_ , lowerCamelCase_ ) if from_sanitized not in METRIC_CONVERSION: __a : Union[str, Any] = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(lowerCamelCase_ )}''' ) raise ValueError(lowerCamelCase_ ) if to_sanitized not in METRIC_CONVERSION: __a : Optional[int] = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(lowerCamelCase_ )}''' ) raise ValueError(lowerCamelCase_ ) __a : int = METRIC_CONVERSION[from_sanitized] __a : int = METRIC_CONVERSION[to_sanitized] __a : int = 1 if from_exponent > to_exponent: __a : str = from_exponent - to_exponent else: __a : str = -(to_exponent - from_exponent) return value * pow(1_0 , lowerCamelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
47
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = '''informer''' __SCREAMING_SNAKE_CASE : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str = "prob" , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Dict = prediction_length __a : Tuple = context_length or prediction_length __a : Tuple = distribution_output __a : Tuple = loss __a : str = input_size __a : Dict = num_time_features __a : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __a : str = scaling __a : Tuple = num_dynamic_real_features __a : int = num_static_real_features __a : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __a : Optional[Any] = cardinality else: __a : Optional[int] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __a : int = embedding_dimension else: __a : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __a : int = num_parallel_samples # Transformer architecture configuration __a : str = input_size * len(self.lags_sequence ) + self._number_of_features __a : Optional[int] = d_model __a : Union[str, Any] = encoder_attention_heads __a : int = decoder_attention_heads __a : Any = encoder_ffn_dim __a : Union[str, Any] = decoder_ffn_dim __a : List[Any] = encoder_layers __a : Optional[int] = decoder_layers __a : int = dropout __a : Optional[Any] = attention_dropout __a : Dict = activation_dropout __a : Union[str, Any] = encoder_layerdrop __a : Optional[int] = decoder_layerdrop __a : List[str] = activation_function __a : str = init_std __a : Optional[int] = use_cache # Informer __a : Union[str, Any] = attention_type __a : str = sampling_factor __a : Dict = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Any ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
47
1
import heapq as hq import math from collections.abc import Iterator class _UpperCamelCase: def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' __a : str = str(id_ ) __a : Optional[int] = None __a : Any = None __a : List[Any] = [] __a : Dict = {} # {vertex:distance} def __lt__( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' return self.key < other.key def __repr__( self : Tuple ): '''simple docstring''' return self.id def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' self.neighbors.append(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Any = weight def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCamelCase_ ) graph[b - 1].add_edge(graph[a - 1] , lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : Vertex ): __a : Optional[int] = [] for u in graph: __a : Union[str, Any] = math.inf __a : Optional[int] = None __a : List[Any] = 0 __a : Union[str, Any] = graph[:] while q: __a : Optional[Any] = min(lowerCamelCase_ ) q.remove(lowerCamelCase_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __a : Dict = u __a : Dict = u.edges[v.id] for i in range(1 , len(lowerCamelCase_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : Vertex ): for u in graph: __a : Optional[int] = math.inf __a : Dict = None __a : Tuple = 0 __a : Union[str, Any] = list(lowerCamelCase_ ) hq.heapify(lowerCamelCase_ ) while h: __a : int = hq.heappop(lowerCamelCase_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __a : List[str] = u __a : Optional[Any] = u.edges[v.id] hq.heapify(lowerCamelCase_ ) for i in range(1 , len(lowerCamelCase_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
47
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = (DDIMParallelScheduler,) __SCREAMING_SNAKE_CASE : Union[str, Any] = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : List[Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : Tuple = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) __a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a , __a : List[str] = 1_0, 0.0 __a : Dict = self.dummy_model() __a : str = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for t in scheduler.timesteps: __a : str = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : List[str] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' for timesteps in [1_0_0, 5_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = self.scheduler_classes[0] __a : List[str] = self.get_scheduler_config(steps_offset=1 ) __a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for t in [1, 1_0, 4_9]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ): self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : List[str] = self.scheduler_classes[0] __a : Union[str, Any] = self.get_scheduler_config() __a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5 def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : List[str] = self.scheduler_classes[0] __a : List[str] = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a , __a : Any = 1_0, 0.0 scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = self.dummy_model() __a : int = self.dummy_sample_deter __a : List[Any] = self.dummy_sample_deter + 0.1 __a : List[str] = self.dummy_sample_deter - 0.1 __a : Optional[Any] = samplea.shape[0] __a : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) __a : Union[str, Any] = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ ) __a : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __a : int = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE__ ) __a : Dict = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : List[str] = self.full_loop() __a : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Optional[int] = self.full_loop(prediction_type='v_prediction' ) __a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Union[str, Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) __a : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : Dict = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) __a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
47
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ['''pixel_values'''] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , SCREAMING_SNAKE_CASE__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **SCREAMING_SNAKE_CASE__ : int , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = size if size is not None else {'shortest_edge': 2_2_4} __a : Tuple = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) __a : int = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __a : Dict = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='crop_size' ) __a : Optional[int] = do_resize __a : Dict = size __a : Union[str, Any] = resample __a : str = do_center_crop __a : Optional[int] = crop_size __a : Any = do_rescale __a : Optional[int] = rescale_factor __a : int = do_normalize __a : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __a : Optional[int] = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __a : Dict = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) __a : str = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( SCREAMING_SNAKE_CASE__ , size=(size_dict['height'], size_dict['width']) , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : int , ): '''simple docstring''' __a : str = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[int, float] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Dict , ): '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[float] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, Iterable[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, Iterable[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : Dict , ): '''simple docstring''' __a : Union[str, Any] = do_resize if do_resize is not None else self.do_resize __a : Optional[int] = resample if resample is not None else self.resample __a : str = do_center_crop if do_center_crop is not None else self.do_center_crop __a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __a : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __a : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __a : Optional[int] = image_mean if image_mean is not None else self.image_mean __a : List[Any] = image_std if image_std is not None else self.image_std __a : int = size if size is not None else self.size __a : int = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = crop_size if crop_size is not None else self.crop_size __a : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='crop_size' ) __a : Optional[int] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __a : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: __a : Tuple = [self.resize(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: __a : Optional[Any] = [self.center_crop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: __a : Optional[int] = [self.rescale(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: __a : Optional[Any] = [self.normalize(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] __a : Tuple = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] __a : Optional[int] = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
47
def UpperCAmelCase__ ( lowerCamelCase_ : list[int] , lowerCamelCase_ : list[int] ): # Check if the input is valid if not len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients __a , __a , __a : Optional[Any] = equationa __a , __a , __a : Optional[int] = equationa # Calculate the determinants of the matrices __a : str = aa * ba - aa * ba __a : Tuple = ca * ba - ca * ba __a : Union[str, Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __a : Any = determinant_x / determinant __a : Optional[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
47
1