code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import sys
SCREAMING_SNAKE_CASE__ : Optional[Any] = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def __lowercase ( snake_case = N ):
"""simple docstring"""
__magic_name__ :Optional[int] = -sys.maxsize - 1
for i in range(len(snake_case ) - 1_2 ):
__magic_name__ :List[Any] = 1
for j in range(1_3 ):
product *= int(n[i + j] )
if product > largest_product:
__magic_name__ :str = product
return largest_product
if __name__ == "__main__":
print(f"{solution() = }")
| 0 |
from string import ascii_lowercase, ascii_uppercase
def UpperCAmelCase__ ( lowerCamelCase_ : str ):
if not sentence:
return ""
__a : Union[str, Any] = dict(zip(lowerCamelCase_ , lowerCamelCase_ ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47 | 0 |
import math
def _A ( _lowercase , _lowercase ) -> float:
"""simple docstring"""
return math.pow(_lowercase , 2 ) - a
def _A ( _lowercase ) -> float:
"""simple docstring"""
return 2 * x
def _A ( _lowercase ) -> float:
"""simple docstring"""
__UpperCamelCase = 2.0
while start <= a:
__UpperCamelCase = math.pow(_lowercase , 2 )
return start
def _A ( _lowercase , _lowercase = 99_99 , _lowercase = 0.00_00_00_00_00_00_01 ) -> float:
"""simple docstring"""
if a < 0:
raise ValueError('math domain error' )
__UpperCamelCase = get_initial_point(_lowercase )
for _ in range(_lowercase ):
__UpperCamelCase = value
__UpperCamelCase = value - fx(_lowercase , _lowercase ) / fx_derivative(_lowercase )
if abs(prev_value - value ) < tolerance:
return value
return value
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = '''sew-d'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=2_5_6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=("p2c", "c2p") , SCREAMING_SNAKE_CASE__ : str="layer_norm" , SCREAMING_SNAKE_CASE__ : Tuple="gelu_python" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-7 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Optional[int]="group" , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : str=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]="mean" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=2_5_6 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = hidden_size
__a : Optional[Any] = feat_extract_norm
__a : List[str] = feat_extract_activation
__a : Dict = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ )
__a : List[str] = list(SCREAMING_SNAKE_CASE__ )
__a : int = conv_bias
__a : Tuple = num_conv_pos_embeddings
__a : List[str] = num_conv_pos_embedding_groups
__a : Optional[Any] = len(self.conv_dim )
__a : Union[str, Any] = num_hidden_layers
__a : Optional[Any] = intermediate_size
__a : Union[str, Any] = squeeze_factor
__a : List[Any] = max_position_embeddings
__a : Tuple = position_buckets
__a : Optional[int] = share_att_key
__a : List[str] = relative_attention
__a : Any = norm_rel_ebd
__a : Any = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = hidden_act
__a : str = num_attention_heads
__a : Union[str, Any] = hidden_dropout
__a : Optional[int] = attention_dropout
__a : List[str] = activation_dropout
__a : int = feat_proj_dropout
__a : int = final_dropout
__a : Dict = layer_norm_eps
__a : Tuple = feature_layer_norm_eps
__a : str = initializer_range
__a : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a : Tuple = apply_spec_augment
__a : Optional[Any] = mask_time_prob
__a : Any = mask_time_length
__a : List[str] = mask_time_min_masks
__a : List[str] = mask_feature_prob
__a : Tuple = mask_feature_length
__a : Any = mask_feature_min_masks
# ctc loss
__a : Optional[int] = ctc_loss_reduction
__a : List[Any] = ctc_zero_infinity
# sequence classification
__a : Dict = use_weighted_layer_sum
__a : Optional[Any] = classifier_proj_size
@property
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47 | 0 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
UpperCAmelCase_ = get_logger(__name__)
UpperCAmelCase_ = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class lowerCamelCase__ :
"""simple docstring"""
@add_start_docstrings(__lowerCAmelCase )
def __call__( self : List[Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray ) -> jnp.ndarray:
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowerCamelCase__ :
"""simple docstring"""
@add_start_docstrings(__lowerCAmelCase )
def __call__( self : List[str] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray ) -> jnp.ndarray:
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowerCamelCase__ ( _A):
"""simple docstring"""
@add_start_docstrings(__lowerCAmelCase )
def __call__( self : Optional[int] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int , **__lowerCAmelCase : Tuple ) -> jnp.ndarray:
for processor in self:
_A = inspect.signature(processor.__call__ ).parameters
if len(__lowerCAmelCase ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
f'''Make sure that all the required parameters: {list(function_args.keys() )} for '''
f'''{processor.__class__} are passed to the logits processor.''' )
_A = processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
else:
_A = processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return scores
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCAmelCase : float ) -> Tuple:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not (temperature > 0):
raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' )
_A = temperature
def __call__( self : Optional[int] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray:
_A = scores / self.temperature
return scores
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : str , __lowerCAmelCase : float , __lowerCAmelCase : float = -float('''Inf''' ) , __lowerCAmelCase : int = 1 ) -> Any:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or (top_p < 0 or top_p > 1.0):
raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' )
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or (min_tokens_to_keep < 1):
raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' )
_A = top_p
_A = filter_value
_A = min_tokens_to_keep
def __call__( self : str , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray:
_A , _A = lax.top_k(__lowerCAmelCase , scores.shape[-1] )
_A = jnp.full_like(__lowerCAmelCase , self.filter_value )
_A = jax.nn.softmax(__lowerCAmelCase , axis=-1 ).cumsum(axis=-1 )
_A = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
_A = jnp.roll(__lowerCAmelCase , 1 )
score_mask |= score_mask.at[:, 0].set(__lowerCAmelCase )
# min tokens to keep
_A = score_mask.at[:, : self.min_tokens_to_keep].set(__lowerCAmelCase )
_A = jnp.where(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
_A = jax.lax.sort_key_val(__lowerCAmelCase , __lowerCAmelCase )[-1]
return next_scores
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : float = -float('''Inf''' ) , __lowerCAmelCase : int = 1 ) -> Optional[Any]:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or top_k <= 0:
raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' )
_A = max(__lowerCAmelCase , __lowerCAmelCase )
_A = filter_value
def __call__( self : Union[str, Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray:
_A , _A = scores.shape
_A = jnp.full(batch_size * vocab_size , self.filter_value )
_A = min(self.top_k , scores.shape[-1] ) # Safety check
_A , _A = lax.top_k(__lowerCAmelCase , __lowerCAmelCase )
_A = jnp.broadcast_to((jnp.arange(__lowerCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
_A = topk_scores.flatten()
_A = topk_indices.flatten() + shift
_A = next_scores_flat.at[topk_indices_flat].set(__lowerCAmelCase )
_A = next_scores_flat.reshape(__lowerCAmelCase , __lowerCAmelCase )
return next_scores
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : str , __lowerCAmelCase : int ) -> int:
_A = bos_token_id
def __call__( self : Union[str, Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray:
_A = jnp.full(scores.shape , -float('''inf''' ) )
_A = 1 - jnp.bool_(cur_len - 1 )
_A = jnp.where(__lowerCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , __lowerCAmelCase )
return scores
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Any:
_A = max_length
_A = eos_token_id
def __call__( self : List[str] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray:
_A = jnp.full(scores.shape , -float('''inf''' ) )
_A = 1 - jnp.bool_(cur_len - self.max_length + 1 )
_A = jnp.where(__lowerCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , __lowerCAmelCase )
return scores
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Any:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or min_length < 0:
raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' )
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or eos_token_id < 0:
raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' )
_A = min_length
_A = eos_token_id
def __call__( self : Dict , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray:
# create boolean flag to decide if min length penalty should be applied
_A = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
_A = jnp.where(__lowerCAmelCase , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , __lowerCAmelCase )
return scores
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> Union[str, Any]:
_A = list(__lowerCAmelCase )
_A = begin_index
def __call__( self : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> Optional[Any]:
_A = 1 - jnp.bool_(cur_len - self.begin_index )
_A = jnp.where(__lowerCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , __lowerCAmelCase )
return scores
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : int , __lowerCAmelCase : list ) -> Dict:
_A = list(__lowerCAmelCase )
def __call__( self : str , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray:
_A = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) )
return scores
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : int , __lowerCAmelCase : Optional[Any] ) -> List[Any]:
_A = dict(__lowerCAmelCase )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
_A = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
_A = force_token_array.at[index].set(__lowerCAmelCase )
_A = jnp.intaa(__lowerCAmelCase )
def __call__( self : Optional[Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ) -> jnp.ndarray:
def _force_token(__lowerCAmelCase : List[Any] ):
_A = scores.shape[0]
_A = self.force_token_array[generation_idx]
_A = jnp.ones_like(__lowerCAmelCase , dtype=scores.dtype ) * -float('''inf''' )
_A = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
_A = lax.dynamic_update_slice(__lowerCAmelCase , __lowerCAmelCase , (0, current_token) )
return new_scores
_A = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(__lowerCAmelCase ) , lambda: scores , ) , )
return scores
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> int:
_A = generate_config.eos_token_id
_A = generate_config.no_timestamps_token_id
_A = generate_config.no_timestamps_token_id + 1
_A = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(__lowerCAmelCase , '''max_initial_timestamp_index''' ):
_A = generate_config.max_initial_timestamp_index
else:
_A = model_config.vocab_size
if self.max_initial_timestamp_index is None:
_A = model_config.vocab_size
def __call__( self : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ) -> Union[str, Any]:
# suppress <|notimestamps|> which is handled by without_timestamps
_A = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) )
def handle_pairs(__lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ):
_A = jnp.where((cur_len - self.begin_index) >= 1 , __lowerCAmelCase , __lowerCAmelCase )
_A = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __lowerCAmelCase , )
_A = jnp.where((cur_len - self.begin_index) < 2 , __lowerCAmelCase , __lowerCAmelCase )
_A = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , __lowerCAmelCase , __lowerCAmelCase , )
return jnp.where(
__lowerCAmelCase , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , __lowerCAmelCase , )
_A = jax.vmap(__lowerCAmelCase )(__lowerCAmelCase , __lowerCAmelCase )
_A = jnp.where(cur_len == self.begin_index , __lowerCAmelCase , __lowerCAmelCase )
_A = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __lowerCAmelCase , )
_A = self.timestamp_begin + self.max_initial_timestamp_index
_A = jnp.where(
__lowerCAmelCase , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , __lowerCAmelCase , )
# if sum of probability over timestamps is above any other token, sample timestamp
_A = jax.nn.log_softmax(__lowerCAmelCase , axis=-1 )
def handle_cumulative_probs(__lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ):
_A = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
_A = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , __lowerCAmelCase , )
_A = jax.vmap(__lowerCAmelCase )(__lowerCAmelCase , __lowerCAmelCase )
return scores
| 2 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ = TypeVar('''T''')
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (position - 1) // 2
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (2 * position) + 1
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (2 * position) + 2
class _UpperCamelCase( Generic[T] ):
def __init__( self : List[str] ):
'''simple docstring'''
__a : list[tuple[T, int]] = []
__a : dict[T, int] = {}
__a : int = 0
def __len__( self : Any ):
'''simple docstring'''
return self.elements
def __repr__( self : Any ):
'''simple docstring'''
return str(self.heap )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return self.elements == 0
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self.heap.append((elem, weight) )
__a : List[Any] = self.elements
self.elements += 1
self._bubble_up(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
__a , __a : Union[str, Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
__a , __a : Dict = self.heap[0]
self._bubble_down(SCREAMING_SNAKE_CASE__ )
return elem
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : List[Any] = self.position_map[elem]
__a : str = (elem, weight)
if position > 0:
__a : Tuple = get_parent_position(SCREAMING_SNAKE_CASE__ )
__a , __a : Dict = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
__a : List[Any] = self.position_map[elem]
if curr_pos == 0:
return None
__a : List[str] = get_parent_position(SCREAMING_SNAKE_CASE__ )
__a , __a : str = self.heap[curr_pos]
__a , __a : Optional[int] = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_up(SCREAMING_SNAKE_CASE__ )
return None
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
__a : int = self.position_map[elem]
__a , __a : Optional[Any] = self.heap[curr_pos]
__a : Tuple = get_child_left_position(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = get_child_right_position(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements and child_right_position < self.elements:
__a , __a : str = self.heap[child_left_position]
__a , __a : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements:
__a , __a : Any = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
return None
if child_right_position < self.elements:
__a , __a : Union[str, Any] = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
return None
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Optional[Any] = self.heap[nodea_pos][0]
__a : str = self.heap[nodea_pos][0]
__a , __a : int = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
__a : str = nodea_pos
__a : Optional[int] = nodea_pos
class _UpperCamelCase( Generic[T] ):
def __init__( self : List[Any] ):
'''simple docstring'''
__a : dict[T, dict[T, int]] = {}
__a : int = 0
def __repr__( self : Tuple ):
'''simple docstring'''
return str(self.connections )
def __len__( self : Dict ):
'''simple docstring'''
return self.nodes
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
if node not in self.connections:
__a : Tuple = {}
self.nodes += 1
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self.add_node(SCREAMING_SNAKE_CASE__ )
self.add_node(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = weight
__a : Any = weight
def UpperCAmelCase__ ( lowerCamelCase_ : GraphUndirectedWeighted[T] , ):
__a : dict[T, int] = {node: maxsize for node in graph.connections}
__a : dict[T, T | None] = {node: None for node in graph.connections}
__a : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(lowerCamelCase_ , lowerCamelCase_ )
if priority_queue.is_empty():
return dist, parent
# initialization
__a : Optional[int] = priority_queue.extract_min()
__a : int = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a : str = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase_ , dist[neighbour] )
__a : Optional[int] = node
# running prim's algorithm
while not priority_queue.is_empty():
__a : Any = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a : Tuple = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase_ , dist[neighbour] )
__a : Dict = node
return dist, parent
| 47 | 0 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = dataset
UpperCamelCase = process
UpperCamelCase = params
def __len__( self )-> Optional[Any]:
'''simple docstring'''
return len(self.dataset )
def __getitem__( self , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase = self.dataset[i]
UpperCamelCase = self.process(A_ , **self.params )
return processed
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ , A_ , A_=None )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase = loader
UpperCamelCase = infer
UpperCamelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
UpperCamelCase = None
UpperCamelCase = loader_batch_size
# Internal bookkeeping
UpperCamelCase = None
UpperCamelCase = None
def __len__( self )-> Tuple:
'''simple docstring'''
return len(self.loader )
def __iter__( self )-> Tuple:
'''simple docstring'''
UpperCamelCase = iter(self.loader )
return self
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
UpperCamelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
UpperCamelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(A_ , A_ ):
# Convert ModelOutput to tuple first
UpperCamelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(A_ , A_ ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
UpperCamelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCamelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCamelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
UpperCamelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
UpperCamelCase = self._loader_batch_data.__class__(A_ )
self._loader_batch_index += 1
return result
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
UpperCamelCase = next(self.iterator )
UpperCamelCase = self.infer(A_ , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(A_ , torch.Tensor ):
UpperCamelCase = processed
else:
UpperCamelCase = list(processed.keys() )[0]
UpperCamelCase = processed[key]
if isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
UpperCamelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCamelCase = observed_batch_size
# Setting internal index to unwrap the batch
UpperCamelCase = processed
UpperCamelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ , A_ , A_=None )-> Union[str, Any]:
'''simple docstring'''
super().__init__(A_ , A_ , A_ )
def __iter__( self )-> str:
'''simple docstring'''
UpperCamelCase = iter(self.loader )
UpperCamelCase = None
return self
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
if self.subiterator is None:
UpperCamelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
UpperCamelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
UpperCamelCase = self.infer(next(self.iterator ) , **self.params )
UpperCamelCase = next(self.subiterator )
return processed
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __iter__( self )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = iter(self.loader )
return self
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
UpperCamelCase = False
UpperCamelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
UpperCamelCase = self.loader_batch_item()
UpperCamelCase = item.pop('is_last' )
accumulator.append(A_ )
if is_last:
return accumulator
while not is_last:
UpperCamelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(A_ , torch.Tensor ):
UpperCamelCase = processed
else:
UpperCamelCase = list(processed.keys() )[0]
UpperCamelCase = processed[key]
if isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
UpperCamelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCamelCase = observed_batch_size
UpperCamelCase = processed
UpperCamelCase = 0
while self._loader_batch_index < self.loader_batch_size:
UpperCamelCase = self.loader_batch_item()
UpperCamelCase = item.pop('is_last' )
accumulator.append(A_ )
if is_last:
return accumulator
else:
UpperCamelCase = processed
UpperCamelCase = item.pop('is_last' )
accumulator.append(A_ )
return accumulator
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ )-> int:
'''simple docstring'''
UpperCamelCase = dataset
UpperCamelCase = key
def __len__( self )-> str:
'''simple docstring'''
return len(self.dataset )
def __getitem__( self , A_ )-> Tuple:
'''simple docstring'''
return self.dataset[i][self.key]
class SCREAMING_SNAKE_CASE__ ( snake_case_):
def __init__( self , A_ , A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase = dataset
UpperCamelCase = keya
UpperCamelCase = keya
def __len__( self )-> List[Any]:
'''simple docstring'''
return len(self.dataset )
def __getitem__( self , A_ )-> List[Any]:
'''simple docstring'''
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 3 |
from collections.abc import Sequence
from queue import Queue
class _UpperCamelCase:
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None ):
'''simple docstring'''
__a : Tuple = start
__a : Dict = end
__a : List[str] = val
__a : List[Any] = (start + end) // 2
__a : Optional[Any] = left
__a : List[str] = right
def __repr__( self : Dict ):
'''simple docstring'''
return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'''
class _UpperCamelCase:
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Sequence , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
__a : Tuple = collection
__a : Dict = function
if self.collection:
__a : int = self._build_tree(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self._update_tree(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
return self._query_range(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if start == end:
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.collection[start] )
__a : Tuple = (start + end) // 2
__a : Optional[int] = self._build_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Tuple = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE__ )
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if node.start == i and node.end == i:
__a : Optional[Any] = val
return
if i <= node.mid:
self._update_tree(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
self._update_tree(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : int = self.fn(node.left.val , node.right.val )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , SCREAMING_SNAKE_CASE__ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE__ ) , )
else:
# range in right child tree
return self._query_range(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.root is not None:
__a : Tuple = Queue()
queue.put(self.root )
while not queue.empty():
__a : Tuple = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('''*''' * 50)
SCREAMING_SNAKE_CASE__ = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 47 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class a ( a__ ):
snake_case__ = 42
snake_case__ = 42
snake_case__ = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 4 |
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class _UpperCamelCase( datasets.BuilderConfig ):
__SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None
def UpperCAmelCase__ ( lowerCamelCase_ : "pyspark.sql.DataFrame" , lowerCamelCase_ : List[int] , ):
import pyspark
def generate_fn():
__a : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) )
for partition_id in partition_order:
__a : Optional[int] = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' )
__a : Optional[Any] = partition_df.collect()
__a : Union[str, Any] = 0
for row in rows:
yield f'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class _UpperCamelCase( _BaseExamplesIterable ):
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Dict=None , ):
'''simple docstring'''
__a : List[str] = df
__a : Tuple = partition_order or range(self.df.rdd.getNumPartitions() )
__a : List[Any] = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self : Tuple ):
'''simple docstring'''
yield from self.generate_examples_fn()
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.random.Generator ):
'''simple docstring'''
__a : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(SCREAMING_SNAKE_CASE__ )
return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return len(self.partition_order )
class _UpperCamelCase( datasets.DatasetBuilder ):
__SCREAMING_SNAKE_CASE : List[str] = SparkConfig
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ):
'''simple docstring'''
import pyspark
__a : int = pyspark.sql.SparkSession.builder.getOrCreate()
__a : Optional[int] = df
__a : List[Any] = working_dir
super().__init__(
cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : List[str] ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(SCREAMING_SNAKE_CASE__ , 'a' )
return [probe_file]
if self._spark.conf.get('spark.master' , '' ).startswith('local' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
__a : List[Any] = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ):
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
import pyspark
def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ):
for batch in it:
yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} )
__a : List[str] = self.df.count()
__a : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
__a : List[str] = (
self.df.limit(SCREAMING_SNAKE_CASE__ )
.repartition(1 )
.mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' )
.agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
__a : Dict = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
__a : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) )
__a : int = self.df.repartition(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ):
'''simple docstring'''
import pyspark
__a : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter
__a : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath
__a : Optional[int] = file_format == 'parquet'
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
__a : List[str] = self.config.features
__a : int = self._writer_batch_size
__a : Union[str, Any] = self._fs.storage_options
def write_arrow(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
__a : Any = pyspark.TaskContext().taskAttemptId()
__a : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , )
__a : Any = 0
__a : List[str] = writer_class(
features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , )
__a : Optional[Any] = pa.Table.from_batches([first_batch] )
writer.write_table(SCREAMING_SNAKE_CASE__ )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
__a , __a : Optional[int] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
shard_id += 1
__a : Optional[Any] = writer_class(
features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , )
__a : Union[str, Any] = pa.Table.from_batches([batch] )
writer.write_table(SCREAMING_SNAKE_CASE__ )
if writer._num_bytes > 0:
__a , __a : str = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ):
__a : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) )
shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Dict = (
self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' )
.groupBy('task_id' )
.agg(
pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ):
'''simple docstring'''
self._validate_cache_dir()
__a : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = not is_remote_filesystem(self._fs )
__a : Optional[Any] = os.path.join if is_local else posixpath.join
__a : Any = '-TTTTT-SSSSS-of-NNNNN'
__a : Union[str, Any] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
__a : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ )
__a : Any = 0
__a : Dict = 0
__a : int = 0
__a : List[str] = []
__a : Optional[int] = []
for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : Optional[int] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ )
__a : List[str] = total_num_examples
__a : Optional[int] = total_num_bytes
# should rename everything at the end
logger.debug(f'''Renaming {total_shards} shards.''' )
if total_shards > 1:
__a : Any = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
__a : Dict = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ):
rename(
SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , )
__a : Union[str, Any] = []
__a : List[str] = 0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
__a , __a : Union[str, Any] = task_id_and_num_shards[i]
for shard_id in range(SCREAMING_SNAKE_CASE__ ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect()
else:
# don't use any pattern
__a : List[Any] = 0
__a : Any = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ):
'''simple docstring'''
return SparkExamplesIterable(self.df )
| 47 | 0 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self , _lowercase=None , _lowercase=None , _lowercase=None , **_lowercase ):
"""simple docstring"""
if tokenize_kwargs is None:
_lowerCAmelCase = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"""truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" )
_lowerCAmelCase = truncation
_lowerCAmelCase = tokenize_kwargs
_lowerCAmelCase = {}
if return_tensors is not None:
_lowerCAmelCase = return_tensors
return preprocess_params, {}, postprocess_params
def _lowercase ( self , _lowercase , **_lowercase ):
"""simple docstring"""
_lowerCAmelCase = self.framework
_lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
return model_inputs
def _lowercase ( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = self.model(**_lowercase )
return model_outputs
def _lowercase ( self , _lowercase , _lowercase=False ):
"""simple docstring"""
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self , *_lowercase , **_lowercase ):
"""simple docstring"""
return super().__call__(*_lowercase , **_lowercase )
| 5 |
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ):
# save results
if os.path.exists(lowerCamelCase_ ):
if os.path.exists(os.path.join(lowerCamelCase_ , 'config.json' ) ) and os.path.isfile(
os.path.join(lowerCamelCase_ , 'config.json' ) ):
os.remove(os.path.join(lowerCamelCase_ , 'config.json' ) )
if os.path.exists(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile(
os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ):
os.remove(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) )
else:
os.makedirs(lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Any=False ):
__a : Dict = 2
if unlogit:
__a : Optional[Any] = torch.pow(lowerCamelCase_ , lowerCamelCase_ )
__a : Any = p * torch.log(lowerCamelCase_ )
__a : Union[str, Any] = 0
return -plogp.sum(dim=-1 )
def UpperCAmelCase__ ( lowerCamelCase_ : Any ):
logger.info('lv, h >\t' + '\t'.join(f'''{x + 1}''' for x in range(len(lowerCamelCase_ ) ) ) )
for row in range(len(lowerCamelCase_ ) ):
if tensor.dtype != torch.long:
logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:d}''' for x in tensor[row].cpu().data ) )
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=False ):
__a , __a : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads
__a : str = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
__a : int = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
if head_mask is None:
__a : Union[str, Any] = torch.ones(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCamelCase_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
__a : Any = None
__a : Optional[int] = 0.0
__a : Optional[Any] = 0.0
for step, inputs in enumerate(tqdm(lowerCamelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ):
__a : Dict = tuple(t.to(args.device ) for t in inputs )
((__a) , ) : Dict = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
__a : List[Any] = model(lowerCamelCase_ , labels=lowerCamelCase_ , head_mask=lowerCamelCase_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
__a , __a , __a : int = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCamelCase_ ):
__a : List[str] = entropy(attn.detach() , lowerCamelCase_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCamelCase_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
__a : Optional[Any] = 2
__a : Union[str, Any] = torch.pow(torch.pow(lowerCamelCase_ , lowerCamelCase_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20
if not args.dont_normalize_global_importance:
__a : List[str] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('Attention entropies' )
print_ad_tensor(lowerCamelCase_ )
if compute_importance:
logger.info('Head importance scores' )
print_ad_tensor(lowerCamelCase_ )
logger.info('Head ranked by importance scores' )
__a : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
__a : str = torch.arange(
head_importance.numel() , device=args.device )
__a : Tuple = head_ranks.view_as(lowerCamelCase_ )
print_ad_tensor(lowerCamelCase_ )
return attn_entropy, head_importance, total_loss
def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ):
__a , __a , __a : Optional[int] = compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ )
__a : Tuple = 1 / loss # instead of downsteam score use the LM loss
logger.info('Pruning: original score: %f, threshold: %f' , lowerCamelCase_ , original_score * args.masking_threshold )
__a : Tuple = torch.ones_like(lowerCamelCase_ )
__a : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
__a : Tuple = original_score
while current_score >= original_score * args.masking_threshold:
__a : Optional[Any] = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
__a : List[str] = float('Inf' )
__a : List[Any] = head_importance.view(-1 ).sort()[1]
if len(lowerCamelCase_ ) <= num_to_mask:
print('BREAK BY num_to_mask' )
break
# mask heads
__a : Any = current_heads_to_mask[:num_to_mask]
logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) )
__a : int = new_head_mask.view(-1 )
__a : Tuple = 0.0
__a : int = new_head_mask.view_as(lowerCamelCase_ )
__a : Optional[int] = new_head_mask.clone().detach()
print_ad_tensor(lowerCamelCase_ )
# Compute metric and head importance again
__a , __a , __a : int = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , head_mask=lowerCamelCase_ )
__a : List[Any] = 1 / loss
logger.info(
'Masking: current score: %f, remaining heads %d (%.1f percents)' , lowerCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , )
logger.info('Final head mask' )
print_ad_tensor(lowerCamelCase_ )
np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() )
return head_mask
def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ):
__a : List[Any] = datetime.now()
__a , __a , __a : List[str] = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ )
__a : List[str] = 1 / loss
__a : List[Any] = datetime.now() - before_time
__a : List[str] = sum(p.numel() for p in model.parameters() )
__a : Dict = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
__a : Tuple = [
v,
]
assert sum(len(lowerCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCamelCase_ )
__a : Optional[Any] = sum(p.numel() for p in model.parameters() )
__a : Tuple = datetime.now()
__a , __a , __a : Tuple = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ , actually_pruned=lowerCamelCase_ , )
__a : Optional[Any] = 1 / loss
__a : List[Any] = datetime.now() - before_time
logger.info(
'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , lowerCamelCase_ , lowerCamelCase_ , pruned_num_params / original_num_params * 1_0_0 , )
logger.info('Pruning: score with masking: %f score with pruning: %f' , lowerCamelCase_ , lowerCamelCase_ )
logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 )
save_model(lowerCamelCase_ , args.output_dir )
def UpperCAmelCase__ ( ):
__a : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--data_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , )
parser.add_argument(
'--model_name_or_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--output_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , )
# Other parameters
parser.add_argument(
'--config_name' , default='' , type=lowerCamelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--tokenizer_name' , default='' , type=lowerCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--cache_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , )
parser.add_argument(
'--data_subset' , type=lowerCamelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' )
parser.add_argument(
'--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
parser.add_argument(
'--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' )
parser.add_argument(
'--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , )
parser.add_argument(
'--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' )
parser.add_argument(
'--masking_threshold' , default=0.9 , type=lowerCamelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , )
parser.add_argument(
'--masking_amount' , default=0.1 , type=lowerCamelCase_ , help='Amount to heads to masking at each masking step.' )
parser.add_argument('--metric_name' , default='acc' , type=lowerCamelCase_ , help='Metric to use for head masking.' )
parser.add_argument(
'--max_seq_length' , default=1_2_8 , type=lowerCamelCase_ , help=(
'The maximum total input sequence length after WordPiece tokenization. \n'
'Sequences longer than this will be truncated, sequences shorter padded.'
) , )
parser.add_argument('--batch_size' , default=1 , type=lowerCamelCase_ , help='Batch size.' )
parser.add_argument('--seed' , type=lowerCamelCase_ , default=4_2 )
parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='local_rank for distributed training on gpus' )
parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' )
parser.add_argument('--server_ip' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' )
__a : Optional[Any] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
__a : List[str] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' )
__a : Tuple = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
__a : Union[str, Any] = torch.device('cuda' , args.local_rank )
__a : Any = 1
torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
__a : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
__a : List[Any] = nn.parallel.DistributedDataParallel(
lowerCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase_ )
elif args.n_gpu > 1:
__a : Union[str, Any] = nn.DataParallel(lowerCamelCase_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=lowerCamelCase_ )
torch.save(lowerCamelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) )
logger.info('Training/evaluation parameters %s' , lowerCamelCase_ )
# Prepare dataset
__a : Tuple = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
__a : str = (torch.from_numpy(lowerCamelCase_ ),)
__a : List[str] = TensorDataset(*lowerCamelCase_ )
__a : Optional[Any] = RandomSampler(lowerCamelCase_ )
__a : Union[str, Any] = DataLoader(lowerCamelCase_ , sampler=lowerCamelCase_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
__a : Union[str, Any] = mask_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
prune_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
main()
| 47 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
_lowerCamelCase = None
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
_lowerCamelCase = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
},
'tokenizer_file': {
'google/bigbird-roberta-base': (
'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json'
),
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json'
),
},
}
_lowerCamelCase = {
'google/bigbird-roberta-base': 4096,
'google/bigbird-roberta-large': 4096,
'google/bigbird-base-trivia-itc': 4096,
}
_lowerCamelCase = '▁'
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = VOCAB_FILES_NAMES
lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase_ = BigBirdTokenizer
lowerCamelCase_ = ["input_ids", "attention_mask"]
lowerCamelCase_ = []
def __init__( self :str , __A :Tuple=None , __A :Optional[Any]=None , __A :Any="<unk>" , __A :Any="<s>" , __A :Union[str, Any]="</s>" , __A :List[str]="<pad>" , __A :Optional[Any]="[SEP]" , __A :str="[MASK]" , __A :Optional[Any]="[CLS]" , **__A :Union[str, Any] , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
__A , tokenizer_file=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , )
SCREAMING_SNAKE_CASE__ = vocab_file
SCREAMING_SNAKE_CASE__ = False if not self.vocab_file else True
def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _snake_case ( self :Optional[int] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1]
def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE__ = os.path.join(
__A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ):
copyfile(self.vocab_file , __A )
return (out_vocab_file,)
| 6 |
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse('''0.8.3'''):
raise Exception('''requires gluonnlp == 0.8.3''')
if version.parse(mx.__version__) != version.parse('''1.5.0'''):
raise Exception('''requires mxnet == 1.5.0''')
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''The Nymphenburg Palace is a beautiful palace in Munich!'''
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ):
__a : List[Any] = {
'attention_cell': 'multi_head',
'num_layers': 4,
'units': 1_0_2_4,
'hidden_size': 7_6_8,
'max_length': 5_1_2,
'num_heads': 8,
'scaled': True,
'dropout': 0.1,
'use_residual': True,
'embed_size': 1_0_2_4,
'embed_dropout': 0.1,
'word_embed': None,
'layer_norm_eps': 1e-5,
'token_type_vocab_size': 2,
}
__a : Optional[int] = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
__a : List[str] = BERTEncoder(
attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
__a : int = 'openwebtext_ccnews_stories_books_cased'
# Specify download folder to Gluonnlp's vocab
__a : Optional[Any] = os.path.join(get_home_dir() , 'models' )
__a : Optional[Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ )
__a : Any = nlp.model.BERTModel(
lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , )
original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ )
__a : Dict = original_bort._collect_params_with_prefix()
# Build our config 🤗
__a : Optional[Any] = {
'architectures': ['BertForMaskedLM'],
'attention_probs_dropout_prob': predefined_args['dropout'],
'hidden_act': 'gelu',
'hidden_dropout_prob': predefined_args['dropout'],
'hidden_size': predefined_args['embed_size'],
'initializer_range': 0.02,
'intermediate_size': predefined_args['hidden_size'],
'layer_norm_eps': predefined_args['layer_norm_eps'],
'max_position_embeddings': predefined_args['max_length'],
'model_type': 'bort',
'num_attention_heads': predefined_args['num_heads'],
'num_hidden_layers': predefined_args['num_layers'],
'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa
'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa
'vocab_size': len(lowerCamelCase_ ),
}
__a : str = BertConfig.from_dict(lowerCamelCase_ )
__a : Optional[int] = BertForMaskedLM(lowerCamelCase_ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase_ : Optional[Any] ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ):
__a : Optional[int] = hf_param.shape
__a : int = to_torch(params[gluon_param] )
__a : int = gluon_param.shape
assert (
shape_hf == shape_gluon
), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'''
return gluon_param
__a : str = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' )
__a : str = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' )
__a : Tuple = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' )
__a : Union[str, Any] = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
__a : Union[str, Any] = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
__a : BertLayer = hf_bort_model.bert.encoder.layer[i]
# self attention
__a : BertSelfAttention = layer.attention.self
__a : Optional[int] = check_and_map_params(
self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' )
__a : str = check_and_map_params(
self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' )
__a : List[str] = check_and_map_params(
self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' )
__a : str = check_and_map_params(
self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' )
__a : Dict = check_and_map_params(
self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' )
__a : str = check_and_map_params(
self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' )
# self attention output
__a : BertSelfOutput = layer.attention.output
__a : Tuple = check_and_map_params(
self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' )
__a : Dict = check_and_map_params(
self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' )
__a : Optional[Any] = check_and_map_params(
self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' )
__a : Optional[Any] = check_and_map_params(
self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' )
# intermediate
__a : BertIntermediate = layer.intermediate
__a : List[str] = check_and_map_params(
intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' )
__a : Optional[Any] = check_and_map_params(
intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' )
# output
__a : BertOutput = layer.output
__a : str = check_and_map_params(
bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' )
__a : List[Any] = check_and_map_params(
bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' )
__a : str = check_and_map_params(
bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' )
__a : List[str] = check_and_map_params(
bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
__a : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-base' )
__a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ )['input_ids']
# Get gluon output
__a : Optional[int] = mx.nd.array([input_ids] )
__a : Tuple = original_bort(inputs=lowerCamelCase_ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase_ )
__a : Optional[Any] = BertModel.from_pretrained(lowerCamelCase_ )
hf_bort_model.eval()
__a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' )
__a : int = hf_bort_model(**lowerCamelCase_ )[0]
__a : Dict = output_gluon[0].asnumpy()
__a : str = output_hf[0].detach().numpy()
__a : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item()
__a : str = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 )
if success:
print('✔️ Both model do output the same tensors' )
else:
print('❌ Both model do **NOT** output the same tensors' )
print('Absolute difference is:' , lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 47 | 0 |
"""simple docstring"""
def _snake_case ( _snake_case : Dict ) -> Tuple:
'''simple docstring'''
_A = len(_snake_case )
for i in range(length - 1 ):
_A = i
for k in range(i + 1 , _snake_case ):
if collection[k] < collection[least]:
_A = k
if least != i:
_A , _A = (collection[i], collection[least])
return collection
if __name__ == "__main__":
a = input('''Enter numbers separated by a comma:\n''').strip()
a = [int(item) for item in user_input.split(''',''')]
print(selection_sort(unsorted))
| 7 |
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ):
__a : Any = ''
for i in table:
res += inp[i - 1]
return res
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ):
return data[1:] + data[0]
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ):
__a : Optional[int] = ''
for i in range(len(lowerCamelCase_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ):
__a : List[str] = int('0b' + data[0] + data[-1] , 2 )
__a : List[str] = int('0b' + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ):
__a : List[Any] = message[:4]
__a : str = message[4:]
__a : Any = apply_table(lowerCamelCase_ , lowerCamelCase_ )
__a : int = xor(lowerCamelCase_ , lowerCamelCase_ )
__a : Dict = apply_sbox(lowerCamelCase_ , temp[:4] ) # noqa: E741
__a : Tuple = apply_sbox(lowerCamelCase_ , temp[4:] )
__a : List[Any] = '0' * (2 - len(lowerCamelCase_ )) + l # noqa: E741
__a : List[str] = '0' * (2 - len(lowerCamelCase_ )) + r
__a : List[Any] = apply_table(l + r , lowerCamelCase_ )
__a : Dict = xor(lowerCamelCase_ , lowerCamelCase_ )
return temp + right
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = input('''Enter 10 bit key: ''')
SCREAMING_SNAKE_CASE__ = input('''Enter 8 bit message: ''')
SCREAMING_SNAKE_CASE__ = [6, 3, 7, 4, 8, 5, 10, 9]
SCREAMING_SNAKE_CASE__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
SCREAMING_SNAKE_CASE__ = [2, 4, 3, 1]
SCREAMING_SNAKE_CASE__ = [2, 6, 3, 1, 4, 8, 5, 7]
SCREAMING_SNAKE_CASE__ = [4, 1, 3, 5, 7, 2, 8, 6]
SCREAMING_SNAKE_CASE__ = [4, 1, 2, 3, 2, 3, 4, 1]
SCREAMING_SNAKE_CASE__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
SCREAMING_SNAKE_CASE__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
SCREAMING_SNAKE_CASE__ = apply_table(key, paa_table)
SCREAMING_SNAKE_CASE__ = temp[:5]
SCREAMING_SNAKE_CASE__ = temp[5:]
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table)
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table)
# encryption
SCREAMING_SNAKE_CASE__ = apply_table(message, IP)
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv)
print('''Cipher text is:''', CT)
# decryption
SCREAMING_SNAKE_CASE__ = apply_table(CT, IP)
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv)
print('''Plain text after decypting is:''', PT)
| 47 | 0 |
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int = 10 ) -> str:
if not isinstance(__snake_case , __snake_case ) or n < 0:
raise ValueError('Invalid input' )
__A : Optional[Any] = 10**n
__A : List[str] = 2_84_33 * (pow(2 , 7_83_04_57 , __snake_case )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 8 |
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _UpperCamelCase( unittest.TestCase ):
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
__a : List[Any] = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
__a : int = None
ops.enable_eager_execution_internal()
__a : Optional[Any] = tf.config.list_physical_devices('CPU' )
if len(SCREAMING_SNAKE_CASE__ ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__a : int = tf.config.list_logical_devices(device_type='CPU' )
__a : str = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__a : List[str] = GradientAccumulator()
__a : Tuple = tf.Variable([4.0, 3.0] )
__a , __a : int = create_optimizer(5e-5 , 1_0 , 5 )
__a : List[Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE__ )
def accumulate_on_replica(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ):
with strategy.scope():
__a : Optional[Any] = strategy.experimental_local_results(SCREAMING_SNAKE_CASE__ )
local_variables[0].assign(SCREAMING_SNAKE_CASE__ )
local_variables[1].assign(SCREAMING_SNAKE_CASE__ )
strategy.run(SCREAMING_SNAKE_CASE__ , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(SCREAMING_SNAKE_CASE__ )
def _check_local_values(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ):
__a : Union[str, Any] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 )
self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 47 | 0 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': (
'''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json'''
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class __lowerCAmelCase ( UpperCAmelCase_ ):
"""simple docstring"""
A__ : Union[str, Any] = "trajectory_transformer"
A__ : List[str] = ["past_key_values"]
A__ : Dict = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Dict , _snake_case : List[Any]=1_00 , _snake_case : Union[str, Any]=5 , _snake_case : Dict=1 , _snake_case : Any=1 , _snake_case : Any=2_49 , _snake_case : Any=6 , _snake_case : Optional[int]=17 , _snake_case : int=25 , _snake_case : List[str]=4 , _snake_case : Any=4 , _snake_case : Union[str, Any]=1_28 , _snake_case : Any=0.1 , _snake_case : Any=0.1 , _snake_case : Tuple=0.1 , _snake_case : Tuple=0.0006 , _snake_case : Tuple=5_12 , _snake_case : Dict=0.02 , _snake_case : Dict=1E-12 , _snake_case : str=1 , _snake_case : Dict=True , _snake_case : List[str]=1 , _snake_case : str=5_02_56 , _snake_case : List[str]=5_02_56 , **_snake_case : Optional[Any] , ):
"""simple docstring"""
A__ = vocab_size
A__ = action_weight
A__ = reward_weight
A__ = value_weight
A__ = max_position_embeddings
A__ = block_size
A__ = action_dim
A__ = observation_dim
A__ = transition_dim
A__ = learning_rate
A__ = n_layer
A__ = n_head
A__ = n_embd
A__ = embd_pdrop
A__ = attn_pdrop
A__ = resid_pdrop
A__ = initializer_range
A__ = layer_norm_eps
A__ = kaiming_initializer_range
A__ = use_cache
super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
| 9 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''',
'''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''',
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''roberta'''
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : str=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Tuple="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = vocab_size
__a : Tuple = hidden_size
__a : List[str] = num_hidden_layers
__a : List[Any] = num_attention_heads
__a : str = hidden_act
__a : Optional[Any] = intermediate_size
__a : Dict = hidden_dropout_prob
__a : List[str] = attention_probs_dropout_prob
__a : Optional[Any] = max_position_embeddings
__a : Dict = type_vocab_size
__a : str = initializer_range
__a : List[str] = layer_norm_eps
__a : Optional[int] = position_embedding_type
__a : Union[str, Any] = use_cache
__a : str = classifier_dropout
class _UpperCamelCase( __lowerCamelCase ):
@property
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
if self.task == "multiple-choice":
__a : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__a : Dict = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 47 | 0 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class lowerCAmelCase_ ( __lowercase ):
def __init__( self : int , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ):
_UpperCamelCase = dataset
_UpperCamelCase = process
_UpperCamelCase = params
def __len__( self : Optional[Any] ):
return len(self.dataset )
def __getitem__( self : Any , _A : Union[str, Any] ):
_UpperCamelCase = self.dataset[i]
_UpperCamelCase = self.process(_A , **self.params )
return processed
class lowerCAmelCase_ ( __lowercase ):
def __init__( self : List[str] , _A : Union[str, Any] , _A : List[Any] , _A : Optional[int] , _A : Any=None ):
_UpperCamelCase = loader
_UpperCamelCase = infer
_UpperCamelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_UpperCamelCase = None
_UpperCamelCase = loader_batch_size
# Internal bookkeeping
_UpperCamelCase = None
_UpperCamelCase = None
def __len__( self : str ):
return len(self.loader )
def __iter__( self : str ):
_UpperCamelCase = iter(self.loader )
return self
def UpperCamelCase_ ( self : List[str] ):
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_UpperCamelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_UpperCamelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(_A , _A ):
# Convert ModelOutput to tuple first
_UpperCamelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_A , _A ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_UpperCamelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCamelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCamelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_UpperCamelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_UpperCamelCase = self._loader_batch_data.__class__(_A )
self._loader_batch_index += 1
return result
def UpperCamelCase_ ( self : Dict ):
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_UpperCamelCase = next(self.iterator )
_UpperCamelCase = self.infer(_A , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_A , torch.Tensor ):
_UpperCamelCase = processed
else:
_UpperCamelCase = list(processed.keys() )[0]
_UpperCamelCase = processed[key]
if isinstance(_A , _A ):
_UpperCamelCase = len(_A )
else:
_UpperCamelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCamelCase = observed_batch_size
# Setting internal index to unwrap the batch
_UpperCamelCase = processed
_UpperCamelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class lowerCAmelCase_ ( __lowercase ):
def __init__( self : str , _A : Dict , _A : List[str] , _A : str , _A : int=None ):
super().__init__(_A , _A , _A )
def __iter__( self : Optional[int] ):
_UpperCamelCase = iter(self.loader )
_UpperCamelCase = None
return self
def UpperCamelCase_ ( self : Optional[int] ):
if self.subiterator is None:
_UpperCamelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_UpperCamelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_UpperCamelCase = self.infer(next(self.iterator ) , **self.params )
_UpperCamelCase = next(self.subiterator )
return processed
class lowerCAmelCase_ ( __lowercase ):
def __iter__( self : Optional[Any] ):
_UpperCamelCase = iter(self.loader )
return self
def UpperCamelCase_ ( self : Union[str, Any] ):
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
_UpperCamelCase = False
_UpperCamelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_UpperCamelCase = self.loader_batch_item()
_UpperCamelCase = item.pop('''is_last''' )
accumulator.append(_A )
if is_last:
return accumulator
while not is_last:
_UpperCamelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_A , torch.Tensor ):
_UpperCamelCase = processed
else:
_UpperCamelCase = list(processed.keys() )[0]
_UpperCamelCase = processed[key]
if isinstance(_A , _A ):
_UpperCamelCase = len(_A )
else:
_UpperCamelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCamelCase = observed_batch_size
_UpperCamelCase = processed
_UpperCamelCase = 0
while self._loader_batch_index < self.loader_batch_size:
_UpperCamelCase = self.loader_batch_item()
_UpperCamelCase = item.pop('''is_last''' )
accumulator.append(_A )
if is_last:
return accumulator
else:
_UpperCamelCase = processed
_UpperCamelCase = item.pop('''is_last''' )
accumulator.append(_A )
return accumulator
class lowerCAmelCase_ ( __lowercase ):
def __init__( self : List[str] , _A : Dataset , _A : str ):
_UpperCamelCase = dataset
_UpperCamelCase = key
def __len__( self : List[str] ):
return len(self.dataset )
def __getitem__( self : Tuple , _A : Union[str, Any] ):
return self.dataset[i][self.key]
class lowerCAmelCase_ ( __lowercase ):
def __init__( self : List[Any] , _A : Dataset , _A : str , _A : str ):
_UpperCamelCase = dataset
_UpperCamelCase = keya
_UpperCamelCase = keya
def __len__( self : List[str] ):
return len(self.dataset )
def __getitem__( self : Optional[int] , _A : Any ):
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 10 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''▁'''
SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.bpe.model'''}
SCREAMING_SNAKE_CASE__ = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
SCREAMING_SNAKE_CASE__ = {
'''facebook/xglm-564M''': 2048,
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask''']
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : Dict="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ):
'''simple docstring'''
__a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
__a : Any = 7
__a : Union[str, Any] = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
__a : Union[str, Any] = kwargs.get('additional_special_tokens' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , )
__a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) )
__a : str = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__a : Any = 1
# Mimic fairseq token-to-id alignment for the first 4 token
__a : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
__a : List[str] = len(self.sp_model )
__a : Optional[int] = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ )
__a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[str] ):
'''simple docstring'''
__a : Tuple = self.__dict__.copy()
__a : List[str] = None
__a : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
__a : int = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__a : Dict = {}
__a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
__a : Optional[Any] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ):
'''simple docstring'''
__a : Optional[int] = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
__a : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__a : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
__a : Optional[int] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip()
return out_string
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a : Any = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi:
__a : List[Any] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 47 | 0 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowercase_ = (
"4S 3H 2C 7S 5H",
"9D 8H 2C 6S 7H",
"2D 6D 9D TH 7D",
"TC 8C 2S JH 6C",
"JH 8S TH AH QH",
"TS KS 5S 9S AC",
"KD 6S 9D TH AD",
"KS 8D 4D 9S 4S", # pair
"8C 4S KH JS 4D", # pair
"QH 8H KD JH 8S", # pair
"KC 4H KS 2H 8D", # pair
"KD 4S KC 3H 8S", # pair
"AH 8S AS KC JH", # pair
"3H 4C 4H 3S 2H", # 2 pairs
"5S 5D 2C KH KH", # 2 pairs
"3C KH 5D 5S KH", # 2 pairs
"AS 3C KH AD KH", # 2 pairs
"7C 7S 3S 7H 5S", # 3 of a kind
"7C 7S KH 2H 7H", # 3 of a kind
"AC KH QH AH AS", # 3 of a kind
"2H 4D 3C AS 5S", # straight (low ace)
"3C 5C 4C 2C 6H", # straight
"6S 8S 7S 5H 9H", # straight
"JS QS 9H TS KH", # straight
"QC KH TS JS AH", # straight (high ace)
"8C 9C 5C 3C TC", # flush
"3S 8S 9S 5S KS", # flush
"4C 5C 9C 8C KC", # flush
"JH 8H AH KH QH", # flush
"3D 2H 3H 2C 2D", # full house
"2H 2C 3S 3H 3D", # full house
"KH KC 3S 3H 3D", # full house
"JC 6H JS JD JH", # 4 of a kind
"JC 7H JS JD JH", # 4 of a kind
"JC KH JS JD JH", # 4 of a kind
"2S AS 4S 5S 3S", # straight flush (low ace)
"2D 6D 3D 4D 5D", # straight flush
"5C 6C 3C 7C 4C", # straight flush
"JH 9H TH KH QH", # straight flush
"JH AH TH KH QH", # royal flush (high ace straight flush)
)
lowercase_ = (
("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"),
("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"),
("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"),
("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"),
("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"),
("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"),
("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"),
("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"),
("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"),
("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"),
("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"),
("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"),
("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"),
("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"),
("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"),
("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"),
("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"),
("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"),
("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"),
("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"),
("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"),
("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"),
("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"),
("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"),
("AH AD KS KC AC", "AH KD KH AC KC", "Win"),
("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"),
("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"),
("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"),
("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"),
("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"),
("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"),
("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"),
("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"),
)
lowercase_ = (
("2H 3H 4H 5H 6H", True),
("AS AH 2H AD AC", False),
("2H 3H 5H 6H 7H", True),
("KS AS TS QS JS", True),
("8H 9H QS JS TH", False),
("AS 3S 4S 8S 2S", True),
)
lowercase_ = (
("2H 3H 4H 5H 6H", True),
("AS AH 2H AD AC", False),
("2H 3H 5H 6H 7H", False),
("KS AS TS QS JS", True),
("8H 9H QS JS TH", True),
)
lowercase_ = (
("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]),
("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]),
("JH QD KC AS TS", False, [14, 13, 12, 11, 10]),
("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]),
)
lowercase_ = (
("JH AH TH KH QH", 0),
("JH 9H TH KH QH", 0),
("JC KH JS JD JH", 7),
("KH KC 3S 3H 3D", 6),
("8C 9C 5C 3C TC", 0),
("JS QS 9H TS KH", 0),
("7C 7S KH 2H 7H", 3),
("3C KH 5D 5S KH", 2),
("QH 8H KD JH 8S", 1),
("2D 6D 9D TH 7D", 0),
)
lowercase_ = (
("JH AH TH KH QH", 23),
("JH 9H TH KH QH", 22),
("JC KH JS JD JH", 21),
("KH KC 3S 3H 3D", 20),
("8C 9C 5C 3C TC", 19),
("JS QS 9H TS KH", 18),
("7C 7S KH 2H 7H", 17),
("3C KH 5D 5S KH", 16),
("QH 8H KD JH 8S", 15),
("2D 6D 9D TH 7D", 14),
)
def lowerCAmelCase ():
"""simple docstring"""
_a , _a = randrange(len(__A)), randrange(len(__A))
_a = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)]
_a , _a = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowerCAmelCase (__A = 100):
"""simple docstring"""
return (generate_random_hand() for _ in range(__A))
@pytest.mark.parametrize('''hand, expected''' , __A)
def lowerCAmelCase (__A , __A):
"""simple docstring"""
assert PokerHand(__A)._is_flush() == expected
@pytest.mark.parametrize('''hand, expected''' , __A)
def lowerCAmelCase (__A , __A):
"""simple docstring"""
assert PokerHand(__A)._is_straight() == expected
@pytest.mark.parametrize('''hand, expected, card_values''' , __A)
def lowerCAmelCase (__A , __A , __A):
"""simple docstring"""
_a = PokerHand(__A)
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize('''hand, expected''' , __A)
def lowerCAmelCase (__A , __A):
"""simple docstring"""
assert PokerHand(__A)._is_same_kind() == expected
@pytest.mark.parametrize('''hand, expected''' , __A)
def lowerCAmelCase (__A , __A):
"""simple docstring"""
assert PokerHand(__A)._hand_type == expected
@pytest.mark.parametrize('''hand, other, expected''' , __A)
def lowerCAmelCase (__A , __A , __A):
"""simple docstring"""
assert PokerHand(__A).compare_with(PokerHand(__A)) == expected
@pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands())
def lowerCAmelCase (__A , __A , __A):
"""simple docstring"""
assert PokerHand(__A).compare_with(PokerHand(__A)) == expected
def lowerCAmelCase ():
"""simple docstring"""
_a = [PokerHand(__A) for hand in SORTED_HANDS]
_a = poker_hands.copy()
shuffle(__A)
_a = chain(sorted(__A))
for index, hand in enumerate(__A):
assert hand == poker_hands[index]
def lowerCAmelCase ():
"""simple docstring"""
_a = [PokerHand('''2D AC 3H 4H 5S'''), PokerHand('''2S 3H 4H 5S 6C''')]
pokerhands.sort(reverse=__A)
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowerCAmelCase ():
"""simple docstring"""
_a = PokerHand('''2C 4S AS 3D 5C''')
_a = True
_a = [5, 4, 3, 2, 14]
for _ in range(10):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowerCAmelCase ():
"""simple docstring"""
_a = 0
_a = os.path.abspath(os.path.dirname(__A))
_a = os.path.join(__A , '''poker_hands.txt''')
with open(__A) as file_hand:
for line in file_hand:
_a = line[:14].strip()
_a = line[15:].strip()
_a , _a = PokerHand(__A), PokerHand(__A)
_a = player.compare_with(__A)
if output == "Win":
answer += 1
assert answer == 376
| 11 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
SCREAMING_SNAKE_CASE__ = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] ):
__a : str = torch.load(lowerCamelCase_ , map_location='cpu' )
return sd
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=rename_keys_prefix ):
__a : Optional[Any] = OrderedDict()
__a : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__a : List[Any] = key
for name_pair in rename_keys_prefix:
__a : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__a : Any = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__a : int = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ):
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
__a : Dict = 'pretraining'
if "vcr" in checkpoint_path:
__a : int = {'visual_embedding_dim': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
__a : int = {'visual_embedding_dim': 2_0_4_8}
elif "vqa" in checkpoint_path:
__a : Tuple = {'visual_embedding_dim': 2_0_4_8}
elif "nlvr" in checkpoint_path:
__a : List[Any] = {'visual_embedding_dim': 1_0_2_4}
else:
raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
__a : int = {'visual_embedding_dim': 5_1_2}
__a : Any = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
__a : Any = {'visual_embedding_dim': 2_0_4_8}
__a : List[str] = 'vqa_advanced'
elif "vqa" in checkpoint_path:
__a : List[Any] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9}
__a : List[Any] = 'vqa'
elif "nlvr" in checkpoint_path:
__a : Optional[int] = {
'visual_embedding_dim': 1_0_2_4,
'num_labels': 2,
}
__a : Optional[Any] = 'nlvr'
__a : str = VisualBertConfig(**lowerCamelCase_ )
# Load State Dict
__a : str = load_state_dict(lowerCamelCase_ )
__a : str = get_new_dict(lowerCamelCase_ , lowerCamelCase_ )
if model_type == "pretraining":
__a : Optional[Any] = VisualBertForPreTraining(lowerCamelCase_ )
elif model_type == "vqa":
__a : Any = VisualBertForQuestionAnswering(lowerCamelCase_ )
elif model_type == "nlvr":
__a : int = VisualBertForVisualReasoning(lowerCamelCase_ )
elif model_type == "multichoice":
__a : Optional[int] = VisualBertForMultipleChoice(lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
# Save Checkpoints
Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 47 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Dict = {
"""post_extract_proj""": """feature_projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.upsample.0""": """encoder.upsample.projection""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """layer_norm""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
for attribute in key.split(""".""" ):
lowercase__ : Union[str, Any] = getattr(lowercase_ , lowercase_ )
if weight_type is not None:
lowercase__ : str = getattr(lowercase_ , lowercase_ ).shape
else:
lowercase__ : Any = hf_pointer.shape
assert hf_shape == value.shape, (
F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
F' {value.shape} for {full_name}'
)
if weight_type == "weight":
lowercase__ : Union[str, Any] = value
elif weight_type == "weight_g":
lowercase__ : str = value
elif weight_type == "weight_v":
lowercase__ : str = value
elif weight_type == "bias":
lowercase__ : Optional[int] = value
else:
lowercase__ : Any = value
logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : List[Any] = []
lowercase__ : Union[str, Any] = fairseq_model.state_dict()
lowercase__ : Any = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
lowercase__ : Optional[int] = False
if "conv_layers" in name:
load_conv_layer(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == """group""" , )
lowercase__ : str = True
else:
for key, mapped_key in MAPPING.items():
lowercase__ : Optional[int] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
lowercase__ : Tuple = True
if "*" in mapped_key:
lowercase__ : Optional[Any] = name.split(lowercase_ )[0].split(""".""" )[-2]
lowercase__ : Optional[Any] = mapped_key.replace("""*""" , lowercase_ )
if "weight_g" in name:
lowercase__ : Optional[int] = """weight_g"""
elif "weight_v" in name:
lowercase__ : Dict = """weight_v"""
elif "weight" in name:
lowercase__ : List[str] = """weight"""
elif "bias" in name:
lowercase__ : str = """bias"""
else:
lowercase__ : List[Any] = None
set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
continue
if not is_used:
unused_weights.append(lowercase_ )
logger.warning(F'Unused weights: {unused_weights}' )
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = full_name.split("""conv_layers.""" )[-1]
lowercase__ : int = name.split(""".""" )
lowercase__ : Union[str, Any] = int(items[0] )
lowercase__ : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
lowercase__ : str = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
lowercase__ : Tuple = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
lowercase__ : Union[str, Any] = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
lowercase__ : Optional[Any] = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : Optional[Any] = SEWConfig()
if is_finetuned:
lowercase__ : Any = model.wav_encoder.wav_model.cfg
else:
lowercase__ : Dict = model.cfg
lowercase__ : Optional[Any] = fs_config.conv_bias
lowercase__ : Tuple = eval(fs_config.conv_feature_layers )
lowercase__ : List[str] = [x[0] for x in conv_layers]
lowercase__ : Dict = [x[1] for x in conv_layers]
lowercase__ : Tuple = [x[2] for x in conv_layers]
lowercase__ : List[str] = """gelu"""
lowercase__ : Union[str, Any] = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
lowercase__ : Union[str, Any] = 0.0
lowercase__ : Tuple = fs_config.activation_fn.name
lowercase__ : Tuple = fs_config.encoder_embed_dim
lowercase__ : List[str] = 0.02
lowercase__ : Optional[Any] = fs_config.encoder_ffn_embed_dim
lowercase__ : Optional[Any] = 1E-5
lowercase__ : List[Any] = fs_config.encoder_layerdrop
lowercase__ : Any = fs_config.encoder_attention_heads
lowercase__ : Any = fs_config.conv_pos_groups
lowercase__ : Dict = fs_config.conv_pos
lowercase__ : List[Any] = len(lowercase_ )
lowercase__ : Union[str, Any] = fs_config.encoder_layers
lowercase__ : Optional[Any] = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
lowercase__ : Optional[Any] = model.cfg
lowercase__ : Union[str, Any] = fs_config.final_dropout
lowercase__ : int = fs_config.layerdrop
lowercase__ : int = fs_config.activation_dropout
lowercase__ : Optional[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
lowercase__ : Tuple = fs_config.attention_dropout
lowercase__ : Any = fs_config.dropout_input
lowercase__ : Any = fs_config.dropout
lowercase__ : Dict = fs_config.mask_channel_length
lowercase__ : Optional[int] = fs_config.mask_channel_prob
lowercase__ : Any = fs_config.mask_length
lowercase__ : Dict = fs_config.mask_prob
lowercase__ : Dict = """Wav2Vec2FeatureExtractor"""
lowercase__ : List[Any] = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True ) -> int:
'''simple docstring'''
if is_finetuned:
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
lowercase__ : Optional[Any] = SEWConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = convert_config(model[0] , lowercase_ )
lowercase__ : Dict = model[0].eval()
lowercase__ : Any = True if config.feat_extract_norm == """layer""" else False
lowercase__ : List[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , )
if is_finetuned:
if dict_path:
lowercase__ : Optional[int] = Dictionary.load(lowercase_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowercase__ : List[Any] = target_dict.pad_index
lowercase__ : int = target_dict.bos_index
lowercase__ : Optional[Any] = target_dict.pad_index
lowercase__ : List[str] = target_dict.bos_index
lowercase__ : Optional[int] = target_dict.eos_index
lowercase__ : Union[str, Any] = len(target_dict.symbols )
lowercase__ : Optional[int] = os.path.join(lowercase_ , """vocab.json""" )
if not os.path.isdir(lowercase_ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase_ ) )
return
os.makedirs(lowercase_ , exist_ok=lowercase_ )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , lowercase_ )
lowercase__ : Optional[Any] = WavaVecaCTCTokenizer(
lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase_ , )
lowercase__ : Union[str, Any] = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ )
processor.save_pretrained(lowercase_ )
lowercase__ : List[str] = SEWForCTC(lowercase_ )
else:
lowercase__ : str = SEWModel(lowercase_ )
feature_extractor.save_pretrained(lowercase_ )
recursively_load_weights(lowercase_ , lowercase_ , lowercase_ )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Any = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
lowerCamelCase__ : Optional[int] = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 12 |
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
| 47 | 0 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
A__ : Optional[int] = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , **SCREAMING_SNAKE_CASE_ ) -> int:
super().__init__(**SCREAMING_SNAKE_CASE_ )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Dict = {}
if "candidate_labels" in kwargs:
__lowerCamelCase : List[str] = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
__lowerCamelCase : Tuple = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="This is a photo of {}." ) -> Tuple:
__lowerCamelCase : Union[str, Any] = load_image(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self.image_processor(images=[image] , return_tensors=self.framework )
__lowerCamelCase : Optional[Any] = candidate_labels
__lowerCamelCase : int = [hypothesis_template.format(SCREAMING_SNAKE_CASE_ ) for x in candidate_labels]
__lowerCamelCase : Union[str, Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = [text_inputs]
return inputs
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Dict = model_inputs.pop('candidate_labels' )
__lowerCamelCase : int = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : List[Any] = text_inputs[0]
else:
# Batching case.
__lowerCamelCase : Optional[Any] = text_inputs[0][0]
__lowerCamelCase : Optional[int] = self.model(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : str = model_outputs.pop('candidate_labels' )
__lowerCamelCase : Union[str, Any] = model_outputs['logits'][0]
if self.framework == "pt":
__lowerCamelCase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 )
__lowerCamelCase : Dict = probs.tolist()
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : List[Any] = [scores]
elif self.framework == "tf":
__lowerCamelCase : Union[str, Any] = stable_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 )
__lowerCamelCase : Optional[Any] = probs.numpy().tolist()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
__lowerCamelCase : Optional[Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , key=lambda SCREAMING_SNAKE_CASE_ : -x[0] )
]
return result
| 13 |
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class _UpperCamelCase( __lowerCamelCase ):
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : List[Any] = tempfile.mkdtemp()
__a : int = 8
# DPR tok
__a : Dict = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__a : int = os.path.join(self.tmpdirname , 'dpr_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , DPR_VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
# BART tok
__a : str = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
__a : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
__a : List[str] = {'unk_token': '<unk>'}
__a : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['vocab_file'] )
__a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) )
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) )
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
@require_tokenizers
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
__a : Tuple = os.path.join(self.tmpdirname , 'rag_tokenizer' )
__a : Optional[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() )
__a : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() )
rag_config.save_pretrained(SCREAMING_SNAKE_CASE__ )
rag_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ )
__a : List[Any] = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(new_rag_tokenizer.question_encoder , SCREAMING_SNAKE_CASE__ )
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() )
self.assertIsInstance(new_rag_tokenizer.generator , SCREAMING_SNAKE_CASE__ )
self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() )
@slow
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : Optional[Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' )
__a : List[Any] = [
'who got the first nobel prize in physics',
'when is the next deadpool movie being released',
'which mode is used for short wave broadcast service',
'who is the owner of reading football club',
'when is the next scandal episode coming out',
'when is the last time the philadelphia won the superbowl',
'what is the most current adobe flash player version',
'how many episodes are there in dragon ball z',
'what is the first step in the evolution of the eye',
'where is gall bladder situated in human body',
'what is the main mineral in lithium batteries',
'who is the president of usa right now',
'where do the greasers live in the outsiders',
'panda is a national animal of which country',
'what is the name of manchester united stadium',
]
__a : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@slow
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
__a : Any = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' )
__a : Union[str, Any] = [
'who got the first nobel prize in physics',
'when is the next deadpool movie being released',
'which mode is used for short wave broadcast service',
'who is the owner of reading football club',
'when is the next scandal episode coming out',
'when is the last time the philadelphia won the superbowl',
'what is the most current adobe flash player version',
'how many episodes are there in dragon ball z',
'what is the first step in the evolution of the eye',
'where is gall bladder situated in human body',
'what is the main mineral in lithium batteries',
'who is the president of usa right now',
'where do the greasers live in the outsiders',
'panda is a national animal of which country',
'what is the name of manchester united stadium',
]
__a : str = tokenizer(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
| 47 | 0 |
def __UpperCAmelCase ( __a : str ) -> str:
"""simple docstring"""
if not all(char in '''01''' for char in bin_string ):
raise ValueError('''Non-binary value was passed to the function''' )
if not bin_string:
raise ValueError('''Empty string was passed to the function''' )
_a : Union[str, Any] = ''''''
while len(__a ) % 3 != 0:
_a : Tuple = '''0''' + bin_string
_a : int = [
bin_string[index : index + 3]
for index in range(len(__a ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_a : str = 0
for index, val in enumerate(__a ):
oct_val += int(2 ** (2 - index) * int(__a ) )
oct_string += str(__a )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model'''}
SCREAMING_SNAKE_CASE__ = {
'''vocab_file''': {
'''bert_for_seq_generation''': (
'''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model'''
),
}
}
SCREAMING_SNAKE_CASE__ = {'''bert_for_seq_generation''': 512}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : List[int] = []
__SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask''']
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<::::>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ):
'''simple docstring'''
__a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
# Add extra_ids to the special token list
super().__init__(
bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , )
__a : int = vocab_file
__a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return self.sp_model.get_piece_size()
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
__a : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ):
'''simple docstring'''
__a : Union[str, Any] = self.__dict__.copy()
__a : Any = None
return state
def __setstate__( self : int , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
__a : str = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__a : str = {}
__a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
__a : int = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ )
return token
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : Optional[Any] = []
__a : Optional[int] = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token
__a : Dict = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE__ )
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ )
return out_string.strip()
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a : Tuple = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi:
__a : List[str] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 47 | 0 |
import copy
import re
class A :
'''simple docstring'''
A__ = '''hp'''
A__ = {}
A__ = None
@classmethod
def lowerCamelCase__ (cls : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> Tuple:
"""simple docstring"""
lowercase__ = prefix
lowercase__ = defaults
cls.build_naming_info()
@staticmethod
def lowerCamelCase__ (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
if len(_UpperCAmelCase ) == 0:
return ""
lowercase__ = None
if any(char.isdigit() for char in word ):
raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 , len(_UpperCAmelCase ) + 1 ):
lowercase__ = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
lowercase__ = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(_UpperCAmelCase : Union[str, Any] ):
lowercase__ = """"""
while integer != 0:
lowercase__ = chr(ord("""A""" ) + integer % 10 ) + s
integer //= 10
return s
lowercase__ = 0
while True:
lowercase__ = word + """#""" + int_to_alphabetic(_UpperCAmelCase )
if sword in info["reverse_short_word"]:
continue
else:
lowercase__ = sword
break
lowercase__ = short_word
lowercase__ = word
return short_word
@staticmethod
def lowerCamelCase__ (_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = param_name.split("""_""" )
lowercase__ = [TrialShortNamer.shortname_for_word(_UpperCAmelCase , _UpperCAmelCase ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
lowercase__ = ["""""", """_"""]
for separator in separators:
lowercase__ = separator.join(_UpperCAmelCase )
if shortname not in info["reverse_short_param"]:
lowercase__ = shortname
lowercase__ = param_name
return shortname
return param_name
@staticmethod
def lowerCamelCase__ (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> int:
"""simple docstring"""
lowercase__ = TrialShortNamer.shortname_for_key(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = short_name
lowercase__ = param_name
@classmethod
def lowerCamelCase__ (cls : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if cls.NAMING_INFO is not None:
return
lowercase__ = {
"""short_word""": {},
"""reverse_short_word""": {},
"""short_param""": {},
"""reverse_short_param""": {},
}
lowercase__ = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ = info
@classmethod
def lowerCamelCase__ (cls : str , _UpperCAmelCase : Tuple ) -> List[str]:
"""simple docstring"""
cls.build_naming_info()
assert cls.PREFIX is not None
lowercase__ = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
lowercase__ = cls.NAMING_INFO["""short_param"""][k]
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowercase__ = 1 if v else 0
lowercase__ = """""" if isinstance(_UpperCAmelCase , (int, float) ) else """-"""
lowercase__ = f'''{key}{sep}{v}'''
name.append(_UpperCAmelCase )
return "_".join(_UpperCAmelCase )
@classmethod
def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
lowercase__ = []
else:
lowercase__ = repr.split("""_""" )
lowercase__ = {}
for value in values:
if "-" in value:
lowercase__ , lowercase__ = value.split("""-""" )
else:
lowercase__ = re.sub("""[0-9.]""" , """""" , _UpperCAmelCase )
lowercase__ = float(re.sub("""[^0-9.]""" , """""" , _UpperCAmelCase ) )
lowercase__ = cls.NAMING_INFO["""reverse_short_param"""][p_k]
lowercase__ = p_v
for k in cls.DEFAULTS:
if k not in parameters:
lowercase__ = cls.DEFAULTS[k]
return parameters
| 15 |
from ..utils import DummyObject, requires_backends
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : List[Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Any = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Dict = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[int] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
| 47 | 0 |
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
__A : Optional[Any] = '0.12' # assumed parallelism: 8
if is_torch_available():
import torch
def __a ( A__ : Any , A__ : Tuple , A__ : str=None ):
if rng is None:
SCREAMING_SNAKE_CASE = random.Random()
SCREAMING_SNAKE_CASE = 1
for dim in shape:
total_dims *= dim
SCREAMING_SNAKE_CASE = []
for _ in range(A__ ):
values.append(rng.randint(0 , vocab_size - 1 ) )
SCREAMING_SNAKE_CASE = np.array(A__ , dtype=jnp.intaa ).reshape(A__ )
return output
def __a ( A__ : Union[str, Any] , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = ids_tensor(A__ , vocab_size=2 , rng=A__ )
# make sure that at least one token is attended to for each batch
SCREAMING_SNAKE_CASE = 1
return attn_mask
@require_flax
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowerCamelCase__ = None
lowerCamelCase__ = ()
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = inputs["input_ids"].shape[-1] // 2
SCREAMING_SNAKE_CASE = inputs["input_ids"][:max_batch_size, :sequence_length]
SCREAMING_SNAKE_CASE = jnp.ones_like(__lowerCamelCase )
SCREAMING_SNAKE_CASE = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
SCREAMING_SNAKE_CASE = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
SCREAMING_SNAKE_CASE = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = max_length
SCREAMING_SNAKE_CASE = 0
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model_class.__name__[4:] # Skip the "Flax" at the beginning
SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = pt_model_class(__lowerCamelCase ).eval()
SCREAMING_SNAKE_CASE = load_flax_weights_in_pytorch_model(__lowerCamelCase , flax_model.params )
SCREAMING_SNAKE_CASE = flax_model.generate(__lowerCamelCase ).sequences
SCREAMING_SNAKE_CASE = pt_model.generate(torch.tensor(__lowerCamelCase , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
SCREAMING_SNAKE_CASE = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = max_length
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase )
SCREAMING_SNAKE_CASE = jit(model.generate )
SCREAMING_SNAKE_CASE = jit_generate(__lowerCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = max_length
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase )
SCREAMING_SNAKE_CASE = jit(model.generate )
SCREAMING_SNAKE_CASE = jit_generate(__lowerCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = max_length
SCREAMING_SNAKE_CASE = 2
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase )
SCREAMING_SNAKE_CASE = jit(model.generate )
SCREAMING_SNAKE_CASE = jit_generate(__lowerCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = max_length
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = 2
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = max_length
SCREAMING_SNAKE_CASE = 0.8
SCREAMING_SNAKE_CASE = 10
SCREAMING_SNAKE_CASE = 0.3
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = 8
SCREAMING_SNAKE_CASE = 9
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase )
SCREAMING_SNAKE_CASE = jit(model.generate )
SCREAMING_SNAKE_CASE = jit_generate(__lowerCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE = max_length
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = 8
SCREAMING_SNAKE_CASE = 9
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase )
SCREAMING_SNAKE_CASE = jit(model.generate )
SCREAMING_SNAKE_CASE = jit_generate(__lowerCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
SCREAMING_SNAKE_CASE = max_length
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = 8
SCREAMING_SNAKE_CASE = 9
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase )
SCREAMING_SNAKE_CASE = jit(model.generate )
SCREAMING_SNAKE_CASE = jit_generate(__lowerCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
# pad attention mask on the left
SCREAMING_SNAKE_CASE = attention_mask.at[(0, 0)].set(0 )
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = max_length
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase )
SCREAMING_SNAKE_CASE = jit(model.generate )
SCREAMING_SNAKE_CASE = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
# pad attention mask on the left
SCREAMING_SNAKE_CASE = attention_mask.at[(0, 0)].set(0 )
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = max_length
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase )
SCREAMING_SNAKE_CASE = jit(model.generate )
SCREAMING_SNAKE_CASE = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_input_ids_and_config()
# pad attention mask on the left
SCREAMING_SNAKE_CASE = attention_mask.at[(0, 0)].set(0 )
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = max_length
for model_class in self.all_generative_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase )
SCREAMING_SNAKE_CASE = jit(model.generate )
SCREAMING_SNAKE_CASE = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" )
SCREAMING_SNAKE_CASE = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
SCREAMING_SNAKE_CASE = "Hello world"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="np" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__lowerCamelCase , "do_samples" ):
model.generate(__lowerCamelCase , do_samples=__lowerCamelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__lowerCamelCase , "foo" ):
SCREAMING_SNAKE_CASE = {"foo": "bar"}
model.generate(__lowerCamelCase , **__lowerCamelCase )
| 16 |
import math
from datetime import datetime, timedelta
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
__a : Union[str, Any] = year % 1_9
__a : int = year % 4
__a : Optional[int] = year % 7
__a : Dict = math.floor(year / 1_0_0 )
__a : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 )
__a : Union[str, Any] = leap_day_inhibits / 4
__a : str = (
1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 3_0
__a : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
__a : List[Any] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0
# PHM -> Paschal Full Moon
__a : List[Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 2_9 and days_from_phm_to_sunday == 6:
return datetime(lowerCamelCase_ , 4 , 1_9 )
elif days_to_add == 2_8 and days_from_phm_to_sunday == 6:
return datetime(lowerCamelCase_ , 4 , 1_8 )
else:
return datetime(lowerCamelCase_ , 3 , 2_2 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
SCREAMING_SNAKE_CASE__ = '''will be''' if year > datetime.now().year else '''was'''
print(F"Easter in {year} {tense} {gauss_easter(year)}")
| 47 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase_ : Optional[Any] = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[Any] = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : List[Any] = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Dict = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 17 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : List[Any] = '''informer'''
__SCREAMING_SNAKE_CASE : List[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str = "prob" , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Tuple , ):
'''simple docstring'''
__a : Dict = prediction_length
__a : Tuple = context_length or prediction_length
__a : Tuple = distribution_output
__a : Tuple = loss
__a : str = input_size
__a : Dict = num_time_features
__a : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
__a : str = scaling
__a : Tuple = num_dynamic_real_features
__a : int = num_static_real_features
__a : Dict = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
__a : Optional[Any] = cardinality
else:
__a : Optional[int] = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
__a : int = embedding_dimension
else:
__a : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
__a : int = num_parallel_samples
# Transformer architecture configuration
__a : str = input_size * len(self.lags_sequence ) + self._number_of_features
__a : Optional[int] = d_model
__a : Union[str, Any] = encoder_attention_heads
__a : int = decoder_attention_heads
__a : Any = encoder_ffn_dim
__a : Union[str, Any] = decoder_ffn_dim
__a : List[Any] = encoder_layers
__a : Optional[int] = decoder_layers
__a : int = dropout
__a : Optional[Any] = attention_dropout
__a : Dict = activation_dropout
__a : Union[str, Any] = encoder_layerdrop
__a : Optional[int] = decoder_layerdrop
__a : List[str] = activation_function
__a : str = init_std
__a : Optional[int] = use_cache
# Informer
__a : Union[str, Any] = attention_type
__a : str = sampling_factor
__a : Dict = distil
super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 47 | 0 |
'''simple docstring'''
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[Any] = "data2vec-audio"
def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = feat_extract_activation
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = conv_bias
_lowerCAmelCase = num_conv_pos_embeddings
_lowerCAmelCase = num_conv_pos_embedding_groups
_lowerCAmelCase = conv_pos_kernel_size
_lowerCAmelCase = len(self.conv_dim )
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = feat_proj_dropout
_lowerCAmelCase = final_dropout
_lowerCAmelCase = layerdrop
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = vocab_size
_lowerCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCAmelCase = mask_time_prob
_lowerCAmelCase = mask_time_length
_lowerCAmelCase = mask_time_min_masks
_lowerCAmelCase = mask_feature_prob
_lowerCAmelCase = mask_feature_length
_lowerCAmelCase = mask_feature_min_masks
# ctc loss
_lowerCAmelCase = ctc_loss_reduction
_lowerCAmelCase = ctc_zero_infinity
# adapter
_lowerCAmelCase = add_adapter
_lowerCAmelCase = adapter_kernel_size
_lowerCAmelCase = adapter_stride
_lowerCAmelCase = num_adapter_layers
_lowerCAmelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = xvector_output_dim
@property
def _snake_case ( self ) -> str:
return math.prod(self.conv_stride )
| 18 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = (DDIMParallelScheduler,)
__SCREAMING_SNAKE_CASE : Union[str, Any] = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : List[Any] = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : Tuple = self.scheduler_classes[0]
__a : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ )
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a , __a : List[str] = 1_0, 0.0
__a : Dict = self.dummy_model()
__a : str = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
for t in scheduler.timesteps:
__a : str = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : List[str] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample
return sample
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
for timesteps in [1_0_0, 5_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = self.scheduler_classes[0]
__a : List[str] = self.get_scheduler_config(steps_offset=1 )
__a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for t in [1, 1_0, 4_9]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : Union[str, Any] = self.get_scheduler_config()
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.14_771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.32_460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.00_979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : List[str] = self.get_scheduler_config()
__a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a , __a : Any = 1_0, 0.0
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
__a : List[Any] = self.dummy_model()
__a : int = self.dummy_sample_deter
__a : List[Any] = self.dummy_sample_deter + 0.1
__a : List[str] = self.dummy_sample_deter - 0.1
__a : Optional[Any] = samplea.shape[0]
__a : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 )
__a : Union[str, Any] = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ )
__a : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__a : int = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE__ )
__a : Dict = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2
assert abs(result_mean.item() - 0.4_982 ) < 1e-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : List[str] = self.full_loop()
__a : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 172.0_067 ) < 1e-2
assert abs(result_mean.item() - 0.223_967 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
__a : Optional[int] = self.full_loop(prediction_type='v_prediction' )
__a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 52.5_302 ) < 1e-2
assert abs(result_mean.item() - 0.0_684 ) < 1e-3
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
__a : Union[str, Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 )
__a : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 149.8_295 ) < 1e-2
assert abs(result_mean.item() - 0.1_951 ) < 1e-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : Dict = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 )
__a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 149.0_784 ) < 1e-2
assert abs(result_mean.item() - 0.1_941 ) < 1e-3
| 47 | 0 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_a = logging.get_logger(__name__)
_a = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _UpperCAmelCase( lowerCamelCase ):
lowercase__ = 'detr'
lowercase__ = ['past_key_values']
lowercase__ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''')
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''')
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''])
elif isinstance(__a , __a):
_UpperCamelCase = backbone_config.get('''model_type''')
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(__a)
# set timm attributes to None
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = decoder_layerdrop
_UpperCamelCase = encoder_layers
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
super().__init__(is_encoder_decoder=__a , **__a)
@property
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
return self.d_model
@classmethod
def UpperCAmelCase ( cls , __a , **__a) -> int:
'''simple docstring'''
return cls(backbone_config=__a , **__a)
def UpperCAmelCase ( self) -> Dict[str, any]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__)
if output["backbone_config"] is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
class _UpperCAmelCase( lowerCamelCase ):
lowercase__ = version.parse('1.11' )
@property
def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
])
@property
def UpperCAmelCase ( self) -> float:
'''simple docstring'''
return 1e-5
@property
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
return 12
| 19 |
def UpperCAmelCase__ ( lowerCamelCase_ : list[int] , lowerCamelCase_ : list[int] ):
# Check if the input is valid
if not len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == 3:
raise ValueError('Please enter a valid equation.' )
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError('Both a & b of two equations can\'t be zero.' )
# Extract the coefficients
__a , __a , __a : Optional[Any] = equationa
__a , __a , __a : Optional[int] = equationa
# Calculate the determinants of the matrices
__a : str = aa * ba - aa * ba
__a : Tuple = ca * ba - ca * ba
__a : Union[str, Any] = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError('Infinite solutions. (Consistent system)' )
else:
raise ValueError('No solution. (Inconsistent system)' )
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
__a : Any = determinant_x / determinant
__a : Optional[Any] = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
| 47 | 0 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase_ (lowercase__ ):
snake_case =['image_processor', 'tokenizer']
snake_case ='ViltImageProcessor'
snake_case =('BertTokenizer', 'BertTokenizerFast')
def __init__( self , lowercase_=None , lowercase_=None , **lowercase_) -> Optional[Any]:
a__ =None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , lowercase_ , )
a__ =kwargs.pop('feature_extractor')
a__ =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.')
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.')
super().__init__(lowercase_ , lowercase_)
a__ =self.image_processor
def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding:
a__ =self.tokenizer(
text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
# add pixel_values + pixel_mask
a__ =self.image_processor(lowercase_ , return_tensors=lowercase_)
encoding.update(lowercase_)
return encoding
def __UpperCamelCase ( self , *lowercase_ , **lowercase_) -> int:
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_)
def __UpperCamelCase ( self , *lowercase_ , **lowercase_) -> Tuple:
return self.tokenizer.decode(*lowercase_ , **lowercase_)
@property
def __UpperCamelCase ( self) -> Optional[Any]:
a__ =self.tokenizer.model_input_names
a__ =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def __UpperCamelCase ( self) -> List[str]:
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , )
return self.image_processor_class
@property
def __UpperCamelCase ( self) -> Union[str, Any]:
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , )
return self.image_processor
| 20 |
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 47 | 0 |
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
UpperCAmelCase_ : int = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n"
UpperCAmelCase_ : Any = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n"
UpperCAmelCase_ : Tuple = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
return float((preds == labels).mean() )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase="binary" ):
__magic_name__ : Optional[int] =simple_accuracy(lowerCamelCase , lowerCamelCase )
__magic_name__ : Optional[int] =float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
__magic_name__ : Tuple ={}
for id_pred, label in zip(lowerCamelCase , lowerCamelCase ):
__magic_name__ : List[Any] =F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}"
__magic_name__ : Any =id_pred["""prediction"""]
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
__magic_name__ : Optional[int] =[(pred, label)]
__magic_name__ , __magic_name__ : Dict =[], []
for question, preds_labels in question_map.items():
__magic_name__ , __magic_name__ : Tuple =zip(*lowerCamelCase )
__magic_name__ : str =fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average="""macro""" )
fas.append(lowerCamelCase )
__magic_name__ : Optional[int] =int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) )
ems.append(lowerCamelCase )
__magic_name__ : Any =float(sum(lowerCamelCase ) / len(lowerCamelCase ) )
__magic_name__ : str =sum(lowerCamelCase ) / len(lowerCamelCase )
__magic_name__ : Any =float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
def A__ ( self :str ):
'''simple docstring'''
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , )
def A__ ( self :int ):
'''simple docstring'''
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value("""int64""" ),
"query": datasets.Value("""int64""" ),
},
"prediction_text": datasets.Value("""string""" ),
},
"references": {
"idx": {
"passage": datasets.Value("""int64""" ),
"query": datasets.Value("""int64""" ),
},
"answers": datasets.Sequence(datasets.Value("""string""" ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value("""int64""" ),
"paragraph": datasets.Value("""int64""" ),
"question": datasets.Value("""int64""" ),
},
"prediction": datasets.Value("""int64""" ),
},
"references": datasets.Value("""int64""" ),
}
else:
return {
"predictions": datasets.Value("""int64""" ),
"references": datasets.Value("""int64""" ),
}
def A__ ( self :Union[str, Any] , __snake_case :List[str] , __snake_case :List[Any] ):
'''simple docstring'''
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )}
elif self.config_name == "cb":
return acc_and_fa(__snake_case , __snake_case , fa_avg="""macro""" )
elif self.config_name == "record":
__magic_name__ : List[str] =[
{
"""qas""": [
{"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]}
for ref in references
]
}
]
__magic_name__ : Optional[int] ={pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions}
return evaluate_record(__snake_case , __snake_case )[0]
elif self.config_name == "multirc":
return evaluate_multirc(__snake_case , __snake_case )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(__snake_case , __snake_case )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
| 21 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE__ = {
'''configuration_bridgetower''': [
'''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BridgeTowerConfig''',
'''BridgeTowerTextConfig''',
'''BridgeTowerVisionConfig''',
],
'''processing_bridgetower''': ['''BridgeTowerProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ['''BridgeTowerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
'''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BridgeTowerForContrastiveLearning''',
'''BridgeTowerForImageAndTextRetrieval''',
'''BridgeTowerForMaskedLM''',
'''BridgeTowerModel''',
'''BridgeTowerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 47 | 0 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def snake_case_ (UpperCamelCase : dict ):
'''simple docstring'''
return (data["data"], data["target"])
def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray ):
'''simple docstring'''
_a = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(UpperCamelCase , UpperCamelCase )
# Predict target for test data
_a = xgb.predict(UpperCamelCase )
_a = predictions.reshape(len(UpperCamelCase ) , 1 )
return predictions
def snake_case_ ():
'''simple docstring'''
_a = fetch_california_housing()
_a , _a = data_handling(UpperCamelCase )
_a , _a , _a , _a = train_test_split(
UpperCamelCase , UpperCamelCase , test_size=0.25 , random_state=1 )
_a = xgboost(UpperCamelCase , UpperCamelCase , UpperCamelCase )
# Error printing
print(f'Mean Absolute Error : {mean_absolute_error(UpperCamelCase , UpperCamelCase )}' )
print(f'Mean Square Error : {mean_squared_error(UpperCamelCase , UpperCamelCase )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 22 |
from string import ascii_lowercase, ascii_uppercase
def UpperCAmelCase__ ( lowerCamelCase_ : str ):
if not sentence:
return ""
__a : Union[str, Any] = dict(zip(lowerCamelCase_ , lowerCamelCase_ ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47 | 0 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
snake_case__ : int = """src/transformers"""
snake_case__ : Dict = """docs/source/en/tasks"""
def _snake_case (__lowercase , __lowercase , __lowercase):
with open(__lowercase , 'r' , encoding='utf-8' , newline='\n') as f:
UpperCamelCase_ = f.readlines()
# Find the start prompt.
UpperCamelCase_ = 0
while not lines[start_index].startswith(__lowercase):
start_index += 1
start_index += 1
UpperCamelCase_ = start_index
while not lines[end_index].startswith(__lowercase):
end_index += 1
end_index -= 1
while len(lines[start_index]) <= 1:
start_index += 1
while len(lines[end_index]) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index]), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
snake_case__ : int = direct_transformers_import(TRANSFORMERS_PATH)
snake_case__ : Any = {
"""asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
"""audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
"""language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
"""image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
"""masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
"""multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
"""object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
"""question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
"""semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
"""sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
"""summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"""token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
"""translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"""video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
"""document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
"""monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
snake_case__ : Any = {
"""summarization.md""": ("""nllb""",),
"""translation.md""": ("""nllb""",),
}
def _snake_case (__lowercase):
UpperCamelCase_ = TASK_GUIDE_TO_MODELS[task_guide]
UpperCamelCase_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowercase , set())
UpperCamelCase_ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()]) + "\n"
def _snake_case (__lowercase , __lowercase=False):
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = _find_text_in_file(
filename=os.path.join(__lowercase , __lowercase) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , )
UpperCamelCase_ = get_model_list_for_task(__lowercase)
if current_list != new_list:
if overwrite:
with open(os.path.join(__lowercase , __lowercase) , 'w' , encoding='utf-8' , newline='\n') as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:])
else:
raise ValueError(
f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"""
' to fix this.')
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
snake_case__ : str = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 23 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = '''sew-d'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=2_5_6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=("p2c", "c2p") , SCREAMING_SNAKE_CASE__ : str="layer_norm" , SCREAMING_SNAKE_CASE__ : Tuple="gelu_python" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-7 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Optional[int]="group" , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : str=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]="mean" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=2_5_6 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = hidden_size
__a : Optional[Any] = feat_extract_norm
__a : List[str] = feat_extract_activation
__a : Dict = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ )
__a : List[str] = list(SCREAMING_SNAKE_CASE__ )
__a : int = conv_bias
__a : Tuple = num_conv_pos_embeddings
__a : List[str] = num_conv_pos_embedding_groups
__a : Optional[Any] = len(self.conv_dim )
__a : Union[str, Any] = num_hidden_layers
__a : Optional[Any] = intermediate_size
__a : Union[str, Any] = squeeze_factor
__a : List[Any] = max_position_embeddings
__a : Tuple = position_buckets
__a : Optional[int] = share_att_key
__a : List[str] = relative_attention
__a : Any = norm_rel_ebd
__a : Any = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = hidden_act
__a : str = num_attention_heads
__a : Union[str, Any] = hidden_dropout
__a : Optional[int] = attention_dropout
__a : List[str] = activation_dropout
__a : int = feat_proj_dropout
__a : int = final_dropout
__a : Dict = layer_norm_eps
__a : Tuple = feature_layer_norm_eps
__a : str = initializer_range
__a : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a : Tuple = apply_spec_augment
__a : Optional[Any] = mask_time_prob
__a : Any = mask_time_length
__a : List[str] = mask_time_min_masks
__a : List[str] = mask_feature_prob
__a : Tuple = mask_feature_length
__a : Any = mask_feature_min_masks
# ctc loss
__a : Optional[int] = ctc_loss_reduction
__a : List[Any] = ctc_zero_infinity
# sequence classification
__a : Dict = use_weighted_layer_sum
__a : Optional[Any] = classifier_proj_size
@property
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47 | 0 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowerCAmelCase :
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) -> Optional[int]:
'''simple docstring'''
__snake_case = parent
__snake_case = 13
__snake_case = 7
__snake_case = True
__snake_case = True
__snake_case = True
__snake_case = True
__snake_case = 99
__snake_case = 384
__snake_case = 2
__snake_case = 4
__snake_case = 37
__snake_case = '''gelu'''
__snake_case = 0.1
__snake_case = 0.1
__snake_case = 512
__snake_case = 16
__snake_case = 2
__snake_case = 0.02
__snake_case = 3
__snake_case = 4
__snake_case = 128
__snake_case = 2
__snake_case = 9
__snake_case = 1
__snake_case = None
def lowerCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case = None
if self.use_input_mask:
__snake_case = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case = None
__snake_case = None
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case = ids_tensor([self.batch_size] , self.num_choices )
__snake_case = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__SCREAMING_SNAKE_CASE , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]:
'''simple docstring'''
__snake_case = TFConvBertModel(config=__SCREAMING_SNAKE_CASE )
__snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__snake_case = [input_ids, input_mask]
__snake_case = model(__SCREAMING_SNAKE_CASE )
__snake_case = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
'''simple docstring'''
__snake_case = TFConvBertForMaskedLM(config=__SCREAMING_SNAKE_CASE )
__snake_case = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__snake_case = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]:
'''simple docstring'''
__snake_case = self.num_labels
__snake_case = TFConvBertForSequenceClassification(config=__SCREAMING_SNAKE_CASE )
__snake_case = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__snake_case = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
__snake_case = self.num_choices
__snake_case = TFConvBertForMultipleChoice(config=__SCREAMING_SNAKE_CASE )
__snake_case = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
__snake_case = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
__snake_case = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
__snake_case = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
__snake_case = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
'''simple docstring'''
__snake_case = self.num_labels
__snake_case = TFConvBertForTokenClassification(config=__SCREAMING_SNAKE_CASE )
__snake_case = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__snake_case = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
__snake_case = TFConvBertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE )
__snake_case = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__snake_case = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) = config_and_inputs
__snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase):
__lowercase : str = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__lowercase : Optional[int] = (
{
'''feature-extraction''': TFConvBertModel,
'''fill-mask''': TFConvBertForMaskedLM,
'''question-answering''': TFConvBertForQuestionAnswering,
'''text-classification''': TFConvBertForSequenceClassification,
'''token-classification''': TFConvBertForTokenClassification,
'''zero-shot''': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowercase : Optional[Any] = False
__lowercase : List[str] = False
__lowercase : Union[str, Any] = False
def lowerCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case = TFConvBertModelTester(self )
__snake_case = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 )
def lowerCAmelCase ( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE )
@slow
def lowerCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = True
__snake_case = True
if hasattr(__SCREAMING_SNAKE_CASE , '''use_cache''' ):
__snake_case = True
__snake_case = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length )
__snake_case = getattr(self.model_tester , '''key_length''' , __SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
__snake_case = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__snake_case = model_class(__SCREAMING_SNAKE_CASE )
__snake_case = len(model(__SCREAMING_SNAKE_CASE ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__SCREAMING_SNAKE_CASE , saved_model=__SCREAMING_SNAKE_CASE )
__snake_case = os.path.join(__SCREAMING_SNAKE_CASE , '''saved_model''' , '''1''' )
__snake_case = tf.keras.models.load_model(__SCREAMING_SNAKE_CASE )
__snake_case = model(__SCREAMING_SNAKE_CASE )
if self.is_encoder_decoder:
__snake_case = outputs['''encoder_hidden_states''']
__snake_case = outputs['''encoder_attentions''']
else:
__snake_case = outputs['''hidden_states''']
__snake_case = outputs['''attentions''']
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
__snake_case = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def lowerCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = True
__snake_case = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length )
__snake_case = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length )
__snake_case = getattr(self.model_tester , '''key_length''' , __SCREAMING_SNAKE_CASE )
__snake_case = getattr(self.model_tester , '''key_length''' , __SCREAMING_SNAKE_CASE )
def check_decoder_attentions_output(__SCREAMING_SNAKE_CASE ):
__snake_case = len(__SCREAMING_SNAKE_CASE )
self.assertEqual(out_len % 2 , 0 )
__snake_case = outputs.decoder_attentions
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ):
__snake_case = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__snake_case = True
__snake_case = False
__snake_case = model_class(__SCREAMING_SNAKE_CASE )
__snake_case = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
__snake_case = len(__SCREAMING_SNAKE_CASE )
self.assertEqual(config.output_hidden_states , __SCREAMING_SNAKE_CASE )
check_encoder_attentions_output(__SCREAMING_SNAKE_CASE )
if self.is_encoder_decoder:
__snake_case = model_class(__SCREAMING_SNAKE_CASE )
__snake_case = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
self.assertEqual(config.output_hidden_states , __SCREAMING_SNAKE_CASE )
check_decoder_attentions_output(__SCREAMING_SNAKE_CASE )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__snake_case = True
__snake_case = model_class(__SCREAMING_SNAKE_CASE )
__snake_case = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
self.assertEqual(config.output_hidden_states , __SCREAMING_SNAKE_CASE )
check_encoder_attentions_output(__SCREAMING_SNAKE_CASE )
# Check attention is always last and order is fine
__snake_case = True
__snake_case = True
__snake_case = model_class(__SCREAMING_SNAKE_CASE )
__snake_case = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__SCREAMING_SNAKE_CASE ) )
self.assertEqual(model.config.output_hidden_states , __SCREAMING_SNAKE_CASE )
check_encoder_attentions_output(__SCREAMING_SNAKE_CASE )
@require_tf
class lowerCAmelCase ( unittest.TestCase):
@slow
def lowerCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' )
__snake_case = tf.constant([[0, 1, 2, 3, 4, 5]] )
__snake_case = model(__SCREAMING_SNAKE_CASE )[0]
__snake_case = [1, 6, 768]
self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE )
__snake_case = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
| 24 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ = TypeVar('''T''')
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (position - 1) // 2
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (2 * position) + 1
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (2 * position) + 2
class _UpperCamelCase( Generic[T] ):
def __init__( self : List[str] ):
'''simple docstring'''
__a : list[tuple[T, int]] = []
__a : dict[T, int] = {}
__a : int = 0
def __len__( self : Any ):
'''simple docstring'''
return self.elements
def __repr__( self : Any ):
'''simple docstring'''
return str(self.heap )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return self.elements == 0
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self.heap.append((elem, weight) )
__a : List[Any] = self.elements
self.elements += 1
self._bubble_up(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
__a , __a : Union[str, Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
__a , __a : Dict = self.heap[0]
self._bubble_down(SCREAMING_SNAKE_CASE__ )
return elem
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : List[Any] = self.position_map[elem]
__a : str = (elem, weight)
if position > 0:
__a : Tuple = get_parent_position(SCREAMING_SNAKE_CASE__ )
__a , __a : Dict = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
__a : List[Any] = self.position_map[elem]
if curr_pos == 0:
return None
__a : List[str] = get_parent_position(SCREAMING_SNAKE_CASE__ )
__a , __a : str = self.heap[curr_pos]
__a , __a : Optional[int] = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_up(SCREAMING_SNAKE_CASE__ )
return None
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
__a : int = self.position_map[elem]
__a , __a : Optional[Any] = self.heap[curr_pos]
__a : Tuple = get_child_left_position(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = get_child_right_position(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements and child_right_position < self.elements:
__a , __a : str = self.heap[child_left_position]
__a , __a : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements:
__a , __a : Any = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
return None
if child_right_position < self.elements:
__a , __a : Union[str, Any] = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
return None
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Optional[Any] = self.heap[nodea_pos][0]
__a : str = self.heap[nodea_pos][0]
__a , __a : int = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
__a : str = nodea_pos
__a : Optional[int] = nodea_pos
class _UpperCamelCase( Generic[T] ):
def __init__( self : List[Any] ):
'''simple docstring'''
__a : dict[T, dict[T, int]] = {}
__a : int = 0
def __repr__( self : Tuple ):
'''simple docstring'''
return str(self.connections )
def __len__( self : Dict ):
'''simple docstring'''
return self.nodes
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
if node not in self.connections:
__a : Tuple = {}
self.nodes += 1
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self.add_node(SCREAMING_SNAKE_CASE__ )
self.add_node(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = weight
__a : Any = weight
def UpperCAmelCase__ ( lowerCamelCase_ : GraphUndirectedWeighted[T] , ):
__a : dict[T, int] = {node: maxsize for node in graph.connections}
__a : dict[T, T | None] = {node: None for node in graph.connections}
__a : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(lowerCamelCase_ , lowerCamelCase_ )
if priority_queue.is_empty():
return dist, parent
# initialization
__a : Optional[int] = priority_queue.extract_min()
__a : int = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a : str = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase_ , dist[neighbour] )
__a : Optional[int] = node
# running prim's algorithm
while not priority_queue.is_empty():
__a : Any = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a : Tuple = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase_ , dist[neighbour] )
__a : Dict = node
return dist, parent
| 47 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
def lowerCamelCase__ ( _a , _a=False):
SCREAMING_SNAKE_CASE : Any = []
# fmt: off
# stem:
rename_keys.append(("cls_token", "vit.embeddings.cls_token"))
rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings"))
rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"))
rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"))
# backbone
rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight"))
rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight"))
rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias"))
for stage_idx in range(len(config.backbone_config.depths)):
for layer_idx in range(config.backbone_config.depths[stage_idx]):
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight"))
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias"))
# transformer encoder
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight"))
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias"))
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight"))
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias"))
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight"))
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias"))
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
])
# if just the base model, we should remove "vit" from all keys that start with "vit"
SCREAMING_SNAKE_CASE : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
])
# fmt: on
return rename_keys
def lowerCamelCase__ ( _a , _a , _a=False):
for i in range(config.num_hidden_layers):
if base_model:
SCREAMING_SNAKE_CASE : Any = ""
else:
SCREAMING_SNAKE_CASE : Optional[int] = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
SCREAMING_SNAKE_CASE : List[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE : str = in_proj_weight[
: config.hidden_size, :
]
SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size]
SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
SCREAMING_SNAKE_CASE : str = in_proj_weight[
-config.hidden_size :, :
]
SCREAMING_SNAKE_CASE : Any = in_proj_bias[-config.hidden_size :]
def lowerCamelCase__ ( _a):
SCREAMING_SNAKE_CASE : Union[str, Any] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_a , _a)
def lowerCamelCase__ ( _a , _a , _a):
SCREAMING_SNAKE_CASE : Any = dct.pop(_a)
SCREAMING_SNAKE_CASE : int = val
def lowerCamelCase__ ( ):
SCREAMING_SNAKE_CASE : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(_a , stream=_a).raw)
return im
@torch.no_grad()
def lowerCamelCase__ ( _a , _a , _a=False):
SCREAMING_SNAKE_CASE : Any = BitConfig(
global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_a , )
SCREAMING_SNAKE_CASE : Tuple = ViTHybridConfig(backbone_config=_a , image_size=384 , num_labels=1000)
SCREAMING_SNAKE_CASE : Any = False
# load original model from timm
SCREAMING_SNAKE_CASE : Any = timm.create_model(_a , pretrained=_a)
timm_model.eval()
# load state_dict of original model, remove and rename some keys
SCREAMING_SNAKE_CASE : Any = timm_model.state_dict()
if base_model:
remove_classification_head_(_a)
SCREAMING_SNAKE_CASE : Dict = create_rename_keys(_a , _a)
for src, dest in rename_keys:
rename_key(_a , _a , _a)
read_in_q_k_v(_a , _a , _a)
SCREAMING_SNAKE_CASE : List[str] = "huggingface/label-files"
SCREAMING_SNAKE_CASE : List[Any] = "imagenet-1k-id2label.json"
SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(_a , _a , repo_type="dataset") , "r"))
SCREAMING_SNAKE_CASE : List[Any] = {int(_a): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : List[str] = idalabel
SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
SCREAMING_SNAKE_CASE : Dict = ViTHybridModel(_a).eval()
else:
SCREAMING_SNAKE_CASE : Dict = ViTHybridForImageClassification(_a).eval()
model.load_state_dict(_a)
# create image processor
SCREAMING_SNAKE_CASE : int = create_transform(**resolve_data_config({} , model=_a))
SCREAMING_SNAKE_CASE : Tuple = transform.transforms
SCREAMING_SNAKE_CASE : Optional[int] = {
"bilinear": PILImageResampling.BILINEAR,
"bicubic": PILImageResampling.BICUBIC,
"nearest": PILImageResampling.NEAREST,
}
SCREAMING_SNAKE_CASE : List[str] = ViTHybridImageProcessor(
do_resize=_a , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_a , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_a , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
SCREAMING_SNAKE_CASE : List[Any] = prepare_img()
SCREAMING_SNAKE_CASE : Optional[int] = transform(_a).unsqueeze(0)
SCREAMING_SNAKE_CASE : str = processor(_a , return_tensors="pt").pixel_values
# verify pixel values
assert torch.allclose(_a , _a)
# verify logits
with torch.no_grad():
SCREAMING_SNAKE_CASE : int = model(_a)
SCREAMING_SNAKE_CASE : int = outputs.logits
print("Predicted class:" , logits.argmax(-1).item())
if base_model:
SCREAMING_SNAKE_CASE : List[Any] = timm_model.forward_features(_a)
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(_a , outputs.pooler_output , atol=1E-3)
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = timm_model(_a)
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_a , outputs.logits , atol=1E-3)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
Path(_a).mkdir(exist_ok=_a)
print(f"Saving model {vit_name} to {pytorch_dump_folder_path}")
model.save_pretrained(_a)
print(f"Saving processor to {pytorch_dump_folder_path}")
processor.save_pretrained(_a)
if push_to_hub:
print(f"Pushing model and processor to the hub {vit_name}")
model.push_to_hub(f"ybelkada/{vit_name}")
processor.push_to_hub(f"ybelkada/{vit_name}")
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--vit_name',
default='vit_base_r50_s16_384',
type=str,
help='Name of the hybrid ViT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
a_ = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 25 |
from collections.abc import Sequence
from queue import Queue
class _UpperCamelCase:
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None ):
'''simple docstring'''
__a : Tuple = start
__a : Dict = end
__a : List[str] = val
__a : List[Any] = (start + end) // 2
__a : Optional[Any] = left
__a : List[str] = right
def __repr__( self : Dict ):
'''simple docstring'''
return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'''
class _UpperCamelCase:
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Sequence , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
__a : Tuple = collection
__a : Dict = function
if self.collection:
__a : int = self._build_tree(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self._update_tree(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
return self._query_range(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if start == end:
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.collection[start] )
__a : Tuple = (start + end) // 2
__a : Optional[int] = self._build_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Tuple = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE__ )
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if node.start == i and node.end == i:
__a : Optional[Any] = val
return
if i <= node.mid:
self._update_tree(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
self._update_tree(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : int = self.fn(node.left.val , node.right.val )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , SCREAMING_SNAKE_CASE__ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE__ ) , )
else:
# range in right child tree
return self._query_range(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.root is not None:
__a : Tuple = Queue()
queue.put(self.root )
while not queue.empty():
__a : Tuple = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('''*''' * 50)
SCREAMING_SNAKE_CASE__ = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 47 | 0 |
'''simple docstring'''
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
__UpperCamelCase = logging.get_logger(__name__)
class _A :
lowercase__: str
lowercase__: str = None
@staticmethod
def lowercase__ ( ) -> Dict:
"""simple docstring"""
raise NotImplementedError
def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str , **__magic_name__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
raise NotImplementedError
def lowercase__ ( self : int , __magic_name__ : Optional[Any] ) -> Any:
"""simple docstring"""
raise NotImplementedError
def lowercase__ ( self : str ) -> List[str]:
"""simple docstring"""
if not self.is_available():
raise RuntimeError(
f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' )
@classmethod
def lowercase__ ( cls : Optional[Any] ) -> int:
"""simple docstring"""
return f'''`pip install {cls.pip_package or cls.name}`'''
class _A ( __lowercase ):
lowercase__: str = '''optuna'''
@staticmethod
def lowercase__ ( ) -> Union[str, Any]:
"""simple docstring"""
return is_optuna_available()
def lowercase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str , **__magic_name__ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return run_hp_search_optuna(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : Tuple ) -> Optional[int]:
"""simple docstring"""
return default_hp_space_optuna(__magic_name__ )
class _A ( __lowercase ):
lowercase__: Dict = '''ray'''
lowercase__: Optional[Any] = '''\'ray[tune]\''''
@staticmethod
def lowercase__ ( ) -> str:
"""simple docstring"""
return is_ray_available()
def lowercase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : str , **__magic_name__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return run_hp_search_ray(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
return default_hp_space_ray(__magic_name__ )
class _A ( __lowercase ):
lowercase__: str = '''sigopt'''
@staticmethod
def lowercase__ ( ) -> List[Any]:
"""simple docstring"""
return is_sigopt_available()
def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : str , **__magic_name__ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return run_hp_search_sigopt(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ )
def lowercase__ ( self : List[str] , __magic_name__ : Dict ) -> int:
"""simple docstring"""
return default_hp_space_sigopt(__magic_name__ )
class _A ( __lowercase ):
lowercase__: Optional[int] = '''wandb'''
@staticmethod
def lowercase__ ( ) -> List[str]:
"""simple docstring"""
return is_wandb_available()
def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , **__magic_name__ : Any ) -> int:
"""simple docstring"""
return run_hp_search_wandb(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : Tuple ) -> Optional[int]:
"""simple docstring"""
return default_hp_space_wandb(__magic_name__ )
__UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def _a ( ) -> str:
"""simple docstring"""
__snake_case : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(_lowerCamelCase ) > 0:
__snake_case : Union[str, Any] = available_backends[0].name
if len(_lowerCamelCase ) > 1:
logger.info(
F'''{len(_lowerCamelCase )} hyperparameter search backends available. Using {name} as the default.''' )
return name
raise RuntimeError(
"""No hyperparameter search backend available.\n"""
+ """\n""".join(
F''' - To install {backend.name} run {backend.pip_install()}'''
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 26 |
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class _UpperCamelCase( datasets.BuilderConfig ):
__SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None
def UpperCAmelCase__ ( lowerCamelCase_ : "pyspark.sql.DataFrame" , lowerCamelCase_ : List[int] , ):
import pyspark
def generate_fn():
__a : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) )
for partition_id in partition_order:
__a : Optional[int] = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' )
__a : Optional[Any] = partition_df.collect()
__a : Union[str, Any] = 0
for row in rows:
yield f'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class _UpperCamelCase( _BaseExamplesIterable ):
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Dict=None , ):
'''simple docstring'''
__a : List[str] = df
__a : Tuple = partition_order or range(self.df.rdd.getNumPartitions() )
__a : List[Any] = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self : Tuple ):
'''simple docstring'''
yield from self.generate_examples_fn()
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.random.Generator ):
'''simple docstring'''
__a : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(SCREAMING_SNAKE_CASE__ )
return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return len(self.partition_order )
class _UpperCamelCase( datasets.DatasetBuilder ):
__SCREAMING_SNAKE_CASE : List[str] = SparkConfig
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ):
'''simple docstring'''
import pyspark
__a : int = pyspark.sql.SparkSession.builder.getOrCreate()
__a : Optional[int] = df
__a : List[Any] = working_dir
super().__init__(
cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : List[str] ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(SCREAMING_SNAKE_CASE__ , 'a' )
return [probe_file]
if self._spark.conf.get('spark.master' , '' ).startswith('local' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
__a : List[Any] = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ):
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
import pyspark
def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ):
for batch in it:
yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} )
__a : List[str] = self.df.count()
__a : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
__a : List[str] = (
self.df.limit(SCREAMING_SNAKE_CASE__ )
.repartition(1 )
.mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' )
.agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
__a : Dict = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
__a : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) )
__a : int = self.df.repartition(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ):
'''simple docstring'''
import pyspark
__a : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter
__a : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath
__a : Optional[int] = file_format == 'parquet'
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
__a : List[str] = self.config.features
__a : int = self._writer_batch_size
__a : Union[str, Any] = self._fs.storage_options
def write_arrow(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
__a : Any = pyspark.TaskContext().taskAttemptId()
__a : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , )
__a : Any = 0
__a : List[str] = writer_class(
features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , )
__a : Optional[Any] = pa.Table.from_batches([first_batch] )
writer.write_table(SCREAMING_SNAKE_CASE__ )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
__a , __a : Optional[int] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
shard_id += 1
__a : Optional[Any] = writer_class(
features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , )
__a : Union[str, Any] = pa.Table.from_batches([batch] )
writer.write_table(SCREAMING_SNAKE_CASE__ )
if writer._num_bytes > 0:
__a , __a : str = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ):
__a : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) )
shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Dict = (
self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' )
.groupBy('task_id' )
.agg(
pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ):
'''simple docstring'''
self._validate_cache_dir()
__a : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = not is_remote_filesystem(self._fs )
__a : Optional[Any] = os.path.join if is_local else posixpath.join
__a : Any = '-TTTTT-SSSSS-of-NNNNN'
__a : Union[str, Any] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
__a : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ )
__a : Any = 0
__a : Dict = 0
__a : int = 0
__a : List[str] = []
__a : Optional[int] = []
for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : Optional[int] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ )
__a : List[str] = total_num_examples
__a : Optional[int] = total_num_bytes
# should rename everything at the end
logger.debug(f'''Renaming {total_shards} shards.''' )
if total_shards > 1:
__a : Any = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
__a : Dict = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ):
rename(
SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , )
__a : Union[str, Any] = []
__a : List[str] = 0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
__a , __a : Union[str, Any] = task_id_and_num_shards[i]
for shard_id in range(SCREAMING_SNAKE_CASE__ ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect()
else:
# don't use any pattern
__a : List[Any] = 0
__a : Any = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ):
'''simple docstring'''
return SparkExamplesIterable(self.df )
| 47 | 0 |
from __future__ import annotations
class lowerCamelCase:
'''simple docstring'''
def __init__( self , snake_case_=None ):
_A = data
_A = None
def __repr__( self ):
_A = []
_A = self
while temp:
string_rep.append(F"{temp.data}" )
_A = temp.next
return "->".join(snake_case_ )
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
if not elements_list:
raise Exception('The Elements List is empty' )
_A = _A = Node(elements_list[0] )
for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ):
_A = Node(elements_list[i] )
_A = current.next
return head
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
if head_node is not None and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
print_reverse(head_node.next )
print(head_node.data )
def __lowerCAmelCase( ) -> Any:
"""simple docstring"""
from doctest import testmod
testmod()
_A = make_linked_list([14, 52, 14, 12, 43] )
print('Linked List:' )
print(_SCREAMING_SNAKE_CASE )
print('Elements in Reverse:' )
print_reverse(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 27 |
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ):
# save results
if os.path.exists(lowerCamelCase_ ):
if os.path.exists(os.path.join(lowerCamelCase_ , 'config.json' ) ) and os.path.isfile(
os.path.join(lowerCamelCase_ , 'config.json' ) ):
os.remove(os.path.join(lowerCamelCase_ , 'config.json' ) )
if os.path.exists(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile(
os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ):
os.remove(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) )
else:
os.makedirs(lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Any=False ):
__a : Dict = 2
if unlogit:
__a : Optional[Any] = torch.pow(lowerCamelCase_ , lowerCamelCase_ )
__a : Any = p * torch.log(lowerCamelCase_ )
__a : Union[str, Any] = 0
return -plogp.sum(dim=-1 )
def UpperCAmelCase__ ( lowerCamelCase_ : Any ):
logger.info('lv, h >\t' + '\t'.join(f'''{x + 1}''' for x in range(len(lowerCamelCase_ ) ) ) )
for row in range(len(lowerCamelCase_ ) ):
if tensor.dtype != torch.long:
logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:d}''' for x in tensor[row].cpu().data ) )
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=False ):
__a , __a : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads
__a : str = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
__a : int = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
if head_mask is None:
__a : Union[str, Any] = torch.ones(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCamelCase_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
__a : Any = None
__a : Optional[int] = 0.0
__a : Optional[Any] = 0.0
for step, inputs in enumerate(tqdm(lowerCamelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ):
__a : Dict = tuple(t.to(args.device ) for t in inputs )
((__a) , ) : Dict = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
__a : List[Any] = model(lowerCamelCase_ , labels=lowerCamelCase_ , head_mask=lowerCamelCase_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
__a , __a , __a : int = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCamelCase_ ):
__a : List[str] = entropy(attn.detach() , lowerCamelCase_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCamelCase_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
__a : Optional[Any] = 2
__a : Union[str, Any] = torch.pow(torch.pow(lowerCamelCase_ , lowerCamelCase_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20
if not args.dont_normalize_global_importance:
__a : List[str] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('Attention entropies' )
print_ad_tensor(lowerCamelCase_ )
if compute_importance:
logger.info('Head importance scores' )
print_ad_tensor(lowerCamelCase_ )
logger.info('Head ranked by importance scores' )
__a : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
__a : str = torch.arange(
head_importance.numel() , device=args.device )
__a : Tuple = head_ranks.view_as(lowerCamelCase_ )
print_ad_tensor(lowerCamelCase_ )
return attn_entropy, head_importance, total_loss
def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ):
__a , __a , __a : Optional[int] = compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ )
__a : Tuple = 1 / loss # instead of downsteam score use the LM loss
logger.info('Pruning: original score: %f, threshold: %f' , lowerCamelCase_ , original_score * args.masking_threshold )
__a : Tuple = torch.ones_like(lowerCamelCase_ )
__a : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
__a : Tuple = original_score
while current_score >= original_score * args.masking_threshold:
__a : Optional[Any] = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
__a : List[str] = float('Inf' )
__a : List[Any] = head_importance.view(-1 ).sort()[1]
if len(lowerCamelCase_ ) <= num_to_mask:
print('BREAK BY num_to_mask' )
break
# mask heads
__a : Any = current_heads_to_mask[:num_to_mask]
logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) )
__a : int = new_head_mask.view(-1 )
__a : Tuple = 0.0
__a : int = new_head_mask.view_as(lowerCamelCase_ )
__a : Optional[int] = new_head_mask.clone().detach()
print_ad_tensor(lowerCamelCase_ )
# Compute metric and head importance again
__a , __a , __a : int = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , head_mask=lowerCamelCase_ )
__a : List[Any] = 1 / loss
logger.info(
'Masking: current score: %f, remaining heads %d (%.1f percents)' , lowerCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , )
logger.info('Final head mask' )
print_ad_tensor(lowerCamelCase_ )
np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() )
return head_mask
def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ):
__a : List[Any] = datetime.now()
__a , __a , __a : List[str] = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ )
__a : List[str] = 1 / loss
__a : List[Any] = datetime.now() - before_time
__a : List[str] = sum(p.numel() for p in model.parameters() )
__a : Dict = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
__a : Tuple = [
v,
]
assert sum(len(lowerCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCamelCase_ )
__a : Optional[Any] = sum(p.numel() for p in model.parameters() )
__a : Tuple = datetime.now()
__a , __a , __a : Tuple = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ , actually_pruned=lowerCamelCase_ , )
__a : Optional[Any] = 1 / loss
__a : List[Any] = datetime.now() - before_time
logger.info(
'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , lowerCamelCase_ , lowerCamelCase_ , pruned_num_params / original_num_params * 1_0_0 , )
logger.info('Pruning: score with masking: %f score with pruning: %f' , lowerCamelCase_ , lowerCamelCase_ )
logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 )
save_model(lowerCamelCase_ , args.output_dir )
def UpperCAmelCase__ ( ):
__a : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--data_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , )
parser.add_argument(
'--model_name_or_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--output_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , )
# Other parameters
parser.add_argument(
'--config_name' , default='' , type=lowerCamelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--tokenizer_name' , default='' , type=lowerCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--cache_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , )
parser.add_argument(
'--data_subset' , type=lowerCamelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' )
parser.add_argument(
'--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
parser.add_argument(
'--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' )
parser.add_argument(
'--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , )
parser.add_argument(
'--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' )
parser.add_argument(
'--masking_threshold' , default=0.9 , type=lowerCamelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , )
parser.add_argument(
'--masking_amount' , default=0.1 , type=lowerCamelCase_ , help='Amount to heads to masking at each masking step.' )
parser.add_argument('--metric_name' , default='acc' , type=lowerCamelCase_ , help='Metric to use for head masking.' )
parser.add_argument(
'--max_seq_length' , default=1_2_8 , type=lowerCamelCase_ , help=(
'The maximum total input sequence length after WordPiece tokenization. \n'
'Sequences longer than this will be truncated, sequences shorter padded.'
) , )
parser.add_argument('--batch_size' , default=1 , type=lowerCamelCase_ , help='Batch size.' )
parser.add_argument('--seed' , type=lowerCamelCase_ , default=4_2 )
parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='local_rank for distributed training on gpus' )
parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' )
parser.add_argument('--server_ip' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' )
__a : Optional[Any] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
__a : List[str] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' )
__a : Tuple = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
__a : Union[str, Any] = torch.device('cuda' , args.local_rank )
__a : Any = 1
torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
__a : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
__a : List[Any] = nn.parallel.DistributedDataParallel(
lowerCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase_ )
elif args.n_gpu > 1:
__a : Union[str, Any] = nn.DataParallel(lowerCamelCase_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=lowerCamelCase_ )
torch.save(lowerCamelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) )
logger.info('Training/evaluation parameters %s' , lowerCamelCase_ )
# Prepare dataset
__a : Tuple = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
__a : str = (torch.from_numpy(lowerCamelCase_ ),)
__a : List[str] = TensorDataset(*lowerCamelCase_ )
__a : Optional[Any] = RandomSampler(lowerCamelCase_ )
__a : Union[str, Any] = DataLoader(lowerCamelCase_ , sampler=lowerCamelCase_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
__a : Union[str, Any] = mask_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
prune_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
main()
| 47 | 0 |
'''simple docstring'''
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
UpperCamelCase_ = ""
UpperCamelCase_ = ""
UpperCamelCase_ = ""
UpperCamelCase_ = 1 # (0 is vertical, 1 is horizontal)
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = get_dataset(__UpperCamelCase ,__UpperCamelCase )
print('Processing...' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = update_image_and_anno(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
for index, image in enumerate(__UpperCamelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
SCREAMING_SNAKE_CASE : Tuple = random_chars(32 )
SCREAMING_SNAKE_CASE : Union[str, Any] = paths[index].split(os.sep )[-1].rsplit('.' ,1 )[0]
SCREAMING_SNAKE_CASE : Optional[int] = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(f"/{file_root}.jpg" ,__UpperCamelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"Success {index+1}/{len(__UpperCamelCase )} with {file_name}" )
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for anno in new_annos[index]:
SCREAMING_SNAKE_CASE : Optional[Any] = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__UpperCamelCase )
with open(f"/{file_root}.txt" ,'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = []
SCREAMING_SNAKE_CASE : Optional[int] = []
for label_file in glob.glob(os.path.join(__UpperCamelCase ,'*.txt' ) ):
SCREAMING_SNAKE_CASE : Optional[Any] = label_file.split(os.sep )[-1].rsplit('.' ,1 )[0]
with open(__UpperCamelCase ) as in_file:
SCREAMING_SNAKE_CASE : List[Any] = in_file.readlines()
SCREAMING_SNAKE_CASE : Dict = os.path.join(__UpperCamelCase ,f"{label_name}.jpg" )
SCREAMING_SNAKE_CASE : str = []
for obj_list in obj_lists:
SCREAMING_SNAKE_CASE : str = obj_list.rstrip('\n' ).split(' ' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__UpperCamelCase )
labels.append(__UpperCamelCase )
return img_paths, labels
def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: list ,__UpperCamelCase: int = 1 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = []
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : Any = []
for idx in range(len(__UpperCamelCase ) ):
SCREAMING_SNAKE_CASE : int = []
SCREAMING_SNAKE_CASE : Tuple = img_list[idx]
path_list.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : str = anno_list[idx]
SCREAMING_SNAKE_CASE : List[str] = cva.imread(__UpperCamelCase )
if flip_type == 1:
SCREAMING_SNAKE_CASE : Union[str, Any] = cva.flip(__UpperCamelCase ,__UpperCamelCase )
for bbox in img_annos:
SCREAMING_SNAKE_CASE : Dict = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
SCREAMING_SNAKE_CASE : Optional[Any] = cva.flip(__UpperCamelCase ,__UpperCamelCase )
for bbox in img_annos:
SCREAMING_SNAKE_CASE : int = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__UpperCamelCase )
new_imgs_list.append(__UpperCamelCase )
return new_imgs_list, new_annos_lists, path_list
def lowercase__( __UpperCamelCase: int = 32 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
SCREAMING_SNAKE_CASE : Optional[Any] = ascii_lowercase + digits
return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 28 |
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse('''0.8.3'''):
raise Exception('''requires gluonnlp == 0.8.3''')
if version.parse(mx.__version__) != version.parse('''1.5.0'''):
raise Exception('''requires mxnet == 1.5.0''')
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''The Nymphenburg Palace is a beautiful palace in Munich!'''
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ):
__a : List[Any] = {
'attention_cell': 'multi_head',
'num_layers': 4,
'units': 1_0_2_4,
'hidden_size': 7_6_8,
'max_length': 5_1_2,
'num_heads': 8,
'scaled': True,
'dropout': 0.1,
'use_residual': True,
'embed_size': 1_0_2_4,
'embed_dropout': 0.1,
'word_embed': None,
'layer_norm_eps': 1e-5,
'token_type_vocab_size': 2,
}
__a : Optional[int] = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
__a : List[str] = BERTEncoder(
attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
__a : int = 'openwebtext_ccnews_stories_books_cased'
# Specify download folder to Gluonnlp's vocab
__a : Optional[Any] = os.path.join(get_home_dir() , 'models' )
__a : Optional[Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ )
__a : Any = nlp.model.BERTModel(
lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , )
original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ )
__a : Dict = original_bort._collect_params_with_prefix()
# Build our config 🤗
__a : Optional[Any] = {
'architectures': ['BertForMaskedLM'],
'attention_probs_dropout_prob': predefined_args['dropout'],
'hidden_act': 'gelu',
'hidden_dropout_prob': predefined_args['dropout'],
'hidden_size': predefined_args['embed_size'],
'initializer_range': 0.02,
'intermediate_size': predefined_args['hidden_size'],
'layer_norm_eps': predefined_args['layer_norm_eps'],
'max_position_embeddings': predefined_args['max_length'],
'model_type': 'bort',
'num_attention_heads': predefined_args['num_heads'],
'num_hidden_layers': predefined_args['num_layers'],
'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa
'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa
'vocab_size': len(lowerCamelCase_ ),
}
__a : str = BertConfig.from_dict(lowerCamelCase_ )
__a : Optional[int] = BertForMaskedLM(lowerCamelCase_ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase_ : Optional[Any] ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ):
__a : Optional[int] = hf_param.shape
__a : int = to_torch(params[gluon_param] )
__a : int = gluon_param.shape
assert (
shape_hf == shape_gluon
), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'''
return gluon_param
__a : str = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' )
__a : str = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' )
__a : Tuple = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' )
__a : Union[str, Any] = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
__a : Union[str, Any] = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
__a : BertLayer = hf_bort_model.bert.encoder.layer[i]
# self attention
__a : BertSelfAttention = layer.attention.self
__a : Optional[int] = check_and_map_params(
self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' )
__a : str = check_and_map_params(
self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' )
__a : List[str] = check_and_map_params(
self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' )
__a : str = check_and_map_params(
self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' )
__a : Dict = check_and_map_params(
self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' )
__a : str = check_and_map_params(
self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' )
# self attention output
__a : BertSelfOutput = layer.attention.output
__a : Tuple = check_and_map_params(
self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' )
__a : Dict = check_and_map_params(
self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' )
__a : Optional[Any] = check_and_map_params(
self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' )
__a : Optional[Any] = check_and_map_params(
self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' )
# intermediate
__a : BertIntermediate = layer.intermediate
__a : List[str] = check_and_map_params(
intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' )
__a : Optional[Any] = check_and_map_params(
intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' )
# output
__a : BertOutput = layer.output
__a : str = check_and_map_params(
bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' )
__a : List[Any] = check_and_map_params(
bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' )
__a : str = check_and_map_params(
bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' )
__a : List[str] = check_and_map_params(
bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
__a : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-base' )
__a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ )['input_ids']
# Get gluon output
__a : Optional[int] = mx.nd.array([input_ids] )
__a : Tuple = original_bort(inputs=lowerCamelCase_ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase_ )
__a : Optional[Any] = BertModel.from_pretrained(lowerCamelCase_ )
hf_bort_model.eval()
__a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' )
__a : int = hf_bort_model(**lowerCamelCase_ )[0]
__a : Dict = output_gluon[0].asnumpy()
__a : str = output_hf[0].detach().numpy()
__a : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item()
__a : str = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 )
if success:
print('✔️ Both model do output the same tensors' )
else:
print('❌ Both model do **NOT** output the same tensors' )
print('Absolute difference is:' , lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 47 | 0 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
return int((input_a, input_a).count(0 ) == 0 )
def lowercase ( ):
assert and_gate(0 ,0 ) == 0
assert and_gate(0 ,1 ) == 0
assert and_gate(1 ,0 ) == 0
assert and_gate(1 ,1 ) == 1
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))
| 29 |
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ):
__a : Any = ''
for i in table:
res += inp[i - 1]
return res
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ):
return data[1:] + data[0]
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ):
__a : Optional[int] = ''
for i in range(len(lowerCamelCase_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ):
__a : List[str] = int('0b' + data[0] + data[-1] , 2 )
__a : List[str] = int('0b' + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ):
__a : List[Any] = message[:4]
__a : str = message[4:]
__a : Any = apply_table(lowerCamelCase_ , lowerCamelCase_ )
__a : int = xor(lowerCamelCase_ , lowerCamelCase_ )
__a : Dict = apply_sbox(lowerCamelCase_ , temp[:4] ) # noqa: E741
__a : Tuple = apply_sbox(lowerCamelCase_ , temp[4:] )
__a : List[Any] = '0' * (2 - len(lowerCamelCase_ )) + l # noqa: E741
__a : List[str] = '0' * (2 - len(lowerCamelCase_ )) + r
__a : List[Any] = apply_table(l + r , lowerCamelCase_ )
__a : Dict = xor(lowerCamelCase_ , lowerCamelCase_ )
return temp + right
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = input('''Enter 10 bit key: ''')
SCREAMING_SNAKE_CASE__ = input('''Enter 8 bit message: ''')
SCREAMING_SNAKE_CASE__ = [6, 3, 7, 4, 8, 5, 10, 9]
SCREAMING_SNAKE_CASE__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
SCREAMING_SNAKE_CASE__ = [2, 4, 3, 1]
SCREAMING_SNAKE_CASE__ = [2, 6, 3, 1, 4, 8, 5, 7]
SCREAMING_SNAKE_CASE__ = [4, 1, 3, 5, 7, 2, 8, 6]
SCREAMING_SNAKE_CASE__ = [4, 1, 2, 3, 2, 3, 4, 1]
SCREAMING_SNAKE_CASE__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
SCREAMING_SNAKE_CASE__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
SCREAMING_SNAKE_CASE__ = apply_table(key, paa_table)
SCREAMING_SNAKE_CASE__ = temp[:5]
SCREAMING_SNAKE_CASE__ = temp[5:]
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table)
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table)
# encryption
SCREAMING_SNAKE_CASE__ = apply_table(message, IP)
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv)
print('''Cipher text is:''', CT)
# decryption
SCREAMING_SNAKE_CASE__ = apply_table(CT, IP)
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv)
print('''Plain text after decypting is:''', PT)
| 47 | 0 |
import math
import random
def lowerCamelCase__ ( _lowercase , _lowercase = False ):
'''simple docstring'''
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
__a = 0.02
def lowerCamelCase__ ( _lowercase , _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : List[Any] = float(2 * (random.randint(1 , 100 )) - 1 )
for _ in range(_lowercase ):
# Forward propagation
UpperCAmelCase_ : List[str] = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
UpperCAmelCase_ : Tuple = (expected / 100) - layer_a
# Error delta
UpperCAmelCase_ : int = layer_1_error * sigmoid_function(_lowercase , _lowercase )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = int(input('Expected value: '))
__a = int(input('Number of propagations: '))
print(forward_propagation(expected, number_propagations))
| 30 |
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _UpperCamelCase( unittest.TestCase ):
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
__a : List[Any] = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
__a : int = None
ops.enable_eager_execution_internal()
__a : Optional[Any] = tf.config.list_physical_devices('CPU' )
if len(SCREAMING_SNAKE_CASE__ ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__a : int = tf.config.list_logical_devices(device_type='CPU' )
__a : str = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__a : List[str] = GradientAccumulator()
__a : Tuple = tf.Variable([4.0, 3.0] )
__a , __a : int = create_optimizer(5e-5 , 1_0 , 5 )
__a : List[Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE__ )
def accumulate_on_replica(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ):
with strategy.scope():
__a : Optional[Any] = strategy.experimental_local_results(SCREAMING_SNAKE_CASE__ )
local_variables[0].assign(SCREAMING_SNAKE_CASE__ )
local_variables[1].assign(SCREAMING_SNAKE_CASE__ )
strategy.run(SCREAMING_SNAKE_CASE__ , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(SCREAMING_SNAKE_CASE__ )
def _check_local_values(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ):
__a : Union[str, Any] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 )
self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 47 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Tuple = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "swinv2"
lowercase_ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ):
super().__init__(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = image_size
SCREAMING_SNAKE_CASE_ = patch_size
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = embed_dim
SCREAMING_SNAKE_CASE_ = depths
SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = num_heads
SCREAMING_SNAKE_CASE_ = window_size
SCREAMING_SNAKE_CASE_ = mlp_ratio
SCREAMING_SNAKE_CASE_ = qkv_bias
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = drop_path_rate
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = use_absolute_embeddings
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
| 31 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''',
'''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''',
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''roberta'''
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : str=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Tuple="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = vocab_size
__a : Tuple = hidden_size
__a : List[str] = num_hidden_layers
__a : List[Any] = num_attention_heads
__a : str = hidden_act
__a : Optional[Any] = intermediate_size
__a : Dict = hidden_dropout_prob
__a : List[str] = attention_probs_dropout_prob
__a : Optional[Any] = max_position_embeddings
__a : Dict = type_vocab_size
__a : str = initializer_range
__a : List[str] = layer_norm_eps
__a : Optional[int] = position_embedding_type
__a : Union[str, Any] = use_cache
__a : str = classifier_dropout
class _UpperCamelCase( __lowerCamelCase ):
@property
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
if self.task == "multiple-choice":
__a : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__a : Dict = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 47 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ = {
"configuration_instructblip": [
"INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"InstructBlipConfig",
"InstructBlipQFormerConfig",
"InstructBlipVisionConfig",
],
"processing_instructblip": ["InstructBlipProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"InstructBlipQFormerModel",
"InstructBlipPreTrainedModel",
"InstructBlipForConditionalGeneration",
"InstructBlipVisionModel",
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 32 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''▁'''
SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.bpe.model'''}
SCREAMING_SNAKE_CASE__ = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
SCREAMING_SNAKE_CASE__ = {
'''facebook/xglm-564M''': 2048,
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask''']
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : Dict="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ):
'''simple docstring'''
__a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
__a : Any = 7
__a : Union[str, Any] = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
__a : Union[str, Any] = kwargs.get('additional_special_tokens' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , )
__a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) )
__a : str = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__a : Any = 1
# Mimic fairseq token-to-id alignment for the first 4 token
__a : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
__a : List[str] = len(self.sp_model )
__a : Optional[int] = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ )
__a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[str] ):
'''simple docstring'''
__a : Tuple = self.__dict__.copy()
__a : List[str] = None
__a : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
__a : int = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__a : Dict = {}
__a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
__a : Optional[Any] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ):
'''simple docstring'''
__a : Optional[int] = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
__a : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__a : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
__a : Optional[int] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip()
return out_string
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a : Any = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi:
__a : List[Any] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 47 | 0 |
# Note: if you intend to run this script make sure you look under scripts/fsmt/
# to locate the appropriate script to do the work correctly. There is a set of scripts to:
# - download and prepare data and run the conversion script
# - perform eval to get the best hparam into the config
# - generate model_cards - useful if you have multiple models from the same paper
import argparse
import json
import os
import re
from collections import OrderedDict
from os.path import basename, dirname
import fairseq
import torch
from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
lowerCamelCase__ : List[Any] = 2
# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping`
# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults:
#
# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users)
# * `early_stopping`: `False` consistently scored better
# * `length_penalty` varied, so will assign the best one depending on the model
lowerCamelCase__ : int = {
# fairseq:
"""wmt19-ru-en""": {"""length_penalty""": 1.1},
"""wmt19-en-ru""": {"""length_penalty""": 1.1_5},
"""wmt19-en-de""": {"""length_penalty""": 1.0},
"""wmt19-de-en""": {"""length_penalty""": 1.1},
# allenai:
"""wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6},
"""wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6},
"""wmt16-en-de-12-1""": {"""length_penalty""": 0.8},
"""wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6},
"""wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6},
}
# this remaps the different models to their organization names
lowerCamelCase__ : List[str] = {}
for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
lowerCamelCase__ : Optional[int] = """facebook"""
for m in [
"wmt16-en-de-dist-12-1",
"wmt16-en-de-dist-6-1",
"wmt16-en-de-12-1",
"wmt19-de-en-6-6-base",
"wmt19-de-en-6-6-big",
]:
lowerCamelCase__ : int = """allenai"""
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
snake_case__ = dict((re.sub(r'''@@$''' , '''''' , __lowerCAmelCase ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , __lowerCAmelCase ), v) for k, v in d.items() )
snake_case__ = '''<s> <pad> </s> <unk>'''.split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
snake_case__ = d[k] # restore
return da
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Any:
# prep
assert os.path.exists(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
print(F"""Writing results to {pytorch_dump_folder_path}""" )
# handle various types of models
snake_case__ = basename(__lowerCAmelCase )
snake_case__ = dirname(__lowerCAmelCase )
snake_case__ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel
snake_case__ = cls.hub_models()
snake_case__ = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''}
snake_case__ = '''.'''
# note: since the model dump is old, fairseq has upgraded its model some
# time later, and it does a whole lot of rewrites and splits on the saved
# weights, therefore we can't use torch.load() directly on the model file.
# see: upgrade_state_dict(state_dict) in fairseq_model.py
print(F"""using checkpoint {checkpoint_file}""" )
snake_case__ = hub_utils.from_pretrained(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , archive_map=__lowerCAmelCase , **__lowerCAmelCase )
snake_case__ = vars(chkpt['''args''']['''model'''] )
snake_case__ = args['''source_lang''']
snake_case__ = args['''target_lang''']
snake_case__ = dirname(__lowerCAmelCase )
snake_case__ = basename(__lowerCAmelCase )
# dicts
snake_case__ = os.path.join(__lowerCAmelCase , F"""dict.{src_lang}.txt""" )
snake_case__ = os.path.join(__lowerCAmelCase , F"""dict.{tgt_lang}.txt""" )
snake_case__ = Dictionary.load(__lowerCAmelCase )
snake_case__ = rewrite_dict_keys(src_dict.indices )
snake_case__ = len(__lowerCAmelCase )
snake_case__ = os.path.join(__lowerCAmelCase , '''vocab-src.json''' )
print(F"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" )
with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# detect whether this is a do_lower_case situation, which can be derived by checking whether we
# have at least one uppercase letter in the source vocab
snake_case__ = True
for k in src_vocab.keys():
if not k.islower():
snake_case__ = False
break
snake_case__ = Dictionary.load(__lowerCAmelCase )
snake_case__ = rewrite_dict_keys(tgt_dict.indices )
snake_case__ = len(__lowerCAmelCase )
snake_case__ = os.path.join(__lowerCAmelCase , '''vocab-tgt.json''' )
print(F"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" )
with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# merges_file (bpecodes)
snake_case__ = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['''merges_file'''] )
for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code"
snake_case__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
break
with open(__lowerCAmelCase , encoding='''utf-8''' ) as fin:
snake_case__ = fin.read()
snake_case__ = re.sub(r''' \d+$''' , '''''' , __lowerCAmelCase , 0 , re.M ) # remove frequency number
print(F"""Generating {merges_file}""" )
with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fout:
fout.write(__lowerCAmelCase )
# model config
snake_case__ = os.path.join(__lowerCAmelCase , '''config.json''' )
# validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe -
# may have to modify the tokenizer if a different type is used by a future model
assert args["bpe"] == "fastbpe", F"""need to extend tokenizer to support bpe={args['bpe']}"""
assert args["tokenizer"] == "moses", F"""need to extend tokenizer to support bpe={args['tokenizer']}"""
snake_case__ = {
'''architectures''': ['''FSMTForConditionalGeneration'''],
'''model_type''': '''fsmt''',
'''activation_dropout''': args['''activation_dropout'''],
'''activation_function''': '''relu''',
'''attention_dropout''': args['''attention_dropout'''],
'''d_model''': args['''decoder_embed_dim'''],
'''dropout''': args['''dropout'''],
'''init_std''': 0.02,
'''max_position_embeddings''': args['''max_source_positions'''],
'''num_hidden_layers''': args['''encoder_layers'''],
'''src_vocab_size''': src_vocab_size,
'''tgt_vocab_size''': tgt_vocab_size,
'''langs''': [src_lang, tgt_lang],
'''encoder_attention_heads''': args['''encoder_attention_heads'''],
'''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''],
'''encoder_layerdrop''': args['''encoder_layerdrop'''],
'''encoder_layers''': args['''encoder_layers'''],
'''decoder_attention_heads''': args['''decoder_attention_heads'''],
'''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''],
'''decoder_layerdrop''': args['''decoder_layerdrop'''],
'''decoder_layers''': args['''decoder_layers'''],
'''bos_token_id''': 0,
'''pad_token_id''': 1,
'''eos_token_id''': 2,
'''is_encoder_decoder''': True,
'''scale_embedding''': not args['''no_scale_embedding'''],
'''tie_word_embeddings''': args['''share_all_embeddings'''],
}
# good hparam defaults to start with
snake_case__ = 5
snake_case__ = False
if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]:
snake_case__ = best_score_hparams[model_dir]['''length_penalty''']
else:
snake_case__ = 1.0
print(F"""Generating {fsmt_model_config_file}""" )
with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# tokenizer config
snake_case__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
snake_case__ = {
'''langs''': [src_lang, tgt_lang],
'''model_max_length''': 1024,
'''do_lower_case''': do_lower_case,
}
print(F"""Generating {fsmt_tokenizer_config_file}""" )
with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# model
snake_case__ = chkpt['''models'''][0]
snake_case__ = model.state_dict()
# rename keys to start with 'model.'
snake_case__ = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() )
# remove unneeded keys
snake_case__ = [
'''model.model''',
'''model.encoder.version''',
'''model.decoder.version''',
'''model.encoder_embed_tokens.weight''',
'''model.decoder_embed_tokens.weight''',
'''model.encoder.embed_positions._float_tensor''',
'''model.decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
snake_case__ = FSMTConfig.from_pretrained(__lowerCAmelCase )
snake_case__ = FSMTForConditionalGeneration(__lowerCAmelCase )
# check that it loads ok
model_new.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
# save
snake_case__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
print(F"""Generating {pytorch_weights_dump_path}""" )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
print('''Conversion is done!''' )
print('''\nLast step is to upload the files to s3''' )
print(F"""cd {data_root}""" )
print(F"""transformers-cli upload {model_dir}""" )
if __name__ == "__main__":
lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fsmt_checkpoint_path""",
default=None,
type=str,
required=True,
help=(
"""Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"""
""" bpecodes, etc."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
lowerCamelCase__ : Dict = parser.parse_args()
convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
| 33 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
SCREAMING_SNAKE_CASE__ = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] ):
__a : str = torch.load(lowerCamelCase_ , map_location='cpu' )
return sd
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=rename_keys_prefix ):
__a : Optional[Any] = OrderedDict()
__a : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__a : List[Any] = key
for name_pair in rename_keys_prefix:
__a : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__a : Any = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__a : int = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ):
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
__a : Dict = 'pretraining'
if "vcr" in checkpoint_path:
__a : int = {'visual_embedding_dim': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
__a : int = {'visual_embedding_dim': 2_0_4_8}
elif "vqa" in checkpoint_path:
__a : Tuple = {'visual_embedding_dim': 2_0_4_8}
elif "nlvr" in checkpoint_path:
__a : List[Any] = {'visual_embedding_dim': 1_0_2_4}
else:
raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
__a : int = {'visual_embedding_dim': 5_1_2}
__a : Any = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
__a : Any = {'visual_embedding_dim': 2_0_4_8}
__a : List[str] = 'vqa_advanced'
elif "vqa" in checkpoint_path:
__a : List[Any] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9}
__a : List[Any] = 'vqa'
elif "nlvr" in checkpoint_path:
__a : Optional[int] = {
'visual_embedding_dim': 1_0_2_4,
'num_labels': 2,
}
__a : Optional[Any] = 'nlvr'
__a : str = VisualBertConfig(**lowerCamelCase_ )
# Load State Dict
__a : str = load_state_dict(lowerCamelCase_ )
__a : str = get_new_dict(lowerCamelCase_ , lowerCamelCase_ )
if model_type == "pretraining":
__a : Optional[Any] = VisualBertForPreTraining(lowerCamelCase_ )
elif model_type == "vqa":
__a : Any = VisualBertForQuestionAnswering(lowerCamelCase_ )
elif model_type == "nlvr":
__a : int = VisualBertForVisualReasoning(lowerCamelCase_ )
elif model_type == "multichoice":
__a : Optional[int] = VisualBertForMultipleChoice(lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
# Save Checkpoints
Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 47 | 0 |
"""simple docstring"""
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
SCREAMING_SNAKE_CASE_ = ['text', 'image', 'audio']
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = []
for input_type in input_types:
if input_type == "text":
inputs.append('''Text input''' )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(_lowercase ,_lowercase ):
inputs.append(create_inputs(_lowercase ) )
else:
raise ValueError(f'Invalid type requested: {input_type}' )
return inputs
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = []
for output in outputs:
if isinstance(_lowercase ,(str, AgentText) ):
output_types.append('''text''' )
elif isinstance(_lowercase ,(Image.Image, AgentImage) ):
output_types.append('''image''' )
elif isinstance(_lowercase ,(torch.Tensor, AgentAudio) ):
output_types.append('''audio''' )
else:
raise ValueError(f'Invalid output: {output}' )
return output_types
@is_tool_test
class snake_case_ :
"""simple docstring"""
def UpperCAmelCase__ ( self) -> List[Any]:
self.assertTrue(hasattr(self.tool , '''inputs'''))
self.assertTrue(hasattr(self.tool , '''outputs'''))
UpperCamelCase = self.tool.inputs
for _input in inputs:
if isinstance(_input , lowerCamelCase_):
for __input in _input:
self.assertTrue(__input in authorized_types)
else:
self.assertTrue(_input in authorized_types)
UpperCamelCase = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types)
def UpperCAmelCase__ ( self) -> Union[str, Any]:
UpperCamelCase = create_inputs(self.tool.inputs)
UpperCamelCase = self.tool(*lowerCamelCase_)
# There is a single output
if len(self.tool.outputs) == 1:
UpperCamelCase = [outputs]
self.assertListEqual(output_types(lowerCamelCase_) , self.tool.outputs)
def UpperCAmelCase__ ( self) -> str:
self.assertTrue(hasattr(self.tool , '''description'''))
self.assertTrue(hasattr(self.tool , '''default_checkpoint'''))
self.assertTrue(self.tool.description.startswith('''This is a tool that'''))
def UpperCAmelCase__ ( self) -> Any:
UpperCamelCase = create_inputs(self.tool.inputs)
UpperCamelCase = self.tool(*lowerCamelCase_)
if not isinstance(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase = [outputs]
self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs))
for output, output_type in zip(lowerCamelCase_ , self.tool.outputs):
UpperCamelCase = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_))
def UpperCAmelCase__ ( self) -> List[Any]:
UpperCamelCase = create_inputs(self.tool.inputs)
UpperCamelCase = []
for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs):
if isinstance(lowerCamelCase_ , lowerCamelCase_):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type])
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input))
# Should not raise an error
UpperCamelCase = self.tool(*lowerCamelCase_)
if not isinstance(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase = [outputs]
self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs))
| 34 |
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
| 47 | 0 |
import random
def a ( A__ ) -> bool:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = num - 1
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
while s % 2 == 0:
SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2
t += 1
for _ in range(5 ):
SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ )
if v != 1:
SCREAMING_SNAKE_CASE__ : List[str] = 0
while v != (num - 1):
if i == t - 1:
return False
else:
SCREAMING_SNAKE_CASE__ : Any = i + 1
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num
return True
def a ( A__ ) -> bool:
'''simple docstring'''
if num < 2:
return False
SCREAMING_SNAKE_CASE__ : Optional[int] = [
2,
3,
5,
7,
1_1,
1_3,
1_7,
1_9,
2_3,
2_9,
3_1,
3_7,
4_1,
4_3,
4_7,
5_3,
5_9,
6_1,
6_7,
7_1,
7_3,
7_9,
8_3,
8_9,
9_7,
1_0_1,
1_0_3,
1_0_7,
1_0_9,
1_1_3,
1_2_7,
1_3_1,
1_3_7,
1_3_9,
1_4_9,
1_5_1,
1_5_7,
1_6_3,
1_6_7,
1_7_3,
1_7_9,
1_8_1,
1_9_1,
1_9_3,
1_9_7,
1_9_9,
2_1_1,
2_2_3,
2_2_7,
2_2_9,
2_3_3,
2_3_9,
2_4_1,
2_5_1,
2_5_7,
2_6_3,
2_6_9,
2_7_1,
2_7_7,
2_8_1,
2_8_3,
2_9_3,
3_0_7,
3_1_1,
3_1_3,
3_1_7,
3_3_1,
3_3_7,
3_4_7,
3_4_9,
3_5_3,
3_5_9,
3_6_7,
3_7_3,
3_7_9,
3_8_3,
3_8_9,
3_9_7,
4_0_1,
4_0_9,
4_1_9,
4_2_1,
4_3_1,
4_3_3,
4_3_9,
4_4_3,
4_4_9,
4_5_7,
4_6_1,
4_6_3,
4_6_7,
4_7_9,
4_8_7,
4_9_1,
4_9_9,
5_0_3,
5_0_9,
5_2_1,
5_2_3,
5_4_1,
5_4_7,
5_5_7,
5_6_3,
5_6_9,
5_7_1,
5_7_7,
5_8_7,
5_9_3,
5_9_9,
6_0_1,
6_0_7,
6_1_3,
6_1_7,
6_1_9,
6_3_1,
6_4_1,
6_4_3,
6_4_7,
6_5_3,
6_5_9,
6_6_1,
6_7_3,
6_7_7,
6_8_3,
6_9_1,
7_0_1,
7_0_9,
7_1_9,
7_2_7,
7_3_3,
7_3_9,
7_4_3,
7_5_1,
7_5_7,
7_6_1,
7_6_9,
7_7_3,
7_8_7,
7_9_7,
8_0_9,
8_1_1,
8_2_1,
8_2_3,
8_2_7,
8_2_9,
8_3_9,
8_5_3,
8_5_7,
8_5_9,
8_6_3,
8_7_7,
8_8_1,
8_8_3,
8_8_7,
9_0_7,
9_1_1,
9_1_9,
9_2_9,
9_3_7,
9_4_1,
9_4_7,
9_5_3,
9_6_7,
9_7_1,
9_7_7,
9_8_3,
9_9_1,
9_9_7,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(A__ )
def a ( A__ = 1_0_2_4 ) -> int:
'''simple docstring'''
while True:
SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(A__ ):
return num
if __name__ == "__main__":
a_ :Dict = generate_large_prime()
print(('Prime number:', num))
print(('is_prime_low_num:', is_prime_low_num(num)))
| 35 |
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class _UpperCamelCase( __lowerCamelCase ):
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : List[Any] = tempfile.mkdtemp()
__a : int = 8
# DPR tok
__a : Dict = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__a : int = os.path.join(self.tmpdirname , 'dpr_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , DPR_VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
# BART tok
__a : str = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
__a : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
__a : List[str] = {'unk_token': '<unk>'}
__a : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['vocab_file'] )
__a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) )
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) )
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
@require_tokenizers
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
__a : Tuple = os.path.join(self.tmpdirname , 'rag_tokenizer' )
__a : Optional[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() )
__a : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() )
rag_config.save_pretrained(SCREAMING_SNAKE_CASE__ )
rag_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ )
__a : List[Any] = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(new_rag_tokenizer.question_encoder , SCREAMING_SNAKE_CASE__ )
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() )
self.assertIsInstance(new_rag_tokenizer.generator , SCREAMING_SNAKE_CASE__ )
self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() )
@slow
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : Optional[Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' )
__a : List[Any] = [
'who got the first nobel prize in physics',
'when is the next deadpool movie being released',
'which mode is used for short wave broadcast service',
'who is the owner of reading football club',
'when is the next scandal episode coming out',
'when is the last time the philadelphia won the superbowl',
'what is the most current adobe flash player version',
'how many episodes are there in dragon ball z',
'what is the first step in the evolution of the eye',
'where is gall bladder situated in human body',
'what is the main mineral in lithium batteries',
'who is the president of usa right now',
'where do the greasers live in the outsiders',
'panda is a national animal of which country',
'what is the name of manchester united stadium',
]
__a : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@slow
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
__a : Any = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' )
__a : Union[str, Any] = [
'who got the first nobel prize in physics',
'when is the next deadpool movie being released',
'which mode is used for short wave broadcast service',
'who is the owner of reading football club',
'when is the next scandal episode coming out',
'when is the last time the philadelphia won the superbowl',
'what is the most current adobe flash player version',
'how many episodes are there in dragon ball z',
'what is the first step in the evolution of the eye',
'where is gall bladder situated in human body',
'what is the main mineral in lithium batteries',
'who is the president of usa right now',
'where do the greasers live in the outsiders',
'panda is a national animal of which country',
'what is the name of manchester united stadium',
]
__a : str = tokenizer(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
| 47 | 0 |
import gc
import threading
import time
import psutil
import torch
class _A :
'''simple docstring'''
def __init__( self ):
'''simple docstring'''
snake_case : Union[str, Any] = psutil.Process()
snake_case : Union[str, Any] = False
def snake_case_ ( self ):
'''simple docstring'''
snake_case : List[Any] = -1
while True:
snake_case : List[str] = max(self.process.memory_info().rss ,self.cpu_memory_peak )
# can't sleep or will not catch the peak right (this comment is here on purpose)
if not self.peak_monitoring:
break
def snake_case_ ( self ):
'''simple docstring'''
snake_case : Optional[int] = True
snake_case : Optional[Any] = threading.Thread(target=self.peak_monitor )
snake_case : int = True
self.thread.start()
def snake_case_ ( self ):
'''simple docstring'''
snake_case : str = False
self.thread.join()
return self.cpu_memory_peak
__lowercase : int = PeakCPUMemory()
def lowercase ( ) -> List[str]:
'''simple docstring'''
snake_case : Union[str, Any] = {"""time""": time.time()}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
snake_case : str = psutil.Process().memory_info().rss
cpu_peak_tracker.start()
# GPU mem
for i in range(torch.cuda.device_count() ):
snake_case : Union[str, Any] = torch.cuda.memory_allocated(__A )
torch.cuda.reset_peak_memory_stats()
return measures
def lowercase ( __A : str ) -> List[str]:
'''simple docstring'''
snake_case : Any = {"""time""": time.time() - start_measures["""time"""]}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
snake_case : Union[str, Any] = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**20
snake_case : List[str] = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**20
# GPU mem
for i in range(torch.cuda.device_count() ):
snake_case : List[Any] = (torch.cuda.memory_allocated(__A ) - start_measures[str(__A )]) / 2**20
snake_case : Optional[int] = (torch.cuda.max_memory_allocated(__A ) - start_measures[str(__A )]) / 2**20
return measures
def lowercase ( __A : Dict , __A : Optional[int] ) -> Dict:
'''simple docstring'''
print(f"""{description}:""" )
print(f"""- Time: {measures["time"]:.2f}s""" )
for i in range(torch.cuda.device_count() ):
print(f"""- GPU {i} allocated: {measures[str(__A )]:.2f}MiB""" )
snake_case : Tuple = measures[f"""{i}-peak"""]
print(f"""- GPU {i} peak: {peak:.2f}MiB""" )
print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" )
print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
| 36 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model'''}
SCREAMING_SNAKE_CASE__ = {
'''vocab_file''': {
'''bert_for_seq_generation''': (
'''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model'''
),
}
}
SCREAMING_SNAKE_CASE__ = {'''bert_for_seq_generation''': 512}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : List[int] = []
__SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask''']
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<::::>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ):
'''simple docstring'''
__a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
# Add extra_ids to the special token list
super().__init__(
bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , )
__a : int = vocab_file
__a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return self.sp_model.get_piece_size()
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
__a : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ):
'''simple docstring'''
__a : Union[str, Any] = self.__dict__.copy()
__a : Any = None
return state
def __setstate__( self : int , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
__a : str = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__a : str = {}
__a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
__a : int = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ )
return token
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : Optional[Any] = []
__a : Optional[int] = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token
__a : Dict = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE__ )
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ )
return out_string.strip()
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a : Tuple = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi:
__a : List[str] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 47 | 0 |
from itertools import permutations
def UpperCamelCase_ ( __a ) -> bool:
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
a__ : Tuple = [7, 11, 13, 17]
for i, test in enumerate(__a ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def UpperCamelCase_ ( __a = 10 ) -> int:
return sum(
int("".join(map(__a , __a ) ) )
for num in permutations(range(__a ) )
if is_substring_divisible(__a ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 37 |
from ..utils import DummyObject, requires_backends
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : List[Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Any = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Dict = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[int] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
| 47 | 0 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
A_ : Dict = logging.get_logger(__name__)
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''audio_values''', '''audio_mask''']
def __init__( self , __SCREAMING_SNAKE_CASE=2_0_4_8 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=[1_6, 1_6] , __SCREAMING_SNAKE_CASE=1_2_8 , __SCREAMING_SNAKE_CASE=4_4_1_0_0 , __SCREAMING_SNAKE_CASE=8_6 , __SCREAMING_SNAKE_CASE=2_0_4_8 , __SCREAMING_SNAKE_CASE=0.0 , **__SCREAMING_SNAKE_CASE , ):
super().__init__(
feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
snake_case__ : Tuple = spectrogram_length
snake_case__ : List[Any] = num_channels
snake_case__ : List[str] = patch_size
snake_case__ : Dict = feature_size // self.patch_size[1]
snake_case__ : Optional[Any] = n_fft
snake_case__ : Optional[int] = sampling_rate // hop_length_to_sampling_rate
snake_case__ : Optional[int] = sampling_rate
snake_case__ : str = padding_value
snake_case__ : Tuple = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm="""slaney""" , mel_scale="""slaney""" , ).T
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Dict = spectrogram(
__SCREAMING_SNAKE_CASE , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , )
snake_case__ : List[str] = log_spec[:, :-1]
snake_case__ : Optional[Any] = log_spec - 20.0
snake_case__ : List[str] = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"""This feature extractor is set to support sampling rate"""
f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
f" with {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
snake_case__ : List[str] = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}" )
snake_case__ : int = is_batched_numpy or (
isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
snake_case__ : Union[str, Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
snake_case__ : Optional[int] = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
snake_case__ : int = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
snake_case__ : Union[str, Any] = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
snake_case__ : str = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
snake_case__ : Union[str, Any] = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
snake_case__ : int = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
snake_case__ : List[str] = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa )
# convert into correct format for padding
snake_case__ : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
snake_case__ : Dict = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
snake_case__ : int = padded_audio_features * self.padding_value
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
snake_case__ : str = audio_features[i]
snake_case__ : Tuple = feature
# return as BatchFeature
if return_attention_mask:
snake_case__ : int = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask}
else:
snake_case__ : Any = {"""audio_values""": padded_audio_features}
snake_case__ : Union[str, Any] = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
return encoded_inputs
| 38 |
import math
from datetime import datetime, timedelta
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
__a : Union[str, Any] = year % 1_9
__a : int = year % 4
__a : Optional[int] = year % 7
__a : Dict = math.floor(year / 1_0_0 )
__a : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 )
__a : Union[str, Any] = leap_day_inhibits / 4
__a : str = (
1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 3_0
__a : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
__a : List[Any] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0
# PHM -> Paschal Full Moon
__a : List[Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 2_9 and days_from_phm_to_sunday == 6:
return datetime(lowerCamelCase_ , 4 , 1_9 )
elif days_to_add == 2_8 and days_from_phm_to_sunday == 6:
return datetime(lowerCamelCase_ , 4 , 1_8 )
else:
return datetime(lowerCamelCase_ , 3 , 2_2 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
SCREAMING_SNAKE_CASE__ = '''will be''' if year > datetime.now().year else '''was'''
print(F"Easter in {year} {tense} {gauss_easter(year)}")
| 47 | 0 |
from __future__ import annotations
import math
from collections.abc import Callable
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 100 , ):
snake_case_ = x_start
snake_case_ = fnc(SCREAMING_SNAKE_CASE__ )
snake_case_ = 0.0
for _ in range(SCREAMING_SNAKE_CASE__ ):
# Approximates curve as a sequence of linear lines and sums their length
snake_case_ = (x_end - x_start) / steps + xa
snake_case_ = fnc(SCREAMING_SNAKE_CASE__ )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
snake_case_ = xa
snake_case_ = fxa
return length
if __name__ == "__main__":
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
return math.sin(10 * x )
print('''f(x) = sin(10 * x)''')
print('''The length of the curve from x = -10 to x = 10 is:''')
lowerCAmelCase_ = 10
while i <= 10_00_00:
print(f"""With {i} steps: {line_length(f, -10, 10, i)}""")
i *= 10
| 39 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : List[Any] = '''informer'''
__SCREAMING_SNAKE_CASE : List[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str = "prob" , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Tuple , ):
'''simple docstring'''
__a : Dict = prediction_length
__a : Tuple = context_length or prediction_length
__a : Tuple = distribution_output
__a : Tuple = loss
__a : str = input_size
__a : Dict = num_time_features
__a : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
__a : str = scaling
__a : Tuple = num_dynamic_real_features
__a : int = num_static_real_features
__a : Dict = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
__a : Optional[Any] = cardinality
else:
__a : Optional[int] = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
__a : int = embedding_dimension
else:
__a : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
__a : int = num_parallel_samples
# Transformer architecture configuration
__a : str = input_size * len(self.lags_sequence ) + self._number_of_features
__a : Optional[int] = d_model
__a : Union[str, Any] = encoder_attention_heads
__a : int = decoder_attention_heads
__a : Any = encoder_ffn_dim
__a : Union[str, Any] = decoder_ffn_dim
__a : List[Any] = encoder_layers
__a : Optional[int] = decoder_layers
__a : int = dropout
__a : Optional[Any] = attention_dropout
__a : Dict = activation_dropout
__a : Union[str, Any] = encoder_layerdrop
__a : Optional[int] = decoder_layerdrop
__a : List[str] = activation_function
__a : str = init_std
__a : Optional[int] = use_cache
# Informer
__a : Union[str, Any] = attention_type
__a : str = sampling_factor
__a : Dict = distil
super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 47 | 0 |
import itertools
import math
def UpperCamelCase ( snake_case__ : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCamelCase ( ) -> List[Any]:
UpperCamelCase : List[str] = 2
while True:
if is_prime(snake_case__ ):
yield num
num += 1
def UpperCamelCase ( snake_case__ : int = 10001 ) -> int:
return next(itertools.islice(prime_generator() , nth - 1 , snake_case__ ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 40 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = (DDIMParallelScheduler,)
__SCREAMING_SNAKE_CASE : Union[str, Any] = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : List[Any] = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : Tuple = self.scheduler_classes[0]
__a : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ )
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a , __a : List[str] = 1_0, 0.0
__a : Dict = self.dummy_model()
__a : str = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
for t in scheduler.timesteps:
__a : str = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : List[str] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample
return sample
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
for timesteps in [1_0_0, 5_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = self.scheduler_classes[0]
__a : List[str] = self.get_scheduler_config(steps_offset=1 )
__a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for t in [1, 1_0, 4_9]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : Union[str, Any] = self.get_scheduler_config()
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.14_771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.32_460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.00_979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : List[str] = self.get_scheduler_config()
__a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a , __a : Any = 1_0, 0.0
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
__a : List[Any] = self.dummy_model()
__a : int = self.dummy_sample_deter
__a : List[Any] = self.dummy_sample_deter + 0.1
__a : List[str] = self.dummy_sample_deter - 0.1
__a : Optional[Any] = samplea.shape[0]
__a : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 )
__a : Union[str, Any] = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ )
__a : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__a : int = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE__ )
__a : Dict = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2
assert abs(result_mean.item() - 0.4_982 ) < 1e-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : List[str] = self.full_loop()
__a : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 172.0_067 ) < 1e-2
assert abs(result_mean.item() - 0.223_967 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
__a : Optional[int] = self.full_loop(prediction_type='v_prediction' )
__a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 52.5_302 ) < 1e-2
assert abs(result_mean.item() - 0.0_684 ) < 1e-3
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
__a : Union[str, Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 )
__a : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 149.8_295 ) < 1e-2
assert abs(result_mean.item() - 0.1_951 ) < 1e-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : Dict = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 )
__a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 149.0_784 ) < 1e-2
assert abs(result_mean.item() - 0.1_941 ) < 1e-3
| 47 | 0 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = 'detr'
SCREAMING_SNAKE_CASE : List[str] = ['past_key_values']
SCREAMING_SNAKE_CASE : Any = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : int ,lowercase__ : Dict=True ,lowercase__ : Optional[Any]=None ,lowercase__ : str=3 ,lowercase__ : Optional[int]=1_0_0 ,lowercase__ : Optional[int]=6 ,lowercase__ : Optional[Any]=2_0_4_8 ,lowercase__ : Any=8 ,lowercase__ : int=6 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Any=8 ,lowercase__ : List[str]=0.0 ,lowercase__ : Union[str, Any]=0.0 ,lowercase__ : Union[str, Any]=True ,lowercase__ : str="relu" ,lowercase__ : int=2_5_6 ,lowercase__ : int=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : Tuple=0.0 ,lowercase__ : int=0.0_2 ,lowercase__ : Dict=1.0 ,lowercase__ : str=False ,lowercase__ : Union[str, Any]="sine" ,lowercase__ : List[str]="resnet50" ,lowercase__ : Dict=True ,lowercase__ : List[Any]=False ,lowercase__ : Union[str, Any]=1 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : Tuple=2 ,lowercase__ : str=1 ,lowercase__ : List[Any]=1 ,lowercase__ : Dict=5 ,lowercase__ : Optional[Any]=2 ,lowercase__ : int=0.1 ,**lowercase__ : Dict ,):
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
__lowercase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowercase__ ,lowercase__ ):
__lowercase = backbone_config.get('''model_type''' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(lowercase__ )
# set timm attributes to None
__lowercase , __lowercase , __lowercase = None, None, None
__lowercase = use_timm_backbone
__lowercase = backbone_config
__lowercase = num_channels
__lowercase = num_queries
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = encoder_layers
__lowercase = auxiliary_loss
__lowercase = position_embedding_type
__lowercase = backbone
__lowercase = use_pretrained_backbone
__lowercase = dilation
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = mask_loss_coefficient
__lowercase = dice_loss_coefficient
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = eos_coefficient
super().__init__(is_encoder_decoder=lowercase__ ,**lowercase__ )
@property
def SCREAMING_SNAKE_CASE ( self : Any ):
return self.encoder_attention_heads
@property
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
return self.d_model
@classmethod
def SCREAMING_SNAKE_CASE ( cls : int ,lowercase__ : PretrainedConfig ,**lowercase__ : Any ):
return cls(backbone_config=lowercase__ ,**lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def SCREAMING_SNAKE_CASE ( self : List[str] ):
return 1e-5
@property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return 1_2
| 41 |
def UpperCAmelCase__ ( lowerCamelCase_ : list[int] , lowerCamelCase_ : list[int] ):
# Check if the input is valid
if not len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == 3:
raise ValueError('Please enter a valid equation.' )
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError('Both a & b of two equations can\'t be zero.' )
# Extract the coefficients
__a , __a , __a : Optional[Any] = equationa
__a , __a , __a : Optional[int] = equationa
# Calculate the determinants of the matrices
__a : str = aa * ba - aa * ba
__a : Tuple = ca * ba - ca * ba
__a : Union[str, Any] = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError('Infinite solutions. (Consistent system)' )
else:
raise ValueError('No solution. (Inconsistent system)' )
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
__a : Any = determinant_x / determinant
__a : Optional[Any] = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
| 47 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A_ = logging.get_logger(__name__)
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = size if size is not None else {'shortest_edge': 384}
lowerCamelCase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = do_resize
lowerCamelCase_ = size
# Default value set here for backwards compatibility where the value in config is None
lowerCamelCase_ = crop_pct if crop_pct is not None else 224 / 256
lowerCamelCase_ = resample
lowerCamelCase_ = do_rescale
lowerCamelCase_ = rescale_factor
lowerCamelCase_ = do_normalize
lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray:
'''simple docstring'''
lowerCamelCase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
if "shortest_edge" not in size:
raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' )
lowerCamelCase_ = size['shortest_edge']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
lowerCamelCase_ = int(shortest_edge / crop_pct )
lowerCamelCase_ = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=SCREAMING_SNAKE_CASE_ , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
SCREAMING_SNAKE_CASE_ , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Dict:
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray:
'''simple docstring'''
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> PIL.Image.Image:
'''simple docstring'''
lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCamelCase_ = crop_pct if crop_pct is not None else self.crop_pct
lowerCamelCase_ = resample if resample is not None else self.resample
lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCamelCase_ = image_std if image_std is not None else self.image_std
lowerCamelCase_ = size if size is not None else self.size
lowerCamelCase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError('crop_pct must be specified if size < 384.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCamelCase_ = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
lowerCamelCase_ = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
lowerCamelCase_ = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
lowerCamelCase_ = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
lowerCamelCase_ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
lowerCamelCase_ = {'pixel_values': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
| 42 |
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 47 | 0 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = list(SCREAMING_SNAKE_CASE )
lowercase__ = list(SCREAMING_SNAKE_CASE )
lowercase__ = 0
for i in range(len(SCREAMING_SNAKE_CASE ) ):
if lista[i] != lista[i]:
count += 1
lowercase__ = '''_'''
if count > 1:
return False
else:
return "".join(SCREAMING_SNAKE_CASE )
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = []
while True:
lowercase__ = ['''$'''] * len(SCREAMING_SNAKE_CASE )
lowercase__ = []
for i in range(len(SCREAMING_SNAKE_CASE ) ):
for j in range(i + 1 , len(SCREAMING_SNAKE_CASE ) ):
lowercase__ = compare_string(binary[i] , binary[j] )
if k is False:
lowercase__ = '''*'''
lowercase__ = '''*'''
temp.append('''X''' )
for i in range(len(SCREAMING_SNAKE_CASE ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(SCREAMING_SNAKE_CASE ) == 0:
return pi
lowercase__ = list(set(SCREAMING_SNAKE_CASE ) )
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = []
for minterm in minterms:
lowercase__ = ''''''
for _ in range(SCREAMING_SNAKE_CASE ):
lowercase__ = str(minterm % 2 ) + string
minterm //= 2
temp.append(SCREAMING_SNAKE_CASE )
return temp
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = list(SCREAMING_SNAKE_CASE )
lowercase__ = list(SCREAMING_SNAKE_CASE )
lowercase__ = 0
for i in range(len(SCREAMING_SNAKE_CASE ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = []
lowercase__ = [0] * len(SCREAMING_SNAKE_CASE )
for i in range(len(chart[0] ) ):
lowercase__ = 0
lowercase__ = -1
for j in range(len(SCREAMING_SNAKE_CASE ) ):
if chart[j][i] == 1:
count += 1
lowercase__ = j
if count == 1:
lowercase__ = 1
for i in range(len(SCREAMING_SNAKE_CASE ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(SCREAMING_SNAKE_CASE ) ):
lowercase__ = 0
temp.append(prime_implicants[i] )
while True:
lowercase__ = 0
lowercase__ = -1
lowercase__ = 0
for i in range(len(SCREAMING_SNAKE_CASE ) ):
lowercase__ = chart[i].count(1 )
if count_n > max_n:
lowercase__ = count_n
lowercase__ = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(SCREAMING_SNAKE_CASE ) ):
lowercase__ = 0
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = [[0 for x in range(len(SCREAMING_SNAKE_CASE ) )] for x in range(len(SCREAMING_SNAKE_CASE ) )]
for i in range(len(SCREAMING_SNAKE_CASE ) ):
lowercase__ = prime_implicants[i].count('''_''' )
for j in range(len(SCREAMING_SNAKE_CASE ) ):
if is_for_table(prime_implicants[i] , binary[j] , SCREAMING_SNAKE_CASE ):
lowercase__ = 1
return chart
def _a ( ):
"""simple docstring"""
lowercase__ = int(input('''Enter the no. of variables\n''' ) )
lowercase__ = [
float(SCREAMING_SNAKE_CASE )
for x in input(
'''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split()
]
lowercase__ = decimal_to_binary(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowercase__ = check(SCREAMING_SNAKE_CASE )
print('''Prime Implicants are:''' )
print(SCREAMING_SNAKE_CASE )
lowercase__ = prime_implicant_chart(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowercase__ = selection(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
print('''Essential Prime Implicants are:''' )
print(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 43 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE__ = {
'''configuration_bridgetower''': [
'''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BridgeTowerConfig''',
'''BridgeTowerTextConfig''',
'''BridgeTowerVisionConfig''',
],
'''processing_bridgetower''': ['''BridgeTowerProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ['''BridgeTowerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
'''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BridgeTowerForContrastiveLearning''',
'''BridgeTowerForImageAndTextRetrieval''',
'''BridgeTowerForMaskedLM''',
'''BridgeTowerModel''',
'''BridgeTowerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 47 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class UpperCAmelCase__ ( unittest.TestCase ):
def __init__( self : Optional[int],__A : Any,__A : Tuple=7,__A : List[Any]=3,__A : str=1_8,__A : Tuple=3_0,__A : Dict=4_0_0,__A : int=True,__A : List[Any]=None,__A : Any=True,__A : int=False,__A : str=True,__A : int=True,__A : Any=[0.5, 0.5, 0.5],__A : Dict=[0.5, 0.5, 0.5],):
_lowerCamelCase : str = parent
_lowerCamelCase : Dict = batch_size
_lowerCamelCase : List[Any] = num_channels
_lowerCamelCase : Dict = image_size
_lowerCamelCase : Tuple = min_resolution
_lowerCamelCase : List[str] = max_resolution
_lowerCamelCase : str = do_resize
_lowerCamelCase : int = size if size is not None else {"height": 1_8, "width": 2_0}
_lowerCamelCase : Union[str, Any] = do_thumbnail
_lowerCamelCase : Optional[int] = do_align_axis
_lowerCamelCase : Any = do_pad
_lowerCamelCase : Tuple = do_normalize
_lowerCamelCase : str = image_mean
_lowerCamelCase : int = image_std
def lowerCamelCase_ ( self : List[Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class UpperCAmelCase__ ( A , unittest.TestCase ):
lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None
def lowerCamelCase_ ( self : Dict ):
_lowerCamelCase : int = DonutImageProcessingTester(self )
@property
def lowerCamelCase_ ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase_ ( self : Tuple ):
_lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A,"do_resize" ) )
self.assertTrue(hasattr(__A,"size" ) )
self.assertTrue(hasattr(__A,"do_thumbnail" ) )
self.assertTrue(hasattr(__A,"do_align_long_axis" ) )
self.assertTrue(hasattr(__A,"do_pad" ) )
self.assertTrue(hasattr(__A,"do_normalize" ) )
self.assertTrue(hasattr(__A,"image_mean" ) )
self.assertTrue(hasattr(__A,"image_std" ) )
def lowerCamelCase_ ( self : Tuple ):
_lowerCamelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size,{"height": 1_8, "width": 2_0} )
_lowerCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict,size=4_2 )
self.assertEqual(image_processor.size,{"height": 4_2, "width": 4_2} )
# Previous config had dimensions in (width, height) order
_lowerCamelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict,size=(4_2, 8_4) )
self.assertEqual(image_processor.size,{"height": 8_4, "width": 4_2} )
def lowerCamelCase_ ( self : List[Any] ):
pass
@is_flaky()
def lowerCamelCase_ ( self : Dict ):
# Initialize image_processing
_lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A,Image.Image )
# Test not batched input
_lowerCamelCase : Union[str, Any] = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
# Test batched
_lowerCamelCase : int = image_processing(__A,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
@is_flaky()
def lowerCamelCase_ ( self : List[str] ):
# Initialize image_processing
_lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A,numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A,np.ndarray )
# Test not batched input
_lowerCamelCase : List[Any] = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
# Test batched
_lowerCamelCase : List[Any] = image_processing(__A,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
@is_flaky()
def lowerCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
_lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A,torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A,torch.Tensor )
# Test not batched input
_lowerCamelCase : Tuple = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
# Test batched
_lowerCamelCase : int = image_processing(__A,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
| 44 |
from string import ascii_lowercase, ascii_uppercase
def UpperCAmelCase__ ( lowerCamelCase_ : str ):
if not sentence:
return ""
__a : Union[str, Any] = dict(zip(lowerCamelCase_ , lowerCamelCase_ ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47 | 0 |
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def A ( lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : Optional[Any] ) -> Optional[Any]:
if isinstance(lowercase__ , lowercase__ ):
UpperCamelCase__ :Tuple = np.full((len(lowercase__ ), sequence_length, 2) , lowercase__ )
else:
UpperCamelCase__ :List[str] = np.full((len(lowercase__ ), sequence_length) , lowercase__ )
for i, tensor in enumerate(lowercase__ ):
if padding_side == "right":
if isinstance(lowercase__ , lowercase__ ):
UpperCamelCase__ :List[Any] = tensor[:sequence_length]
else:
UpperCamelCase__ :Dict = tensor[:sequence_length]
else:
if isinstance(lowercase__ , lowercase__ ):
UpperCamelCase__ :Optional[int] = tensor[:sequence_length]
else:
UpperCamelCase__ :Optional[int] = tensor[:sequence_length]
return out_tensor.tolist()
def A ( lowercase__ : Dict ) -> Optional[Any]:
UpperCamelCase__ :List[Any] = ord(lowercase__ )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
UpperCamelCase__ :str = unicodedata.category(lowercase__ )
if cat.startswith("""P""" ):
return True
return False
@dataclass
class lowerCAmelCase_ ( lowercase ):
"""simple docstring"""
_snake_case : PreTrainedTokenizerBase
_snake_case : Union[bool, str, PaddingStrategy] = True
_snake_case : Optional[int] = None
_snake_case : Optional[int] = None
_snake_case : int = -100
_snake_case : str = "pt"
def __a ( self :Any , lowerCamelCase__ :int ):
import torch
UpperCamelCase__ :str = """label""" if """label""" in features[0].keys() else """labels"""
UpperCamelCase__ :str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
UpperCamelCase__ :Any = self.tokenizer.pad(
lowerCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , )
if labels is None:
return batch
UpperCamelCase__ :List[Any] = torch.tensor(batch["""entity_ids"""] ).shape[1]
UpperCamelCase__ :Optional[int] = self.tokenizer.padding_side
if padding_side == "right":
UpperCamelCase__ :Optional[Any] = [
list(lowerCamelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase__ )) for label in labels
]
else:
UpperCamelCase__ :Union[str, Any] = [
[self.label_pad_token_id] * (sequence_length - len(lowerCamelCase__ )) + list(lowerCamelCase__ ) for label in labels
]
UpperCamelCase__ :Optional[Any] = [feature["""ner_tags"""] for feature in features]
UpperCamelCase__ :Optional[int] = padding_tensor(lowerCamelCase__ , -1 , lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ :Union[str, Any] = [feature["""original_entity_spans"""] for feature in features]
UpperCamelCase__ :Tuple = padding_tensor(lowerCamelCase__ , (-1, -1) , lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ :int = {k: torch.tensor(lowerCamelCase__ , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 45 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = '''sew-d'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=2_5_6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=("p2c", "c2p") , SCREAMING_SNAKE_CASE__ : str="layer_norm" , SCREAMING_SNAKE_CASE__ : Tuple="gelu_python" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-7 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Optional[int]="group" , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : str=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]="mean" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=2_5_6 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = hidden_size
__a : Optional[Any] = feat_extract_norm
__a : List[str] = feat_extract_activation
__a : Dict = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ )
__a : List[str] = list(SCREAMING_SNAKE_CASE__ )
__a : int = conv_bias
__a : Tuple = num_conv_pos_embeddings
__a : List[str] = num_conv_pos_embedding_groups
__a : Optional[Any] = len(self.conv_dim )
__a : Union[str, Any] = num_hidden_layers
__a : Optional[Any] = intermediate_size
__a : Union[str, Any] = squeeze_factor
__a : List[Any] = max_position_embeddings
__a : Tuple = position_buckets
__a : Optional[int] = share_att_key
__a : List[str] = relative_attention
__a : Any = norm_rel_ebd
__a : Any = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = hidden_act
__a : str = num_attention_heads
__a : Union[str, Any] = hidden_dropout
__a : Optional[int] = attention_dropout
__a : List[str] = activation_dropout
__a : int = feat_proj_dropout
__a : int = final_dropout
__a : Dict = layer_norm_eps
__a : Tuple = feature_layer_norm_eps
__a : str = initializer_range
__a : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a : Tuple = apply_spec_augment
__a : Optional[Any] = mask_time_prob
__a : Any = mask_time_length
__a : List[str] = mask_time_min_masks
__a : List[str] = mask_feature_prob
__a : Tuple = mask_feature_length
__a : Any = mask_feature_min_masks
# ctc loss
__a : Optional[int] = ctc_loss_reduction
__a : List[Any] = ctc_zero_infinity
# sequence classification
__a : Dict = use_weighted_layer_sum
__a : Optional[Any] = classifier_proj_size
@property
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47 | 0 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
while second != 0:
_lowerCamelCase : int = first & second
first ^= second
_lowerCamelCase : str = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase : Tuple = int(input('''Enter the first number: ''').strip())
_lowerCAmelCase : Union[str, Any] = int(input('''Enter the second number: ''').strip())
print(f'''{add(first, second) = }''')
| 46 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ = TypeVar('''T''')
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (position - 1) // 2
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (2 * position) + 1
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (2 * position) + 2
class _UpperCamelCase( Generic[T] ):
def __init__( self : List[str] ):
'''simple docstring'''
__a : list[tuple[T, int]] = []
__a : dict[T, int] = {}
__a : int = 0
def __len__( self : Any ):
'''simple docstring'''
return self.elements
def __repr__( self : Any ):
'''simple docstring'''
return str(self.heap )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return self.elements == 0
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self.heap.append((elem, weight) )
__a : List[Any] = self.elements
self.elements += 1
self._bubble_up(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
__a , __a : Union[str, Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
__a , __a : Dict = self.heap[0]
self._bubble_down(SCREAMING_SNAKE_CASE__ )
return elem
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : List[Any] = self.position_map[elem]
__a : str = (elem, weight)
if position > 0:
__a : Tuple = get_parent_position(SCREAMING_SNAKE_CASE__ )
__a , __a : Dict = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
__a : List[Any] = self.position_map[elem]
if curr_pos == 0:
return None
__a : List[str] = get_parent_position(SCREAMING_SNAKE_CASE__ )
__a , __a : str = self.heap[curr_pos]
__a , __a : Optional[int] = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_up(SCREAMING_SNAKE_CASE__ )
return None
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
__a : int = self.position_map[elem]
__a , __a : Optional[Any] = self.heap[curr_pos]
__a : Tuple = get_child_left_position(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = get_child_right_position(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements and child_right_position < self.elements:
__a , __a : str = self.heap[child_left_position]
__a , __a : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements:
__a , __a : Any = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
return None
if child_right_position < self.elements:
__a , __a : Union[str, Any] = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
return None
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Optional[Any] = self.heap[nodea_pos][0]
__a : str = self.heap[nodea_pos][0]
__a , __a : int = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
__a : str = nodea_pos
__a : Optional[int] = nodea_pos
class _UpperCamelCase( Generic[T] ):
def __init__( self : List[Any] ):
'''simple docstring'''
__a : dict[T, dict[T, int]] = {}
__a : int = 0
def __repr__( self : Tuple ):
'''simple docstring'''
return str(self.connections )
def __len__( self : Dict ):
'''simple docstring'''
return self.nodes
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
if node not in self.connections:
__a : Tuple = {}
self.nodes += 1
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self.add_node(SCREAMING_SNAKE_CASE__ )
self.add_node(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = weight
__a : Any = weight
def UpperCAmelCase__ ( lowerCamelCase_ : GraphUndirectedWeighted[T] , ):
__a : dict[T, int] = {node: maxsize for node in graph.connections}
__a : dict[T, T | None] = {node: None for node in graph.connections}
__a : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(lowerCamelCase_ , lowerCamelCase_ )
if priority_queue.is_empty():
return dist, parent
# initialization
__a : Optional[int] = priority_queue.extract_min()
__a : int = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a : str = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase_ , dist[neighbour] )
__a : Optional[int] = node
# running prim's algorithm
while not priority_queue.is_empty():
__a : Any = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a : Tuple = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase_ , dist[neighbour] )
__a : Dict = node
return dist, parent
| 47 | 0 |
'''simple docstring'''
from manim import *
class A ( SCREAMING_SNAKE_CASE__ ):
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = Rectangle(height=0.5 , width=0.5 )
lowerCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
lowerCAmelCase__ = [mem.copy() for i in range(6 )]
lowerCAmelCase__ = [mem.copy() for i in range(6 )]
lowerCAmelCase__ = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = VGroup(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = Text("CPU" , font_size=24 )
lowerCAmelCase__ = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__magic_name__ )
lowerCAmelCase__ = [mem.copy() for i in range(4 )]
lowerCAmelCase__ = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = Text("GPU" , font_size=24 )
lowerCAmelCase__ = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ )
gpu.move_to([-1, -1, 0] )
self.add(__magic_name__ )
lowerCAmelCase__ = [mem.copy() for i in range(6 )]
lowerCAmelCase__ = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = Text("Model" , font_size=24 )
lowerCAmelCase__ = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ )
model.move_to([3, -1.0, 0] )
self.add(__magic_name__ )
lowerCAmelCase__ = []
for i, rect in enumerate(__magic_name__ ):
rect.set_stroke(__magic_name__ )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
lowerCAmelCase__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__magic_name__ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__magic_name__ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__magic_name__ , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__magic_name__ , buff=0.0 )
self.add(__magic_name__ )
cpu_targs.append(__magic_name__ )
lowerCAmelCase__ = [mem.copy() for i in range(6 )]
lowerCAmelCase__ = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = Text("Loaded Checkpoint" , font_size=24 )
lowerCAmelCase__ = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , aligned_edge=__magic_name__ , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
lowerCAmelCase__ = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCAmelCase__ = MarkupText(
f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = MarkupText(
f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(__magic_name__ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
lowerCAmelCase__ = MarkupText(
f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__magic_name__ ) , Write(__magic_name__ ) )
self.play(Write(__magic_name__ , run_time=1 ) , Create(__magic_name__ , run_time=1 ) )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for i, rect in enumerate(__magic_name__ ):
lowerCAmelCase__ = fill.copy().set_fill(__magic_name__ , opacity=0.7 )
target.move_to(__magic_name__ )
first_animations.append(GrowFromCenter(__magic_name__ , run_time=1 ) )
lowerCAmelCase__ = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__magic_name__ , run_time=1.5 ) )
self.play(*__magic_name__ )
self.play(*__magic_name__ )
self.wait()
| 48 |
from collections.abc import Sequence
from queue import Queue
class _UpperCamelCase:
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None ):
'''simple docstring'''
__a : Tuple = start
__a : Dict = end
__a : List[str] = val
__a : List[Any] = (start + end) // 2
__a : Optional[Any] = left
__a : List[str] = right
def __repr__( self : Dict ):
'''simple docstring'''
return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'''
class _UpperCamelCase:
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Sequence , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
__a : Tuple = collection
__a : Dict = function
if self.collection:
__a : int = self._build_tree(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self._update_tree(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
return self._query_range(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if start == end:
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.collection[start] )
__a : Tuple = (start + end) // 2
__a : Optional[int] = self._build_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Tuple = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE__ )
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if node.start == i and node.end == i:
__a : Optional[Any] = val
return
if i <= node.mid:
self._update_tree(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
self._update_tree(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : int = self.fn(node.left.val , node.right.val )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , SCREAMING_SNAKE_CASE__ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE__ ) , )
else:
# range in right child tree
return self._query_range(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.root is not None:
__a : Tuple = Queue()
queue.put(self.root )
while not queue.empty():
__a : Tuple = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('''*''' * 50)
SCREAMING_SNAKE_CASE__ = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 47 | 0 |
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _UpperCAmelCase :
def __init__( self : Optional[Any] , _lowercase : Any , _lowercase : List[str]=13 , _lowercase : List[Any]=7 , _lowercase : Optional[int]=True , _lowercase : Optional[Any]=True , _lowercase : Optional[int]=True , _lowercase : str=True , _lowercase : Dict=99 , _lowercase : Any=32 , _lowercase : Dict=2 , _lowercase : int=4 , _lowercase : str=37 , _lowercase : Optional[int]="gelu" , _lowercase : int=0.1 , _lowercase : List[Any]=0.1 , _lowercase : Tuple=5_12 , _lowercase : str=16 , _lowercase : List[str]=2 , _lowercase : List[str]=0.02 , _lowercase : List[Any]=3 , _lowercase : Tuple=4 , _lowercase : Dict=None , ):
__UpperCAmelCase = parent
__UpperCAmelCase = 13
__UpperCAmelCase = 7
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = 99
__UpperCAmelCase = 3_84
__UpperCAmelCase = 2
__UpperCAmelCase = 4
__UpperCAmelCase = 37
__UpperCAmelCase = '''gelu'''
__UpperCAmelCase = 0.1
__UpperCAmelCase = 0.1
__UpperCAmelCase = 5_12
__UpperCAmelCase = 16
__UpperCAmelCase = 2
__UpperCAmelCase = 0.02
__UpperCAmelCase = 3
__UpperCAmelCase = 4
__UpperCAmelCase = 1_28
__UpperCAmelCase = 2
__UpperCAmelCase = 9
__UpperCAmelCase = 1
__UpperCAmelCase = None
def a ( self : List[str] ):
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_input_mask:
__UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase = None
if self.use_token_type_ids:
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a ( self : str , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : int , _lowercase : Dict , _lowercase : Any ):
__UpperCAmelCase = TFConvBertModel(config=_lowercase )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__UpperCAmelCase = [input_ids, input_mask]
__UpperCAmelCase = model(_lowercase )
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a ( self : str , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Any , _lowercase : str , _lowercase : Optional[int] , _lowercase : str , _lowercase : Dict ):
__UpperCAmelCase = TFConvBertForMaskedLM(config=_lowercase )
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a ( self : Optional[int] , _lowercase : List[str] , _lowercase : Any , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : List[Any] , _lowercase : List[Any] ):
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFConvBertForSequenceClassification(config=_lowercase )
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int , _lowercase : List[Any] , _lowercase : int , _lowercase : int , _lowercase : Any , _lowercase : List[str] ):
__UpperCAmelCase = self.num_choices
__UpperCAmelCase = TFConvBertForMultipleChoice(config=_lowercase )
__UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] , _lowercase : str , _lowercase : Dict , _lowercase : Dict , _lowercase : str ):
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFConvBertForTokenClassification(config=_lowercase )
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a ( self : Optional[int] , _lowercase : Any , _lowercase : Any , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Any ):
__UpperCAmelCase = TFConvBertForQuestionAnswering(config=_lowercase )
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a ( self : str ):
__UpperCAmelCase = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) = config_and_inputs
__UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : Tuple = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
a__ : List[str] = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a__ : int = False
a__ : List[str] = False
a__ : Dict = False
def a ( self : Optional[Any] ):
__UpperCAmelCase = TFConvBertModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 )
def a ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def a ( self : Any ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowercase )
def a ( self : Dict ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowercase )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_lowercase )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowercase )
def a ( self : Any ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowercase )
def a ( self : Any ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowercase )
@slow
def a ( self : Tuple ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase = True
__UpperCAmelCase = True
if hasattr(_lowercase , '''use_cache''' ):
__UpperCAmelCase = True
__UpperCAmelCase = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length )
__UpperCAmelCase = getattr(self.model_tester , '''key_length''' , _lowercase )
for model_class in self.all_model_classes:
__UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase )
__UpperCAmelCase = model_class(_lowercase )
__UpperCAmelCase = len(model(_lowercase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowercase , saved_model=_lowercase )
__UpperCAmelCase = os.path.join(_lowercase , '''saved_model''' , '''1''' )
__UpperCAmelCase = tf.keras.models.load_model(_lowercase )
__UpperCAmelCase = model(_lowercase )
if self.is_encoder_decoder:
__UpperCAmelCase = outputs['''encoder_hidden_states''']
__UpperCAmelCase = outputs['''encoder_attentions''']
else:
__UpperCAmelCase = outputs['''hidden_states''']
__UpperCAmelCase = outputs['''attentions''']
self.assertEqual(len(_lowercase ) , _lowercase )
__UpperCAmelCase = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_lowercase ) , _lowercase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def a ( self : Tuple ):
__UpperCAmelCase = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' )
self.assertIsNotNone(_lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase = True
__UpperCAmelCase = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length )
__UpperCAmelCase = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length )
__UpperCAmelCase = getattr(self.model_tester , '''key_length''' , _lowercase )
__UpperCAmelCase = getattr(self.model_tester , '''key_length''' , _lowercase )
def check_decoder_attentions_output(_lowercase : Any ):
__UpperCAmelCase = len(_lowercase )
self.assertEqual(out_len % 2 , 0 )
__UpperCAmelCase = outputs.decoder_attentions
self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_lowercase : Tuple ):
__UpperCAmelCase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = model_class(_lowercase )
__UpperCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) )
__UpperCAmelCase = len(_lowercase )
self.assertEqual(config.output_hidden_states , _lowercase )
check_encoder_attentions_output(_lowercase )
if self.is_encoder_decoder:
__UpperCAmelCase = model_class(_lowercase )
__UpperCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) )
self.assertEqual(config.output_hidden_states , _lowercase )
check_decoder_attentions_output(_lowercase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__UpperCAmelCase = True
__UpperCAmelCase = model_class(_lowercase )
__UpperCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) )
self.assertEqual(config.output_hidden_states , _lowercase )
check_encoder_attentions_output(_lowercase )
# Check attention is always last and order is fine
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = model_class(_lowercase )
__UpperCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) )
self.assertEqual(model.config.output_hidden_states , _lowercase )
check_encoder_attentions_output(_lowercase )
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a ( self : Tuple ):
__UpperCAmelCase = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' )
__UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCAmelCase = model(_lowercase )[0]
__UpperCAmelCase = [1, 6, 7_68]
self.assertEqual(output.shape , _lowercase )
__UpperCAmelCase = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-4 )
| 49 |
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class _UpperCamelCase( datasets.BuilderConfig ):
__SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None
def UpperCAmelCase__ ( lowerCamelCase_ : "pyspark.sql.DataFrame" , lowerCamelCase_ : List[int] , ):
import pyspark
def generate_fn():
__a : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) )
for partition_id in partition_order:
__a : Optional[int] = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' )
__a : Optional[Any] = partition_df.collect()
__a : Union[str, Any] = 0
for row in rows:
yield f'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class _UpperCamelCase( _BaseExamplesIterable ):
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Dict=None , ):
'''simple docstring'''
__a : List[str] = df
__a : Tuple = partition_order or range(self.df.rdd.getNumPartitions() )
__a : List[Any] = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self : Tuple ):
'''simple docstring'''
yield from self.generate_examples_fn()
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.random.Generator ):
'''simple docstring'''
__a : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(SCREAMING_SNAKE_CASE__ )
return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return len(self.partition_order )
class _UpperCamelCase( datasets.DatasetBuilder ):
__SCREAMING_SNAKE_CASE : List[str] = SparkConfig
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ):
'''simple docstring'''
import pyspark
__a : int = pyspark.sql.SparkSession.builder.getOrCreate()
__a : Optional[int] = df
__a : List[Any] = working_dir
super().__init__(
cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : List[str] ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(SCREAMING_SNAKE_CASE__ , 'a' )
return [probe_file]
if self._spark.conf.get('spark.master' , '' ).startswith('local' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
__a : List[Any] = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ):
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
import pyspark
def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ):
for batch in it:
yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} )
__a : List[str] = self.df.count()
__a : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
__a : List[str] = (
self.df.limit(SCREAMING_SNAKE_CASE__ )
.repartition(1 )
.mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' )
.agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
__a : Dict = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
__a : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) )
__a : int = self.df.repartition(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ):
'''simple docstring'''
import pyspark
__a : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter
__a : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath
__a : Optional[int] = file_format == 'parquet'
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
__a : List[str] = self.config.features
__a : int = self._writer_batch_size
__a : Union[str, Any] = self._fs.storage_options
def write_arrow(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
__a : Any = pyspark.TaskContext().taskAttemptId()
__a : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , )
__a : Any = 0
__a : List[str] = writer_class(
features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , )
__a : Optional[Any] = pa.Table.from_batches([first_batch] )
writer.write_table(SCREAMING_SNAKE_CASE__ )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
__a , __a : Optional[int] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
shard_id += 1
__a : Optional[Any] = writer_class(
features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , )
__a : Union[str, Any] = pa.Table.from_batches([batch] )
writer.write_table(SCREAMING_SNAKE_CASE__ )
if writer._num_bytes > 0:
__a , __a : str = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ):
__a : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) )
shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Dict = (
self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' )
.groupBy('task_id' )
.agg(
pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ):
'''simple docstring'''
self._validate_cache_dir()
__a : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = not is_remote_filesystem(self._fs )
__a : Optional[Any] = os.path.join if is_local else posixpath.join
__a : Any = '-TTTTT-SSSSS-of-NNNNN'
__a : Union[str, Any] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
__a : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ )
__a : Any = 0
__a : Dict = 0
__a : int = 0
__a : List[str] = []
__a : Optional[int] = []
for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : Optional[int] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ )
__a : List[str] = total_num_examples
__a : Optional[int] = total_num_bytes
# should rename everything at the end
logger.debug(f'''Renaming {total_shards} shards.''' )
if total_shards > 1:
__a : Any = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
__a : Dict = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ):
rename(
SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , )
__a : Union[str, Any] = []
__a : List[str] = 0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
__a , __a : Union[str, Any] = task_id_and_num_shards[i]
for shard_id in range(SCREAMING_SNAKE_CASE__ ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect()
else:
# don't use any pattern
__a : List[Any] = 0
__a : Any = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ):
'''simple docstring'''
return SparkExamplesIterable(self.df )
| 47 | 0 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def A__ ( __lowerCAmelCase : dict ):
return (data["data"], data["target"])
def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ):
lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__lowerCAmelCase , __lowerCAmelCase )
# Predict target for test data
lowerCamelCase__ = xgb.predict(__lowerCAmelCase )
lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 )
return predictions
def A__ ( ):
lowerCamelCase__ = fetch_california_housing()
lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 )
lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Error printing
print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 50 |
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ):
# save results
if os.path.exists(lowerCamelCase_ ):
if os.path.exists(os.path.join(lowerCamelCase_ , 'config.json' ) ) and os.path.isfile(
os.path.join(lowerCamelCase_ , 'config.json' ) ):
os.remove(os.path.join(lowerCamelCase_ , 'config.json' ) )
if os.path.exists(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile(
os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ):
os.remove(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) )
else:
os.makedirs(lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Any=False ):
__a : Dict = 2
if unlogit:
__a : Optional[Any] = torch.pow(lowerCamelCase_ , lowerCamelCase_ )
__a : Any = p * torch.log(lowerCamelCase_ )
__a : Union[str, Any] = 0
return -plogp.sum(dim=-1 )
def UpperCAmelCase__ ( lowerCamelCase_ : Any ):
logger.info('lv, h >\t' + '\t'.join(f'''{x + 1}''' for x in range(len(lowerCamelCase_ ) ) ) )
for row in range(len(lowerCamelCase_ ) ):
if tensor.dtype != torch.long:
logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:d}''' for x in tensor[row].cpu().data ) )
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=False ):
__a , __a : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads
__a : str = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
__a : int = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
if head_mask is None:
__a : Union[str, Any] = torch.ones(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCamelCase_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
__a : Any = None
__a : Optional[int] = 0.0
__a : Optional[Any] = 0.0
for step, inputs in enumerate(tqdm(lowerCamelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ):
__a : Dict = tuple(t.to(args.device ) for t in inputs )
((__a) , ) : Dict = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
__a : List[Any] = model(lowerCamelCase_ , labels=lowerCamelCase_ , head_mask=lowerCamelCase_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
__a , __a , __a : int = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCamelCase_ ):
__a : List[str] = entropy(attn.detach() , lowerCamelCase_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCamelCase_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
__a : Optional[Any] = 2
__a : Union[str, Any] = torch.pow(torch.pow(lowerCamelCase_ , lowerCamelCase_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20
if not args.dont_normalize_global_importance:
__a : List[str] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('Attention entropies' )
print_ad_tensor(lowerCamelCase_ )
if compute_importance:
logger.info('Head importance scores' )
print_ad_tensor(lowerCamelCase_ )
logger.info('Head ranked by importance scores' )
__a : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
__a : str = torch.arange(
head_importance.numel() , device=args.device )
__a : Tuple = head_ranks.view_as(lowerCamelCase_ )
print_ad_tensor(lowerCamelCase_ )
return attn_entropy, head_importance, total_loss
def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ):
__a , __a , __a : Optional[int] = compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ )
__a : Tuple = 1 / loss # instead of downsteam score use the LM loss
logger.info('Pruning: original score: %f, threshold: %f' , lowerCamelCase_ , original_score * args.masking_threshold )
__a : Tuple = torch.ones_like(lowerCamelCase_ )
__a : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
__a : Tuple = original_score
while current_score >= original_score * args.masking_threshold:
__a : Optional[Any] = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
__a : List[str] = float('Inf' )
__a : List[Any] = head_importance.view(-1 ).sort()[1]
if len(lowerCamelCase_ ) <= num_to_mask:
print('BREAK BY num_to_mask' )
break
# mask heads
__a : Any = current_heads_to_mask[:num_to_mask]
logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) )
__a : int = new_head_mask.view(-1 )
__a : Tuple = 0.0
__a : int = new_head_mask.view_as(lowerCamelCase_ )
__a : Optional[int] = new_head_mask.clone().detach()
print_ad_tensor(lowerCamelCase_ )
# Compute metric and head importance again
__a , __a , __a : int = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , head_mask=lowerCamelCase_ )
__a : List[Any] = 1 / loss
logger.info(
'Masking: current score: %f, remaining heads %d (%.1f percents)' , lowerCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , )
logger.info('Final head mask' )
print_ad_tensor(lowerCamelCase_ )
np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() )
return head_mask
def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ):
__a : List[Any] = datetime.now()
__a , __a , __a : List[str] = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ )
__a : List[str] = 1 / loss
__a : List[Any] = datetime.now() - before_time
__a : List[str] = sum(p.numel() for p in model.parameters() )
__a : Dict = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
__a : Tuple = [
v,
]
assert sum(len(lowerCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCamelCase_ )
__a : Optional[Any] = sum(p.numel() for p in model.parameters() )
__a : Tuple = datetime.now()
__a , __a , __a : Tuple = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ , actually_pruned=lowerCamelCase_ , )
__a : Optional[Any] = 1 / loss
__a : List[Any] = datetime.now() - before_time
logger.info(
'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , lowerCamelCase_ , lowerCamelCase_ , pruned_num_params / original_num_params * 1_0_0 , )
logger.info('Pruning: score with masking: %f score with pruning: %f' , lowerCamelCase_ , lowerCamelCase_ )
logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 )
save_model(lowerCamelCase_ , args.output_dir )
def UpperCAmelCase__ ( ):
__a : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--data_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , )
parser.add_argument(
'--model_name_or_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--output_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , )
# Other parameters
parser.add_argument(
'--config_name' , default='' , type=lowerCamelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--tokenizer_name' , default='' , type=lowerCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--cache_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , )
parser.add_argument(
'--data_subset' , type=lowerCamelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' )
parser.add_argument(
'--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
parser.add_argument(
'--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' )
parser.add_argument(
'--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , )
parser.add_argument(
'--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' )
parser.add_argument(
'--masking_threshold' , default=0.9 , type=lowerCamelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , )
parser.add_argument(
'--masking_amount' , default=0.1 , type=lowerCamelCase_ , help='Amount to heads to masking at each masking step.' )
parser.add_argument('--metric_name' , default='acc' , type=lowerCamelCase_ , help='Metric to use for head masking.' )
parser.add_argument(
'--max_seq_length' , default=1_2_8 , type=lowerCamelCase_ , help=(
'The maximum total input sequence length after WordPiece tokenization. \n'
'Sequences longer than this will be truncated, sequences shorter padded.'
) , )
parser.add_argument('--batch_size' , default=1 , type=lowerCamelCase_ , help='Batch size.' )
parser.add_argument('--seed' , type=lowerCamelCase_ , default=4_2 )
parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='local_rank for distributed training on gpus' )
parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' )
parser.add_argument('--server_ip' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' )
__a : Optional[Any] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
__a : List[str] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' )
__a : Tuple = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
__a : Union[str, Any] = torch.device('cuda' , args.local_rank )
__a : Any = 1
torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
__a : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
__a : List[Any] = nn.parallel.DistributedDataParallel(
lowerCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase_ )
elif args.n_gpu > 1:
__a : Union[str, Any] = nn.DataParallel(lowerCamelCase_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=lowerCamelCase_ )
torch.save(lowerCamelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) )
logger.info('Training/evaluation parameters %s' , lowerCamelCase_ )
# Prepare dataset
__a : Tuple = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
__a : str = (torch.from_numpy(lowerCamelCase_ ),)
__a : List[str] = TensorDataset(*lowerCamelCase_ )
__a : Optional[Any] = RandomSampler(lowerCamelCase_ )
__a : Union[str, Any] = DataLoader(lowerCamelCase_ , sampler=lowerCamelCase_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
__a : Union[str, Any] = mask_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
prune_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
main()
| 47 | 0 |
'''simple docstring'''
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a__ : Optional[int] = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt')
def __snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : int = 16_000 ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = int(round(sample_rate * max_length ) )
if len(SCREAMING_SNAKE_CASE_ ) <= sample_length:
return wav
UpperCAmelCase = randint(0 , len(SCREAMING_SNAKE_CASE_ ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(default=UpperCAmelCase_ , metadata={"help": "Name of a dataset from the datasets package"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "A file containing the training audio paths and labels."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "A file containing the validation audio paths and labels."} )
_lowerCamelCase =field(
default="train" , metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
} , )
_lowerCamelCase =field(
default="validation" , metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
)
} , )
_lowerCamelCase =field(
default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , )
_lowerCamelCase =field(
default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
_lowerCamelCase =field(
default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} )
_lowerCamelCase =field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Name or path of preprocessor config."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def __snake_case ( self : Union[str, Any] ):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
'''The argument `--freeze_feature_extractor` is deprecated and '''
'''will be removed in a future version. Use `--freeze_feature_encoder`'''
'''instead. Setting `freeze_feature_encoder==True`.''' , a__ , )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
'''The argument `--freeze_feature_extractor` is deprecated and '''
'''should not be used in combination with `--freeze_feature_encoder`.'''
'''Only make use of `--freeze_feature_encoder`.''' )
def __snake_case ( ) -> int:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_audio_classification''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase = training_args.get_process_log_level()
logger.setLevel(SCREAMING_SNAKE_CASE_ )
transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
UpperCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to train from scratch.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Initialize our dataset and prepare it for the audio classification task.
UpperCAmelCase = DatasetDict()
UpperCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , )
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
'''Make sure to set `--audio_column_name` to the correct audio column - one of '''
f"{', '.join(raw_datasets['train'].column_names )}." )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
'''Make sure to set `--label_column_name` to the correct text column - one of '''
f"{', '.join(raw_datasets['train'].column_names )}." )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
UpperCAmelCase = raw_datasets.cast_column(
data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
UpperCAmelCase = feature_extractor.model_input_names[0]
def train_transforms(SCREAMING_SNAKE_CASE_ : int ):
UpperCAmelCase = []
for audio in batch[data_args.audio_column_name]:
UpperCAmelCase = random_subsample(
audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=feature_extractor.sampling_rate )
UpperCAmelCase = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE_ )}
UpperCAmelCase = list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(SCREAMING_SNAKE_CASE_ : List[Any] ):
UpperCAmelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]]
UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=feature_extractor.sampling_rate )
UpperCAmelCase = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE_ )}
UpperCAmelCase = list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
UpperCAmelCase = raw_datasets['''train'''].features[data_args.label_column_name].names
UpperCAmelCase, UpperCAmelCase = {}, {}
for i, label in enumerate(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = label
# Load the accuracy metric from the datasets package
UpperCAmelCase = evaluate.load('''accuracy''' )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(SCREAMING_SNAKE_CASE_ : Dict ):
UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 )
return metric.compute(predictions=SCREAMING_SNAKE_CASE_ , references=eval_pred.label_ids )
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE_ ) , labelaid=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
UpperCAmelCase = (
raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE_ , output_all_columns=SCREAMING_SNAKE_CASE_ )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
UpperCAmelCase = (
raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE_ , output_all_columns=SCREAMING_SNAKE_CASE_ )
# Initialize our trainer
UpperCAmelCase = Trainer(
model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , )
# Training
if training_args.do_train:
UpperCAmelCase = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase = last_checkpoint
UpperCAmelCase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ )
trainer.save_model()
trainer.log_metrics('''train''' , train_result.metrics )
trainer.save_metrics('''train''' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
UpperCAmelCase = trainer.evaluate()
trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE_ )
trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE_ )
# Write model card and (optionally) push to hub
UpperCAmelCase = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''audio-classification''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''audio-classification'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ )
else:
trainer.create_model_card(**SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main()
| 51 |
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse('''0.8.3'''):
raise Exception('''requires gluonnlp == 0.8.3''')
if version.parse(mx.__version__) != version.parse('''1.5.0'''):
raise Exception('''requires mxnet == 1.5.0''')
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''The Nymphenburg Palace is a beautiful palace in Munich!'''
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ):
__a : List[Any] = {
'attention_cell': 'multi_head',
'num_layers': 4,
'units': 1_0_2_4,
'hidden_size': 7_6_8,
'max_length': 5_1_2,
'num_heads': 8,
'scaled': True,
'dropout': 0.1,
'use_residual': True,
'embed_size': 1_0_2_4,
'embed_dropout': 0.1,
'word_embed': None,
'layer_norm_eps': 1e-5,
'token_type_vocab_size': 2,
}
__a : Optional[int] = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
__a : List[str] = BERTEncoder(
attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
__a : int = 'openwebtext_ccnews_stories_books_cased'
# Specify download folder to Gluonnlp's vocab
__a : Optional[Any] = os.path.join(get_home_dir() , 'models' )
__a : Optional[Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ )
__a : Any = nlp.model.BERTModel(
lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , )
original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ )
__a : Dict = original_bort._collect_params_with_prefix()
# Build our config 🤗
__a : Optional[Any] = {
'architectures': ['BertForMaskedLM'],
'attention_probs_dropout_prob': predefined_args['dropout'],
'hidden_act': 'gelu',
'hidden_dropout_prob': predefined_args['dropout'],
'hidden_size': predefined_args['embed_size'],
'initializer_range': 0.02,
'intermediate_size': predefined_args['hidden_size'],
'layer_norm_eps': predefined_args['layer_norm_eps'],
'max_position_embeddings': predefined_args['max_length'],
'model_type': 'bort',
'num_attention_heads': predefined_args['num_heads'],
'num_hidden_layers': predefined_args['num_layers'],
'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa
'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa
'vocab_size': len(lowerCamelCase_ ),
}
__a : str = BertConfig.from_dict(lowerCamelCase_ )
__a : Optional[int] = BertForMaskedLM(lowerCamelCase_ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase_ : Optional[Any] ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ):
__a : Optional[int] = hf_param.shape
__a : int = to_torch(params[gluon_param] )
__a : int = gluon_param.shape
assert (
shape_hf == shape_gluon
), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'''
return gluon_param
__a : str = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' )
__a : str = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' )
__a : Tuple = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' )
__a : Union[str, Any] = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
__a : Union[str, Any] = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
__a : BertLayer = hf_bort_model.bert.encoder.layer[i]
# self attention
__a : BertSelfAttention = layer.attention.self
__a : Optional[int] = check_and_map_params(
self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' )
__a : str = check_and_map_params(
self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' )
__a : List[str] = check_and_map_params(
self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' )
__a : str = check_and_map_params(
self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' )
__a : Dict = check_and_map_params(
self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' )
__a : str = check_and_map_params(
self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' )
# self attention output
__a : BertSelfOutput = layer.attention.output
__a : Tuple = check_and_map_params(
self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' )
__a : Dict = check_and_map_params(
self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' )
__a : Optional[Any] = check_and_map_params(
self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' )
__a : Optional[Any] = check_and_map_params(
self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' )
# intermediate
__a : BertIntermediate = layer.intermediate
__a : List[str] = check_and_map_params(
intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' )
__a : Optional[Any] = check_and_map_params(
intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' )
# output
__a : BertOutput = layer.output
__a : str = check_and_map_params(
bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' )
__a : List[Any] = check_and_map_params(
bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' )
__a : str = check_and_map_params(
bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' )
__a : List[str] = check_and_map_params(
bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
__a : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-base' )
__a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ )['input_ids']
# Get gluon output
__a : Optional[int] = mx.nd.array([input_ids] )
__a : Tuple = original_bort(inputs=lowerCamelCase_ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase_ )
__a : Optional[Any] = BertModel.from_pretrained(lowerCamelCase_ )
hf_bort_model.eval()
__a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' )
__a : int = hf_bort_model(**lowerCamelCase_ )[0]
__a : Dict = output_gluon[0].asnumpy()
__a : str = output_hf[0].detach().numpy()
__a : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item()
__a : str = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 )
if success:
print('✔️ Both model do output the same tensors' )
else:
print('❌ Both model do **NOT** output the same tensors' )
print('Absolute difference is:' , lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 47 | 0 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
A = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def __A ( ) -> str:
__a : Dict = _ask_options(
'''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
__a : Union[str, Any] = get_sagemaker_input()
else:
__a : Tuple = get_cluster_input()
return config
def __A ( a_ :str=None) -> str:
if subparsers is not None:
__a : int = subparsers.add_parser('''config''' , description=a_)
else:
__a : Optional[Any] = argparse.ArgumentParser('''Accelerate config command''' , description=a_)
parser.add_argument(
'''--config_file''' , default=a_ , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=a_)
return parser
def __A ( a_ :Tuple) -> Any:
__a : List[Any] = get_user_input()
if args.config_file is not None:
__a : str = args.config_file
else:
if not os.path.isdir(a_):
os.makedirs(a_)
__a : Any = default_yaml_config_file
if config_file.endswith('''.json'''):
config.to_json_file(a_)
else:
config.to_yaml_file(a_)
print(F"""accelerate configuration saved at {config_file}""")
def __A ( ) -> int:
__a : int = config_command_parser()
__a : List[Any] = parser.parse_args()
config_command(a_)
if __name__ == "__main__":
main()
| 52 |
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ):
__a : Any = ''
for i in table:
res += inp[i - 1]
return res
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ):
return data[1:] + data[0]
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ):
__a : Optional[int] = ''
for i in range(len(lowerCamelCase_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ):
__a : List[str] = int('0b' + data[0] + data[-1] , 2 )
__a : List[str] = int('0b' + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ):
__a : List[Any] = message[:4]
__a : str = message[4:]
__a : Any = apply_table(lowerCamelCase_ , lowerCamelCase_ )
__a : int = xor(lowerCamelCase_ , lowerCamelCase_ )
__a : Dict = apply_sbox(lowerCamelCase_ , temp[:4] ) # noqa: E741
__a : Tuple = apply_sbox(lowerCamelCase_ , temp[4:] )
__a : List[Any] = '0' * (2 - len(lowerCamelCase_ )) + l # noqa: E741
__a : List[str] = '0' * (2 - len(lowerCamelCase_ )) + r
__a : List[Any] = apply_table(l + r , lowerCamelCase_ )
__a : Dict = xor(lowerCamelCase_ , lowerCamelCase_ )
return temp + right
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = input('''Enter 10 bit key: ''')
SCREAMING_SNAKE_CASE__ = input('''Enter 8 bit message: ''')
SCREAMING_SNAKE_CASE__ = [6, 3, 7, 4, 8, 5, 10, 9]
SCREAMING_SNAKE_CASE__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
SCREAMING_SNAKE_CASE__ = [2, 4, 3, 1]
SCREAMING_SNAKE_CASE__ = [2, 6, 3, 1, 4, 8, 5, 7]
SCREAMING_SNAKE_CASE__ = [4, 1, 3, 5, 7, 2, 8, 6]
SCREAMING_SNAKE_CASE__ = [4, 1, 2, 3, 2, 3, 4, 1]
SCREAMING_SNAKE_CASE__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
SCREAMING_SNAKE_CASE__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
SCREAMING_SNAKE_CASE__ = apply_table(key, paa_table)
SCREAMING_SNAKE_CASE__ = temp[:5]
SCREAMING_SNAKE_CASE__ = temp[5:]
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table)
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table)
# encryption
SCREAMING_SNAKE_CASE__ = apply_table(message, IP)
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv)
print('''Cipher text is:''', CT)
# decryption
SCREAMING_SNAKE_CASE__ = apply_table(CT, IP)
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv)
print('''Plain text after decypting is:''', PT)
| 47 | 0 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
_snake_case : Optional[int] = logging.get_logger(__name__)
# General docstring
_snake_case : int = 'RegNetConfig'
# Base docstring
_snake_case : List[str] = 'facebook/regnet-y-040'
_snake_case : List[Any] = [1, 1088, 7, 7]
# Image classification docstring
_snake_case : List[Any] = 'facebook/regnet-y-040'
_snake_case : Union[str, Any] = 'tabby, tabby cat'
_snake_case : str = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class _UpperCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[str] = "relu" , **lowerCAmelCase_ : Any , ) -> Tuple:
super().__init__(**lowerCAmelCase_ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__lowerCAmelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__lowerCAmelCase = tf.keras.layers.ConvaD(
filters=lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , strides=lowerCAmelCase_ , padding='VALID' , groups=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name='convolution' , )
__lowerCAmelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
__lowerCAmelCase = ACTaFN[activation] if activation is not None else tf.identity
def lowercase ( self : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any:
__lowerCAmelCase = self.convolution(self.padding(lowerCAmelCase_ ) )
__lowerCAmelCase = self.normalization(lowerCAmelCase_ )
__lowerCAmelCase = self.activation(lowerCAmelCase_ )
return hidden_state
class _UpperCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase_ : RegNetConfig , **lowerCAmelCase_ : Optional[Any] ) -> List[Any]:
super().__init__(**lowerCAmelCase_ )
__lowerCAmelCase = config.num_channels
__lowerCAmelCase = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , )
def lowercase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]:
__lowerCAmelCase = shape_list(lowerCAmelCase_ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__lowerCAmelCase = tf.transpose(lowerCAmelCase_ , perm=(0, 2, 3, 1) )
__lowerCAmelCase = self.embedder(lowerCAmelCase_ )
return hidden_state
class _UpperCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 2 , **lowerCAmelCase_ : Tuple ) -> List[str]:
super().__init__(**lowerCAmelCase_ )
__lowerCAmelCase = tf.keras.layers.ConvaD(
filters=lowerCAmelCase_ , kernel_size=1 , strides=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name='convolution' )
__lowerCAmelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
def lowercase ( self : List[Any] , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : bool = False ) -> tf.Tensor:
return self.normalization(self.convolution(lowerCAmelCase_ ) , training=lowerCAmelCase_ )
class _UpperCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ) -> str:
super().__init__(**lowerCAmelCase_ )
__lowerCAmelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name='pooler' )
__lowerCAmelCase = [
tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation='relu' , name='attention.0' ),
tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ),
]
def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] ) -> Optional[int]:
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__lowerCAmelCase = self.pooler(lowerCAmelCase_ )
for layer_module in self.attention:
__lowerCAmelCase = layer_module(lowerCAmelCase_ )
__lowerCAmelCase = hidden_state * pooled
return hidden_state
class _UpperCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : Optional[int] ) -> List[str]:
super().__init__(**lowerCAmelCase_ )
__lowerCAmelCase = in_channels != out_channels or stride != 1
__lowerCAmelCase = max(1 , out_channels // config.groups_width )
__lowerCAmelCase = (
TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__lowerCAmelCase = [
TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name='layer.2' ),
]
__lowerCAmelCase = ACTaFN[config.hidden_act]
def lowercase ( self : List[str] , lowerCAmelCase_ : str ) -> Union[str, Any]:
__lowerCAmelCase = hidden_state
for layer_module in self.layers:
__lowerCAmelCase = layer_module(lowerCAmelCase_ )
__lowerCAmelCase = self.shortcut(lowerCAmelCase_ )
hidden_state += residual
__lowerCAmelCase = self.activation(lowerCAmelCase_ )
return hidden_state
class _UpperCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : List[str] ) -> str:
super().__init__(**lowerCAmelCase_ )
__lowerCAmelCase = in_channels != out_channels or stride != 1
__lowerCAmelCase = max(1 , out_channels // config.groups_width )
__lowerCAmelCase = (
TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
__lowerCAmelCase = [
TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name='layer.1' ),
TFRegNetSELayer(lowerCAmelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ),
TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name='layer.3' ),
]
__lowerCAmelCase = ACTaFN[config.hidden_act]
def lowercase ( self : Tuple , lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]:
__lowerCAmelCase = hidden_state
for layer_module in self.layers:
__lowerCAmelCase = layer_module(lowerCAmelCase_ )
__lowerCAmelCase = self.shortcut(lowerCAmelCase_ )
hidden_state += residual
__lowerCAmelCase = self.activation(lowerCAmelCase_ )
return hidden_state
class _UpperCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]:
super().__init__(**lowerCAmelCase_ )
__lowerCAmelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer
__lowerCAmelCase = [
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , name='layers.0' ),
*[layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def lowercase ( self : int , lowerCAmelCase_ : int ) -> str:
for layer_module in self.layers:
__lowerCAmelCase = layer_module(lowerCAmelCase_ )
return hidden_state
class _UpperCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase_ : RegNetConfig , **lowerCAmelCase_ : str ) -> List[str]:
super().__init__(**lowerCAmelCase_ )
__lowerCAmelCase = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) )
__lowerCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCAmelCase_ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ , name=f"""stages.{i+1}""" ) )
def lowercase ( self : Any , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> TFBaseModelOutputWithNoAttention:
__lowerCAmelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowerCAmelCase = hidden_states + (hidden_state,)
__lowerCAmelCase = stage_module(lowerCAmelCase_ )
if output_hidden_states:
__lowerCAmelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ )
@keras_serializable
class _UpperCAmelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
a_ = RegNetConfig
def __init__( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[Any] ) -> str:
super().__init__(**lowerCAmelCase_ )
__lowerCAmelCase = config
__lowerCAmelCase = TFRegNetEmbeddings(lowerCAmelCase_ , name='embedder' )
__lowerCAmelCase = TFRegNetEncoder(lowerCAmelCase_ , name='encoder' )
__lowerCAmelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name='pooler' )
@unpack_inputs
def lowercase ( self : str , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention:
__lowerCAmelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
__lowerCAmelCase = self.embedder(lowerCAmelCase_ , training=lowerCAmelCase_ )
__lowerCAmelCase = self.encoder(
lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ )
__lowerCAmelCase = encoder_outputs[0]
__lowerCAmelCase = self.pooler(lowerCAmelCase_ )
# Change to NCHW output format have uniformity in the modules
__lowerCAmelCase = tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) )
__lowerCAmelCase = tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__lowerCAmelCase = tuple([tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = RegNetConfig
a_ = """regnet"""
a_ = """pixel_values"""
@property
def lowercase ( self : Tuple ) -> List[str]:
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )}
_snake_case : List[str] = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
_snake_case : Union[str, Any] = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" , _UpperCamelCase , )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase_ : RegNetConfig , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[str] ) -> int:
super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
__lowerCAmelCase = TFRegNetMainLayer(lowerCAmelCase_ , name='regnet' )
@unpack_inputs
@add_start_docstrings_to_model_forward(lowerCAmelCase_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowercase ( self : int , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : List[Any]=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
__lowerCAmelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
__lowerCAmelCase = self.regnet(
pixel_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , _UpperCamelCase , )
class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ):
"""simple docstring"""
def __init__( self : str , lowerCAmelCase_ : RegNetConfig , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Tuple ) -> Dict:
super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
__lowerCAmelCase = config.num_labels
__lowerCAmelCase = TFRegNetMainLayer(lowerCAmelCase_ , name='regnet' )
# classification head
__lowerCAmelCase = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(lowerCAmelCase_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowercase ( self : Optional[int] , lowerCAmelCase_ : tf.Tensor = None , lowerCAmelCase_ : tf.Tensor = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : str=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
__lowerCAmelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
__lowerCAmelCase = self.regnet(
lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ )
__lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1]
__lowerCAmelCase = self.classifier[0](lowerCAmelCase_ )
__lowerCAmelCase = self.classifier[1](lowerCAmelCase_ )
__lowerCAmelCase = None if labels is None else self.hf_compute_loss(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ )
if not return_dict:
__lowerCAmelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states )
| 53 |
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _UpperCamelCase( unittest.TestCase ):
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
__a : List[Any] = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
__a : int = None
ops.enable_eager_execution_internal()
__a : Optional[Any] = tf.config.list_physical_devices('CPU' )
if len(SCREAMING_SNAKE_CASE__ ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__a : int = tf.config.list_logical_devices(device_type='CPU' )
__a : str = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__a : List[str] = GradientAccumulator()
__a : Tuple = tf.Variable([4.0, 3.0] )
__a , __a : int = create_optimizer(5e-5 , 1_0 , 5 )
__a : List[Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE__ )
def accumulate_on_replica(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ):
with strategy.scope():
__a : Optional[Any] = strategy.experimental_local_results(SCREAMING_SNAKE_CASE__ )
local_variables[0].assign(SCREAMING_SNAKE_CASE__ )
local_variables[1].assign(SCREAMING_SNAKE_CASE__ )
strategy.run(SCREAMING_SNAKE_CASE__ , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(SCREAMING_SNAKE_CASE__ )
def _check_local_values(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ):
__a : Union[str, Any] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 )
self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 47 | 0 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=__lowercase )
class A ( __lowercase ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
_snake_case =field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
_snake_case =Features({'''text''': Value('''string''' )} )
_snake_case =Features({'''summary''': Value('''string''' )} )
_snake_case ="text"
_snake_case ="summary"
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Dict[str, str]:
'''simple docstring'''
return {self.text_column: "text", self.summary_column: "summary"}
| 54 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''',
'''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''',
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''roberta'''
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : str=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Tuple="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = vocab_size
__a : Tuple = hidden_size
__a : List[str] = num_hidden_layers
__a : List[Any] = num_attention_heads
__a : str = hidden_act
__a : Optional[Any] = intermediate_size
__a : Dict = hidden_dropout_prob
__a : List[str] = attention_probs_dropout_prob
__a : Optional[Any] = max_position_embeddings
__a : Dict = type_vocab_size
__a : str = initializer_range
__a : List[str] = layer_norm_eps
__a : Optional[int] = position_embedding_type
__a : Union[str, Any] = use_cache
__a : str = classifier_dropout
class _UpperCamelCase( __lowerCamelCase ):
@property
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
if self.task == "multiple-choice":
__a : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__a : Dict = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 47 | 0 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] ):
__A = tempfile.mkdtemp()
__A = SamImageProcessor()
__A = SamProcessor(A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Any ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Any ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
@require_torch
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = [torch.ones((1, 3, 5, 5) )]
__A = [[17_64, 26_46]]
__A = [[6_83, 10_24]]
__A = processor.post_process_masks(A ,A ,A )
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
__A = processor.post_process_masks(
A ,torch.tensor(A ) ,torch.tensor(A ) )
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
# should also work with np
__A = [np.ones((1, 3, 5, 5) )]
__A = processor.post_process_masks(A ,np.array(A ) ,np.array(A ) )
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
__A = [[1, 0], [0, 1]]
with self.assertRaises(A ):
__A = processor.post_process_masks(A ,np.array(A ) ,np.array(A ) )
@require_vision
@require_tf
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = SamImageProcessor()
__A = SamProcessor(A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Tuple ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : int ):
__A = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
@require_tf
def UpperCamelCase_ ( self : Dict ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = [tf.ones((1, 3, 5, 5) )]
__A = [[17_64, 26_46]]
__A = [[6_83, 10_24]]
__A = processor.post_process_masks(A ,A ,A ,return_tensors="tf" )
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
__A = processor.post_process_masks(
A ,tf.convert_to_tensor(A ) ,tf.convert_to_tensor(A ) ,return_tensors="tf" ,)
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
# should also work with np
__A = [np.ones((1, 3, 5, 5) )]
__A = processor.post_process_masks(
A ,np.array(A ) ,np.array(A ) ,return_tensors="tf" )
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
__A = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__A = processor.post_process_masks(
A ,np.array(A ) ,np.array(A ) ,return_tensors="tf" )
@require_vision
@require_torchvision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[int] ):
__A = tempfile.mkdtemp()
__A = SamImageProcessor()
__A = SamProcessor(A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : str ,**A : str ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Optional[Any] ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = np.random.randint(0 ,2 ,size=(1, 3, 5, 5) ).astype(np.floataa )
__A = [tf.convert_to_tensor(A )]
__A = [torch.tensor(A )]
__A = [[17_64, 26_46]]
__A = [[6_83, 10_24]]
__A = processor.post_process_masks(
A ,A ,A ,return_tensors="tf" )
__A = processor.post_process_masks(
A ,A ,A ,return_tensors="pt" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def UpperCamelCase_ ( self : List[str] ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="pt" )["pixel_values"].numpy()
__A = processor(images=A ,return_tensors="pt" )["pixel_values"].numpy()
__A = image_processor(A ,return_tensors="tf" )["pixel_values"].numpy()
__A = processor(images=A ,return_tensors="tf" )["pixel_values"].numpy()
self.assertTrue(np.allclose(A ,A ) )
self.assertTrue(np.allclose(A ,A ) )
self.assertTrue(np.allclose(A ,A ) )
| 55 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''▁'''
SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.bpe.model'''}
SCREAMING_SNAKE_CASE__ = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
SCREAMING_SNAKE_CASE__ = {
'''facebook/xglm-564M''': 2048,
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask''']
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : Dict="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ):
'''simple docstring'''
__a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
__a : Any = 7
__a : Union[str, Any] = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
__a : Union[str, Any] = kwargs.get('additional_special_tokens' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , )
__a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) )
__a : str = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__a : Any = 1
# Mimic fairseq token-to-id alignment for the first 4 token
__a : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
__a : List[str] = len(self.sp_model )
__a : Optional[int] = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ )
__a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[str] ):
'''simple docstring'''
__a : Tuple = self.__dict__.copy()
__a : List[str] = None
__a : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
__a : int = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__a : Dict = {}
__a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
__a : Optional[Any] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ):
'''simple docstring'''
__a : Optional[int] = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
__a : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__a : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
__a : Optional[int] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip()
return out_string
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a : Any = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi:
__a : List[Any] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 47 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _lowercase ( __lowercase , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : str = TextToVideoSDPipeline
_SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS
_SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
_SCREAMING_SNAKE_CASE : List[str] = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback",
"callback_steps",
] )
def a ( self : Union[str, Any] ) -> Dict:
torch.manual_seed(0 )
__snake_case = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , )
__snake_case = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0 )
__snake_case = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__snake_case = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , )
__snake_case = CLIPTextModel(SCREAMING_SNAKE_CASE_ )
__snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__snake_case = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def a ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 ) -> Union[str, Any]:
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
__snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
__snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
__snake_case = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def a ( self : Any ) -> Union[str, Any]:
__snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator
__snake_case = self.get_dummy_components()
__snake_case = TextToVideoSDPipeline(**SCREAMING_SNAKE_CASE_ )
__snake_case = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
__snake_case = 'np'
__snake_case = sd_pipe(**SCREAMING_SNAKE_CASE_ ).frames
__snake_case = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
__snake_case = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def a ( self : Optional[int] ) -> str:
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ , expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def a ( self : Any ) -> int:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ , expected_max_diff=1e-2 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def a ( self : List[str] ) -> Optional[int]:
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def a ( self : Optional[int] ) -> Any:
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def a ( self : List[Any] ) -> List[str]:
pass
def a ( self : Dict ) -> Optional[int]:
return super().test_progress_bar()
@slow
@skip_mps
class _lowercase ( unittest.TestCase ):
def a ( self : List[Any] ) -> str:
__snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' )
__snake_case = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' )
__snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__snake_case = pipe.to('cuda' )
__snake_case = 'Spiderman is surfing'
__snake_case = torch.Generator(device='cpu' ).manual_seed(0 )
__snake_case = pipe(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=25 , output_type='pt' ).frames
__snake_case = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def a ( self : Dict ) -> Any:
__snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' )
__snake_case = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' )
__snake_case = pipe.to('cuda' )
__snake_case = 'Spiderman is surfing'
__snake_case = torch.Generator(device='cpu' ).manual_seed(0 )
__snake_case = pipe(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type='pt' ).frames
__snake_case = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 56 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
SCREAMING_SNAKE_CASE__ = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] ):
__a : str = torch.load(lowerCamelCase_ , map_location='cpu' )
return sd
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=rename_keys_prefix ):
__a : Optional[Any] = OrderedDict()
__a : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__a : List[Any] = key
for name_pair in rename_keys_prefix:
__a : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__a : Any = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__a : int = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ):
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
__a : Dict = 'pretraining'
if "vcr" in checkpoint_path:
__a : int = {'visual_embedding_dim': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
__a : int = {'visual_embedding_dim': 2_0_4_8}
elif "vqa" in checkpoint_path:
__a : Tuple = {'visual_embedding_dim': 2_0_4_8}
elif "nlvr" in checkpoint_path:
__a : List[Any] = {'visual_embedding_dim': 1_0_2_4}
else:
raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
__a : int = {'visual_embedding_dim': 5_1_2}
__a : Any = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
__a : Any = {'visual_embedding_dim': 2_0_4_8}
__a : List[str] = 'vqa_advanced'
elif "vqa" in checkpoint_path:
__a : List[Any] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9}
__a : List[Any] = 'vqa'
elif "nlvr" in checkpoint_path:
__a : Optional[int] = {
'visual_embedding_dim': 1_0_2_4,
'num_labels': 2,
}
__a : Optional[Any] = 'nlvr'
__a : str = VisualBertConfig(**lowerCamelCase_ )
# Load State Dict
__a : str = load_state_dict(lowerCamelCase_ )
__a : str = get_new_dict(lowerCamelCase_ , lowerCamelCase_ )
if model_type == "pretraining":
__a : Optional[Any] = VisualBertForPreTraining(lowerCamelCase_ )
elif model_type == "vqa":
__a : Any = VisualBertForQuestionAnswering(lowerCamelCase_ )
elif model_type == "nlvr":
__a : int = VisualBertForVisualReasoning(lowerCamelCase_ )
elif model_type == "multichoice":
__a : Optional[int] = VisualBertForMultipleChoice(lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
# Save Checkpoints
Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 47 | 0 |
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
A_ : Tuple = logging.get_logger(__name__)
def snake_case () -> Optional[Any]:
# Get the sagemaker specific mp parameters from smp_options variable.
UpperCamelCase_: Optional[Any] = os.getenv('SM_HP_MP_PARAMETERS' , '{}' )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
UpperCamelCase_: List[str] = json.loads(UpperCAmelCase__ )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
UpperCamelCase_: Any = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
UpperCamelCase_: Tuple = json.loads(UpperCAmelCase__ )
if not mpi_options.get('sagemaker_mpi_enabled' , UpperCAmelCase__ ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec('smdistributed' ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : str =field(
default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , )
def _a ( self ):
super().__post_init__()
warnings.warn(
'`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use '
'`TrainingArguments` instead.' , _lowerCamelCase , )
@cached_property
def _a ( self ):
logger.info('PyTorch: setting up devices' )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
'torch.distributed process group is initialized, but local_rank == -1. '
'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' )
if self.no_cuda:
UpperCamelCase_: str = torch.device('cpu' )
UpperCamelCase_: Optional[Any] = 0
elif is_sagemaker_model_parallel_available():
UpperCamelCase_: Optional[int] = smp.local_rank()
UpperCamelCase_: Any = torch.device('cuda' , _lowerCamelCase )
UpperCamelCase_: int = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta )
UpperCamelCase_: Optional[int] = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) )
UpperCamelCase_: Dict = torch.device('cuda' , self.local_rank )
UpperCamelCase_: Union[str, Any] = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
UpperCamelCase_: Union[str, Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
UpperCamelCase_: Any = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta )
UpperCamelCase_: Optional[Any] = torch.device('cuda' , self.local_rank )
UpperCamelCase_: Optional[int] = 1
if device.type == "cuda":
torch.cuda.set_device(_lowerCamelCase )
return device
@property
def _a ( self ):
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def _a ( self ):
return not is_sagemaker_model_parallel_available()
@property
def _a ( self ):
return False
| 57 |
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
| 47 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = IFPipeline
_lowerCamelCase = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
_lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
return self._get_dummy_components()
def UpperCAmelCase__ ( self , _lowercase , _lowercase=0 ) -> List[str]:
'''simple docstring'''
if str(_lowercase ).startswith("""mps""" ):
snake_case_ : Optional[Any] = torch.manual_seed(_lowercase )
else:
snake_case_ : int = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
snake_case_ : str = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
self._test_save_load_local()
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa )
snake_case_ : Optional[int] = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_lowercase , tokenizer=_lowercase )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""" )
snake_case_ , snake_case_ : int = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
snake_case_ : Union[str, Any] = None
snake_case_ : int = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(_lowercase , _lowercase , _lowercase , _lowercase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
snake_case_ : int = IFImgaImgPipeline(**pipe_a.components )
snake_case_ : int = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(_lowercase , _lowercase , _lowercase , _lowercase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
snake_case_ : int = IFInpaintingPipeline(**pipe_a.components )
snake_case_ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(_lowercase , _lowercase , _lowercase , _lowercase )
def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]:
'''simple docstring'''
_start_torch_memory_measurement()
snake_case_ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : int = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type="""np""" , )
snake_case_ : Dict = output.images[0]
assert image.shape == (6_4, 6_4, 3)
snake_case_ : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_3 * 1_0**9
snake_case_ : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : str = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , )
snake_case_ : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
snake_case_ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
snake_case_ : Any = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any:
'''simple docstring'''
_start_torch_memory_measurement()
snake_case_ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : str = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : Union[str, Any] = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type="""np""" , )
snake_case_ : List[str] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
snake_case_ : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
snake_case_ : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : Union[str, Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : Union[str, Any] = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , )
snake_case_ : Optional[int] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
snake_case_ : int = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
snake_case_ : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]:
'''simple docstring'''
_start_torch_memory_measurement()
snake_case_ : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(_lowercase )
snake_case_ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : int = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type="""np""" , )
snake_case_ : Any = output.images[0]
assert image.shape == (6_4, 6_4, 3)
snake_case_ : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
snake_case_ : Any = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : Dict = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(_lowercase )
snake_case_ : int = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , )
snake_case_ : Dict = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
snake_case_ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
snake_case_ : Optional[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
def __lowerCAmelCase ( ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 58 |
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class _UpperCamelCase( __lowerCamelCase ):
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : List[Any] = tempfile.mkdtemp()
__a : int = 8
# DPR tok
__a : Dict = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__a : int = os.path.join(self.tmpdirname , 'dpr_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , DPR_VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
# BART tok
__a : str = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
__a : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
__a : List[str] = {'unk_token': '<unk>'}
__a : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['vocab_file'] )
__a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) )
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) )
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
@require_tokenizers
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
__a : Tuple = os.path.join(self.tmpdirname , 'rag_tokenizer' )
__a : Optional[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() )
__a : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() )
rag_config.save_pretrained(SCREAMING_SNAKE_CASE__ )
rag_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ )
__a : List[Any] = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(new_rag_tokenizer.question_encoder , SCREAMING_SNAKE_CASE__ )
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() )
self.assertIsInstance(new_rag_tokenizer.generator , SCREAMING_SNAKE_CASE__ )
self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() )
@slow
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : Optional[Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' )
__a : List[Any] = [
'who got the first nobel prize in physics',
'when is the next deadpool movie being released',
'which mode is used for short wave broadcast service',
'who is the owner of reading football club',
'when is the next scandal episode coming out',
'when is the last time the philadelphia won the superbowl',
'what is the most current adobe flash player version',
'how many episodes are there in dragon ball z',
'what is the first step in the evolution of the eye',
'where is gall bladder situated in human body',
'what is the main mineral in lithium batteries',
'who is the president of usa right now',
'where do the greasers live in the outsiders',
'panda is a national animal of which country',
'what is the name of manchester united stadium',
]
__a : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@slow
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
__a : Any = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' )
__a : Union[str, Any] = [
'who got the first nobel prize in physics',
'when is the next deadpool movie being released',
'which mode is used for short wave broadcast service',
'who is the owner of reading football club',
'when is the next scandal episode coming out',
'when is the last time the philadelphia won the superbowl',
'what is the most current adobe flash player version',
'how many episodes are there in dragon ball z',
'what is the first step in the evolution of the eye',
'where is gall bladder situated in human body',
'what is the main mineral in lithium batteries',
'who is the president of usa right now',
'where do the greasers live in the outsiders',
'panda is a national animal of which country',
'what is the name of manchester united stadium',
]
__a : str = tokenizer(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
| 47 | 0 |
import numpy as np
from transformers import Pipeline
def lowerCAmelCase_ ( __a ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =np.max(__a , axis=-1 , keepdims=__a )
lowerCamelCase__: int =np.exp(outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__a )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->str:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] ={}
if "second_text" in kwargs:
lowerCamelCase__: Optional[int] =kwargs["second_text"]
return preprocess_kwargs, {}, {}
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=None) ->int:
'''simple docstring'''
return self.tokenizer(UpperCAmelCase_ , text_pair=UpperCAmelCase_ , return_tensors=self.framework)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->int:
'''simple docstring'''
return self.model(**UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Optional[int]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Tuple =model_outputs.logits[0].numpy()
lowerCamelCase__: Any =softmax(UpperCAmelCase_)
lowerCamelCase__: List[str] =np.argmax(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =self.model.config.idalabel[best_class]
lowerCamelCase__: str =probabilities[best_class].item()
lowerCamelCase__: List[str] =logits.tolist()
return {"label": label, "score": score, "logits": logits}
| 59 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model'''}
SCREAMING_SNAKE_CASE__ = {
'''vocab_file''': {
'''bert_for_seq_generation''': (
'''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model'''
),
}
}
SCREAMING_SNAKE_CASE__ = {'''bert_for_seq_generation''': 512}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : List[int] = []
__SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask''']
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<::::>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ):
'''simple docstring'''
__a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
# Add extra_ids to the special token list
super().__init__(
bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , )
__a : int = vocab_file
__a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return self.sp_model.get_piece_size()
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
__a : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ):
'''simple docstring'''
__a : Union[str, Any] = self.__dict__.copy()
__a : Any = None
return state
def __setstate__( self : int , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
__a : str = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__a : str = {}
__a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
__a : int = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ )
return token
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : Optional[Any] = []
__a : Optional[int] = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token
__a : Dict = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE__ )
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ )
return out_string.strip()
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a : Tuple = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi:
__a : List[str] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 47 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ = {
'''configuration_mobilebert''': [
'''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''MobileBertConfig''',
'''MobileBertOnnxConfig''',
],
'''tokenization_mobilebert''': ['''MobileBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['''MobileBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileBertForMaskedLM''',
'''MobileBertForMultipleChoice''',
'''MobileBertForNextSentencePrediction''',
'''MobileBertForPreTraining''',
'''MobileBertForQuestionAnswering''',
'''MobileBertForSequenceClassification''',
'''MobileBertForTokenClassification''',
'''MobileBertLayer''',
'''MobileBertModel''',
'''MobileBertPreTrainedModel''',
'''load_tf_weights_in_mobilebert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFMobileBertForMaskedLM''',
'''TFMobileBertForMultipleChoice''',
'''TFMobileBertForNextSentencePrediction''',
'''TFMobileBertForPreTraining''',
'''TFMobileBertForQuestionAnswering''',
'''TFMobileBertForSequenceClassification''',
'''TFMobileBertForTokenClassification''',
'''TFMobileBertMainLayer''',
'''TFMobileBertModel''',
'''TFMobileBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 60 |
from ..utils import DummyObject, requires_backends
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : List[Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Any = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Dict = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[int] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
| 47 | 0 |
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def a ( self : Union[str, Any] ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def a ( self : str ) -> List[str]:
lowerCAmelCase__ , lowerCAmelCase__ = FlaxControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny" , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa )
lowerCAmelCase__ , lowerCAmelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , controlnet=SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa )
lowerCAmelCase__ = controlnet_params
lowerCAmelCase__ = "bird"
lowerCAmelCase__ = jax.device_count()
lowerCAmelCase__ = pipe.prepare_text_inputs([prompts] * num_samples )
lowerCAmelCase__ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" )
lowerCAmelCase__ = pipe.prepare_image_inputs([canny_image] * num_samples )
lowerCAmelCase__ = jax.random.PRNGKey(0 )
lowerCAmelCase__ = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() )
lowerCAmelCase__ = replicate(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = shard(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = shard(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = pipe(
prompt_ids=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , prng_seed=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , jit=SCREAMING_SNAKE_CASE__ , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
lowerCAmelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
lowerCAmelCase__ = images[0, 253:256, 253:256, -1]
lowerCAmelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) )
lowerCAmelCase__ = jnp.array(
[0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def a ( self : List[str] ) -> Any:
lowerCAmelCase__ , lowerCAmelCase__ = FlaxControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose" , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa )
lowerCAmelCase__ , lowerCAmelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , controlnet=SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ , dtype=jnp.bfloataa )
lowerCAmelCase__ = controlnet_params
lowerCAmelCase__ = "Chef in the kitchen"
lowerCAmelCase__ = jax.device_count()
lowerCAmelCase__ = pipe.prepare_text_inputs([prompts] * num_samples )
lowerCAmelCase__ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" )
lowerCAmelCase__ = pipe.prepare_image_inputs([pose_image] * num_samples )
lowerCAmelCase__ = jax.random.PRNGKey(0 )
lowerCAmelCase__ = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() )
lowerCAmelCase__ = replicate(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = shard(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = shard(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = pipe(
prompt_ids=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , prng_seed=SCREAMING_SNAKE_CASE__ , num_inference_steps=50 , jit=SCREAMING_SNAKE_CASE__ , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
lowerCAmelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
lowerCAmelCase__ = images[0, 253:256, 253:256, -1]
lowerCAmelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) )
lowerCAmelCase__ = jnp.array(
[[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 61 |
import math
from datetime import datetime, timedelta
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
__a : Union[str, Any] = year % 1_9
__a : int = year % 4
__a : Optional[int] = year % 7
__a : Dict = math.floor(year / 1_0_0 )
__a : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 )
__a : Union[str, Any] = leap_day_inhibits / 4
__a : str = (
1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 3_0
__a : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
__a : List[Any] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0
# PHM -> Paschal Full Moon
__a : List[Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 2_9 and days_from_phm_to_sunday == 6:
return datetime(lowerCamelCase_ , 4 , 1_9 )
elif days_to_add == 2_8 and days_from_phm_to_sunday == 6:
return datetime(lowerCamelCase_ , 4 , 1_8 )
else:
return datetime(lowerCamelCase_ , 3 , 2_2 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
SCREAMING_SNAKE_CASE__ = '''will be''' if year > datetime.now().year else '''was'''
print(F"Easter in {year} {tense} {gauss_easter(year)}")
| 47 | 0 |
def lowerCamelCase__ ( lowercase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = [0] * len(lowercase )
SCREAMING_SNAKE_CASE : Any = []
SCREAMING_SNAKE_CASE : Union[str, Any] = []
SCREAMING_SNAKE_CASE : Dict = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase ) ):
if indegree[i] == 0:
queue.append(lowercase )
while queue:
SCREAMING_SNAKE_CASE : Dict = queue.pop(0 )
cnt += 1
topo.append(lowercase )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(lowercase )
if cnt != len(lowercase ):
print("Cycle exists" )
else:
print(lowercase )
# Adjacency List of Graph
snake_case = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 62 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : List[Any] = '''informer'''
__SCREAMING_SNAKE_CASE : List[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str = "prob" , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Tuple , ):
'''simple docstring'''
__a : Dict = prediction_length
__a : Tuple = context_length or prediction_length
__a : Tuple = distribution_output
__a : Tuple = loss
__a : str = input_size
__a : Dict = num_time_features
__a : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
__a : str = scaling
__a : Tuple = num_dynamic_real_features
__a : int = num_static_real_features
__a : Dict = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
__a : Optional[Any] = cardinality
else:
__a : Optional[int] = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
__a : int = embedding_dimension
else:
__a : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
__a : int = num_parallel_samples
# Transformer architecture configuration
__a : str = input_size * len(self.lags_sequence ) + self._number_of_features
__a : Optional[int] = d_model
__a : Union[str, Any] = encoder_attention_heads
__a : int = decoder_attention_heads
__a : Any = encoder_ffn_dim
__a : Union[str, Any] = decoder_ffn_dim
__a : List[Any] = encoder_layers
__a : Optional[int] = decoder_layers
__a : int = dropout
__a : Optional[Any] = attention_dropout
__a : Dict = activation_dropout
__a : Union[str, Any] = encoder_layerdrop
__a : Optional[int] = decoder_layerdrop
__a : List[str] = activation_function
__a : str = init_std
__a : Optional[int] = use_cache
# Informer
__a : Union[str, Any] = attention_type
__a : str = sampling_factor
__a : Dict = distil
super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 47 | 0 |
a : int = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
a : Optional[Any] = [{"type": "code", "content": INSTALL_CONTENT}]
a : Optional[int] = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 63 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = (DDIMParallelScheduler,)
__SCREAMING_SNAKE_CASE : Union[str, Any] = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : List[Any] = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : Tuple = self.scheduler_classes[0]
__a : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ )
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a , __a : List[str] = 1_0, 0.0
__a : Dict = self.dummy_model()
__a : str = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
for t in scheduler.timesteps:
__a : str = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : List[str] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample
return sample
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
for timesteps in [1_0_0, 5_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = self.scheduler_classes[0]
__a : List[str] = self.get_scheduler_config(steps_offset=1 )
__a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for t in [1, 1_0, 4_9]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : Union[str, Any] = self.get_scheduler_config()
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.14_771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.32_460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.00_979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : List[str] = self.get_scheduler_config()
__a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a , __a : Any = 1_0, 0.0
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
__a : List[Any] = self.dummy_model()
__a : int = self.dummy_sample_deter
__a : List[Any] = self.dummy_sample_deter + 0.1
__a : List[str] = self.dummy_sample_deter - 0.1
__a : Optional[Any] = samplea.shape[0]
__a : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 )
__a : Union[str, Any] = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ )
__a : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__a : int = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE__ )
__a : Dict = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2
assert abs(result_mean.item() - 0.4_982 ) < 1e-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : List[str] = self.full_loop()
__a : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 172.0_067 ) < 1e-2
assert abs(result_mean.item() - 0.223_967 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
__a : Optional[int] = self.full_loop(prediction_type='v_prediction' )
__a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 52.5_302 ) < 1e-2
assert abs(result_mean.item() - 0.0_684 ) < 1e-3
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
__a : Union[str, Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 )
__a : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 149.8_295 ) < 1e-2
assert abs(result_mean.item() - 0.1_951 ) < 1e-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : Dict = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 )
__a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 149.0_784 ) < 1e-2
assert abs(result_mean.item() - 0.1_941 ) < 1e-3
| 47 | 0 |
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ : Dict = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
lowercase_ : List[Any] = 2_5_6_0_4_7
lowercase_ : str = 2_5_6_1_4_5
@require_sentencepiece
@require_tokenizers
class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ):
__a = NllbTokenizer
__a = NllbTokenizerFast
__a = True
__a = True
__a = {}
def UpperCamelCase_ ( self ) -> List[str]:
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE__: str= NllbTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__: Tuple= NllbTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase )
SCREAMING_SNAKE_CASE__: str= tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
SCREAMING_SNAKE_CASE__: Optional[Any]= tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
SCREAMING_SNAKE_CASE__: Optional[int]= tokenizer.convert_tokens_to_ids(lowerCAmelCase )
self.assertListEqual(
lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
SCREAMING_SNAKE_CASE__: str= tokenizer.convert_ids_to_tokens(lowerCAmelCase )
self.assertListEqual(
lowerCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def UpperCamelCase_ ( self ) -> List[Any]:
SCREAMING_SNAKE_CASE__: Any= (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
SCREAMING_SNAKE_CASE__: int= self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Optional[int]= self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase )
SCREAMING_SNAKE_CASE__: List[Any]= tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__: Tuple= tokenizer_r.save_pretrained(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Optional[Any]= tokenizer_p.save_pretrained(lowerCAmelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
SCREAMING_SNAKE_CASE__: Optional[int]= tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowerCAmelCase , lowerCAmelCase )
# Checks everything loads correctly in the same way
SCREAMING_SNAKE_CASE__: List[Any]= tokenizer_r.from_pretrained(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Dict= tokenizer_p.from_pretrained(lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) )
shutil.rmtree(lowerCAmelCase )
# Save tokenizer rust, legacy_format=True
SCREAMING_SNAKE_CASE__: Dict= tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__: Union[str, Any]= tokenizer_r.save_pretrained(lowerCAmelCase , legacy_format=lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Tuple= tokenizer_p.save_pretrained(lowerCAmelCase )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase , lowerCAmelCase )
# Checks everything loads correctly in the same way
SCREAMING_SNAKE_CASE__: Optional[Any]= tokenizer_r.from_pretrained(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: str= tokenizer_p.from_pretrained(lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) )
shutil.rmtree(lowerCAmelCase )
# Save tokenizer rust, legacy_format=False
SCREAMING_SNAKE_CASE__: Tuple= tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__: Optional[int]= tokenizer_r.save_pretrained(lowerCAmelCase , legacy_format=lowerCAmelCase )
SCREAMING_SNAKE_CASE__: List[Any]= tokenizer_p.save_pretrained(lowerCAmelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
SCREAMING_SNAKE_CASE__: Union[str, Any]= tokenizer_r.from_pretrained(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: List[Any]= tokenizer_p.from_pretrained(lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) )
shutil.rmtree(lowerCAmelCase )
@require_torch
def UpperCamelCase_ ( self ) -> List[Any]:
if not self.test_seqaseq:
return
SCREAMING_SNAKE_CASE__: Optional[int]= self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
# Longer text that will definitely require truncation.
SCREAMING_SNAKE_CASE__: Dict= [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for'''
''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons'''
''' will only worsen the violence and misery for millions of people.''',
]
SCREAMING_SNAKE_CASE__: Optional[Any]= [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al'''
''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'''
''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
try:
SCREAMING_SNAKE_CASE__: Any= tokenizer.prepare_seqaseq_batch(
src_texts=lowerCAmelCase , tgt_texts=lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , )
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 10 )
# max_target_length will default to max_length if not specified
SCREAMING_SNAKE_CASE__: str= tokenizer.prepare_seqaseq_batch(
lowerCAmelCase , tgt_texts=lowerCAmelCase , max_length=3 , return_tensors='''pt''' )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 3 )
SCREAMING_SNAKE_CASE__: Optional[int]= tokenizer.prepare_seqaseq_batch(
src_texts=lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors='''pt''' )
self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 )
self.assertNotIn('''decoder_input_ids''' , lowerCAmelCase )
@unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' )
def UpperCamelCase_ ( self ) -> Optional[int]:
pass
def UpperCamelCase_ ( self ) -> List[str]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
SCREAMING_SNAKE_CASE__: Optional[int]= [AddedToken('''<special>''' , lstrip=lowerCAmelCase )]
SCREAMING_SNAKE_CASE__: Dict= self.rust_tokenizer_class.from_pretrained(
lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase )
SCREAMING_SNAKE_CASE__: int= tokenizer_r.encode('''Hey this is a <special> token''' )
SCREAMING_SNAKE_CASE__: Dict= tokenizer_r.encode('''<special>''' , add_special_tokens=lowerCAmelCase )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
SCREAMING_SNAKE_CASE__: int= self.rust_tokenizer_class.from_pretrained(
lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , )
SCREAMING_SNAKE_CASE__: Dict= self.tokenizer_class.from_pretrained(
lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Optional[int]= tokenizer_p.encode('''Hey this is a <special> token''' )
SCREAMING_SNAKE_CASE__: Optional[int]= tokenizer_cr.encode('''Hey this is a <special> token''' )
self.assertEqual(lowerCAmelCase , lowerCAmelCase )
self.assertEqual(lowerCAmelCase , lowerCAmelCase )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowerCamelCase ( unittest.TestCase ):
__a = "facebook/nllb-200-distilled-600M"
__a = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
__a = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
__a = [
256047,
16297,
134408,
8165,
248066,
14734,
950,
1135,
105721,
3573,
83,
27352,
108,
49486,
2,
]
@classmethod
def UpperCamelCase_ ( cls ) -> Optional[int]:
SCREAMING_SNAKE_CASE__: NllbTokenizer= NllbTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' )
SCREAMING_SNAKE_CASE__: Any= 1
return cls
def UpperCamelCase_ ( self ) -> int:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 256001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 256002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 256057 )
def UpperCamelCase_ ( self ) -> Any:
SCREAMING_SNAKE_CASE__: Dict= self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase )
def UpperCamelCase_ ( self ) -> str:
self.assertIn(lowerCAmelCase , self.tokenizer.all_special_ids )
# fmt: off
SCREAMING_SNAKE_CASE__: Optional[Any]= [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047]
# fmt: on
SCREAMING_SNAKE_CASE__: Union[str, Any]= self.tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Optional[int]= self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase )
self.assertEqual(lowerCAmelCase , lowerCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase )
def UpperCamelCase_ ( self ) -> Dict:
SCREAMING_SNAKE_CASE__: Union[str, Any]= ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Any= 10
SCREAMING_SNAKE_CASE__: List[Any]= self.tokenizer(lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase ).input_ids[0]
self.assertEqual(ids[-1] , 2 )
self.assertEqual(ids[0] , lowerCAmelCase )
self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase )
def UpperCamelCase_ ( self ) -> Any:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [256203, 3] )
def UpperCamelCase_ ( self ) -> Optional[int]:
SCREAMING_SNAKE_CASE__: List[str]= tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__: Optional[int]= self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: List[Any]= NllbTokenizer.from_pretrained(lowerCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase )
@require_torch
def UpperCamelCase_ ( self ) -> str:
SCREAMING_SNAKE_CASE__: Optional[Any]= self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
SCREAMING_SNAKE_CASE__: List[Any]= shift_tokens_right(
batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] )
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase )
self.assertEqual((2, 15) , batch.input_ids.shape )
self.assertEqual((2, 15) , batch.attention_mask.shape )
SCREAMING_SNAKE_CASE__: Union[str, Any]= batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase )
self.assertEqual(lowerCAmelCase , batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def UpperCamelCase_ ( self ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__: List[str]= self.tokenizer(self.src_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=3 , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE__: Tuple= self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=10 , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE__: Optional[Any]= targets['''input_ids''']
SCREAMING_SNAKE_CASE__: Tuple= shift_tokens_right(
lowerCAmelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def UpperCamelCase_ ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__: List[Any]= self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' )
self.assertEqual(
nested_simplify(lowerCAmelCase ) , {
# A, test, EOS, en_XX
'''input_ids''': [[256047, 70, 7356, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 256057,
} , )
@require_torch
def UpperCamelCase_ ( self ) -> Any:
SCREAMING_SNAKE_CASE__: Tuple= True
SCREAMING_SNAKE_CASE__: List[Any]= self.tokenizer(
'''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' )
self.assertEqual(
inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] )
SCREAMING_SNAKE_CASE__: Tuple= False
SCREAMING_SNAKE_CASE__: str= self.tokenizer(
'''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' )
self.assertEqual(
inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
| 64 |
def UpperCAmelCase__ ( lowerCamelCase_ : list[int] , lowerCamelCase_ : list[int] ):
# Check if the input is valid
if not len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == 3:
raise ValueError('Please enter a valid equation.' )
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError('Both a & b of two equations can\'t be zero.' )
# Extract the coefficients
__a , __a , __a : Optional[Any] = equationa
__a , __a , __a : Optional[int] = equationa
# Calculate the determinants of the matrices
__a : str = aa * ba - aa * ba
__a : Tuple = ca * ba - ca * ba
__a : Union[str, Any] = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError('Infinite solutions. (Consistent system)' )
else:
raise ValueError('No solution. (Inconsistent system)' )
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
__a : Any = determinant_x / determinant
__a : Optional[Any] = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
| 47 | 0 |
"""simple docstring"""
# using dfs for finding eulerian path traversal
def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = True, True
UpperCAmelCase__ : Any = dfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return path
def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
'''simple docstring'''
UpperCAmelCase__ : str = 0
UpperCAmelCase__ : Union[str, Any] = -1
for i in range(__UpperCamelCase ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
UpperCAmelCase__ : str = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
UpperCAmelCase__ , UpperCAmelCase__ : int = check_circuit_or_path(__UpperCamelCase , __UpperCamelCase )
if check == 3:
print("""graph is not Eulerian""" )
print("""no path""" )
return
UpperCAmelCase__ : Dict = 1
if check == 2:
UpperCAmelCase__ : List[str] = odd_node
print("""graph has a Euler path""" )
if check == 1:
print("""graph has a Euler cycle""" )
UpperCAmelCase__ : str = dfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
print(__UpperCamelCase )
def lowerCAmelCase ( ):
'''simple docstring'''
UpperCAmelCase__ : str = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
UpperCAmelCase__ : List[str] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
UpperCAmelCase__ : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
UpperCAmelCase__ : Optional[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
UpperCAmelCase__ : List[str] = {
1: [],
2: []
# all degree is zero
}
UpperCAmelCase__ : Dict = 10
check_euler(__UpperCamelCase , __UpperCamelCase )
check_euler(__UpperCamelCase , __UpperCamelCase )
check_euler(__UpperCamelCase , __UpperCamelCase )
check_euler(__UpperCamelCase , __UpperCamelCase )
check_euler(__UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
main()
| 65 |
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 47 | 0 |
def __magic_name__ ( SCREAMING_SNAKE_CASE = 50 ) -> int:
_lowercase : Optional[int] = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 66 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE__ = {
'''configuration_bridgetower''': [
'''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BridgeTowerConfig''',
'''BridgeTowerTextConfig''',
'''BridgeTowerVisionConfig''',
],
'''processing_bridgetower''': ['''BridgeTowerProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ['''BridgeTowerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
'''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BridgeTowerForContrastiveLearning''',
'''BridgeTowerForImageAndTextRetrieval''',
'''BridgeTowerForMaskedLM''',
'''BridgeTowerModel''',
'''BridgeTowerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 47 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case = logging.get_logger(__name__)
snake_case = {
"""SCUT-DLVCLab/lilt-roberta-en-base""": (
"""https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json"""
),
}
class A_ ( UpperCAmelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = '''lilt'''
def __init__( self : int ,__A : List[Any]=3_0522 ,__A : Tuple=768 ,__A : Tuple=12 ,__A : Union[str, Any]=12 ,__A : Optional[int]=3072 ,__A : Union[str, Any]="gelu" ,__A : str=0.1 ,__A : List[str]=0.1 ,__A : Optional[Any]=512 ,__A : List[str]=2 ,__A : Optional[int]=0.02 ,__A : Dict=1e-12 ,__A : str=0 ,__A : Tuple="absolute" ,__A : Union[str, Any]=None ,__A : Dict=4 ,__A : List[str]=1024 ,**__A : int ,) -> Any:
super().__init__(pad_token_id=__A ,**__A )
_lowercase = vocab_size
_lowercase = hidden_size
_lowercase = num_hidden_layers
_lowercase = num_attention_heads
_lowercase = hidden_act
_lowercase = intermediate_size
_lowercase = hidden_dropout_prob
_lowercase = attention_probs_dropout_prob
_lowercase = max_position_embeddings
_lowercase = type_vocab_size
_lowercase = initializer_range
_lowercase = layer_norm_eps
_lowercase = position_embedding_type
_lowercase = classifier_dropout
_lowercase = channel_shrink_ratio
_lowercase = max_ad_position_embeddings
| 67 |
from string import ascii_lowercase, ascii_uppercase
def UpperCAmelCase__ ( lowerCamelCase_ : str ):
if not sentence:
return ""
__a : Union[str, Any] = dict(zip(lowerCamelCase_ , lowerCamelCase_ ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47 | 0 |
import os
def lowercase__ ( ) -> Optional[Any]:
"""simple docstring"""
with open(os.path.dirname(A_ ) + """/p022_names.txt""" ) as file:
__UpperCAmelCase =str(file.readlines()[0] )
__UpperCAmelCase =names.replace("""\"""" , """""" ).split(""",""" )
names.sort()
__UpperCAmelCase =0
__UpperCAmelCase =0
for i, name in enumerate(A_ ):
for letter in name:
name_score += ord(A_ ) - 64
total_score += (i + 1) * name_score
__UpperCAmelCase =0
return total_score
if __name__ == "__main__":
print(solution())
| 68 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = '''sew-d'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=2_5_6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=("p2c", "c2p") , SCREAMING_SNAKE_CASE__ : str="layer_norm" , SCREAMING_SNAKE_CASE__ : Tuple="gelu_python" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-7 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Optional[int]="group" , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : str=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]="mean" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=2_5_6 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = hidden_size
__a : Optional[Any] = feat_extract_norm
__a : List[str] = feat_extract_activation
__a : Dict = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ )
__a : List[str] = list(SCREAMING_SNAKE_CASE__ )
__a : int = conv_bias
__a : Tuple = num_conv_pos_embeddings
__a : List[str] = num_conv_pos_embedding_groups
__a : Optional[Any] = len(self.conv_dim )
__a : Union[str, Any] = num_hidden_layers
__a : Optional[Any] = intermediate_size
__a : Union[str, Any] = squeeze_factor
__a : List[Any] = max_position_embeddings
__a : Tuple = position_buckets
__a : Optional[int] = share_att_key
__a : List[str] = relative_attention
__a : Any = norm_rel_ebd
__a : Any = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = hidden_act
__a : str = num_attention_heads
__a : Union[str, Any] = hidden_dropout
__a : Optional[int] = attention_dropout
__a : List[str] = activation_dropout
__a : int = feat_proj_dropout
__a : int = final_dropout
__a : Dict = layer_norm_eps
__a : Tuple = feature_layer_norm_eps
__a : str = initializer_range
__a : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a : Tuple = apply_spec_augment
__a : Optional[Any] = mask_time_prob
__a : Any = mask_time_length
__a : List[str] = mask_time_min_masks
__a : List[str] = mask_feature_prob
__a : Tuple = mask_feature_length
__a : Any = mask_feature_min_masks
# ctc loss
__a : Optional[int] = ctc_loss_reduction
__a : List[Any] = ctc_zero_infinity
# sequence classification
__a : Dict = use_weighted_layer_sum
__a : Optional[Any] = classifier_proj_size
@property
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a : Optional[Any] = logging.get_logger(__name__)
a : Dict = {'''vocab_file''': '''sentencepiece.model'''}
a : Tuple = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
}
a : str = {
'''google/rembert''': 256,
}
class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ):
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[Any] , a_ : int , a_ : Any=False , a_ : List[Any]=True , a_ : List[Any]=True , a_ : List[Any]="[CLS]" , a_ : List[Any]="[SEP]" , a_ : List[Any]="[UNK]" , a_ : str="[SEP]" , a_ : List[str]="[PAD]" , a_ : Optional[int]="[CLS]" , a_ : List[str]="[MASK]" , **a_ : str , ):
"""simple docstring"""
super().__init__(
do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , **a_ , )
__snake_case = do_lower_case
__snake_case = remove_space
__snake_case = keep_accents
__snake_case = vocab_file
__snake_case = spm.SentencePieceProcessor()
self.sp_model.Load(a_ )
@property
def A ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def A ( self : Optional[Any] ):
"""simple docstring"""
__snake_case = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
__snake_case = self.__dict__.copy()
__snake_case = None
return state
def __setstate__( self : str , a_ : Optional[int] ):
"""simple docstring"""
__snake_case = d
__snake_case = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def A ( self : Tuple , a_ : Optional[int] , a_ : int=False ):
"""simple docstring"""
__snake_case = self.sp_model.EncodeAsPieces(a_ )
return pieces
def A ( self : Any , a_ : Optional[Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(a_ )
def A ( self : Optional[Any] , a_ : List[str] ):
"""simple docstring"""
return self.sp_model.IdToPiece(a_ )
def A ( self : Optional[Any] , a_ : int ):
"""simple docstring"""
__snake_case = self.sp_model.decode_pieces(a_ )
return out_string
def A ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ):
"""simple docstring"""
__snake_case = [self.sep_token_id]
__snake_case = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def A ( self : List[str] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1]
return [1] + ([0] * len(a_ )) + [1]
def A ( self : Tuple , a_ : List[int] , a_ : Optional[List[int]] = None ):
"""simple docstring"""
__snake_case = [self.sep_token_id]
__snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : List[Any] , a_ : str , a_ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(a_ ):
logger.error("Vocabulary path ({}) should be a directory".format(a_ ) )
return
__snake_case = os.path.join(
a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
return (out_vocab_file,)
| 69 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ = TypeVar('''T''')
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (position - 1) // 2
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (2 * position) + 1
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (2 * position) + 2
class _UpperCamelCase( Generic[T] ):
def __init__( self : List[str] ):
'''simple docstring'''
__a : list[tuple[T, int]] = []
__a : dict[T, int] = {}
__a : int = 0
def __len__( self : Any ):
'''simple docstring'''
return self.elements
def __repr__( self : Any ):
'''simple docstring'''
return str(self.heap )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return self.elements == 0
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self.heap.append((elem, weight) )
__a : List[Any] = self.elements
self.elements += 1
self._bubble_up(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
__a , __a : Union[str, Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
__a , __a : Dict = self.heap[0]
self._bubble_down(SCREAMING_SNAKE_CASE__ )
return elem
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : List[Any] = self.position_map[elem]
__a : str = (elem, weight)
if position > 0:
__a : Tuple = get_parent_position(SCREAMING_SNAKE_CASE__ )
__a , __a : Dict = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
__a : List[Any] = self.position_map[elem]
if curr_pos == 0:
return None
__a : List[str] = get_parent_position(SCREAMING_SNAKE_CASE__ )
__a , __a : str = self.heap[curr_pos]
__a , __a : Optional[int] = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_up(SCREAMING_SNAKE_CASE__ )
return None
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
__a : int = self.position_map[elem]
__a , __a : Optional[Any] = self.heap[curr_pos]
__a : Tuple = get_child_left_position(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = get_child_right_position(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements and child_right_position < self.elements:
__a , __a : str = self.heap[child_left_position]
__a , __a : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements:
__a , __a : Any = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
return None
if child_right_position < self.elements:
__a , __a : Union[str, Any] = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
return None
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Optional[Any] = self.heap[nodea_pos][0]
__a : str = self.heap[nodea_pos][0]
__a , __a : int = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
__a : str = nodea_pos
__a : Optional[int] = nodea_pos
class _UpperCamelCase( Generic[T] ):
def __init__( self : List[Any] ):
'''simple docstring'''
__a : dict[T, dict[T, int]] = {}
__a : int = 0
def __repr__( self : Tuple ):
'''simple docstring'''
return str(self.connections )
def __len__( self : Dict ):
'''simple docstring'''
return self.nodes
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
if node not in self.connections:
__a : Tuple = {}
self.nodes += 1
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self.add_node(SCREAMING_SNAKE_CASE__ )
self.add_node(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = weight
__a : Any = weight
def UpperCAmelCase__ ( lowerCamelCase_ : GraphUndirectedWeighted[T] , ):
__a : dict[T, int] = {node: maxsize for node in graph.connections}
__a : dict[T, T | None] = {node: None for node in graph.connections}
__a : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(lowerCamelCase_ , lowerCamelCase_ )
if priority_queue.is_empty():
return dist, parent
# initialization
__a : Optional[int] = priority_queue.extract_min()
__a : int = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a : str = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase_ , dist[neighbour] )
__a : Optional[int] = node
# running prim's algorithm
while not priority_queue.is_empty():
__a : Any = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a : Tuple = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase_ , dist[neighbour] )
__a : Dict = node
return dist, parent
| 47 | 0 |
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : List[Any]=() , lowercase : Any=None , lowercase : str="no" , lowercase : int="29500" ):
'''simple docstring'''
lowerCamelCase_ = False
lowerCamelCase_ = False
if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ):
lowerCamelCase_ = True
elif "IPython" in sys.modules:
lowerCamelCase_ = 'google.colab' in str(sys.modules['IPython'].get_ipython() )
try:
lowerCamelCase_ = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" )
if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowercase ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside '
'your training function. Restart your notebook and make sure no cells initializes an '
'`Accelerator`.' )
if num_processes is None:
lowerCamelCase_ = 8
lowerCamelCase_ = PrepareForLaunch(lowercase , distributed_type='TPU' )
print(f"""Launching a training on {num_processes} TPU cores.""" )
xmp.spawn(lowercase , args=lowercase , nprocs=lowercase , start_method='fork' )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print('Launching training on one GPU.' )
else:
print('Launching training on one CPU.' )
function(*lowercase )
else:
if num_processes is None:
raise ValueError(
'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized '
'inside your training function. Restart your notebook and make sure no cells initializes an '
'`Accelerator`.' )
if torch.cuda.is_initialized():
raise ValueError(
'To launch a multi-GPU training from your notebook, you need to avoid running any instruction '
'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA '
'function.' )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=lowercase , master_addr='127.0.01' , master_port=lowercase , mixed_precision=lowercase ):
lowerCamelCase_ = PrepareForLaunch(lowercase , distributed_type='MULTI_GPU' )
print(f"""Launching training on {num_processes} GPUs.""" )
try:
start_processes(lowercase , args=lowercase , nprocs=lowercase , start_method='fork' )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. '
'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. '
'Please review your imports and test them when running the `notebook_launcher()` to identify '
'which one is problematic.' ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
lowerCamelCase_ = '1'
print('Launching training on MPS.' )
elif torch.cuda.is_available():
print('Launching training on one GPU.' )
else:
print('Launching training on CPU.' )
function(*lowercase )
def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Tuple=() , lowercase : Any=2 ):
'''simple docstring'''
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=lowercase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ):
lowerCamelCase_ = PrepareForLaunch(lowercase , debug=lowercase )
start_processes(lowercase , args=lowercase , nprocs=lowercase , start_method='fork' )
| 70 |
from collections.abc import Sequence
from queue import Queue
class _UpperCamelCase:
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None ):
'''simple docstring'''
__a : Tuple = start
__a : Dict = end
__a : List[str] = val
__a : List[Any] = (start + end) // 2
__a : Optional[Any] = left
__a : List[str] = right
def __repr__( self : Dict ):
'''simple docstring'''
return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'''
class _UpperCamelCase:
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Sequence , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
__a : Tuple = collection
__a : Dict = function
if self.collection:
__a : int = self._build_tree(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self._update_tree(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
return self._query_range(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if start == end:
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.collection[start] )
__a : Tuple = (start + end) // 2
__a : Optional[int] = self._build_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Tuple = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE__ )
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if node.start == i and node.end == i:
__a : Optional[Any] = val
return
if i <= node.mid:
self._update_tree(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
self._update_tree(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : int = self.fn(node.left.val , node.right.val )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , SCREAMING_SNAKE_CASE__ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE__ ) , )
else:
# range in right child tree
return self._query_range(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.root is not None:
__a : Tuple = Queue()
queue.put(self.root )
while not queue.empty():
__a : Tuple = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('''*''' * 50)
SCREAMING_SNAKE_CASE__ = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 47 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
_lowerCamelCase = {
"""configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""],
"""tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = [
"""GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoXJapaneseForCausalLM""",
"""GPTNeoXJapaneseLayer""",
"""GPTNeoXJapaneseModel""",
"""GPTNeoXJapanesePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 71 |
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class _UpperCamelCase( datasets.BuilderConfig ):
__SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None
def UpperCAmelCase__ ( lowerCamelCase_ : "pyspark.sql.DataFrame" , lowerCamelCase_ : List[int] , ):
import pyspark
def generate_fn():
__a : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) )
for partition_id in partition_order:
__a : Optional[int] = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' )
__a : Optional[Any] = partition_df.collect()
__a : Union[str, Any] = 0
for row in rows:
yield f'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class _UpperCamelCase( _BaseExamplesIterable ):
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Dict=None , ):
'''simple docstring'''
__a : List[str] = df
__a : Tuple = partition_order or range(self.df.rdd.getNumPartitions() )
__a : List[Any] = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self : Tuple ):
'''simple docstring'''
yield from self.generate_examples_fn()
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.random.Generator ):
'''simple docstring'''
__a : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(SCREAMING_SNAKE_CASE__ )
return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return len(self.partition_order )
class _UpperCamelCase( datasets.DatasetBuilder ):
__SCREAMING_SNAKE_CASE : List[str] = SparkConfig
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ):
'''simple docstring'''
import pyspark
__a : int = pyspark.sql.SparkSession.builder.getOrCreate()
__a : Optional[int] = df
__a : List[Any] = working_dir
super().__init__(
cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : List[str] ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(SCREAMING_SNAKE_CASE__ , 'a' )
return [probe_file]
if self._spark.conf.get('spark.master' , '' ).startswith('local' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
__a : List[Any] = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ):
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
import pyspark
def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ):
for batch in it:
yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} )
__a : List[str] = self.df.count()
__a : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
__a : List[str] = (
self.df.limit(SCREAMING_SNAKE_CASE__ )
.repartition(1 )
.mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' )
.agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
__a : Dict = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
__a : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) )
__a : int = self.df.repartition(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ):
'''simple docstring'''
import pyspark
__a : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter
__a : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath
__a : Optional[int] = file_format == 'parquet'
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
__a : List[str] = self.config.features
__a : int = self._writer_batch_size
__a : Union[str, Any] = self._fs.storage_options
def write_arrow(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
__a : Any = pyspark.TaskContext().taskAttemptId()
__a : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , )
__a : Any = 0
__a : List[str] = writer_class(
features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , )
__a : Optional[Any] = pa.Table.from_batches([first_batch] )
writer.write_table(SCREAMING_SNAKE_CASE__ )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
__a , __a : Optional[int] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
shard_id += 1
__a : Optional[Any] = writer_class(
features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , )
__a : Union[str, Any] = pa.Table.from_batches([batch] )
writer.write_table(SCREAMING_SNAKE_CASE__ )
if writer._num_bytes > 0:
__a , __a : str = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ):
__a : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) )
shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Dict = (
self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' )
.groupBy('task_id' )
.agg(
pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ):
'''simple docstring'''
self._validate_cache_dir()
__a : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = not is_remote_filesystem(self._fs )
__a : Optional[Any] = os.path.join if is_local else posixpath.join
__a : Any = '-TTTTT-SSSSS-of-NNNNN'
__a : Union[str, Any] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
__a : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ )
__a : Any = 0
__a : Dict = 0
__a : int = 0
__a : List[str] = []
__a : Optional[int] = []
for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : Optional[int] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ )
__a : List[str] = total_num_examples
__a : Optional[int] = total_num_bytes
# should rename everything at the end
logger.debug(f'''Renaming {total_shards} shards.''' )
if total_shards > 1:
__a : Any = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
__a : Dict = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ):
rename(
SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , )
__a : Union[str, Any] = []
__a : List[str] = 0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
__a , __a : Union[str, Any] = task_id_and_num_shards[i]
for shard_id in range(SCREAMING_SNAKE_CASE__ ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect()
else:
# don't use any pattern
__a : List[Any] = 0
__a : Any = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ):
'''simple docstring'''
return SparkExamplesIterable(self.df )
| 47 | 0 |
'''simple docstring'''
from math import ceil, sqrt
def UpperCamelCase ( lowercase_ : int = 1_0_0_0_0_0_0 ) -> int:
'''simple docstring'''
lowercase =0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
lowercase =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
lowercase =1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(F"""{solution() = }""")
| 72 |
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ):
# save results
if os.path.exists(lowerCamelCase_ ):
if os.path.exists(os.path.join(lowerCamelCase_ , 'config.json' ) ) and os.path.isfile(
os.path.join(lowerCamelCase_ , 'config.json' ) ):
os.remove(os.path.join(lowerCamelCase_ , 'config.json' ) )
if os.path.exists(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile(
os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ):
os.remove(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) )
else:
os.makedirs(lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Any=False ):
__a : Dict = 2
if unlogit:
__a : Optional[Any] = torch.pow(lowerCamelCase_ , lowerCamelCase_ )
__a : Any = p * torch.log(lowerCamelCase_ )
__a : Union[str, Any] = 0
return -plogp.sum(dim=-1 )
def UpperCAmelCase__ ( lowerCamelCase_ : Any ):
logger.info('lv, h >\t' + '\t'.join(f'''{x + 1}''' for x in range(len(lowerCamelCase_ ) ) ) )
for row in range(len(lowerCamelCase_ ) ):
if tensor.dtype != torch.long:
logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:d}''' for x in tensor[row].cpu().data ) )
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=False ):
__a , __a : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads
__a : str = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
__a : int = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
if head_mask is None:
__a : Union[str, Any] = torch.ones(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCamelCase_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
__a : Any = None
__a : Optional[int] = 0.0
__a : Optional[Any] = 0.0
for step, inputs in enumerate(tqdm(lowerCamelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ):
__a : Dict = tuple(t.to(args.device ) for t in inputs )
((__a) , ) : Dict = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
__a : List[Any] = model(lowerCamelCase_ , labels=lowerCamelCase_ , head_mask=lowerCamelCase_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
__a , __a , __a : int = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCamelCase_ ):
__a : List[str] = entropy(attn.detach() , lowerCamelCase_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCamelCase_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
__a : Optional[Any] = 2
__a : Union[str, Any] = torch.pow(torch.pow(lowerCamelCase_ , lowerCamelCase_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20
if not args.dont_normalize_global_importance:
__a : List[str] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('Attention entropies' )
print_ad_tensor(lowerCamelCase_ )
if compute_importance:
logger.info('Head importance scores' )
print_ad_tensor(lowerCamelCase_ )
logger.info('Head ranked by importance scores' )
__a : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
__a : str = torch.arange(
head_importance.numel() , device=args.device )
__a : Tuple = head_ranks.view_as(lowerCamelCase_ )
print_ad_tensor(lowerCamelCase_ )
return attn_entropy, head_importance, total_loss
def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ):
__a , __a , __a : Optional[int] = compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ )
__a : Tuple = 1 / loss # instead of downsteam score use the LM loss
logger.info('Pruning: original score: %f, threshold: %f' , lowerCamelCase_ , original_score * args.masking_threshold )
__a : Tuple = torch.ones_like(lowerCamelCase_ )
__a : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
__a : Tuple = original_score
while current_score >= original_score * args.masking_threshold:
__a : Optional[Any] = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
__a : List[str] = float('Inf' )
__a : List[Any] = head_importance.view(-1 ).sort()[1]
if len(lowerCamelCase_ ) <= num_to_mask:
print('BREAK BY num_to_mask' )
break
# mask heads
__a : Any = current_heads_to_mask[:num_to_mask]
logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) )
__a : int = new_head_mask.view(-1 )
__a : Tuple = 0.0
__a : int = new_head_mask.view_as(lowerCamelCase_ )
__a : Optional[int] = new_head_mask.clone().detach()
print_ad_tensor(lowerCamelCase_ )
# Compute metric and head importance again
__a , __a , __a : int = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , head_mask=lowerCamelCase_ )
__a : List[Any] = 1 / loss
logger.info(
'Masking: current score: %f, remaining heads %d (%.1f percents)' , lowerCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , )
logger.info('Final head mask' )
print_ad_tensor(lowerCamelCase_ )
np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() )
return head_mask
def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ):
__a : List[Any] = datetime.now()
__a , __a , __a : List[str] = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ )
__a : List[str] = 1 / loss
__a : List[Any] = datetime.now() - before_time
__a : List[str] = sum(p.numel() for p in model.parameters() )
__a : Dict = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
__a : Tuple = [
v,
]
assert sum(len(lowerCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCamelCase_ )
__a : Optional[Any] = sum(p.numel() for p in model.parameters() )
__a : Tuple = datetime.now()
__a , __a , __a : Tuple = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ , actually_pruned=lowerCamelCase_ , )
__a : Optional[Any] = 1 / loss
__a : List[Any] = datetime.now() - before_time
logger.info(
'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , lowerCamelCase_ , lowerCamelCase_ , pruned_num_params / original_num_params * 1_0_0 , )
logger.info('Pruning: score with masking: %f score with pruning: %f' , lowerCamelCase_ , lowerCamelCase_ )
logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 )
save_model(lowerCamelCase_ , args.output_dir )
def UpperCAmelCase__ ( ):
__a : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--data_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , )
parser.add_argument(
'--model_name_or_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--output_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , )
# Other parameters
parser.add_argument(
'--config_name' , default='' , type=lowerCamelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--tokenizer_name' , default='' , type=lowerCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--cache_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , )
parser.add_argument(
'--data_subset' , type=lowerCamelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' )
parser.add_argument(
'--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
parser.add_argument(
'--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' )
parser.add_argument(
'--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , )
parser.add_argument(
'--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' )
parser.add_argument(
'--masking_threshold' , default=0.9 , type=lowerCamelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , )
parser.add_argument(
'--masking_amount' , default=0.1 , type=lowerCamelCase_ , help='Amount to heads to masking at each masking step.' )
parser.add_argument('--metric_name' , default='acc' , type=lowerCamelCase_ , help='Metric to use for head masking.' )
parser.add_argument(
'--max_seq_length' , default=1_2_8 , type=lowerCamelCase_ , help=(
'The maximum total input sequence length after WordPiece tokenization. \n'
'Sequences longer than this will be truncated, sequences shorter padded.'
) , )
parser.add_argument('--batch_size' , default=1 , type=lowerCamelCase_ , help='Batch size.' )
parser.add_argument('--seed' , type=lowerCamelCase_ , default=4_2 )
parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='local_rank for distributed training on gpus' )
parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' )
parser.add_argument('--server_ip' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' )
__a : Optional[Any] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
__a : List[str] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' )
__a : Tuple = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
__a : Union[str, Any] = torch.device('cuda' , args.local_rank )
__a : Any = 1
torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
__a : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
__a : List[Any] = nn.parallel.DistributedDataParallel(
lowerCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase_ )
elif args.n_gpu > 1:
__a : Union[str, Any] = nn.DataParallel(lowerCamelCase_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=lowerCamelCase_ )
torch.save(lowerCamelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) )
logger.info('Training/evaluation parameters %s' , lowerCamelCase_ )
# Prepare dataset
__a : Tuple = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
__a : str = (torch.from_numpy(lowerCamelCase_ ),)
__a : List[str] = TensorDataset(*lowerCamelCase_ )
__a : Optional[Any] = RandomSampler(lowerCamelCase_ )
__a : Union[str, Any] = DataLoader(lowerCamelCase_ , sampler=lowerCamelCase_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
__a : Union[str, Any] = mask_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
prune_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
main()
| 47 | 0 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( A__ ):
_lowercase : Tuple = ['''image_processor''', '''tokenizer''']
_lowercase : List[Any] = '''ViTImageProcessor'''
_lowercase : Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self , a=None , a=None , **a) -> Optional[Any]:
SCREAMING_SNAKE_CASE = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , a , )
SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor')
SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.')
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.')
super().__init__(a , a)
def __call__( self , a=None , a=None , a=None , a=None , **a) -> int:
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.')
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.')
if text is not None:
SCREAMING_SNAKE_CASE = self.tokenizer(a , return_tensors=a , **a)
if visual_prompt is not None:
SCREAMING_SNAKE_CASE = self.image_processor(a , return_tensors=a , **a)
if images is not None:
SCREAMING_SNAKE_CASE = self.image_processor(a , return_tensors=a , **a)
if visual_prompt is not None and images is not None:
SCREAMING_SNAKE_CASE = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
SCREAMING_SNAKE_CASE = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
SCREAMING_SNAKE_CASE = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**a) , tensor_type=a)
def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[str]:
return self.tokenizer.batch_decode(*a , **a)
def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> int:
return self.tokenizer.decode(*a , **a)
@property
def SCREAMING_SNAKE_CASE__ ( self) -> str:
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , a , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , a , )
return self.image_processor
| 73 |
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse('''0.8.3'''):
raise Exception('''requires gluonnlp == 0.8.3''')
if version.parse(mx.__version__) != version.parse('''1.5.0'''):
raise Exception('''requires mxnet == 1.5.0''')
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''The Nymphenburg Palace is a beautiful palace in Munich!'''
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ):
__a : List[Any] = {
'attention_cell': 'multi_head',
'num_layers': 4,
'units': 1_0_2_4,
'hidden_size': 7_6_8,
'max_length': 5_1_2,
'num_heads': 8,
'scaled': True,
'dropout': 0.1,
'use_residual': True,
'embed_size': 1_0_2_4,
'embed_dropout': 0.1,
'word_embed': None,
'layer_norm_eps': 1e-5,
'token_type_vocab_size': 2,
}
__a : Optional[int] = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
__a : List[str] = BERTEncoder(
attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
__a : int = 'openwebtext_ccnews_stories_books_cased'
# Specify download folder to Gluonnlp's vocab
__a : Optional[Any] = os.path.join(get_home_dir() , 'models' )
__a : Optional[Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ )
__a : Any = nlp.model.BERTModel(
lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , )
original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ )
__a : Dict = original_bort._collect_params_with_prefix()
# Build our config 🤗
__a : Optional[Any] = {
'architectures': ['BertForMaskedLM'],
'attention_probs_dropout_prob': predefined_args['dropout'],
'hidden_act': 'gelu',
'hidden_dropout_prob': predefined_args['dropout'],
'hidden_size': predefined_args['embed_size'],
'initializer_range': 0.02,
'intermediate_size': predefined_args['hidden_size'],
'layer_norm_eps': predefined_args['layer_norm_eps'],
'max_position_embeddings': predefined_args['max_length'],
'model_type': 'bort',
'num_attention_heads': predefined_args['num_heads'],
'num_hidden_layers': predefined_args['num_layers'],
'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa
'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa
'vocab_size': len(lowerCamelCase_ ),
}
__a : str = BertConfig.from_dict(lowerCamelCase_ )
__a : Optional[int] = BertForMaskedLM(lowerCamelCase_ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase_ : Optional[Any] ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ):
__a : Optional[int] = hf_param.shape
__a : int = to_torch(params[gluon_param] )
__a : int = gluon_param.shape
assert (
shape_hf == shape_gluon
), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'''
return gluon_param
__a : str = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' )
__a : str = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' )
__a : Tuple = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' )
__a : Union[str, Any] = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
__a : Union[str, Any] = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
__a : BertLayer = hf_bort_model.bert.encoder.layer[i]
# self attention
__a : BertSelfAttention = layer.attention.self
__a : Optional[int] = check_and_map_params(
self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' )
__a : str = check_and_map_params(
self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' )
__a : List[str] = check_and_map_params(
self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' )
__a : str = check_and_map_params(
self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' )
__a : Dict = check_and_map_params(
self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' )
__a : str = check_and_map_params(
self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' )
# self attention output
__a : BertSelfOutput = layer.attention.output
__a : Tuple = check_and_map_params(
self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' )
__a : Dict = check_and_map_params(
self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' )
__a : Optional[Any] = check_and_map_params(
self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' )
__a : Optional[Any] = check_and_map_params(
self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' )
# intermediate
__a : BertIntermediate = layer.intermediate
__a : List[str] = check_and_map_params(
intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' )
__a : Optional[Any] = check_and_map_params(
intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' )
# output
__a : BertOutput = layer.output
__a : str = check_and_map_params(
bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' )
__a : List[Any] = check_and_map_params(
bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' )
__a : str = check_and_map_params(
bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' )
__a : List[str] = check_and_map_params(
bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
__a : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-base' )
__a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ )['input_ids']
# Get gluon output
__a : Optional[int] = mx.nd.array([input_ids] )
__a : Tuple = original_bort(inputs=lowerCamelCase_ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase_ )
__a : Optional[Any] = BertModel.from_pretrained(lowerCamelCase_ )
hf_bort_model.eval()
__a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' )
__a : int = hf_bort_model(**lowerCamelCase_ )[0]
__a : Dict = output_gluon[0].asnumpy()
__a : str = output_hf[0].detach().numpy()
__a : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item()
__a : str = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 )
if success:
print('✔️ Both model do output the same tensors' )
else:
print('❌ Both model do **NOT** output the same tensors' )
print('Absolute difference is:' , lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 47 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"""s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""",
}
class __UpperCamelCase ( lowerCAmelCase__ ):
"""simple docstring"""
lowerCAmelCase_ = '''open-llama'''
def __init__( self : List[str] , _A : int=10_0000 , _A : Dict=4096 , _A : int=1_1008 , _A : str=32 , _A : str=32 , _A : Dict="silu" , _A : List[str]=2048 , _A : Optional[Any]=0.02 , _A : Union[str, Any]=1e-6 , _A : Optional[Any]=True , _A : Tuple=0 , _A : List[Any]=1 , _A : str=2 , _A : str=False , _A : Any=True , _A : List[Any]=0.1 , _A : Optional[int]=0.1 , _A : Any=True , _A : Any=True , _A : Optional[int]=None , **_A : Optional[int] , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = vocab_size
__SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings
__SCREAMING_SNAKE_CASE : Dict = hidden_size
__SCREAMING_SNAKE_CASE : Tuple = intermediate_size
__SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers
__SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads
__SCREAMING_SNAKE_CASE : str = hidden_act
__SCREAMING_SNAKE_CASE : Any = initializer_range
__SCREAMING_SNAKE_CASE : Dict = rms_norm_eps
__SCREAMING_SNAKE_CASE : int = use_cache
__SCREAMING_SNAKE_CASE : List[str] = kwargs.pop(
'''use_memorry_efficient_attention''' , _A )
__SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob
__SCREAMING_SNAKE_CASE : str = attention_dropout_prob
__SCREAMING_SNAKE_CASE : List[str] = use_stable_embedding
__SCREAMING_SNAKE_CASE : Dict = shared_input_output_embedding
__SCREAMING_SNAKE_CASE : int = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , tie_word_embeddings=_A , **_A , )
def UpperCAmelCase__ ( self : List[str] ):
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , _A ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F'''got {self.rope_scaling}''' )
__SCREAMING_SNAKE_CASE : List[str] = self.rope_scaling.get('''type''' , _A )
__SCREAMING_SNAKE_CASE : Any = self.rope_scaling.get('''factor''' , _A )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(_A , _A ) or rope_scaling_factor <= 1.0:
raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 74 |
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ):
__a : Any = ''
for i in table:
res += inp[i - 1]
return res
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ):
return data[1:] + data[0]
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ):
__a : Optional[int] = ''
for i in range(len(lowerCamelCase_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ):
__a : List[str] = int('0b' + data[0] + data[-1] , 2 )
__a : List[str] = int('0b' + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ):
__a : List[Any] = message[:4]
__a : str = message[4:]
__a : Any = apply_table(lowerCamelCase_ , lowerCamelCase_ )
__a : int = xor(lowerCamelCase_ , lowerCamelCase_ )
__a : Dict = apply_sbox(lowerCamelCase_ , temp[:4] ) # noqa: E741
__a : Tuple = apply_sbox(lowerCamelCase_ , temp[4:] )
__a : List[Any] = '0' * (2 - len(lowerCamelCase_ )) + l # noqa: E741
__a : List[str] = '0' * (2 - len(lowerCamelCase_ )) + r
__a : List[Any] = apply_table(l + r , lowerCamelCase_ )
__a : Dict = xor(lowerCamelCase_ , lowerCamelCase_ )
return temp + right
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = input('''Enter 10 bit key: ''')
SCREAMING_SNAKE_CASE__ = input('''Enter 8 bit message: ''')
SCREAMING_SNAKE_CASE__ = [6, 3, 7, 4, 8, 5, 10, 9]
SCREAMING_SNAKE_CASE__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
SCREAMING_SNAKE_CASE__ = [2, 4, 3, 1]
SCREAMING_SNAKE_CASE__ = [2, 6, 3, 1, 4, 8, 5, 7]
SCREAMING_SNAKE_CASE__ = [4, 1, 3, 5, 7, 2, 8, 6]
SCREAMING_SNAKE_CASE__ = [4, 1, 2, 3, 2, 3, 4, 1]
SCREAMING_SNAKE_CASE__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
SCREAMING_SNAKE_CASE__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
SCREAMING_SNAKE_CASE__ = apply_table(key, paa_table)
SCREAMING_SNAKE_CASE__ = temp[:5]
SCREAMING_SNAKE_CASE__ = temp[5:]
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table)
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table)
# encryption
SCREAMING_SNAKE_CASE__ = apply_table(message, IP)
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv)
print('''Cipher text is:''', CT)
# decryption
SCREAMING_SNAKE_CASE__ = apply_table(CT, IP)
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv)
print('''Plain text after decypting is:''', PT)
| 47 | 0 |
'''simple docstring'''
import json
import sys
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
with open(lowerCAmelCase__ , encoding='''utf-8''' ) as f:
UpperCAmelCase__ : Union[str, Any] = json.load(lowerCAmelCase__ )
UpperCAmelCase__ : str = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' ''']
for benchmark_name in sorted(lowerCAmelCase__ ):
UpperCAmelCase__ : int = results[benchmark_name]
UpperCAmelCase__ : Optional[int] = benchmark_name.split('''/''' )[-1]
output_md.append(F"""### Benchmark: {benchmark_file_name}""" )
UpperCAmelCase__ : Optional[Any] = '''| metric |'''
UpperCAmelCase__ : str = '''|--------|'''
UpperCAmelCase__ : List[Any] = '''| new / old (diff) |'''
for metric_name in sorted(lowerCAmelCase__ ):
UpperCAmelCase__ : Union[str, Any] = benchmark_res[metric_name]
UpperCAmelCase__ : List[Any] = metric_vals['''new''']
UpperCAmelCase__ : int = metric_vals.get('''old''' , lowerCAmelCase__ )
UpperCAmelCase__ : Union[str, Any] = metric_vals.get('''diff''' , lowerCAmelCase__ )
UpperCAmelCase__ : Any = F""" {new_val:f}""" if isinstance(lowerCAmelCase__ , (int, float) ) else '''None'''
if old_val is not None:
val_str += F""" / {old_val:f}""" if isinstance(lowerCAmelCase__ , (int, float) ) else "None"
if dif_val is not None:
val_str += F""" ({dif_val:f})""" if isinstance(lowerCAmelCase__ , (int, float) ) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append('''</details>''' )
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.writelines('''\n'''.join(lowerCAmelCase__ ) )
if __name__ == "__main__":
UpperCamelCase__ = sys.argv[1]
UpperCamelCase__ = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 75 |
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _UpperCamelCase( unittest.TestCase ):
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
__a : List[Any] = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
__a : int = None
ops.enable_eager_execution_internal()
__a : Optional[Any] = tf.config.list_physical_devices('CPU' )
if len(SCREAMING_SNAKE_CASE__ ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__a : int = tf.config.list_logical_devices(device_type='CPU' )
__a : str = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__a : List[str] = GradientAccumulator()
__a : Tuple = tf.Variable([4.0, 3.0] )
__a , __a : int = create_optimizer(5e-5 , 1_0 , 5 )
__a : List[Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE__ )
def accumulate_on_replica(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ):
with strategy.scope():
__a : Optional[Any] = strategy.experimental_local_results(SCREAMING_SNAKE_CASE__ )
local_variables[0].assign(SCREAMING_SNAKE_CASE__ )
local_variables[1].assign(SCREAMING_SNAKE_CASE__ )
strategy.run(SCREAMING_SNAKE_CASE__ , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(SCREAMING_SNAKE_CASE__ )
def _check_local_values(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ):
__a : Union[str, Any] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 )
self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 47 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class UpperCAmelCase_ ( snake_case ):
UpperCamelCase ="swinv2"
UpperCamelCase ={
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , UpperCamelCase_=2_24 , UpperCamelCase_=4 , UpperCamelCase_=3 , UpperCamelCase_=96 , UpperCamelCase_=[2, 2, 6, 2] , UpperCamelCase_=[3, 6, 12, 24] , UpperCamelCase_=7 , UpperCamelCase_=4.0 , UpperCamelCase_=True , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_="gelu" , UpperCamelCase_=False , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_=32 , **UpperCamelCase_ , ) -> List[Any]:
super().__init__(**UpperCamelCase_ )
__lowercase : Union[str, Any] = image_size
__lowercase : Optional[int] = patch_size
__lowercase : int = num_channels
__lowercase : List[str] = embed_dim
__lowercase : List[Any] = depths
__lowercase : List[str] = len(UpperCamelCase_ )
__lowercase : List[Any] = num_heads
__lowercase : Optional[int] = window_size
__lowercase : int = mlp_ratio
__lowercase : Any = qkv_bias
__lowercase : Optional[int] = hidden_dropout_prob
__lowercase : Tuple = attention_probs_dropout_prob
__lowercase : Optional[int] = drop_path_rate
__lowercase : Tuple = hidden_act
__lowercase : Tuple = use_absolute_embeddings
__lowercase : Dict = layer_norm_eps
__lowercase : Dict = initializer_range
__lowercase : Optional[Any] = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__lowercase : Optional[int] = int(embed_dim * 2 ** (len(UpperCamelCase_ ) - 1) )
__lowercase : Union[str, Any] = (0, 0, 0, 0)
| 76 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''',
'''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''',
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''roberta'''
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : str=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Tuple="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = vocab_size
__a : Tuple = hidden_size
__a : List[str] = num_hidden_layers
__a : List[Any] = num_attention_heads
__a : str = hidden_act
__a : Optional[Any] = intermediate_size
__a : Dict = hidden_dropout_prob
__a : List[str] = attention_probs_dropout_prob
__a : Optional[Any] = max_position_embeddings
__a : Dict = type_vocab_size
__a : str = initializer_range
__a : List[str] = layer_norm_eps
__a : Optional[int] = position_embedding_type
__a : Union[str, Any] = use_cache
__a : str = classifier_dropout
class _UpperCamelCase( __lowerCamelCase ):
@property
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
if self.task == "multiple-choice":
__a : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__a : Dict = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 47 | 0 |
"""simple docstring"""
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
A = logging.getLogger(__name__)
class a__ ( __magic_name__ ):
lowercase_ = "sequence-classification"
def __init__( self : Optional[Any] , UpperCamelCase_ : int):
"""simple docstring"""
if type(UpperCamelCase_) == dict:
__UpperCAmelCase : Optional[int] = Namespace(**UpperCamelCase_)
__UpperCAmelCase : Union[str, Any] = glue_output_modes[hparams.task]
__UpperCAmelCase : Optional[Any] = glue_tasks_num_labels[hparams.task]
super().__init__(UpperCamelCase_ , UpperCamelCase_ , self.mode)
def a_ ( self : Optional[Any] , **UpperCamelCase_ : Optional[int]):
"""simple docstring"""
return self.model(**UpperCamelCase_)
def a_ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
__UpperCAmelCase : str = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None
__UpperCAmelCase : Optional[Any] = self(**UpperCamelCase_)
__UpperCAmelCase : int = outputs[0]
__UpperCAmelCase : str = self.trainer.lr_schedulers[0]["scheduler"]
__UpperCAmelCase : Optional[int] = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def a_ ( self : Any):
"""simple docstring"""
__UpperCAmelCase : Any = self.hparams
__UpperCAmelCase : List[Any] = processors[args.task]()
__UpperCAmelCase : Dict = processor.get_labels()
for mode in ["train", "dev"]:
__UpperCAmelCase : str = self._feature_file(UpperCamelCase_)
if os.path.exists(UpperCamelCase_) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , UpperCamelCase_)
else:
logger.info("Creating features from dataset file at %s" , args.data_dir)
__UpperCAmelCase : Optional[int] = (
processor.get_dev_examples(args.data_dir)
if mode == "dev"
else processor.get_train_examples(args.data_dir)
)
__UpperCAmelCase : List[Any] = convert_examples_to_features(
UpperCamelCase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info("Saving features into cached file %s" , UpperCamelCase_)
torch.save(UpperCamelCase_ , UpperCamelCase_)
def a_ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : bool = False):
"""simple docstring"""
__UpperCAmelCase : Dict = "dev" if mode == "test" else mode
__UpperCAmelCase : Dict = self._feature_file(UpperCamelCase_)
logger.info("Loading features from cached file %s" , UpperCamelCase_)
__UpperCAmelCase : Dict = torch.load(UpperCamelCase_)
__UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long)
__UpperCAmelCase : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long)
__UpperCAmelCase : Optional[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long)
if self.hparams.glue_output_mode == "classification":
__UpperCAmelCase : int = torch.tensor([f.label for f in features] , dtype=torch.long)
elif self.hparams.glue_output_mode == "regression":
__UpperCAmelCase : Optional[Any] = torch.tensor([f.label for f in features] , dtype=torch.float)
return DataLoader(
TensorDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) , batch_size=UpperCamelCase_ , shuffle=UpperCamelCase_ , )
def a_ ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any]):
"""simple docstring"""
__UpperCAmelCase : List[str] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
__UpperCAmelCase : List[Any] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None
__UpperCAmelCase : Any = self(**UpperCamelCase_)
__UpperCAmelCase , __UpperCAmelCase : Tuple = outputs[:2]
__UpperCAmelCase : List[Any] = logits.detach().cpu().numpy()
__UpperCAmelCase : List[Any] = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def a_ ( self : List[Any] , UpperCamelCase_ : List[Any]):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = torch.stack([x["val_loss"] for x in outputs]).mean().detach().cpu().item()
__UpperCAmelCase : int = np.concatenate([x["pred"] for x in outputs] , axis=0)
if self.hparams.glue_output_mode == "classification":
__UpperCAmelCase : str = np.argmax(UpperCamelCase_ , axis=1)
elif self.hparams.glue_output_mode == "regression":
__UpperCAmelCase : Union[str, Any] = np.squeeze(UpperCamelCase_)
__UpperCAmelCase : List[str] = np.concatenate([x["target"] for x in outputs] , axis=0)
__UpperCAmelCase : Optional[Any] = [[] for _ in range(out_label_ids.shape[0])]
__UpperCAmelCase : Any = [[] for _ in range(out_label_ids.shape[0])]
__UpperCAmelCase : Union[str, Any] = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , UpperCamelCase_ , UpperCamelCase_)}
__UpperCAmelCase : Optional[int] = dict(results.items())
__UpperCAmelCase : str = results
return ret, preds_list, out_label_list
def a_ ( self : Union[str, Any] , UpperCamelCase_ : list):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = self._eval_end(UpperCamelCase_)
__UpperCAmelCase : List[Any] = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def a_ ( self : List[str] , UpperCamelCase_ : str):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self._eval_end(UpperCamelCase_)
__UpperCAmelCase : Any = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def a_ ( UpperCamelCase_ : Any , UpperCamelCase_ : List[Any]):
"""simple docstring"""
BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_)
parser.add_argument(
"--max_seq_length" , default=128 , type=UpperCamelCase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--task" , default="" , type=UpperCamelCase_ , required=UpperCamelCase_ , help="The GLUE task to run" , )
parser.add_argument(
"--gpus" , default=0 , type=UpperCamelCase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets")
return parser
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : str = argparse.ArgumentParser()
add_generic_args(UpperCamelCase , os.getcwd() )
__UpperCAmelCase : int = GLUETransformer.add_model_specific_args(UpperCamelCase , os.getcwd() )
__UpperCAmelCase : List[str] = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
__UpperCAmelCase : Union[str, Any] = os.path.join(
"./results" , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , )
os.makedirs(args.output_dir )
__UpperCAmelCase : Tuple = GLUETransformer(UpperCamelCase )
__UpperCAmelCase : int = generic_train(UpperCamelCase , UpperCamelCase )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
__UpperCAmelCase : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=UpperCamelCase ) )
__UpperCAmelCase : Tuple = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(UpperCamelCase )
if __name__ == "__main__":
main()
| 77 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''▁'''
SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.bpe.model'''}
SCREAMING_SNAKE_CASE__ = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
SCREAMING_SNAKE_CASE__ = {
'''facebook/xglm-564M''': 2048,
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask''']
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : Dict="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ):
'''simple docstring'''
__a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
__a : Any = 7
__a : Union[str, Any] = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
__a : Union[str, Any] = kwargs.get('additional_special_tokens' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , )
__a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) )
__a : str = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__a : Any = 1
# Mimic fairseq token-to-id alignment for the first 4 token
__a : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
__a : List[str] = len(self.sp_model )
__a : Optional[int] = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ )
__a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[str] ):
'''simple docstring'''
__a : Tuple = self.__dict__.copy()
__a : List[str] = None
__a : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
__a : int = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__a : Dict = {}
__a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
__a : Optional[Any] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ):
'''simple docstring'''
__a : Optional[int] = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
__a : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__a : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
__a : Optional[int] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip()
return out_string
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a : Any = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi:
__a : List[Any] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 47 | 0 |
'''simple docstring'''
from torch import nn
def lowerCAmelCase_ ( snake_case_ : int ) -> Dict:
'''simple docstring'''
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f"""Unsupported activation function: {act_fn}""" )
| 78 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
SCREAMING_SNAKE_CASE__ = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] ):
__a : str = torch.load(lowerCamelCase_ , map_location='cpu' )
return sd
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=rename_keys_prefix ):
__a : Optional[Any] = OrderedDict()
__a : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__a : List[Any] = key
for name_pair in rename_keys_prefix:
__a : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__a : Any = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__a : int = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ):
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
__a : Dict = 'pretraining'
if "vcr" in checkpoint_path:
__a : int = {'visual_embedding_dim': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
__a : int = {'visual_embedding_dim': 2_0_4_8}
elif "vqa" in checkpoint_path:
__a : Tuple = {'visual_embedding_dim': 2_0_4_8}
elif "nlvr" in checkpoint_path:
__a : List[Any] = {'visual_embedding_dim': 1_0_2_4}
else:
raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
__a : int = {'visual_embedding_dim': 5_1_2}
__a : Any = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
__a : Any = {'visual_embedding_dim': 2_0_4_8}
__a : List[str] = 'vqa_advanced'
elif "vqa" in checkpoint_path:
__a : List[Any] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9}
__a : List[Any] = 'vqa'
elif "nlvr" in checkpoint_path:
__a : Optional[int] = {
'visual_embedding_dim': 1_0_2_4,
'num_labels': 2,
}
__a : Optional[Any] = 'nlvr'
__a : str = VisualBertConfig(**lowerCamelCase_ )
# Load State Dict
__a : str = load_state_dict(lowerCamelCase_ )
__a : str = get_new_dict(lowerCamelCase_ , lowerCamelCase_ )
if model_type == "pretraining":
__a : Optional[Any] = VisualBertForPreTraining(lowerCamelCase_ )
elif model_type == "vqa":
__a : Any = VisualBertForQuestionAnswering(lowerCamelCase_ )
elif model_type == "nlvr":
__a : int = VisualBertForVisualReasoning(lowerCamelCase_ )
elif model_type == "multichoice":
__a : Optional[int] = VisualBertForMultipleChoice(lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
# Save Checkpoints
Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 47 | 0 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class UpperCAmelCase_ ( __lowerCamelCase ):
def __UpperCAmelCase ( self , _lowerCAmelCase ):
return 0.0
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> tuple[int | float, int | float]:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
UpperCAmelCase__ : int = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> None:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 512
UpperCAmelCase__ : int = [1] + [0] * (size - 1)
UpperCAmelCase__ : str = [filter_type.process(__lowerCamelCase ) for item in inputs]
UpperCAmelCase__ : List[str] = [0] * (samplerate - size) # zero-padding
outputs += filler
UpperCAmelCase__ : List[str] = np.abs(np.fft.fft(__lowerCamelCase ) )
UpperCAmelCase__ : Any = 20 * np.logaa(__lowerCamelCase )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
# Display within reasonable bounds
UpperCAmelCase__ : int = get_bounds(__lowerCamelCase , __lowerCamelCase )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("""Gain (dB)""" )
plt.plot(__lowerCamelCase )
plt.show()
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> None:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 512
UpperCAmelCase__ : Any = [1] + [0] * (size - 1)
UpperCAmelCase__ : int = [filter_type.process(__lowerCamelCase ) for item in inputs]
UpperCAmelCase__ : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
UpperCAmelCase__ : Optional[int] = np.angle(np.fft.fft(__lowerCamelCase ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("""Phase shift (Radians)""" )
plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) )
plt.show()
| 79 |
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
| 47 | 0 |
import math
def snake_case ( lowerCamelCase ):
'''simple docstring'''
__lowercase = []
__lowercase = 2
__lowercase = int(math.sqrt(lowerCamelCase ) ) # Size of every segment
__lowercase = [True] * (end + 1)
__lowercase = []
while start <= end:
if temp[start] is True:
in_prime.append(lowerCamelCase )
for i in range(start * start , end + 1 , lowerCamelCase ):
__lowercase = False
start += 1
prime += in_prime
__lowercase = end + 1
__lowercase = min(2 * end , lowerCamelCase )
while low <= n:
__lowercase = [True] * (high - low + 1)
for each in in_prime:
__lowercase = math.floor(low / each ) * each
if t < low:
t += each
for j in range(lowerCamelCase , high + 1 , lowerCamelCase ):
__lowercase = False
for j in range(len(lowerCamelCase ) ):
if temp[j] is True:
prime.append(j + low )
__lowercase = high + 1
__lowercase = min(high + end , lowerCamelCase )
return prime
print(sieve(10**6))
| 80 |
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class _UpperCamelCase( __lowerCamelCase ):
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : List[Any] = tempfile.mkdtemp()
__a : int = 8
# DPR tok
__a : Dict = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__a : int = os.path.join(self.tmpdirname , 'dpr_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , DPR_VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
# BART tok
__a : str = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
__a : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
__a : List[str] = {'unk_token': '<unk>'}
__a : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['vocab_file'] )
__a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) )
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) )
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
@require_tokenizers
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
__a : Tuple = os.path.join(self.tmpdirname , 'rag_tokenizer' )
__a : Optional[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() )
__a : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() )
rag_config.save_pretrained(SCREAMING_SNAKE_CASE__ )
rag_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ )
__a : List[Any] = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(new_rag_tokenizer.question_encoder , SCREAMING_SNAKE_CASE__ )
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() )
self.assertIsInstance(new_rag_tokenizer.generator , SCREAMING_SNAKE_CASE__ )
self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() )
@slow
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : Optional[Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' )
__a : List[Any] = [
'who got the first nobel prize in physics',
'when is the next deadpool movie being released',
'which mode is used for short wave broadcast service',
'who is the owner of reading football club',
'when is the next scandal episode coming out',
'when is the last time the philadelphia won the superbowl',
'what is the most current adobe flash player version',
'how many episodes are there in dragon ball z',
'what is the first step in the evolution of the eye',
'where is gall bladder situated in human body',
'what is the main mineral in lithium batteries',
'who is the president of usa right now',
'where do the greasers live in the outsiders',
'panda is a national animal of which country',
'what is the name of manchester united stadium',
]
__a : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@slow
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
__a : Any = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' )
__a : Union[str, Any] = [
'who got the first nobel prize in physics',
'when is the next deadpool movie being released',
'which mode is used for short wave broadcast service',
'who is the owner of reading football club',
'when is the next scandal episode coming out',
'when is the last time the philadelphia won the superbowl',
'what is the most current adobe flash player version',
'how many episodes are there in dragon ball z',
'what is the first step in the evolution of the eye',
'where is gall bladder situated in human body',
'what is the main mineral in lithium batteries',
'who is the president of usa right now',
'where do the greasers live in the outsiders',
'panda is a national animal of which country',
'what is the name of manchester united stadium',
]
__a : str = tokenizer(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
| 47 | 0 |
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
_snake_case : str = logging.get_logger(__name__)
logging.set_verbosity_info()
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ):
if "xprophetnet" in prophetnet_checkpoint_path:
__snake_case : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(__lowerCamelCase )
__snake_case , __snake_case : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained(
__lowerCamelCase , output_loading_info=__lowerCamelCase )
else:
__snake_case : Optional[int] = ProphetNetForConditionalGenerationOld.from_pretrained(__lowerCamelCase )
__snake_case , __snake_case : Dict = ProphetNetForConditionalGeneration.from_pretrained(
__lowerCamelCase , output_loading_info=__lowerCamelCase )
__snake_case : Union[str, Any] = ["key_proj", "value_proj", "query_proj"]
__snake_case : Tuple = {
"self_attn": "ngram_self_attn",
"cross_attn": "encoder_attn",
"cross_attn_layer_norm": "encoder_attn_layer_norm",
"feed_forward_layer_norm": "final_layer_norm",
"feed_forward": "",
"intermediate": "fc1",
"output": "fc2",
"key_proj": "k_proj",
"query_proj": "q_proj",
"value_proj": "v_proj",
"word_embeddings": "embed_tokens",
"embeddings_layer_norm": "emb_layer_norm",
"relative_pos_embeddings": "relative_linear",
"ngram_embeddings": "ngram_input_embed",
"position_embeddings": "embed_positions",
}
for key in loading_info["missing_keys"]:
__snake_case : Optional[Any] = key.split("." )
if attributes[0] == "lm_head":
__snake_case : Dict = prophet
__snake_case : Tuple = prophet_old
else:
__snake_case : str = prophet.prophetnet
__snake_case : Any = prophet_old.model
__snake_case : Any = False
for attribute in attributes:
if attribute in mapping:
__snake_case : Optional[int] = mapping[attribute]
if not hasattr(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) > 0:
__snake_case : List[str] = attribute
elif hasattr(__lowerCamelCase , __lowerCamelCase ):
__snake_case : List[str] = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
__snake_case : Dict = old_model.weight
logger.info(F'{attribute} is initialized.' )
__snake_case : int = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
__snake_case : int = old_model.bias
logger.info(F'{attribute} is initialized' )
__snake_case : Dict = True
break
elif attribute in special_keys and hasattr(__lowerCamelCase , "in_proj_weight" ):
__snake_case : Any = old_model.in_proj_weight.shape[0] // 3
__snake_case : Dict = getattr(__lowerCamelCase , __lowerCamelCase )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
__snake_case : Any = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
__snake_case : Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
__snake_case : str = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
__snake_case : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
__snake_case : List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
__snake_case : Optional[Any] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
__snake_case : int = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings."
__snake_case : Tuple = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] )
__snake_case : List[str] = True
break
if attribute.isdigit():
__snake_case : List[str] = model[int(__lowerCamelCase )]
__snake_case : int = old_model[int(__lowerCamelCase )]
else:
__snake_case : Optional[int] = getattr(__lowerCamelCase , __lowerCamelCase )
if old_attribute == "":
__snake_case : Optional[Any] = old_model
else:
if not hasattr(__lowerCamelCase , __lowerCamelCase ):
raise ValueError(F'{old_model} does not have {old_attribute}' )
__snake_case : str = getattr(__lowerCamelCase , __lowerCamelCase )
if not is_key_init:
raise ValueError(F'{key} was not correctly initialized!' )
print(F'Saving model to {pytorch_dump_folder_path}' )
prophet.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
_snake_case : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case : int = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 81 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model'''}
SCREAMING_SNAKE_CASE__ = {
'''vocab_file''': {
'''bert_for_seq_generation''': (
'''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model'''
),
}
}
SCREAMING_SNAKE_CASE__ = {'''bert_for_seq_generation''': 512}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : List[int] = []
__SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask''']
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<::::>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ):
'''simple docstring'''
__a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
# Add extra_ids to the special token list
super().__init__(
bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , )
__a : int = vocab_file
__a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return self.sp_model.get_piece_size()
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
__a : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ):
'''simple docstring'''
__a : Union[str, Any] = self.__dict__.copy()
__a : Any = None
return state
def __setstate__( self : int , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
__a : str = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__a : str = {}
__a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
__a : int = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ )
return token
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : Optional[Any] = []
__a : Optional[int] = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token
__a : Dict = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE__ )
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ )
return out_string.strip()
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a : Tuple = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi:
__a : List[str] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 47 | 0 |
"""simple docstring"""
from sklearn.metrics import fa_score
import datasets
lowerCamelCase = """
The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:
F1 = 2 * (precision * recall) / (precision + recall)
"""
lowerCamelCase = """
Args:
predictions (`list` of `int`): Predicted labels.
references (`list` of `int`): Ground truth labels.
labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
- 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
- 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
- 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.
Examples:
Example 1-A simple binary example
>>> f1_metric = datasets.load_metric(\"f1\")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
>>> print(results)
{'f1': 0.5}
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
>>> f1_metric = datasets.load_metric(\"f1\")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
>>> print(round(results['f1'], 2))
0.67
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
>>> f1_metric = datasets.load_metric(\"f1\")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
>>> print(round(results['f1'], 2))
0.35
Example 4-A multiclass example, with different values for the `average` input.
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")
>>> print(round(results['f1'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")
>>> print(round(results['f1'], 2))
0.33
>>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")
>>> print(round(results['f1'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{'f1': array([0.8, 0. , 0. ])}
"""
lowerCamelCase = """
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("int32" ) ),
"references": datasets.Sequence(datasets.Value("int32" ) ),
}
if self.config_name == "multilabel"
else {
"predictions": datasets.Value("int32" ),
"references": datasets.Value("int32" ),
} ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , )
def lowercase__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : List[Any]="binary" , _UpperCAmelCase : int=None ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = fa_score(
_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase , pos_label=_UpperCAmelCase , average=_UpperCAmelCase , sample_weight=_UpperCAmelCase )
return {"f1": float(_UpperCAmelCase ) if score.size == 1 else score}
| 82 |
from ..utils import DummyObject, requires_backends
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : List[Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Any = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Dict , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Dict = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class _UpperCamelCase( metaclass=__lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[int] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
| 47 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case :
def __init__( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=1_3 , __lowerCAmelCase : int=3_2 , __lowerCAmelCase : int=3 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : Union[str, Any]=[1_0, 2_0, 3_0, 4_0] , __lowerCAmelCase : List[str]=[2, 2, 3, 2] , __lowerCAmelCase : int=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=3_7 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=1_0 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : List[Any]=["stage2", "stage3", "stage4"] , __lowerCAmelCase : Union[str, Any]=[2, 3, 4] , __lowerCAmelCase : int=None , ):
"""simple docstring"""
_lowerCamelCase : Dict = parent
_lowerCamelCase : Dict = batch_size
_lowerCamelCase : Optional[int] = image_size
_lowerCamelCase : Union[str, Any] = num_channels
_lowerCamelCase : List[str] = num_stages
_lowerCamelCase : Union[str, Any] = hidden_sizes
_lowerCamelCase : int = depths
_lowerCamelCase : str = is_training
_lowerCamelCase : Dict = use_labels
_lowerCamelCase : Union[str, Any] = intermediate_size
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Dict = num_labels
_lowerCamelCase : List[Any] = initializer_range
_lowerCamelCase : int = out_features
_lowerCamelCase : str = out_indices
_lowerCamelCase : str = scope
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase : Optional[int] = None
if self.use_labels:
_lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_labels )
_lowerCamelCase : Dict = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ):
"""simple docstring"""
_lowerCamelCase : Dict = ConvNextModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : str = model(__lowerCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ConvNextForImageClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Any = model(__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ConvNextBackbone(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Optional[int] = model(__lowerCAmelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_lowerCamelCase : int = None
_lowerCamelCase : Optional[int] = ConvNextBackbone(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : str = model(__lowerCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
_lowerCamelCase : List[str] = self.prepare_config_and_inputs()
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = config_and_inputs
_lowerCamelCase : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( _lowercase , _lowercase , unittest.TestCase):
snake_case__ : Dict = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
snake_case__ : Dict = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
snake_case__ : Optional[int] = True
snake_case__ : Optional[int] = False
snake_case__ : Optional[int] = False
snake_case__ : Union[str, Any] = False
snake_case__ : Tuple = False
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
_lowerCamelCase : Any = ConvNextModelTester(self )
_lowerCamelCase : Tuple = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=3_7 )
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
return
@unittest.skip(reason='''ConvNext does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
pass
@unittest.skip(reason='''ConvNext does not support input and output embeddings''' )
def SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
pass
@unittest.skip(reason='''ConvNext does not use feedforward chunking''' )
def SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
_lowerCamelCase : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : int = [*signature.parameters.keys()]
_lowerCamelCase : List[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
def check_hidden_states_output(__lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ):
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
_lowerCamelCase : Tuple = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
_lowerCamelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCamelCase : Tuple = self.model_tester.num_stages
self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : str = True
check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase : Union[str, Any] = True
check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
_lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase )
@slow
def SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Tuple = ConvNextModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def snake_case_ ( ):
'''simple docstring'''
_lowerCamelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __snake_case ( unittest.TestCase):
@cached_property
def SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
_lowerCamelCase : Dict = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(__lowerCAmelCase )
_lowerCamelCase : str = self.default_image_processor
_lowerCamelCase : Union[str, Any] = prepare_img()
_lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase )
# forward pass
with torch.no_grad():
_lowerCamelCase : Dict = model(**__lowerCAmelCase )
# verify the logits
_lowerCamelCase : str = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __lowerCAmelCase )
_lowerCamelCase : int = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(__lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
@require_torch
class __snake_case ( unittest.TestCase , _lowercase):
snake_case__ : Any = (ConvNextBackbone,) if is_torch_available() else ()
snake_case__ : Union[str, Any] = ConvNextConfig
snake_case__ : int = False
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ConvNextModelTester(self )
| 83 |
import math
from datetime import datetime, timedelta
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
__a : Union[str, Any] = year % 1_9
__a : int = year % 4
__a : Optional[int] = year % 7
__a : Dict = math.floor(year / 1_0_0 )
__a : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 )
__a : Union[str, Any] = leap_day_inhibits / 4
__a : str = (
1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 3_0
__a : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
__a : List[Any] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0
# PHM -> Paschal Full Moon
__a : List[Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 2_9 and days_from_phm_to_sunday == 6:
return datetime(lowerCamelCase_ , 4 , 1_9 )
elif days_to_add == 2_8 and days_from_phm_to_sunday == 6:
return datetime(lowerCamelCase_ , 4 , 1_8 )
else:
return datetime(lowerCamelCase_ , 3 , 2_2 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
SCREAMING_SNAKE_CASE__ = '''will be''' if year > datetime.now().year else '''was'''
print(F"Easter in {year} {tense} {gauss_easter(year)}")
| 47 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
UpperCAmelCase = None
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
UpperCAmelCase = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''',
'''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''',
},
}
UpperCAmelCase = {
'''facebook/mbart-large-en-ro''': 1024,
'''facebook/mbart-large-cc25''': 1024,
}
# fmt: off
UpperCAmelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class A_ ( __lowerCamelCase ):
'''simple docstring'''
_UpperCamelCase : List[Any] = VOCAB_FILES_NAMES
_UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : int = ["""input_ids""", """attention_mask"""]
_UpperCamelCase : List[Any] = MBartTokenizer
_UpperCamelCase : List[int] = []
_UpperCamelCase : List[int] = []
def __init__( self , snake_case=None , snake_case=None , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=None , snake_case=None , snake_case=None , **snake_case , ):
# Mask token behave like a normal word, i.e. include the space before it
lowercase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token
super().__init__(
vocab_file=snake_case , tokenizer_file=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , src_lang=snake_case , tgt_lang=snake_case , additional_special_tokens=snake_case , **snake_case , )
lowercase = vocab_file
lowercase = False if not self.vocab_file else True
lowercase = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
lowercase = {
lang_code: self.convert_tokens_to_ids(snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
lowercase = src_lang if src_lang is not None else 'en_XX'
lowercase = self.convert_tokens_to_ids(self._src_lang )
lowercase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE__ ( self , snake_case ):
lowercase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ):
lowercase = [self.sep_token_id]
lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , **snake_case ):
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
lowercase = src_lang
lowercase = self(snake_case , add_special_tokens=snake_case , return_tensors=snake_case , **snake_case )
lowercase = self.convert_tokens_to_ids(snake_case )
lowercase = tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = "en_XX" , snake_case = None , snake_case = "ro_RO" , **snake_case , ):
lowercase = src_lang
lowercase = tgt_lang
return super().prepare_seqaseq_batch(snake_case , snake_case , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE__ ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE__ ( self , snake_case ):
lowercase = self.convert_tokens_to_ids(snake_case )
lowercase = []
lowercase = [self.eos_token_id, self.cur_lang_code]
lowercase = self.convert_ids_to_tokens(self.prefix_tokens )
lowercase = self.convert_ids_to_tokens(self.suffix_tokens )
lowercase = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case ):
lowercase = self.convert_tokens_to_ids(snake_case )
lowercase = []
lowercase = [self.eos_token_id, self.cur_lang_code]
lowercase = self.convert_ids_to_tokens(self.prefix_tokens )
lowercase = self.convert_ids_to_tokens(self.suffix_tokens )
lowercase = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(snake_case ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' )
return
lowercase = os.path.join(
snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ):
copyfile(self.vocab_file , snake_case )
return (out_vocab_file,)
| 84 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : List[Any] = '''informer'''
__SCREAMING_SNAKE_CASE : List[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str = "prob" , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Tuple , ):
'''simple docstring'''
__a : Dict = prediction_length
__a : Tuple = context_length or prediction_length
__a : Tuple = distribution_output
__a : Tuple = loss
__a : str = input_size
__a : Dict = num_time_features
__a : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
__a : str = scaling
__a : Tuple = num_dynamic_real_features
__a : int = num_static_real_features
__a : Dict = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
__a : Optional[Any] = cardinality
else:
__a : Optional[int] = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
__a : int = embedding_dimension
else:
__a : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
__a : int = num_parallel_samples
# Transformer architecture configuration
__a : str = input_size * len(self.lags_sequence ) + self._number_of_features
__a : Optional[int] = d_model
__a : Union[str, Any] = encoder_attention_heads
__a : int = decoder_attention_heads
__a : Any = encoder_ffn_dim
__a : Union[str, Any] = decoder_ffn_dim
__a : List[Any] = encoder_layers
__a : Optional[int] = decoder_layers
__a : int = dropout
__a : Optional[Any] = attention_dropout
__a : Dict = activation_dropout
__a : Union[str, Any] = encoder_layerdrop
__a : Optional[int] = decoder_layerdrop
__a : List[str] = activation_function
__a : str = init_std
__a : Optional[int] = use_cache
# Informer
__a : Union[str, Any] = attention_type
__a : str = sampling_factor
__a : Dict = distil
super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 47 | 0 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
SCREAMING_SNAKE_CASE__ : List[Any] = get_logger()
SCREAMING_SNAKE_CASE__ : Optional[dict] = None
class snake_case ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self : Any , a_ : Dict=None , a_ : Dict=None , **a_ : Optional[int] )-> Tuple:
"""simple docstring"""
super().__init__(features=a_ )
import jax
from jaxlib.xla_client import Device
if isinstance(a_ , a_ ):
raise ValueError(
F'''Expected {device} to be a `str` not {type(a_ )}, as `jaxlib.xla_extension.Device` '''
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = device if isinstance(a_ , a_ ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
SCREAMING_SNAKE_CASE__ : List[Any] = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F'''Device with string identifier {self.device} not listed among the available '''
F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
F'''device: {str(jax.devices()[0] )}.''' )
SCREAMING_SNAKE_CASE__ : Tuple = str(jax.devices()[0] )
SCREAMING_SNAKE_CASE__ : List[Any] = jnp_array_kwargs
@staticmethod
def __lowercase( )-> Dict[str, "jaxlib.xla_extension.Device"]:
"""simple docstring"""
import jax
return {str(a_ ): device for device in jax.devices()}
def __lowercase( self : str , a_ : Dict )-> List[str]:
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(a_ , a_ ) and column:
if all(
isinstance(a_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(a_ , axis=0 )
return column
def __lowercase( self : int , a_ : Union[str, Any] )-> Union[str, Any]:
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(a_ , (str, bytes, type(a_ )) ):
return value
elif isinstance(a_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
SCREAMING_SNAKE_CASE__ : Optional[int] = {}
if isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
SCREAMING_SNAKE_CASE__ : str = {'dtype': jnp.intaa}
else:
SCREAMING_SNAKE_CASE__ : List[Any] = {'dtype': jnp.intaa}
elif isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
SCREAMING_SNAKE_CASE__ : Optional[int] = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(a_ , PIL.Image.Image ):
SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(a_ )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
SCREAMING_SNAKE_CASE__ : Optional[int] = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(a_ , **{**default_dtype, **self.jnp_array_kwargs} )
def __lowercase( self : Optional[Any] , a_ : Any )-> Union[str, Any]:
"""simple docstring"""
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(a_ , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(a_ , '__array__' ) and not isinstance(a_ , jax.Array ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(a_ , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] )
elif isinstance(a_ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] )
return self._tensorize(a_ )
def __lowercase( self : Union[str, Any] , a_ : dict )-> List[str]:
"""simple docstring"""
return map_nested(self._recursive_tensorize , a_ , map_list=a_ )
def __lowercase( self : Dict , a_ : pa.Table )-> Mapping:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.numpy_arrow_extractor().extract_row(a_ )
SCREAMING_SNAKE_CASE__ : List[str] = self.python_features_decoder.decode_row(a_ )
return self.recursive_tensorize(a_ )
def __lowercase( self : Any , a_ : pa.Table )-> "jax.Array":
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.numpy_arrow_extractor().extract_column(a_ )
SCREAMING_SNAKE_CASE__ : List[str] = self.python_features_decoder.decode_column(a_ , pa_table.column_names[0] )
SCREAMING_SNAKE_CASE__ : Dict = self.recursive_tensorize(a_ )
SCREAMING_SNAKE_CASE__ : Tuple = self._consolidate(a_ )
return column
def __lowercase( self : Optional[int] , a_ : pa.Table )-> Mapping:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.numpy_arrow_extractor().extract_batch(a_ )
SCREAMING_SNAKE_CASE__ : str = self.python_features_decoder.decode_batch(a_ )
SCREAMING_SNAKE_CASE__ : List[Any] = self.recursive_tensorize(a_ )
for column_name in batch:
SCREAMING_SNAKE_CASE__ : Tuple = self._consolidate(batch[column_name] )
return batch
| 85 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = (DDIMParallelScheduler,)
__SCREAMING_SNAKE_CASE : Union[str, Any] = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : List[Any] = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : Tuple = self.scheduler_classes[0]
__a : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ )
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a , __a : List[str] = 1_0, 0.0
__a : Dict = self.dummy_model()
__a : str = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
for t in scheduler.timesteps:
__a : str = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : List[str] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample
return sample
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
for timesteps in [1_0_0, 5_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = self.scheduler_classes[0]
__a : List[str] = self.get_scheduler_config(steps_offset=1 )
__a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for t in [1, 1_0, 4_9]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : Union[str, Any] = self.get_scheduler_config()
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.14_771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.32_460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.00_979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : List[str] = self.get_scheduler_config()
__a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a , __a : Any = 1_0, 0.0
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
__a : List[Any] = self.dummy_model()
__a : int = self.dummy_sample_deter
__a : List[Any] = self.dummy_sample_deter + 0.1
__a : List[str] = self.dummy_sample_deter - 0.1
__a : Optional[Any] = samplea.shape[0]
__a : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 )
__a : Union[str, Any] = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ )
__a : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__a : int = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE__ )
__a : Dict = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2
assert abs(result_mean.item() - 0.4_982 ) < 1e-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : List[str] = self.full_loop()
__a : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 172.0_067 ) < 1e-2
assert abs(result_mean.item() - 0.223_967 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
__a : Optional[int] = self.full_loop(prediction_type='v_prediction' )
__a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 52.5_302 ) < 1e-2
assert abs(result_mean.item() - 0.0_684 ) < 1e-3
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
__a : Union[str, Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 )
__a : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 149.8_295 ) < 1e-2
assert abs(result_mean.item() - 0.1_951 ) < 1e-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : Dict = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 )
__a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 149.0_784 ) < 1e-2
assert abs(result_mean.item() - 0.1_941 ) < 1e-3
| 47 | 0 |
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
__a :Any = logging.get_logger(__name__)
__a :int = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear',
'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed',
'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'ctc_proj',
'mask_emb': 'masked_spec_embed',
}
__a :Tuple = [
'ctc_proj',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split("." ):
A_ = getattr(__UpperCamelCase ,__UpperCamelCase )
if weight_type is not None:
A_ = getattr(__UpperCamelCase ,__UpperCamelCase ).shape
else:
A_ = hf_pointer.shape
assert hf_shape == value.shape, (
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
A_ = value
elif weight_type == "weight_g":
A_ = value
elif weight_type == "weight_v":
A_ = value
elif weight_type == "bias":
A_ = value
else:
A_ = value
logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = []
A_ = fairseq_model.state_dict()
A_ = hf_model.feature_extractor
for name, value in fairseq_dict.items():
A_ = False
if "conv_layers" in name:
load_conv_layer(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,hf_model.config.feat_extract_norm == "group" ,)
A_ = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
A_ = True
if "*" in mapped_key:
A_ = name.split(__UpperCamelCase )[0].split("." )[-2]
A_ = mapped_key.replace("*" ,__UpperCamelCase )
if "weight_g" in name:
A_ = "weight_g"
elif "weight_v" in name:
A_ = "weight_v"
elif "bias" in name and "relative_attention_bias" not in name:
A_ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
A_ = "weight"
else:
A_ = None
set_recursively(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
continue
if not is_used:
unused_weights.append(__UpperCamelCase )
logger.warning(f'''Unused weights: {unused_weights}''' )
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict ,__UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ):
"""simple docstring"""
A_ = full_name.split("conv_layers." )[-1]
A_ = name.split("." )
A_ = int(items[0] )
A_ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
A_ = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
A_ = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
A_ = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
A_ = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__UpperCamelCase )
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : str ,__UpperCamelCase : int=None ):
"""simple docstring"""
A_ = torch.load(__UpperCamelCase )
A_ = WavLMConfigOrig(checkpoint["cfg"] )
A_ = WavLMOrig(__UpperCamelCase )
model.load_state_dict(checkpoint["model"] )
model.eval()
if config_path is not None:
A_ = WavLMConfig.from_pretrained(__UpperCamelCase )
else:
A_ = WavLMConfig()
A_ = WavLMModel(__UpperCamelCase )
recursively_load_weights(__UpperCamelCase ,__UpperCamelCase )
hf_wavlm.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
__a :Optional[int] = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 86 |
def UpperCAmelCase__ ( lowerCamelCase_ : list[int] , lowerCamelCase_ : list[int] ):
# Check if the input is valid
if not len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == 3:
raise ValueError('Please enter a valid equation.' )
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError('Both a & b of two equations can\'t be zero.' )
# Extract the coefficients
__a , __a , __a : Optional[Any] = equationa
__a , __a , __a : Optional[int] = equationa
# Calculate the determinants of the matrices
__a : str = aa * ba - aa * ba
__a : Tuple = ca * ba - ca * ba
__a : Union[str, Any] = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError('Infinite solutions. (Consistent system)' )
else:
raise ValueError('No solution. (Inconsistent system)' )
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
__a : Any = determinant_x / determinant
__a : Optional[Any] = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
| 47 | 0 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Dict:
"""simple docstring"""
if "." in tensor_name:
A__ = tensor_name.split('''.''' )
for split in splits[:-1]:
A__ = getattr(lowercase_ , lowercase_ )
if new_module is None:
raise ValueError(f"""{module} has no attribute {split}.""" )
A__ = new_module
A__ = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" )
A__ = tensor_name in module._buffers
A__ = getattr(lowercase_ , lowercase_ )
if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None:
raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" )
A__ = False
A__ = False
if is_buffer or not is_bitsandbytes_available():
A__ = False
A__ = False
else:
A__ = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
A__ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
A__ = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
A__ = old_value.to(lowercase_ )
elif isinstance(lowercase_ , torch.Tensor ):
A__ = value.to('''cpu''' )
if value.dtype == torch.inta:
A__ = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse(
'''0.37.2''' )
if not is_abit_serializable:
raise ValueError(
'''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '''
'''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' )
else:
A__ = torch.tensor(lowercase_ , device='''cpu''' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , lowercase_ ) and fpaa_statistics is None:
A__ = new_value.T
A__ = old_value.__dict__
if is_abit:
A__ = bnb.nn.IntaParams(lowercase_ , requires_grad=lowercase_ , **lowercase_ ).to(lowercase_ )
elif is_abit:
A__ = bnb.nn.Paramsabit(lowercase_ , requires_grad=lowercase_ , **lowercase_ ).to(lowercase_ )
A__ = new_value
if fpaa_statistics is not None:
setattr(module.weight , '''SCB''' , fpaa_statistics.to(lowercase_ ) )
else:
if value is None:
A__ = old_value.to(lowercase_ )
elif isinstance(lowercase_ , torch.Tensor ):
A__ = value.to(lowercase_ )
else:
A__ = torch.tensor(lowercase_ , device=lowercase_ )
if is_buffer:
A__ = new_value
else:
A__ = nn.Parameter(lowercase_ , requires_grad=old_value.requires_grad )
A__ = new_value
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=False ) -> Dict:
"""simple docstring"""
for name, module in model.named_children():
if current_key_name is None:
A__ = []
current_key_name.append(lowercase_ )
if (isinstance(lowercase_ , nn.Linear ) or isinstance(lowercase_ , lowercase_ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '''.'''.join(lowercase_ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(lowercase_ , lowercase_ ):
A__ , A__ = module.weight.shape
else:
A__ = module.in_features
A__ = module.out_features
if quantization_config.quantization_method() == "llm_int8":
A__ = bnb.nn.LinearabitLt(
lowercase_ , lowercase_ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
A__ = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
A__ = bnb.nn.Linearabit(
lowercase_ , lowercase_ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
A__ = True
# Store the module class in case we need to transpose the weight later
A__ = type(lowercase_ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(lowercase_ )
if len(list(module.children() ) ) > 0:
A__ , A__ = _replace_with_bnb_linear(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_been_replaced=lowercase_ , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Tuple:
"""simple docstring"""
A__ = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert
A__ , A__ = _replace_with_bnb_linear(
lowercase_ , lowercase_ , lowercase_ , lowercase_ )
if not has_been_replaced:
logger.warning(
'''You are loading your model in 8bit or 4bit but no linear modules were found in your model.'''
''' Please double check your model architecture, or submit an issue on github if you think this is'''
''' a bug.''' )
return model
def SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Dict:
"""simple docstring"""
warnings.warn(
'''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , lowercase_ , )
return replace_with_bnb_linear(*lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
'''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , lowercase_ , )
return set_module_quantized_tensor_to_device(*lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = deepcopy(lowercase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
A__ = find_tied_parameters(lowercase_ )
# For compatibility with Accelerate < 0.18
if isinstance(lowercase_ , lowercase_ ):
A__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
A__ = sum(lowercase_ , [] )
A__ = len(lowercase_ ) > 0
# Check if it is a base model
A__ = not hasattr(lowercase_ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
A__ = list(model.named_children() )
A__ = [list_modules[-1][0]]
# add last module together with tied weights
A__ = set(lowercase_ ) - set(lowercase_ )
A__ = list(set(lowercase_ ) ) + list(lowercase_ )
# remove ".weight" from the keys
A__ = ['''.weight''', '''.bias''']
A__ = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
A__ = name.replace(lowercase_ , '''''' )
filtered_module_names.append(lowercase_ )
return filtered_module_names
| 87 |
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 47 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = """▁"""
UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""}
UpperCAmelCase = {
"""vocab_file""": {
"""facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""",
}
}
UpperCAmelCase = {
"""facebook/xglm-564M""": 2048,
}
class lowercase__ ( A_ ):
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None:
_lowerCamelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
_lowerCamelCase : List[str] = 7
_lowerCamelCase : List[str] = [F'<madeupword{i}>' for i in range(self.num_madeup_words)]
_lowerCamelCase : Union[str, Any] = kwargs.get("""additional_special_tokens""" , [])
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , )
_lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(SCREAMING_SNAKE_CASE))
_lowerCamelCase : Union[str, Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
_lowerCamelCase : List[Any] = 1
# Mimic fairseq token-to-id alignment for the first 4 token
_lowerCamelCase : List[Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
_lowerCamelCase : str = len(self.sp_model)
_lowerCamelCase : List[Any] = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE)
_lowerCamelCase : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self) -> Optional[Any]:
_lowerCamelCase : str = self.__dict__.copy()
_lowerCamelCase : Any = None
_lowerCamelCase : List[str] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE) -> List[str]:
_lowerCamelCase : int = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs"""):
_lowerCamelCase : Optional[int] = {}
_lowerCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None) -> List[int]:
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
_lowerCamelCase : List[Any] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE)
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE)) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE))
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None) -> List[int]:
_lowerCamelCase : Optional[int] = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a) * [0]
@property
def UpperCamelCase_ ( self) -> List[str]:
return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words
def UpperCamelCase_ ( self) -> Dict:
_lowerCamelCase : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]:
return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_lowerCamelCase : List[Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> int:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[Any]:
_lowerCamelCase : Any = """""".join(SCREAMING_SNAKE_CASE).replace(SCREAMING_SNAKE_CASE , """ """).strip()
return out_string
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
_lowerCamelCase : Tuple = os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE)
elif not os.path.isfile(self.vocab_file):
with open(SCREAMING_SNAKE_CASE , """wb""") as fi:
_lowerCamelCase : List[Any] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE)
return (out_vocab_file,)
| 88 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE__ = {
'''configuration_bridgetower''': [
'''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BridgeTowerConfig''',
'''BridgeTowerTextConfig''',
'''BridgeTowerVisionConfig''',
],
'''processing_bridgetower''': ['''BridgeTowerProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ['''BridgeTowerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
'''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BridgeTowerForContrastiveLearning''',
'''BridgeTowerForImageAndTextRetrieval''',
'''BridgeTowerForMaskedLM''',
'''BridgeTowerModel''',
'''BridgeTowerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 47 | 0 |
def UpperCamelCase_( lowerCamelCase_ = 100 ) -> int:
_lowercase : List[Any] = set()
_lowercase : Tuple = 0
_lowercase : Tuple = n + 1 # maximum limit
for a in range(2 , lowerCamelCase_ ):
for b in range(2 , lowerCamelCase_ ):
_lowercase : List[str] = a**b # calculates the current power
collect_powers.add(lowerCamelCase_ ) # adds the result to the set
return len(lowerCamelCase_ )
if __name__ == "__main__":
print("Number of terms ", solution(int(str(input()).strip())))
| 89 |
from string import ascii_lowercase, ascii_uppercase
def UpperCAmelCase__ ( lowerCamelCase_ : str ):
if not sentence:
return ""
__a : Union[str, Any] = dict(zip(lowerCamelCase_ , lowerCamelCase_ ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47 | 0 |
'''simple docstring'''
# Usage:
# ./gen-card-facebook-wmt19.py
import os
from pathlib import Path
def _snake_case ( A , A , A ) -> List[Any]:
lowerCAmelCase__ = {
'''en''': '''Machine learning is great, isn\'t it?''',
'''ru''': '''Машинное обучение - это здорово, не так ли?''',
'''de''': '''Maschinelles Lernen ist großartig, oder?''',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
lowerCAmelCase__ = {
'''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''],
'''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''],
'''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''],
'''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''],
}
lowerCAmelCase__ = F"""{src_lang}-{tgt_lang}"""
lowerCAmelCase__ = F"""
---
language:
- {src_lang}
- {tgt_lang}
thumbnail:
tags:
- translation
- wmt19
- facebook
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
---
# FSMT
## Model description
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).
The abbreviation FSMT stands for FairSeqMachineTranslation
All four models are available:
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = \"{texts[src_lang]}\"
input_ids = tokenizer.encode(input, return_tensors=\"pt\")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}
```
#### Limitations and bias
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)
## Training data
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).
## Eval results
pair | fairseq | transformers
-------|---------|----------
{pair} | {scores[pair][0]} | {scores[pair][1]}
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
- re-ranking
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=15
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.
## Data Sources
- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
### BibTeX entry and citation info
```bibtex
@inproceedings{{...,
year={{2020}},
title={{Facebook FAIR's WMT19 News Translation Task Submission}},
author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},
booktitle={{Proc. of WMT}},
}}
```
## TODO
- port model ensemble (fairseq uses 4 model checkpoints)
"""
os.makedirs(A , exist_ok=A )
lowerCAmelCase__ = os.path.join(A , '''README.md''' )
print(F"""Generating {path}""" )
with open(A , '''w''' , encoding='''utf-8''' ) as f:
f.write(A )
# make sure we are under the root of the project
__UpperCAmelCase = Path(__file__).resolve().parent.parent.parent
__UpperCAmelCase = repo_dir / '''model_cards'''
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = model_name.split('''-''')
__UpperCAmelCase = model_cards_dir / '''facebook''' / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 90 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = '''sew-d'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=2_5_6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=("p2c", "c2p") , SCREAMING_SNAKE_CASE__ : str="layer_norm" , SCREAMING_SNAKE_CASE__ : Tuple="gelu_python" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-7 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Optional[int]="group" , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : str=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]="mean" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=2_5_6 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = hidden_size
__a : Optional[Any] = feat_extract_norm
__a : List[str] = feat_extract_activation
__a : Dict = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ )
__a : List[str] = list(SCREAMING_SNAKE_CASE__ )
__a : int = conv_bias
__a : Tuple = num_conv_pos_embeddings
__a : List[str] = num_conv_pos_embedding_groups
__a : Optional[Any] = len(self.conv_dim )
__a : Union[str, Any] = num_hidden_layers
__a : Optional[Any] = intermediate_size
__a : Union[str, Any] = squeeze_factor
__a : List[Any] = max_position_embeddings
__a : Tuple = position_buckets
__a : Optional[int] = share_att_key
__a : List[str] = relative_attention
__a : Any = norm_rel_ebd
__a : Any = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = hidden_act
__a : str = num_attention_heads
__a : Union[str, Any] = hidden_dropout
__a : Optional[int] = attention_dropout
__a : List[str] = activation_dropout
__a : int = feat_proj_dropout
__a : int = final_dropout
__a : Dict = layer_norm_eps
__a : Tuple = feature_layer_norm_eps
__a : str = initializer_range
__a : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a : Tuple = apply_spec_augment
__a : Optional[Any] = mask_time_prob
__a : Any = mask_time_length
__a : List[str] = mask_time_min_masks
__a : List[str] = mask_feature_prob
__a : Tuple = mask_feature_length
__a : Any = mask_feature_min_masks
# ctc loss
__a : Optional[int] = ctc_loss_reduction
__a : List[Any] = ctc_zero_infinity
# sequence classification
__a : Dict = use_weighted_layer_sum
__a : Optional[Any] = classifier_proj_size
@property
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47 | 0 |
"""simple docstring"""
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
_lowercase = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class lowerCAmelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
_lowerCamelCase: Optional[datasets.Features] = None
def _snake_case ( snake_case__ : "pyspark.sql.DataFrame" , snake_case__ : List[int] , ):
import pyspark
def generate_fn():
A = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) )
for partition_id in partition_order:
A = df_with_partition_id.select('*' ).where(F'part_id = {partition_id}' ).drop('part_id' )
A = partition_df.collect()
A = 0
for row in rows:
yield F'{partition_id}_{row_id}', row.asDict()
row_id += 1
return generate_fn
class lowerCAmelCase_ ( _BaseExamplesIterable ):
'''simple docstring'''
def __init__( self : str ,A_ : "pyspark.sql.DataFrame" ,A_ : Optional[int]=None ,) -> str:
A = df
A = partition_order or range(self.df.rdd.getNumPartitions() )
A = _generate_iterable_examples(self.df ,self.partition_order )
def __iter__( self : Dict ) -> Dict:
yield from self.generate_examples_fn()
def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : np.random.Generator ) -> "SparkExamplesIterable":
A = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(A_ )
return SparkExamplesIterable(self.df ,partition_order=A_ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : int ,A_ : int ) -> "SparkExamplesIterable":
A = self.split_shard_indices_by_worker(A_ ,A_ )
return SparkExamplesIterable(self.df ,partition_order=A_ )
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
return len(self.partition_order )
class lowerCAmelCase_ ( datasets.DatasetBuilder ):
'''simple docstring'''
_lowerCamelCase: Any = SparkConfig
def __init__( self : Union[str, Any] ,A_ : "pyspark.sql.DataFrame" ,A_ : str = None ,A_ : str = None ,**A_ : Union[str, Any] ,) -> Union[str, Any]:
import pyspark
A = pyspark.sql.SparkSession.builder.getOrCreate()
A = df
A = working_dir
super().__init__(
cache_dir=A_ ,config_name=str(self.df.semanticHash() ) ,**A_ ,)
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]:
# Returns the path of the created file.
def create_cache_and_write_probe(A_ : int ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir ,exist_ok=A_ )
A = os.path.join(self._cache_dir ,'fs_test' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(A_ ,'a' )
return [probe_file]
if self._spark.conf.get('spark.master' ,'' ).startswith('local' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
A = (
self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(A_ ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' )
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int:
return datasets.DatasetInfo(features=self.config.features )
def _SCREAMING_SNAKE_CASE ( self : str ,A_ : datasets.download.download_manager.DownloadManager ) -> Any:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]:
import pyspark
def get_arrow_batch_size(A_ : Tuple ):
for batch in it:
yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} )
A = self.df.count()
A = df_num_rows if df_num_rows <= 100 else 100
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
A = (
self.df.limit(A_ )
.repartition(1 )
.mapInArrow(A_ ,'batch_bytes: long' )
.agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
A = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
A = min(A_ ,int(approx_total_size / max_shard_size ) )
A = self.df.repartition(A_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : str ,A_ : str ,A_ : int ,) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
import pyspark
A = ParquetWriter if file_format == 'parquet' else ArrowWriter
A = os.path.join(self._working_dir ,os.path.basename(A_ ) ) if self._working_dir else fpath
A = file_format == 'parquet'
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
A = self.config.features
A = self._writer_batch_size
A = self._fs.storage_options
def write_arrow(A_ : List[Any] ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
A = pyspark.TaskContext().taskAttemptId()
A = next(A_ ,A_ )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] ,names=['task_id', 'num_examples', 'num_bytes'] ,)
A = 0
A = writer_class(
features=A_ ,path=working_fpath.replace('SSSSS' ,F'{shard_id:05d}' ).replace('TTTTT' ,F'{task_id:05d}' ) ,writer_batch_size=A_ ,storage_options=A_ ,embed_local_files=A_ ,)
A = pa.Table.from_batches([first_batch] )
writer.write_table(A_ )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
A , A = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] ,names=['task_id', 'num_examples', 'num_bytes'] ,)
shard_id += 1
A = writer_class(
features=writer._features ,path=working_fpath.replace('SSSSS' ,F'{shard_id:05d}' ).replace('TTTTT' ,F'{task_id:05d}' ) ,writer_batch_size=A_ ,storage_options=A_ ,embed_local_files=A_ ,)
A = pa.Table.from_batches([batch] )
writer.write_table(A_ )
if writer._num_bytes > 0:
A , A = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] ,names=['task_id', 'num_examples', 'num_bytes'] ,)
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(A_ ) ):
A = os.path.join(os.path.dirname(A_ ) ,os.path.basename(A_ ) )
shutil.move(A_ ,A_ )
A = (
self.df.mapInArrow(A_ ,'task_id: long, num_examples: long, num_bytes: long' )
.groupBy('task_id' )
.agg(
pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) ,pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) ,pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) ,pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) ,)
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : "datasets.SplitGenerator" ,A_ : str = "arrow" ,A_ : Optional[Union[str, int]] = None ,A_ : Optional[int] = None ,**A_ : List[str] ,) -> Union[str, Any]:
self._validate_cache_dir()
A = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(A_ )
A = not is_remote_filesystem(self._fs )
A = os.path.join if is_local else posixpath.join
A = '-TTTTT-SSSSS-of-NNNNN'
A = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}'
A = path_join(self._output_dir ,A_ )
A = 0
A = 0
A = 0
A = []
A = []
for task_id, content in self._prepare_split_single(A_ ,A_ ,A_ ):
(
(
A
) , (
A
) , (
A
) , (
A
) ,
) = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(A_ )
A = total_num_examples
A = total_num_bytes
# should rename everything at the end
logger.debug(F'Renaming {total_shards} shards.' )
if total_shards > 1:
A = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
A = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
A_ : int ,A_ : int ,A_ : int ,):
rename(
A_ ,fpath.replace('SSSSS' ,F'{shard_id:05d}' ).replace('TTTTT' ,F'{task_id:05d}' ) ,fpath.replace('TTTTT-SSSSS' ,F'{global_shard_id:05d}' ).replace('NNNNN' ,F'{total_shards:05d}' ) ,)
A = []
A = 0
for i in range(len(A_ ) ):
A , A = task_id_and_num_shards[i]
for shard_id in range(A_ ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(A_ ,len(A_ ) ).map(lambda A_ : _rename_shard(*A_ ) ).collect()
else:
# don't use any pattern
A = 0
A = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('SSSSS' ,F'{shard_id:05d}' ).replace('TTTTT' ,F'{task_id:05d}' ) ,fpath.replace(A_ ,'' ) ,)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : "datasets.SplitGenerator" ,) -> SparkExamplesIterable:
return SparkExamplesIterable(self.df )
| 91 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ = TypeVar('''T''')
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (position - 1) // 2
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (2 * position) + 1
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
return (2 * position) + 2
class _UpperCamelCase( Generic[T] ):
def __init__( self : List[str] ):
'''simple docstring'''
__a : list[tuple[T, int]] = []
__a : dict[T, int] = {}
__a : int = 0
def __len__( self : Any ):
'''simple docstring'''
return self.elements
def __repr__( self : Any ):
'''simple docstring'''
return str(self.heap )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return self.elements == 0
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self.heap.append((elem, weight) )
__a : List[Any] = self.elements
self.elements += 1
self._bubble_up(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
__a , __a : Union[str, Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
__a , __a : Dict = self.heap[0]
self._bubble_down(SCREAMING_SNAKE_CASE__ )
return elem
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : List[Any] = self.position_map[elem]
__a : str = (elem, weight)
if position > 0:
__a : Tuple = get_parent_position(SCREAMING_SNAKE_CASE__ )
__a , __a : Dict = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
__a : List[Any] = self.position_map[elem]
if curr_pos == 0:
return None
__a : List[str] = get_parent_position(SCREAMING_SNAKE_CASE__ )
__a , __a : str = self.heap[curr_pos]
__a , __a : Optional[int] = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_up(SCREAMING_SNAKE_CASE__ )
return None
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
__a : int = self.position_map[elem]
__a , __a : Optional[Any] = self.heap[curr_pos]
__a : Tuple = get_child_left_position(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = get_child_right_position(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements and child_right_position < self.elements:
__a , __a : str = self.heap[child_left_position]
__a , __a : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements:
__a , __a : Any = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
return None
if child_right_position < self.elements:
__a , __a : Union[str, Any] = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
return None
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Optional[Any] = self.heap[nodea_pos][0]
__a : str = self.heap[nodea_pos][0]
__a , __a : int = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
__a : str = nodea_pos
__a : Optional[int] = nodea_pos
class _UpperCamelCase( Generic[T] ):
def __init__( self : List[Any] ):
'''simple docstring'''
__a : dict[T, dict[T, int]] = {}
__a : int = 0
def __repr__( self : Tuple ):
'''simple docstring'''
return str(self.connections )
def __len__( self : Dict ):
'''simple docstring'''
return self.nodes
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ):
'''simple docstring'''
if node not in self.connections:
__a : Tuple = {}
self.nodes += 1
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self.add_node(SCREAMING_SNAKE_CASE__ )
self.add_node(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = weight
__a : Any = weight
def UpperCAmelCase__ ( lowerCamelCase_ : GraphUndirectedWeighted[T] , ):
__a : dict[T, int] = {node: maxsize for node in graph.connections}
__a : dict[T, T | None] = {node: None for node in graph.connections}
__a : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(lowerCamelCase_ , lowerCamelCase_ )
if priority_queue.is_empty():
return dist, parent
# initialization
__a : Optional[int] = priority_queue.extract_min()
__a : int = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a : str = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase_ , dist[neighbour] )
__a : Optional[int] = node
# running prim's algorithm
while not priority_queue.is_empty():
__a : Any = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__a : Tuple = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase_ , dist[neighbour] )
__a : Dict = node
return dist, parent
| 47 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
UpperCamelCase_ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( lowercase__ ):
def __init__( self : Optional[int] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Tuple ):
'''simple docstring'''
warnings.warn(
'''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use DPTImageProcessor instead.''' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
| 92 |
from collections.abc import Sequence
from queue import Queue
class _UpperCamelCase:
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None ):
'''simple docstring'''
__a : Tuple = start
__a : Dict = end
__a : List[str] = val
__a : List[Any] = (start + end) // 2
__a : Optional[Any] = left
__a : List[str] = right
def __repr__( self : Dict ):
'''simple docstring'''
return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'''
class _UpperCamelCase:
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Sequence , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
__a : Tuple = collection
__a : Dict = function
if self.collection:
__a : int = self._build_tree(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self._update_tree(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
return self._query_range(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if start == end:
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.collection[start] )
__a : Tuple = (start + end) // 2
__a : Optional[int] = self._build_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Tuple = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE__ )
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if node.start == i and node.end == i:
__a : Optional[Any] = val
return
if i <= node.mid:
self._update_tree(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
self._update_tree(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : int = self.fn(node.left.val , node.right.val )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , SCREAMING_SNAKE_CASE__ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE__ ) , )
else:
# range in right child tree
return self._query_range(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.root is not None:
__a : Tuple = Queue()
queue.put(self.root )
while not queue.empty():
__a : Tuple = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('''*''' * 50)
SCREAMING_SNAKE_CASE__ = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 47 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
__A = logging.get_logger(__name__)
__A = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
__A = {
"""vocab_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt"""
),
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt"""
),
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""",
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json"""
),
"""bert-base-multilingual-cased""": (
"""https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-cased""": (
"""https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json"""
),
},
}
__A = {
"""bert-base-uncased""": 512,
"""bert-large-uncased""": 512,
"""bert-base-cased""": 512,
"""bert-large-cased""": 512,
"""bert-base-multilingual-uncased""": 512,
"""bert-base-multilingual-cased""": 512,
"""bert-base-chinese""": 512,
"""bert-base-german-cased""": 512,
"""bert-large-uncased-whole-word-masking""": 512,
"""bert-large-cased-whole-word-masking""": 512,
"""bert-large-uncased-whole-word-masking-finetuned-squad""": 512,
"""bert-large-cased-whole-word-masking-finetuned-squad""": 512,
"""bert-base-cased-finetuned-mrpc""": 512,
"""bert-base-german-dbmdz-cased""": 512,
"""bert-base-german-dbmdz-uncased""": 512,
"""TurkuNLP/bert-base-finnish-cased-v1""": 512,
"""TurkuNLP/bert-base-finnish-uncased-v1""": 512,
"""wietsedv/bert-base-dutch-cased""": 512,
}
__A = {
"""bert-base-uncased""": {"""do_lower_case""": True},
"""bert-large-uncased""": {"""do_lower_case""": True},
"""bert-base-cased""": {"""do_lower_case""": False},
"""bert-large-cased""": {"""do_lower_case""": False},
"""bert-base-multilingual-uncased""": {"""do_lower_case""": True},
"""bert-base-multilingual-cased""": {"""do_lower_case""": False},
"""bert-base-chinese""": {"""do_lower_case""": False},
"""bert-base-german-cased""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False},
"""bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-cased""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True},
"""TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False},
"""TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True},
"""wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False},
}
class _lowerCAmelCase ( a ):
"""simple docstring"""
__magic_name__ :int = VOCAB_FILES_NAMES
__magic_name__ :List[str] = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ :Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
__magic_name__ :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ :Union[str, Any] = BertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ :Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('strip_accents' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ :Tuple = getattr(__UpperCAmelCase , normalizer_state.pop('type' ) )
lowerCAmelCase__ :Optional[Any] = do_lower_case
lowerCAmelCase__ :List[str] = strip_accents
lowerCAmelCase__ :Optional[int] = tokenize_chinese_chars
lowerCAmelCase__ :Tuple = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = do_lower_case
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None ):
'''simple docstring'''
lowerCAmelCase__ :Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
lowerCAmelCase__ :Any = [self.sep_token_id]
lowerCAmelCase__ :List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
lowerCAmelCase__ :Optional[int] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 93 |
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class _UpperCamelCase( datasets.BuilderConfig ):
__SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None
def UpperCAmelCase__ ( lowerCamelCase_ : "pyspark.sql.DataFrame" , lowerCamelCase_ : List[int] , ):
import pyspark
def generate_fn():
__a : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) )
for partition_id in partition_order:
__a : Optional[int] = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' )
__a : Optional[Any] = partition_df.collect()
__a : Union[str, Any] = 0
for row in rows:
yield f'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class _UpperCamelCase( _BaseExamplesIterable ):
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Dict=None , ):
'''simple docstring'''
__a : List[str] = df
__a : Tuple = partition_order or range(self.df.rdd.getNumPartitions() )
__a : List[Any] = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self : Tuple ):
'''simple docstring'''
yield from self.generate_examples_fn()
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.random.Generator ):
'''simple docstring'''
__a : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(SCREAMING_SNAKE_CASE__ )
return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return len(self.partition_order )
class _UpperCamelCase( datasets.DatasetBuilder ):
__SCREAMING_SNAKE_CASE : List[str] = SparkConfig
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ):
'''simple docstring'''
import pyspark
__a : int = pyspark.sql.SparkSession.builder.getOrCreate()
__a : Optional[int] = df
__a : List[Any] = working_dir
super().__init__(
cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : List[str] ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
__a : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(SCREAMING_SNAKE_CASE__ , 'a' )
return [probe_file]
if self._spark.conf.get('spark.master' , '' ).startswith('local' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
__a : List[Any] = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ):
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
import pyspark
def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ):
for batch in it:
yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} )
__a : List[str] = self.df.count()
__a : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
__a : List[str] = (
self.df.limit(SCREAMING_SNAKE_CASE__ )
.repartition(1 )
.mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' )
.agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
__a : Dict = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
__a : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) )
__a : int = self.df.repartition(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ):
'''simple docstring'''
import pyspark
__a : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter
__a : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath
__a : Optional[int] = file_format == 'parquet'
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
__a : List[str] = self.config.features
__a : int = self._writer_batch_size
__a : Union[str, Any] = self._fs.storage_options
def write_arrow(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
__a : Any = pyspark.TaskContext().taskAttemptId()
__a : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , )
__a : Any = 0
__a : List[str] = writer_class(
features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , )
__a : Optional[Any] = pa.Table.from_batches([first_batch] )
writer.write_table(SCREAMING_SNAKE_CASE__ )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
__a , __a : Optional[int] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
shard_id += 1
__a : Optional[Any] = writer_class(
features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , )
__a : Union[str, Any] = pa.Table.from_batches([batch] )
writer.write_table(SCREAMING_SNAKE_CASE__ )
if writer._num_bytes > 0:
__a , __a : str = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ):
__a : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) )
shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Dict = (
self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' )
.groupBy('task_id' )
.agg(
pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ):
'''simple docstring'''
self._validate_cache_dir()
__a : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = not is_remote_filesystem(self._fs )
__a : Optional[Any] = os.path.join if is_local else posixpath.join
__a : Any = '-TTTTT-SSSSS-of-NNNNN'
__a : Union[str, Any] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
__a : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ )
__a : Any = 0
__a : Dict = 0
__a : int = 0
__a : List[str] = []
__a : Optional[int] = []
for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : Optional[int] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ )
__a : List[str] = total_num_examples
__a : Optional[int] = total_num_bytes
# should rename everything at the end
logger.debug(f'''Renaming {total_shards} shards.''' )
if total_shards > 1:
__a : Any = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
__a : Dict = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ):
rename(
SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , )
__a : Union[str, Any] = []
__a : List[str] = 0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
__a , __a : Union[str, Any] = task_id_and_num_shards[i]
for shard_id in range(SCREAMING_SNAKE_CASE__ ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect()
else:
# don't use any pattern
__a : List[Any] = 0
__a : Any = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ):
'''simple docstring'''
return SparkExamplesIterable(self.df )
| 47 | 0 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
SCREAMING_SNAKE_CASE = [
'openmmlab/upernet-convnext-tiny',
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
SCREAMING_SNAKE_CASE = 'UperNetConfig'
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[int, Tuple[int, int]] , UpperCAmelCase : Union[int, Tuple[int, int], str] = 0 , UpperCAmelCase : bool = False , UpperCAmelCase : Union[int, Tuple[int, int]] = 1 , ) -> None:
'''simple docstring'''
super().__init__()
lowercase : List[Any] =nn.Convad(
in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , bias=UpperCAmelCase , dilation=UpperCAmelCase , )
lowercase : Dict =nn.BatchNormad(UpperCAmelCase )
lowercase : Any =nn.ReLU()
def A__ ( self : List[Any] , UpperCAmelCase : torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
lowercase : Tuple =self.conv(UpperCAmelCase )
lowercase : Tuple =self.batch_norm(UpperCAmelCase )
lowercase : Any =self.activation(UpperCAmelCase )
return output
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> None:
'''simple docstring'''
super().__init__()
lowercase : int =[
nn.AdaptiveAvgPoolad(UpperCAmelCase ),
UperNetConvModule(UpperCAmelCase , UpperCAmelCase , kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(UpperCAmelCase ) , UpperCAmelCase )
def A__ ( self : Union[str, Any] , UpperCAmelCase : torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
lowercase : Tuple =input
for layer in self.layers:
lowercase : int =layer(UpperCAmelCase )
return hidden_state
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : Dict , UpperCAmelCase : Tuple[int, ...] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : bool ) -> None:
'''simple docstring'''
super().__init__()
lowercase : List[str] =pool_scales
lowercase : Optional[Any] =align_corners
lowercase : List[str] =in_channels
lowercase : Dict =channels
lowercase : List[str] =[]
for i, pool_scale in enumerate(UpperCAmelCase ):
lowercase : List[str] =UperNetPyramidPoolingBlock(pool_scale=UpperCAmelCase , in_channels=UpperCAmelCase , channels=UpperCAmelCase )
self.blocks.append(UpperCAmelCase )
self.add_module(str(UpperCAmelCase ) , UpperCAmelCase )
def A__ ( self : List[Any] , UpperCAmelCase : torch.Tensor ) -> List[torch.Tensor]:
'''simple docstring'''
lowercase : Optional[int] =[]
for ppm in self.blocks:
lowercase : Optional[Any] =ppm(UpperCAmelCase )
lowercase : Any =nn.functional.interpolate(
UpperCAmelCase , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners )
ppm_outs.append(UpperCAmelCase )
return ppm_outs
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
super().__init__()
lowercase : Dict =config
lowercase : str =config.pool_scales # e.g. (1, 2, 3, 6)
lowercase : Optional[int] =in_channels
lowercase : Tuple =config.hidden_size
lowercase : int =False
lowercase : List[str] =nn.Convad(self.channels , config.num_labels , kernel_size=1 )
# PSP Module
lowercase : Tuple =UperNetPyramidPoolingModule(
self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , )
lowercase : Optional[Any] =UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
# FPN Module
lowercase : Tuple =nn.ModuleList()
lowercase : Any =nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
lowercase : List[Any] =UperNetConvModule(UpperCAmelCase , self.channels , kernel_size=1 )
lowercase : Optional[int] =UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 )
self.lateral_convs.append(UpperCAmelCase )
self.fpn_convs.append(UpperCAmelCase )
lowercase : str =UperNetConvModule(
len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
def A__ ( self : str ) -> str:
'''simple docstring'''
self.apply(self._init_weights )
def A__ ( self : List[Any] , UpperCAmelCase : List[Any] ) -> List[str]:
'''simple docstring'''
if isinstance(UpperCAmelCase , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def A__ ( self : List[Any] , UpperCAmelCase : Any ) -> Any:
'''simple docstring'''
lowercase : Optional[Any] =inputs[-1]
lowercase : Tuple =[x]
psp_outs.extend(self.psp_modules(UpperCAmelCase ) )
lowercase : List[Any] =torch.cat(UpperCAmelCase , dim=1 )
lowercase : str =self.bottleneck(UpperCAmelCase )
return output
def A__ ( self : Optional[Any] , UpperCAmelCase : torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
lowercase : Union[str, Any] =[lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(UpperCAmelCase ) )
# build top-down path
lowercase : Any =len(UpperCAmelCase )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
lowercase : Optional[int] =laterals[i - 1].shape[2:]
lowercase : Tuple =laterals[i - 1] + nn.functional.interpolate(
laterals[i] , size=UpperCAmelCase , mode='''bilinear''' , align_corners=self.align_corners )
# build outputs
lowercase : Optional[Any] =[self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
lowercase : Optional[int] =nn.functional.interpolate(
fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners )
lowercase : Union[str, Any] =torch.cat(UpperCAmelCase , dim=1 )
lowercase : str =self.fpn_bottleneck(UpperCAmelCase )
lowercase : int =self.classifier(UpperCAmelCase )
return output
class UpperCAmelCase_ ( nn.Module ):
"""simple docstring"""
def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 3 , UpperCAmelCase : Union[int, Tuple[int, int]] = 1 ) -> None:
'''simple docstring'''
super().__init__()
lowercase : int =config
lowercase : Any =config.auxiliary_in_channels
lowercase : int =config.auxiliary_channels
lowercase : Dict =config.auxiliary_num_convs
lowercase : List[Any] =config.auxiliary_concat_input
lowercase : List[str] =in_index
lowercase : Dict =(kernel_size // 2) * dilation
lowercase : Union[str, Any] =[]
convs.append(
UperNetConvModule(
self.in_channels , self.channels , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , dilation=UpperCAmelCase ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels , self.channels , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , dilation=UpperCAmelCase ) )
if self.num_convs == 0:
lowercase : int =nn.Identity()
else:
lowercase : Optional[Any] =nn.Sequential(*UpperCAmelCase )
if self.concat_input:
lowercase : Tuple =UperNetConvModule(
self.in_channels + self.channels , self.channels , kernel_size=UpperCAmelCase , padding=kernel_size // 2 )
lowercase : List[Any] =nn.Convad(self.channels , config.num_labels , kernel_size=1 )
def A__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
self.apply(self._init_weights )
def A__ ( self : Tuple , UpperCAmelCase : str ) -> Dict:
'''simple docstring'''
if isinstance(UpperCAmelCase , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def A__ ( self : List[str] , UpperCAmelCase : torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
lowercase : Dict =encoder_hidden_states[self.in_index]
lowercase : List[str] =self.convs(UpperCAmelCase )
if self.concat_input:
lowercase : str =self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) )
lowercase : List[str] =self.classifier(UpperCAmelCase )
return output
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = UperNetConfig
UpperCamelCase_ = '''pixel_values'''
UpperCamelCase_ = True
def A__ ( self : List[Any] , UpperCAmelCase : List[Any] ) -> Any:
'''simple docstring'''
if isinstance(UpperCAmelCase , UpperCAmelCase ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def A__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def A__ ( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any]=False ) -> List[str]:
'''simple docstring'''
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowercase : List[Any] =value
SCREAMING_SNAKE_CASE = r'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
SCREAMING_SNAKE_CASE = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , __A , )
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def __init__( self : Union[str, Any] , UpperCAmelCase : str ) -> Optional[int]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
lowercase : Optional[int] =AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
lowercase : Optional[Any] =UperNetHead(UpperCAmelCase , in_channels=self.backbone.channels )
lowercase : Optional[int] =UperNetFCNHead(UpperCAmelCase ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) )
@replace_return_docstrings(output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC )
def A__ ( self : Dict , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]:
'''simple docstring'''
lowercase : Tuple =return_dict if return_dict is not None else self.config.use_return_dict
lowercase : List[str] =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase : Any =output_attentions if output_attentions is not None else self.config.output_attentions
lowercase : Union[str, Any] =self.backbone.forward_with_filtered_kwargs(
UpperCAmelCase , output_hidden_states=UpperCAmelCase , output_attentions=UpperCAmelCase )
lowercase : List[Any] =outputs.feature_maps
lowercase : Dict =self.decode_head(UpperCAmelCase )
lowercase : List[Any] =nn.functional.interpolate(UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=UpperCAmelCase )
lowercase : str =None
if self.auxiliary_head is not None:
lowercase : Optional[Any] =self.auxiliary_head(UpperCAmelCase )
lowercase : int =nn.functional.interpolate(
UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=UpperCAmelCase )
lowercase : Optional[int] =None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('''The number of labels should be greater than one''' )
else:
# compute weighted loss
lowercase : Optional[Any] =CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
lowercase : List[Any] =loss_fct(UpperCAmelCase , UpperCAmelCase )
lowercase : Any =loss_fct(UpperCAmelCase , UpperCAmelCase )
lowercase : List[str] =main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
lowercase : Tuple =(logits,) + outputs[1:]
else:
lowercase : Tuple =(logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 94 |
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ):
# save results
if os.path.exists(lowerCamelCase_ ):
if os.path.exists(os.path.join(lowerCamelCase_ , 'config.json' ) ) and os.path.isfile(
os.path.join(lowerCamelCase_ , 'config.json' ) ):
os.remove(os.path.join(lowerCamelCase_ , 'config.json' ) )
if os.path.exists(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile(
os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ):
os.remove(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) )
else:
os.makedirs(lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Any=False ):
__a : Dict = 2
if unlogit:
__a : Optional[Any] = torch.pow(lowerCamelCase_ , lowerCamelCase_ )
__a : Any = p * torch.log(lowerCamelCase_ )
__a : Union[str, Any] = 0
return -plogp.sum(dim=-1 )
def UpperCAmelCase__ ( lowerCamelCase_ : Any ):
logger.info('lv, h >\t' + '\t'.join(f'''{x + 1}''' for x in range(len(lowerCamelCase_ ) ) ) )
for row in range(len(lowerCamelCase_ ) ):
if tensor.dtype != torch.long:
logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:d}''' for x in tensor[row].cpu().data ) )
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=False ):
__a , __a : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads
__a : str = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
__a : int = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
if head_mask is None:
__a : Union[str, Any] = torch.ones(lowerCamelCase_ , lowerCamelCase_ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCamelCase_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
__a : Any = None
__a : Optional[int] = 0.0
__a : Optional[Any] = 0.0
for step, inputs in enumerate(tqdm(lowerCamelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ):
__a : Dict = tuple(t.to(args.device ) for t in inputs )
((__a) , ) : Dict = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
__a : List[Any] = model(lowerCamelCase_ , labels=lowerCamelCase_ , head_mask=lowerCamelCase_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
__a , __a , __a : int = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCamelCase_ ):
__a : List[str] = entropy(attn.detach() , lowerCamelCase_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCamelCase_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
__a : Optional[Any] = 2
__a : Union[str, Any] = torch.pow(torch.pow(lowerCamelCase_ , lowerCamelCase_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20
if not args.dont_normalize_global_importance:
__a : List[str] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('Attention entropies' )
print_ad_tensor(lowerCamelCase_ )
if compute_importance:
logger.info('Head importance scores' )
print_ad_tensor(lowerCamelCase_ )
logger.info('Head ranked by importance scores' )
__a : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
__a : str = torch.arange(
head_importance.numel() , device=args.device )
__a : Tuple = head_ranks.view_as(lowerCamelCase_ )
print_ad_tensor(lowerCamelCase_ )
return attn_entropy, head_importance, total_loss
def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ):
__a , __a , __a : Optional[int] = compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ )
__a : Tuple = 1 / loss # instead of downsteam score use the LM loss
logger.info('Pruning: original score: %f, threshold: %f' , lowerCamelCase_ , original_score * args.masking_threshold )
__a : Tuple = torch.ones_like(lowerCamelCase_ )
__a : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
__a : Tuple = original_score
while current_score >= original_score * args.masking_threshold:
__a : Optional[Any] = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
__a : List[str] = float('Inf' )
__a : List[Any] = head_importance.view(-1 ).sort()[1]
if len(lowerCamelCase_ ) <= num_to_mask:
print('BREAK BY num_to_mask' )
break
# mask heads
__a : Any = current_heads_to_mask[:num_to_mask]
logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) )
__a : int = new_head_mask.view(-1 )
__a : Tuple = 0.0
__a : int = new_head_mask.view_as(lowerCamelCase_ )
__a : Optional[int] = new_head_mask.clone().detach()
print_ad_tensor(lowerCamelCase_ )
# Compute metric and head importance again
__a , __a , __a : int = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , head_mask=lowerCamelCase_ )
__a : List[Any] = 1 / loss
logger.info(
'Masking: current score: %f, remaining heads %d (%.1f percents)' , lowerCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , )
logger.info('Final head mask' )
print_ad_tensor(lowerCamelCase_ )
np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() )
return head_mask
def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ):
__a : List[Any] = datetime.now()
__a , __a , __a : List[str] = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ )
__a : List[str] = 1 / loss
__a : List[Any] = datetime.now() - before_time
__a : List[str] = sum(p.numel() for p in model.parameters() )
__a : Dict = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
__a : Tuple = [
v,
]
assert sum(len(lowerCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCamelCase_ )
__a : Optional[Any] = sum(p.numel() for p in model.parameters() )
__a : Tuple = datetime.now()
__a , __a , __a : Tuple = compute_heads_importance(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ , actually_pruned=lowerCamelCase_ , )
__a : Optional[Any] = 1 / loss
__a : List[Any] = datetime.now() - before_time
logger.info(
'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , lowerCamelCase_ , lowerCamelCase_ , pruned_num_params / original_num_params * 1_0_0 , )
logger.info('Pruning: score with masking: %f score with pruning: %f' , lowerCamelCase_ , lowerCamelCase_ )
logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 )
save_model(lowerCamelCase_ , args.output_dir )
def UpperCAmelCase__ ( ):
__a : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--data_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , )
parser.add_argument(
'--model_name_or_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--output_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , )
# Other parameters
parser.add_argument(
'--config_name' , default='' , type=lowerCamelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--tokenizer_name' , default='' , type=lowerCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--cache_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , )
parser.add_argument(
'--data_subset' , type=lowerCamelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' )
parser.add_argument(
'--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
parser.add_argument(
'--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' )
parser.add_argument(
'--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , )
parser.add_argument(
'--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' )
parser.add_argument(
'--masking_threshold' , default=0.9 , type=lowerCamelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , )
parser.add_argument(
'--masking_amount' , default=0.1 , type=lowerCamelCase_ , help='Amount to heads to masking at each masking step.' )
parser.add_argument('--metric_name' , default='acc' , type=lowerCamelCase_ , help='Metric to use for head masking.' )
parser.add_argument(
'--max_seq_length' , default=1_2_8 , type=lowerCamelCase_ , help=(
'The maximum total input sequence length after WordPiece tokenization. \n'
'Sequences longer than this will be truncated, sequences shorter padded.'
) , )
parser.add_argument('--batch_size' , default=1 , type=lowerCamelCase_ , help='Batch size.' )
parser.add_argument('--seed' , type=lowerCamelCase_ , default=4_2 )
parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='local_rank for distributed training on gpus' )
parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' )
parser.add_argument('--server_ip' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' )
__a : Optional[Any] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
__a : List[str] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' )
__a : Tuple = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
__a : Union[str, Any] = torch.device('cuda' , args.local_rank )
__a : Any = 1
torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
__a : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
__a : List[Any] = nn.parallel.DistributedDataParallel(
lowerCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase_ )
elif args.n_gpu > 1:
__a : Union[str, Any] = nn.DataParallel(lowerCamelCase_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=lowerCamelCase_ )
torch.save(lowerCamelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) )
logger.info('Training/evaluation parameters %s' , lowerCamelCase_ )
# Prepare dataset
__a : Tuple = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
__a : str = (torch.from_numpy(lowerCamelCase_ ),)
__a : List[str] = TensorDataset(*lowerCamelCase_ )
__a : Optional[Any] = RandomSampler(lowerCamelCase_ )
__a : Union[str, Any] = DataLoader(lowerCamelCase_ , sampler=lowerCamelCase_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
__a : Union[str, Any] = mask_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
prune_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
main()
| 47 | 0 |
"""simple docstring"""
import logging
import numpy as np
import pytest
from scipy.linalg import eigh
logging.basicConfig(level=logging.INFO, format='''%(message)s''')
def snake_case ( A__ ):
return input_array.reshape((input_array.size, 1) )
def snake_case ( A__ ,A__ ,A__ ):
UpperCAmelCase_ : Optional[int] = np.nan
for i in range(A__ ):
UpperCAmelCase_ : List[Any] = features[:, labels == i]
UpperCAmelCase_ : List[Any] = data.mean(1 )
# Centralize the data of class i
UpperCAmelCase_ : List[str] = data - column_reshape(A__ )
if i > 0:
# If covariance_sum is not None
covariance_sum += np.dot(A__ ,centered_data.T )
else:
# If covariance_sum is np.nan (i.e. first loop)
UpperCAmelCase_ : Tuple = np.dot(A__ ,centered_data.T )
return covariance_sum / features.shape[1]
def snake_case ( A__ ,A__ ,A__ ):
UpperCAmelCase_ : Optional[int] = features.mean(1 )
UpperCAmelCase_ : Any = np.nan
for i in range(A__ ):
UpperCAmelCase_ : Optional[Any] = features[:, labels == i]
UpperCAmelCase_ : List[Any] = data.shape[1]
UpperCAmelCase_ : int = data.mean(1 )
if i > 0:
# If covariance_sum is not None
covariance_sum += device_data * np.dot(
column_reshape(A__ ) - column_reshape(A__ ) ,(column_reshape(A__ ) - column_reshape(A__ )).T ,)
else:
# If covariance_sum is np.nan (i.e. first loop)
UpperCAmelCase_ : int = device_data * np.dot(
column_reshape(A__ ) - column_reshape(A__ ) ,(column_reshape(A__ ) - column_reshape(A__ )).T ,)
return covariance_sum / features.shape[1]
def snake_case ( A__ ,A__ ):
# Check if the features have been loaded
if features.any():
UpperCAmelCase_ : Optional[Any] = features.mean(1 )
# Center the dataset
UpperCAmelCase_ : Optional[Any] = features - np.reshape(A__ ,(data_mean.size, 1) )
UpperCAmelCase_ : Union[str, Any] = np.dot(A__ ,centered_data.T ) / features.shape[1]
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = np.linalg.eigh(A__ )
# Take all the columns in the reverse order (-1), and then takes only the first
UpperCAmelCase_ : List[str] = eigenvectors[:, ::-1][:, 0:dimensions]
# Project the database on the new space
UpperCAmelCase_ : List[Any] = np.dot(filtered_eigenvectors.T ,A__ )
logging.info("Principal Component Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR ,format="%(message)s" ,force=A__ )
logging.error("Dataset empty" )
raise AssertionError
def snake_case ( A__ ,A__ ,A__ ,A__ ):
assert classes > dimensions
# Check if features have been already loaded
if features.any:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = eigh(
covariance_between_classes(A__ ,A__ ,A__ ) ,covariance_within_classes(A__ ,A__ ,A__ ) ,)
UpperCAmelCase_ : Union[str, Any] = eigenvectors[:, ::-1][:, :dimensions]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = np.linalg.svd(A__ )
UpperCAmelCase_ : Optional[int] = svd_matrix[:, 0:dimensions]
UpperCAmelCase_ : int = np.dot(filtered_svd_matrix.T ,A__ )
logging.info("Linear Discriminant Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR ,format="%(message)s" ,force=A__ )
logging.error("Dataset empty" )
raise AssertionError
def snake_case ( ):
# Create dummy dataset with 2 classes and 3 features
UpperCAmelCase_ : Optional[Any] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] )
UpperCAmelCase_ : str = np.array([0, 0, 0, 1, 1] )
UpperCAmelCase_ : Dict = 2
UpperCAmelCase_ : List[str] = 2
# Assert that the function raises an AssertionError if dimensions > classes
with pytest.raises(A__ ) as error_info:
UpperCAmelCase_ : Tuple = linear_discriminant_analysis(
A__ ,A__ ,A__ ,A__ )
if isinstance(A__ ,np.ndarray ):
raise AssertionError(
"Did not raise AssertionError for dimensions > classes" )
assert error_info.type is AssertionError
def snake_case ( ):
UpperCAmelCase_ : Tuple = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] )
UpperCAmelCase_ : str = 2
UpperCAmelCase_ : Union[str, Any] = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] )
with pytest.raises(A__ ) as error_info:
UpperCAmelCase_ : Dict = principal_component_analysis(A__ ,A__ )
if not np.allclose(A__ ,A__ ):
raise AssertionError
assert error_info.type is AssertionError
if __name__ == "__main__":
import doctest
doctest.testmod()
| 95 |
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse('''0.8.3'''):
raise Exception('''requires gluonnlp == 0.8.3''')
if version.parse(mx.__version__) != version.parse('''1.5.0'''):
raise Exception('''requires mxnet == 1.5.0''')
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''The Nymphenburg Palace is a beautiful palace in Munich!'''
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ):
__a : List[Any] = {
'attention_cell': 'multi_head',
'num_layers': 4,
'units': 1_0_2_4,
'hidden_size': 7_6_8,
'max_length': 5_1_2,
'num_heads': 8,
'scaled': True,
'dropout': 0.1,
'use_residual': True,
'embed_size': 1_0_2_4,
'embed_dropout': 0.1,
'word_embed': None,
'layer_norm_eps': 1e-5,
'token_type_vocab_size': 2,
}
__a : Optional[int] = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
__a : List[str] = BERTEncoder(
attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
__a : int = 'openwebtext_ccnews_stories_books_cased'
# Specify download folder to Gluonnlp's vocab
__a : Optional[Any] = os.path.join(get_home_dir() , 'models' )
__a : Optional[Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ )
__a : Any = nlp.model.BERTModel(
lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , )
original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ )
__a : Dict = original_bort._collect_params_with_prefix()
# Build our config 🤗
__a : Optional[Any] = {
'architectures': ['BertForMaskedLM'],
'attention_probs_dropout_prob': predefined_args['dropout'],
'hidden_act': 'gelu',
'hidden_dropout_prob': predefined_args['dropout'],
'hidden_size': predefined_args['embed_size'],
'initializer_range': 0.02,
'intermediate_size': predefined_args['hidden_size'],
'layer_norm_eps': predefined_args['layer_norm_eps'],
'max_position_embeddings': predefined_args['max_length'],
'model_type': 'bort',
'num_attention_heads': predefined_args['num_heads'],
'num_hidden_layers': predefined_args['num_layers'],
'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa
'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa
'vocab_size': len(lowerCamelCase_ ),
}
__a : str = BertConfig.from_dict(lowerCamelCase_ )
__a : Optional[int] = BertForMaskedLM(lowerCamelCase_ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(lowerCamelCase_ : Optional[Any] ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ):
__a : Optional[int] = hf_param.shape
__a : int = to_torch(params[gluon_param] )
__a : int = gluon_param.shape
assert (
shape_hf == shape_gluon
), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'''
return gluon_param
__a : str = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' )
__a : str = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' )
__a : Tuple = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' )
__a : Union[str, Any] = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
__a : Union[str, Any] = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
__a : BertLayer = hf_bort_model.bert.encoder.layer[i]
# self attention
__a : BertSelfAttention = layer.attention.self
__a : Optional[int] = check_and_map_params(
self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' )
__a : str = check_and_map_params(
self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' )
__a : List[str] = check_and_map_params(
self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' )
__a : str = check_and_map_params(
self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' )
__a : Dict = check_and_map_params(
self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' )
__a : str = check_and_map_params(
self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' )
# self attention output
__a : BertSelfOutput = layer.attention.output
__a : Tuple = check_and_map_params(
self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' )
__a : Dict = check_and_map_params(
self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' )
__a : Optional[Any] = check_and_map_params(
self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' )
__a : Optional[Any] = check_and_map_params(
self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' )
# intermediate
__a : BertIntermediate = layer.intermediate
__a : List[str] = check_and_map_params(
intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' )
__a : Optional[Any] = check_and_map_params(
intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' )
# output
__a : BertOutput = layer.output
__a : str = check_and_map_params(
bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' )
__a : List[Any] = check_and_map_params(
bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' )
__a : str = check_and_map_params(
bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' )
__a : List[str] = check_and_map_params(
bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
__a : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-base' )
__a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ )['input_ids']
# Get gluon output
__a : Optional[int] = mx.nd.array([input_ids] )
__a : Tuple = original_bort(inputs=lowerCamelCase_ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(lowerCamelCase_ )
__a : Optional[Any] = BertModel.from_pretrained(lowerCamelCase_ )
hf_bort_model.eval()
__a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' )
__a : int = hf_bort_model(**lowerCamelCase_ )[0]
__a : Dict = output_gluon[0].asnumpy()
__a : str = output_hf[0].detach().numpy()
__a : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item()
__a : str = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 )
if success:
print('✔️ Both model do output the same tensors' )
else:
print('❌ Both model do **NOT** output the same tensors' )
print('Absolute difference is:' , lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 47 | 0 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __A ( SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase__ = "ClapFeatureExtractor"
UpperCAmelCase__ = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self : Any , __snake_case : Any , __snake_case : List[Any] ) -> str:
super().__init__(__snake_case , __snake_case )
def __call__( self : List[Any] , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=None , **__snake_case : int ) -> Tuple:
__magic_name__: Any = kwargs.pop("""sampling_rate""" , __snake_case )
if text is None and audios is None:
raise ValueError("""You have to specify either text or audios. Both cannot be none.""" )
if text is not None:
__magic_name__: Tuple = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case )
if audios is not None:
__magic_name__: Dict = self.feature_extractor(
__snake_case , sampling_rate=__snake_case , return_tensors=__snake_case , **__snake_case )
if text is not None and audios is not None:
__magic_name__: List[str] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case )
def lowerCamelCase__ ( self : Tuple , *__snake_case : Union[str, Any] , **__snake_case : List[str] ) -> List[str]:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def lowerCamelCase__ ( self : Optional[Any] , *__snake_case : int , **__snake_case : str ) -> Any:
return self.tokenizer.decode(*__snake_case , **__snake_case )
@property
def lowerCamelCase__ ( self : Dict ) -> Tuple:
__magic_name__: Any = self.tokenizer.model_input_names
__magic_name__: str = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 96 |
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ):
__a : Any = ''
for i in table:
res += inp[i - 1]
return res
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ):
return data[1:] + data[0]
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ):
__a : Optional[int] = ''
for i in range(len(lowerCamelCase_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ):
__a : List[str] = int('0b' + data[0] + data[-1] , 2 )
__a : List[str] = int('0b' + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ):
__a : List[Any] = message[:4]
__a : str = message[4:]
__a : Any = apply_table(lowerCamelCase_ , lowerCamelCase_ )
__a : int = xor(lowerCamelCase_ , lowerCamelCase_ )
__a : Dict = apply_sbox(lowerCamelCase_ , temp[:4] ) # noqa: E741
__a : Tuple = apply_sbox(lowerCamelCase_ , temp[4:] )
__a : List[Any] = '0' * (2 - len(lowerCamelCase_ )) + l # noqa: E741
__a : List[str] = '0' * (2 - len(lowerCamelCase_ )) + r
__a : List[Any] = apply_table(l + r , lowerCamelCase_ )
__a : Dict = xor(lowerCamelCase_ , lowerCamelCase_ )
return temp + right
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = input('''Enter 10 bit key: ''')
SCREAMING_SNAKE_CASE__ = input('''Enter 8 bit message: ''')
SCREAMING_SNAKE_CASE__ = [6, 3, 7, 4, 8, 5, 10, 9]
SCREAMING_SNAKE_CASE__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
SCREAMING_SNAKE_CASE__ = [2, 4, 3, 1]
SCREAMING_SNAKE_CASE__ = [2, 6, 3, 1, 4, 8, 5, 7]
SCREAMING_SNAKE_CASE__ = [4, 1, 3, 5, 7, 2, 8, 6]
SCREAMING_SNAKE_CASE__ = [4, 1, 2, 3, 2, 3, 4, 1]
SCREAMING_SNAKE_CASE__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
SCREAMING_SNAKE_CASE__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
SCREAMING_SNAKE_CASE__ = apply_table(key, paa_table)
SCREAMING_SNAKE_CASE__ = temp[:5]
SCREAMING_SNAKE_CASE__ = temp[5:]
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table)
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = left_shift(left)
SCREAMING_SNAKE_CASE__ = left_shift(right)
SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table)
# encryption
SCREAMING_SNAKE_CASE__ = apply_table(message, IP)
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv)
print('''Cipher text is:''', CT)
# decryption
SCREAMING_SNAKE_CASE__ = apply_table(CT, IP)
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4]
SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp)
SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv)
print('''Plain text after decypting is:''', PT)
| 47 | 0 |
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase__( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Tuple = XLMTokenizer
a :Any = False
def _lowercase ( self : List[Any] ) -> List[str]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase_ = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
lowercase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
lowercase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]:
lowercase_ = '''lower newer'''
lowercase_ = '''lower newer'''
return input_text, output_text
def _lowercase ( self : Union[str, Any] ) -> Any:
lowercase_ = XLMTokenizer(self.vocab_file , self.merges_file )
lowercase_ = '''lower'''
lowercase_ = ['''low''', '''er</w>''']
lowercase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowercase_ = tokens + ['''<unk>''']
lowercase_ = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
@slow
def _lowercase ( self : int ) -> List[str]:
lowercase_ = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' )
lowercase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ )
lowercase_ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 97 |
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _UpperCamelCase( unittest.TestCase ):
def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
__a : List[Any] = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
__a : int = None
ops.enable_eager_execution_internal()
__a : Optional[Any] = tf.config.list_physical_devices('CPU' )
if len(SCREAMING_SNAKE_CASE__ ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__a : int = tf.config.list_logical_devices(device_type='CPU' )
__a : str = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__a : List[str] = GradientAccumulator()
__a : Tuple = tf.Variable([4.0, 3.0] )
__a , __a : int = create_optimizer(5e-5 , 1_0 , 5 )
__a : List[Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE__ )
def accumulate_on_replica(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ):
with strategy.scope():
__a : Optional[Any] = strategy.experimental_local_results(SCREAMING_SNAKE_CASE__ )
local_variables[0].assign(SCREAMING_SNAKE_CASE__ )
local_variables[1].assign(SCREAMING_SNAKE_CASE__ )
strategy.run(SCREAMING_SNAKE_CASE__ , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(SCREAMING_SNAKE_CASE__ )
def _check_local_values(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ):
__a : Union[str, Any] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 )
self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 47 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase__ : Tuple = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Optional[int] = ['XGLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[Any] = ['XGLMTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Union[str, Any] = [
'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'XGLMForCausalLM',
'XGLMModel',
'XGLMPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[Any] = [
'FlaxXGLMForCausalLM',
'FlaxXGLMModel',
'FlaxXGLMPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[str] = [
'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXGLMForCausalLM',
'TFXGLMModel',
'TFXGLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 98 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''',
'''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''',
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''roberta'''
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : str=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Tuple="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = vocab_size
__a : Tuple = hidden_size
__a : List[str] = num_hidden_layers
__a : List[Any] = num_attention_heads
__a : str = hidden_act
__a : Optional[Any] = intermediate_size
__a : Dict = hidden_dropout_prob
__a : List[str] = attention_probs_dropout_prob
__a : Optional[Any] = max_position_embeddings
__a : Dict = type_vocab_size
__a : str = initializer_range
__a : List[str] = layer_norm_eps
__a : Optional[int] = position_embedding_type
__a : Union[str, Any] = use_cache
__a : str = classifier_dropout
class _UpperCamelCase( __lowerCamelCase ):
@property
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
if self.task == "multiple-choice":
__a : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__a : Dict = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 47 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE = {
'configuration_chinese_clip': [
'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ChineseCLIPConfig',
'ChineseCLIPOnnxConfig',
'ChineseCLIPTextConfig',
'ChineseCLIPVisionConfig',
],
'processing_chinese_clip': ['ChineseCLIPProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = ['ChineseCLIPFeatureExtractor']
SCREAMING_SNAKE_CASE = ['ChineseCLIPImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'ChineseCLIPModel',
'ChineseCLIPPreTrainedModel',
'ChineseCLIPTextModel',
'ChineseCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 99 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''▁'''
SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.bpe.model'''}
SCREAMING_SNAKE_CASE__ = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
SCREAMING_SNAKE_CASE__ = {
'''facebook/xglm-564M''': 2048,
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask''']
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : Dict="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ):
'''simple docstring'''
__a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
__a : Any = 7
__a : Union[str, Any] = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
__a : Union[str, Any] = kwargs.get('additional_special_tokens' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , )
__a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) )
__a : str = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__a : Any = 1
# Mimic fairseq token-to-id alignment for the first 4 token
__a : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
__a : List[str] = len(self.sp_model )
__a : Optional[int] = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ )
__a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[str] ):
'''simple docstring'''
__a : Tuple = self.__dict__.copy()
__a : List[str] = None
__a : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
__a : int = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__a : Dict = {}
__a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
__a : Optional[Any] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ ))
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ):
'''simple docstring'''
__a : Optional[int] = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
__a : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__a : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
__a : Optional[int] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip()
return out_string
def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__a : Any = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi:
__a : List[Any] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 47 | 0 |
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
_A : List[str] = 1.0_5457_1817E-34 # unit of ℏ : J * s
_A : str = 3E8 # unit of c : m * s^-1
def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> dict[str, float]:
if (force, area, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if force < 0:
raise ValueError('''Magnitude of force can not be negative''' )
if distance < 0:
raise ValueError('''Distance can not be negative''' )
if area < 0:
raise ValueError('''Area can not be negative''' )
if force == 0:
SCREAMING_SNAKE_CASE__ = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_4_0 * (distance) ** 4
)
return {"force": force}
elif area == 0:
SCREAMING_SNAKE_CASE__ = (2_4_0 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
SCREAMING_SNAKE_CASE__ = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('''One and only one argument must be 0''' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 100 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
SCREAMING_SNAKE_CASE__ = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] ):
__a : str = torch.load(lowerCamelCase_ , map_location='cpu' )
return sd
def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=rename_keys_prefix ):
__a : Optional[Any] = OrderedDict()
__a : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__a : List[Any] = key
for name_pair in rename_keys_prefix:
__a : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__a : Any = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__a : int = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ):
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
__a : Dict = 'pretraining'
if "vcr" in checkpoint_path:
__a : int = {'visual_embedding_dim': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
__a : int = {'visual_embedding_dim': 2_0_4_8}
elif "vqa" in checkpoint_path:
__a : Tuple = {'visual_embedding_dim': 2_0_4_8}
elif "nlvr" in checkpoint_path:
__a : List[Any] = {'visual_embedding_dim': 1_0_2_4}
else:
raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
__a : int = {'visual_embedding_dim': 5_1_2}
__a : Any = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
__a : Any = {'visual_embedding_dim': 2_0_4_8}
__a : List[str] = 'vqa_advanced'
elif "vqa" in checkpoint_path:
__a : List[Any] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9}
__a : List[Any] = 'vqa'
elif "nlvr" in checkpoint_path:
__a : Optional[int] = {
'visual_embedding_dim': 1_0_2_4,
'num_labels': 2,
}
__a : Optional[Any] = 'nlvr'
__a : str = VisualBertConfig(**lowerCamelCase_ )
# Load State Dict
__a : str = load_state_dict(lowerCamelCase_ )
__a : str = get_new_dict(lowerCamelCase_ , lowerCamelCase_ )
if model_type == "pretraining":
__a : Optional[Any] = VisualBertForPreTraining(lowerCamelCase_ )
elif model_type == "vqa":
__a : Any = VisualBertForQuestionAnswering(lowerCamelCase_ )
elif model_type == "nlvr":
__a : int = VisualBertForVisualReasoning(lowerCamelCase_ )
elif model_type == "multichoice":
__a : Optional[int] = VisualBertForMultipleChoice(lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
# Save Checkpoints
Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 47 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.