code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" return max(metric_fn(lowerCamelCase_ , lowerCamelCase_ ) for gt in ground_truths ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : Optional[Any] = [line.strip() for line in open(lowerCamelCase_ , "r" ).readlines()] __magic_name__ : Any = [] if args.gold_data_mode == "qa": __magic_name__ : str = pd.read_csv(lowerCamelCase_ , sep="\t" , header=lowerCamelCase_ ) for answer_list in data[1]: __magic_name__ : List[str] = ast.literal_eval(lowerCamelCase_ ) answers.append(lowerCamelCase_ ) else: __magic_name__ : List[str] = [line.strip() for line in open(lowerCamelCase_ , "r" ).readlines()] __magic_name__ : Optional[Any] = [[reference] for reference in references] __magic_name__ : Tuple = 0 for prediction, ground_truths in zip(lowerCamelCase_ , lowerCamelCase_ ): total += 1 em += metric_max_over_ground_truths(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) fa += metric_max_over_ground_truths(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : List[Any] = 100.0 * em / total __magic_name__ : int = 100.0 * fa / total logger.info(F"""F1: {fa:.2f}""" ) logger.info(F"""EM: {em:.2f}""" ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : str = args.k __magic_name__ : Optional[Any] = [line.strip() for line in open(lowerCamelCase_ , "r" ).readlines()] __magic_name__ : Tuple = [line.strip() for line in open(lowerCamelCase_ , "r" ).readlines()] __magic_name__ : Optional[Any] = 0 for hypo, reference in zip(lowerCamelCase_ , lowerCamelCase_ ): __magic_name__ : Dict = set(hypo.split("\t" )[:k] ) __magic_name__ : List[str] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __magic_name__ : List[Any] = 100.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""" ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" def strip_title(UpperCamelCase__ ): if title.startswith("\"" ): __magic_name__ : List[str] = title[1:] if title.endswith("\"" ): __magic_name__ : str = title[:-1] return title __magic_name__ : List[str] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase_ , return_tensors="pt" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , )['input_ids'].to(args.device ) __magic_name__ : Union[str, Any] = rag_model.rag.question_encoder(lowerCamelCase_ ) __magic_name__ : List[Any] = question_enc_outputs[0] __magic_name__ : str = rag_model.retriever( lowerCamelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) __magic_name__ : str = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __magic_name__ : List[Any] = [] for docs in all_docs: __magic_name__ : Tuple = [strip_title(lowerCamelCase_ ) for title in docs['title']] provenance_strings.append("\t".join(lowerCamelCase_ ) ) return provenance_strings def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with torch.no_grad(): __magic_name__ : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase_ , return_tensors="pt" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) __magic_name__ : int = inputs_dict.input_ids.to(args.device ) __magic_name__ : Dict = inputs_dict.attention_mask.to(args.device ) __magic_name__ : List[str] = rag_model.generate( # rag_model overwrites generate lowerCamelCase_ , attention_mask=lowerCamelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCamelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __magic_name__ : Optional[int] = rag_model.retriever.generator_tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) if args.print_predictions: for q, a in zip(lowerCamelCase_ , lowerCamelCase_ ): logger.info("Q: {} - A: {}".format(lowerCamelCase_ , lowerCamelCase_ ) ) return answers def _UpperCamelCase ( ): """simple docstring""" __magic_name__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=lowerCamelCase_ , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=lowerCamelCase_ , choices=["exact", "compressed", "legacy"] , type=lowerCamelCase_ , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=lowerCamelCase_ , type=lowerCamelCase_ , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=lowerCamelCase_ , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=lowerCamelCase_ , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=lowerCamelCase_ , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=lowerCamelCase_ , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=lowerCamelCase_ , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=lowerCamelCase_ , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=lowerCamelCase_ , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=lowerCamelCase_ , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=lowerCamelCase_ , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) __magic_name__ : Tuple = parser.parse_args() __magic_name__ : List[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" __magic_name__ : Union[str, Any] = {} if args.model_type is None: __magic_name__ : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): __magic_name__ : Union[str, Any] = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration __magic_name__ : List[Any] = args.n_docs if args.index_name is not None: __magic_name__ : Union[str, Any] = args.index_name if args.index_path is not None: __magic_name__ : Union[str, Any] = args.index_path else: __magic_name__ : List[Any] = BartForConditionalGeneration __magic_name__ : Optional[int] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , lowerCamelCase_ ) __magic_name__ : Tuple = get_scores if args.eval_mode == 'e2e' else get_precision_at_k __magic_name__ : int = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(lowerCamelCase_ , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(lowerCamelCase_ ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): __magic_name__ : Union[str, Any] = RagRetriever.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) __magic_name__ : List[Any] = model_class.from_pretrained(lowerCamelCase_ , retriever=lowerCamelCase_ , **lowerCamelCase_ ) model.retriever.init_retrieval() else: __magic_name__ : List[str] = model_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: __magic_name__ : List[Any] = [] for line in tqdm(lowerCamelCase_ ): questions.append(line.strip() ) if len(lowerCamelCase_ ) == args.eval_batch_size: __magic_name__ : Tuple = evaluate_batch_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) preds_file.write("\n".join(lowerCamelCase_ ) + "\n" ) preds_file.flush() __magic_name__ : Optional[int] = [] if len(lowerCamelCase_ ) > 0: __magic_name__ : int = evaluate_batch_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) preds_file.write("\n".join(lowerCamelCase_ ) ) preds_file.flush() score_fn(lowerCamelCase_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = get_args() main(args)
436
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ = TypeVar('''T''') def UpperCAmelCase__ ( lowerCamelCase_ : int ): return (position - 1) // 2 def UpperCAmelCase__ ( lowerCamelCase_ : int ): return (2 * position) + 1 def UpperCAmelCase__ ( lowerCamelCase_ : int ): return (2 * position) + 2 class _UpperCamelCase( Generic[T] ): def __init__( self : List[str] ): '''simple docstring''' __a : list[tuple[T, int]] = [] __a : dict[T, int] = {} __a : int = 0 def __len__( self : Any ): '''simple docstring''' return self.elements def __repr__( self : Any ): '''simple docstring''' return str(self.heap ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.elements == 0 def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' self.heap.append((elem, weight) ) __a : List[Any] = self.elements self.elements += 1 self._bubble_up(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __a , __a : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __a , __a : Dict = self.heap[0] self._bubble_down(SCREAMING_SNAKE_CASE__ ) return elem def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : List[Any] = self.position_map[elem] __a : str = (elem, weight) if position > 0: __a : Tuple = get_parent_position(SCREAMING_SNAKE_CASE__ ) __a , __a : Dict = self.heap[parent_position] if parent_weight > weight: self._bubble_up(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T ): '''simple docstring''' __a : List[Any] = self.position_map[elem] if curr_pos == 0: return None __a : List[str] = get_parent_position(SCREAMING_SNAKE_CASE__ ) __a , __a : str = self.heap[curr_pos] __a , __a : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_up(SCREAMING_SNAKE_CASE__ ) return None def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T ): '''simple docstring''' __a : int = self.position_map[elem] __a , __a : Optional[Any] = self.heap[curr_pos] __a : Tuple = get_child_left_position(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = get_child_right_position(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements and child_right_position < self.elements: __a , __a : str = self.heap[child_left_position] __a , __a : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements: __a , __a : Any = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: return None if child_right_position < self.elements: __a , __a : Union[str, Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) return None def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Optional[Any] = self.heap[nodea_pos][0] __a : str = self.heap[nodea_pos][0] __a , __a : int = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __a : str = nodea_pos __a : Optional[int] = nodea_pos class _UpperCamelCase( Generic[T] ): def __init__( self : List[Any] ): '''simple docstring''' __a : dict[T, dict[T, int]] = {} __a : int = 0 def __repr__( self : Tuple ): '''simple docstring''' return str(self.connections ) def __len__( self : Dict ): '''simple docstring''' return self.nodes def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ): '''simple docstring''' if node not in self.connections: __a : Tuple = {} self.nodes += 1 def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' self.add_node(SCREAMING_SNAKE_CASE__ ) self.add_node(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = weight __a : Any = weight def UpperCAmelCase__ ( lowerCamelCase_ : GraphUndirectedWeighted[T] , ): __a : dict[T, int] = {node: maxsize for node in graph.connections} __a : dict[T, T | None] = {node: None for node in graph.connections} __a : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCamelCase_ , lowerCamelCase_ ) if priority_queue.is_empty(): return dist, parent # initialization __a : Optional[int] = priority_queue.extract_min() __a : int = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __a : str = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCamelCase_ , dist[neighbour] ) __a : Optional[int] = node # running prim's algorithm while not priority_queue.is_empty(): __a : Any = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __a : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCamelCase_ , dist[neighbour] ) __a : Dict = node return dist, parent
47
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class UpperCamelCase__( __lowerCamelCase ): __magic_name__ : Any = '''''' __magic_name__ : List[str] = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : Optional[int] , lowerCAmelCase : Optional[DatasetInfo] = None , lowerCAmelCase : Optional[str] = None , **lowerCAmelCase : int , )-> Union[str, Any]: """simple docstring""" super().__init__(self , **SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = repo_info UpperCAmelCase = token UpperCAmelCase = None def a__( self : int )-> Dict: """simple docstring""" if self.dir_cache is None: UpperCAmelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(SCREAMING_SNAKE_CASE__ ): {'''name''': str(SCREAMING_SNAKE_CASE__ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def a__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : str = "rb" , **lowerCAmelCase : Any , )-> str: """simple docstring""" if not isinstance(self.repo_info , SCREAMING_SNAKE_CASE__ ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) UpperCAmelCase = hf_hub_url(self.repo_info.id , SCREAMING_SNAKE_CASE__ , revision=self.repo_info.sha ) return fsspec.open( SCREAMING_SNAKE_CASE__ , mode=SCREAMING_SNAKE_CASE__ , headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE__ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def a__( self : int , lowerCAmelCase : Optional[int] , **lowerCAmelCase : Dict )-> Dict: """simple docstring""" self._get_dirs() UpperCAmelCase = self._strip_protocol(SCREAMING_SNAKE_CASE__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(SCREAMING_SNAKE_CASE__ ) def a__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=False , **lowerCAmelCase : int )-> Dict: """simple docstring""" self._get_dirs() UpperCAmelCase = PurePosixPath(path.strip('''/''' ) ) UpperCAmelCase = {} for p, f in self.dir_cache.items(): UpperCAmelCase = PurePosixPath(p.strip('''/''' ) ) UpperCAmelCase = p.parent if root == path: UpperCAmelCase = f UpperCAmelCase = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
210
from collections.abc import Sequence from queue import Queue class _UpperCamelCase: def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None ): '''simple docstring''' __a : Tuple = start __a : Dict = end __a : List[str] = val __a : List[Any] = (start + end) // 2 __a : Optional[Any] = left __a : List[str] = right def __repr__( self : Dict ): '''simple docstring''' return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class _UpperCamelCase: def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Sequence , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' __a : Tuple = collection __a : Dict = function if self.collection: __a : int = self._build_tree(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' self._update_tree(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' return self._query_range(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' if start == end: return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.collection[start] ) __a : Tuple = (start + end) // 2 __a : Optional[int] = self._build_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Tuple = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE__ ) return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' if node.start == i and node.end == i: __a : Optional[Any] = val return if i <= node.mid: self._update_tree(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: self._update_tree(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : int = self.fn(node.left.val , node.right.val ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , SCREAMING_SNAKE_CASE__ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE__ ) , ) else: # range in right child tree return self._query_range(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.root is not None: __a : Tuple = Queue() queue.put(self.root ) while not queue.empty(): __a : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) SCREAMING_SNAKE_CASE__ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
47
0
from collections.abc import Generator def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0, 1 while True: lowerCamelCase_ = b, a + b yield b def _SCREAMING_SNAKE_CASE ( lowercase : int = 10_00 ): '''simple docstring''' lowerCamelCase_ = 1 lowerCamelCase_ = fibonacci_generator() while len(str(next(lowerCamelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
70
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _UpperCamelCase( datasets.BuilderConfig ): __SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None def UpperCAmelCase__ ( lowerCamelCase_ : "pyspark.sql.DataFrame" , lowerCamelCase_ : List[int] , ): import pyspark def generate_fn(): __a : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: __a : Optional[int] = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) __a : Optional[Any] = partition_df.collect() __a : Union[str, Any] = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _UpperCamelCase( _BaseExamplesIterable ): def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Dict=None , ): '''simple docstring''' __a : List[str] = df __a : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) __a : List[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Tuple ): '''simple docstring''' yield from self.generate_examples_fn() def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.random.Generator ): '''simple docstring''' __a : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return len(self.partition_order ) class _UpperCamelCase( datasets.DatasetBuilder ): __SCREAMING_SNAKE_CASE : List[str] = SparkConfig def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' import pyspark __a : int = pyspark.sql.SparkSession.builder.getOrCreate() __a : Optional[int] = df __a : List[Any] = working_dir super().__init__( cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : List[str] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(SCREAMING_SNAKE_CASE__ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __a : List[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' import pyspark def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) __a : List[str] = self.df.count() __a : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __a : List[str] = ( self.df.limit(SCREAMING_SNAKE_CASE__ ) .repartition(1 ) .mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __a : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __a : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) ) __a : int = self.df.repartition(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ): '''simple docstring''' import pyspark __a : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter __a : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath __a : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __a : List[str] = self.config.features __a : int = self._writer_batch_size __a : Union[str, Any] = self._fs.storage_options def write_arrow(SCREAMING_SNAKE_CASE__ : Optional[int] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __a : Any = pyspark.TaskContext().taskAttemptId() __a : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) __a : Any = 0 __a : List[str] = writer_class( features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __a : Optional[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __a , __a : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 __a : Optional[Any] = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __a : Union[str, Any] = pa.Table.from_batches([batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) if writer._num_bytes > 0: __a , __a : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ): __a : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Dict = ( self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' self._validate_cache_dir() __a : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = not is_remote_filesystem(self._fs ) __a : Optional[Any] = os.path.join if is_local else posixpath.join __a : Any = '-TTTTT-SSSSS-of-NNNNN' __a : Union[str, Any] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' __a : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ ) __a : Any = 0 __a : Dict = 0 __a : int = 0 __a : List[str] = [] __a : Optional[int] = [] for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[int] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ ) __a : List[str] = total_num_examples __a : Optional[int] = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: __a : Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __a : Dict = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ): rename( SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , ) __a : Union[str, Any] = [] __a : List[str] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __a , __a : Union[str, Any] = task_id_and_num_shards[i] for shard_id in range(SCREAMING_SNAKE_CASE__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect() else: # don't use any pattern __a : List[Any] = 0 __a : Any = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ): '''simple docstring''' return SparkExamplesIterable(self.df )
47
0
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def UpperCAmelCase ( a__ , a__ , a__ , a__ ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: lowerCAmelCase :Dict = TOKENIZER_CLASSES else: lowerCAmelCase :Optional[Any] = {tokenizer_name: getattr(lowerCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: lowerCAmelCase :Optional[int] = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase :List[str] = True if checkpoint_name is None: lowerCAmelCase :int = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase :Any = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer lowerCAmelCase :int = tokenizer_class.from_pretrained(lowerCamelCase_ , force_download=lowerCamelCase_ ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase :Any = checkpoint.split('/' ) lowerCAmelCase :List[str] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) elif add_prefix: lowerCAmelCase :Optional[int] = checkpoint lowerCAmelCase :Optional[int] = dump_path else: lowerCAmelCase :Tuple = None lowerCAmelCase :Tuple = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase :Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase :str = file_path.split(lowerCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase :Optional[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase :int = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) lowerCAmelCase :Dict = tokenizer.save_pretrained( lowerCamelCase_ , legacy_format=lowerCamelCase_ , filename_prefix=lowerCamelCase_ ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCamelCase_ ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
553
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ): # save results if os.path.exists(lowerCamelCase_ ): if os.path.exists(os.path.join(lowerCamelCase_ , 'config.json' ) ) and os.path.isfile( os.path.join(lowerCamelCase_ , 'config.json' ) ): os.remove(os.path.join(lowerCamelCase_ , 'config.json' ) ) if os.path.exists(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ): os.remove(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) else: os.makedirs(lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Any=False ): __a : Dict = 2 if unlogit: __a : Optional[Any] = torch.pow(lowerCamelCase_ , lowerCamelCase_ ) __a : Any = p * torch.log(lowerCamelCase_ ) __a : Union[str, Any] = 0 return -plogp.sum(dim=-1 ) def UpperCAmelCase__ ( lowerCamelCase_ : Any ): logger.info('lv, h >\t' + '\t'.join(f'''{x + 1}''' for x in range(len(lowerCamelCase_ ) ) ) ) for row in range(len(lowerCamelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '\t'.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=False ): __a , __a : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads __a : str = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) __a : int = torch.zeros(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) if head_mask is None: __a : Union[str, Any] = torch.ones(lowerCamelCase_ , lowerCamelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCamelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __a : Any = None __a : Optional[int] = 0.0 __a : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(lowerCamelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): __a : Dict = tuple(t.to(args.device ) for t in inputs ) ((__a) , ) : Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __a : List[Any] = model(lowerCamelCase_ , labels=lowerCamelCase_ , head_mask=lowerCamelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __a , __a , __a : int = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCamelCase_ ): __a : List[str] = entropy(attn.detach() , lowerCamelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCamelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __a : Optional[Any] = 2 __a : Union[str, Any] = torch.pow(torch.pow(lowerCamelCase_ , lowerCamelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: __a : List[str] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(lowerCamelCase_ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(lowerCamelCase_ ) logger.info('Head ranked by importance scores' ) __a : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __a : str = torch.arange( head_importance.numel() , device=args.device ) __a : Tuple = head_ranks.view_as(lowerCamelCase_ ) print_ad_tensor(lowerCamelCase_ ) return attn_entropy, head_importance, total_loss def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ): __a , __a , __a : Optional[int] = compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ ) __a : Tuple = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , lowerCamelCase_ , original_score * args.masking_threshold ) __a : Tuple = torch.ones_like(lowerCamelCase_ ) __a : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __a : Tuple = original_score while current_score >= original_score * args.masking_threshold: __a : Optional[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __a : List[str] = float('Inf' ) __a : List[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCamelCase_ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads __a : Any = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) __a : int = new_head_mask.view(-1 ) __a : Tuple = 0.0 __a : int = new_head_mask.view_as(lowerCamelCase_ ) __a : Optional[int] = new_head_mask.clone().detach() print_ad_tensor(lowerCamelCase_ ) # Compute metric and head importance again __a , __a , __a : int = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , head_mask=lowerCamelCase_ ) __a : List[Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , lowerCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('Final head mask' ) print_ad_tensor(lowerCamelCase_ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): __a : List[Any] = datetime.now() __a , __a , __a : List[str] = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ ) __a : List[str] = 1 / loss __a : List[Any] = datetime.now() - before_time __a : List[str] = sum(p.numel() for p in model.parameters() ) __a : Dict = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __a : Tuple = [ v, ] assert sum(len(lowerCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCamelCase_ ) __a : Optional[Any] = sum(p.numel() for p in model.parameters() ) __a : Tuple = datetime.now() __a , __a , __a : Tuple = compute_heads_importance( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , compute_entropy=lowerCamelCase_ , compute_importance=lowerCamelCase_ , head_mask=lowerCamelCase_ , actually_pruned=lowerCamelCase_ , ) __a : Optional[Any] = 1 / loss __a : List[Any] = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , lowerCamelCase_ , lowerCamelCase_ , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , lowerCamelCase_ , lowerCamelCase_ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 ) save_model(lowerCamelCase_ , args.output_dir ) def UpperCAmelCase__ ( ): __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=lowerCamelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=lowerCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=lowerCamelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=lowerCamelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=lowerCamelCase_ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=lowerCamelCase_ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=lowerCamelCase_ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=lowerCamelCase_ , help='Batch size.' ) parser.add_argument('--seed' , type=lowerCamelCase_ , default=4_2 ) parser.add_argument('--local_rank' , type=lowerCamelCase_ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=lowerCamelCase_ , default='' , help='Can be used for distant debugging.' ) __a : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __a : List[str] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) __a : Tuple = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __a : Union[str, Any] = torch.device('cuda' , args.local_rank ) __a : Any = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __a : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __a : List[Any] = nn.parallel.DistributedDataParallel( lowerCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase_ ) elif args.n_gpu > 1: __a : Union[str, Any] = nn.DataParallel(lowerCamelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCamelCase_ ) torch.save(lowerCamelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , lowerCamelCase_ ) # Prepare dataset __a : Tuple = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __a : str = (torch.from_numpy(lowerCamelCase_ ),) __a : List[str] = TensorDataset(*lowerCamelCase_ ) __a : Optional[Any] = RandomSampler(lowerCamelCase_ ) __a : Union[str, Any] = DataLoader(lowerCamelCase_ , sampler=lowerCamelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __a : Union[str, Any] = mask_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) prune_heads(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' def __A ( lowerCAmelCase_ ): if n == 1 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return 0 elif n == 2: return 1 else: _UpperCAmelCase : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Dict = 0 _UpperCAmelCase : str = 2 while digits < n: index += 1 _UpperCAmelCase : Tuple = len(str(fibonacci(lowerCamelCase_ ) ) ) return index def __A ( lowerCAmelCase_ = 1000 ): return fibonacci_digits_index(lowerCamelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
414
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ): __a : List[Any] = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_0_2_4, 'hidden_size': 7_6_8, 'max_length': 5_1_2, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_0_2_4, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __a : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __a : List[str] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __a : int = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __a : Optional[Any] = os.path.join(get_home_dir() , 'models' ) __a : Optional[Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ ) __a : Any = nlp.model.BERTModel( lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , ) original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ ) __a : Dict = original_bort._collect_params_with_prefix() # Build our config 🤗 __a : Optional[Any] = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowerCamelCase_ ), } __a : str = BertConfig.from_dict(lowerCamelCase_ ) __a : Optional[int] = BertForMaskedLM(lowerCamelCase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase_ : Optional[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): __a : Optional[int] = hf_param.shape __a : int = to_torch(params[gluon_param] ) __a : int = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __a : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __a : str = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __a : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __a : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __a : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __a : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __a : BertSelfAttention = layer.attention.self __a : Optional[int] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __a : str = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __a : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __a : str = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __a : Dict = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __a : str = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __a : BertSelfOutput = layer.attention.output __a : Tuple = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) __a : Dict = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) __a : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __a : Optional[Any] = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __a : BertIntermediate = layer.intermediate __a : List[str] = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __a : Optional[Any] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __a : BertOutput = layer.output __a : str = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __a : List[Any] = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __a : str = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __a : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __a : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-base' ) __a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ )['input_ids'] # Get gluon output __a : Optional[int] = mx.nd.array([input_ids] ) __a : Tuple = original_bort(inputs=lowerCamelCase_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase_ ) __a : Optional[Any] = BertModel.from_pretrained(lowerCamelCase_ ) hf_bort_model.eval() __a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' ) __a : int = hf_bort_model(**lowerCamelCase_ )[0] __a : Dict = output_gluon[0].asnumpy() __a : str = output_hf[0].detach().numpy() __a : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() __a : str = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
47
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : Union[str, Any] = 16 _UpperCAmelCase : Tuple = 32 def _SCREAMING_SNAKE_CASE ( __snake_case : Accelerator , __snake_case : int = 1_6 ): _A = AutoTokenizer.from_pretrained('bert-base-cased' ) _A = load_dataset('glue' , 'mrpc' ) def tokenize_function(__snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _A = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _A = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. _A = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _A = 1_6 elif accelerator.mixed_precision != "no": _A = 8 else: _A = None return tokenizer.pad( lowerCamelCase_ , padding='longest' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. _A = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=lowerCamelCase_ ) _A = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : List[str] ): # Initialize accelerator _A = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A = config['lr'] _A = int(config['num_epochs'] ) _A = int(config['seed'] ) _A = int(config['batch_size'] ) _A = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _A = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _A = batch_size // MAX_GPU_BATCH_SIZE _A = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase_ ) _A = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _A = model.to(accelerator.device ) # Instantiate optimizer _A = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) # Instantiate scheduler _A = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _A = model(**lowerCamelCase_ ) _A = outputs.loss _A = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _A = model(**lowerCamelCase_ ) _A = outputs.logits.argmax(dim=-1 ) _A = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) _A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( ): _A = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _A = parser.parse_args() _A = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
107
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): __a : Any = '' for i in table: res += inp[i - 1] return res def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ): return data[1:] + data[0] def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ): __a : Optional[int] = '' for i in range(len(lowerCamelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): __a : List[str] = int('0b' + data[0] + data[-1] , 2 ) __a : List[str] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): __a : List[Any] = message[:4] __a : str = message[4:] __a : Any = apply_table(lowerCamelCase_ , lowerCamelCase_ ) __a : int = xor(lowerCamelCase_ , lowerCamelCase_ ) __a : Dict = apply_sbox(lowerCamelCase_ , temp[:4] ) # noqa: E741 __a : Tuple = apply_sbox(lowerCamelCase_ , temp[4:] ) __a : List[Any] = '0' * (2 - len(lowerCamelCase_ )) + l # noqa: E741 __a : List[str] = '0' * (2 - len(lowerCamelCase_ )) + r __a : List[Any] = apply_table(l + r , lowerCamelCase_ ) __a : Dict = xor(lowerCamelCase_ , lowerCamelCase_ ) return temp + right if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input('''Enter 10 bit key: ''') SCREAMING_SNAKE_CASE__ = input('''Enter 8 bit message: ''') SCREAMING_SNAKE_CASE__ = [6, 3, 7, 4, 8, 5, 10, 9] SCREAMING_SNAKE_CASE__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] SCREAMING_SNAKE_CASE__ = [2, 4, 3, 1] SCREAMING_SNAKE_CASE__ = [2, 6, 3, 1, 4, 8, 5, 7] SCREAMING_SNAKE_CASE__ = [4, 1, 3, 5, 7, 2, 8, 6] SCREAMING_SNAKE_CASE__ = [4, 1, 2, 3, 2, 3, 4, 1] SCREAMING_SNAKE_CASE__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] SCREAMING_SNAKE_CASE__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation SCREAMING_SNAKE_CASE__ = apply_table(key, paa_table) SCREAMING_SNAKE_CASE__ = temp[:5] SCREAMING_SNAKE_CASE__ = temp[5:] SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table) SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table) # encryption SCREAMING_SNAKE_CASE__ = apply_table(message, IP) SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption SCREAMING_SNAKE_CASE__ = apply_table(CT, IP) SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
47
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase ( __lowerCamelCase): '''simple docstring''' _snake_case = 42 _snake_case = 42 def __init__( self , a_ , a_ ) -> List[str]: super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self , a_ = 1 , a_ = 2_0_0_0 , a_ = None , a_ = "pil" , a_ = True , **a_ , ) -> List[Any]: lowercase : str = self.unet.config.sample_size lowercase : Any = (batch_size, 3, img_size, img_size) lowercase : List[str] = self.unet lowercase : str = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) * self.scheduler.init_noise_sigma lowercase : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) self.scheduler.set_sigmas(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase : Any = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample lowercase : List[str] = self.scheduler.step_correct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample # prediction step lowercase : Tuple = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample lowercase : Any = self.scheduler.step_pred(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) lowercase : int = output.prev_sample, output.prev_sample_mean lowercase : Tuple = sample_mean.clamp(0 , 1 ) lowercase : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase : str = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
372
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : List[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : int = None ops.enable_eager_execution_internal() __a : Optional[Any] = tf.config.list_physical_devices('CPU' ) if len(SCREAMING_SNAKE_CASE__ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a : int = tf.config.list_logical_devices(device_type='CPU' ) __a : str = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a : List[str] = GradientAccumulator() __a : Tuple = tf.Variable([4.0, 3.0] ) __a , __a : int = create_optimizer(5e-5 , 1_0 , 5 ) __a : List[Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE__ ) def accumulate_on_replica(SCREAMING_SNAKE_CASE__ : Optional[Any] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): with strategy.scope(): __a : Optional[Any] = strategy.experimental_local_results(SCREAMING_SNAKE_CASE__ ) local_variables[0].assign(SCREAMING_SNAKE_CASE__ ) local_variables[1].assign(SCREAMING_SNAKE_CASE__ ) strategy.run(SCREAMING_SNAKE_CASE__ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(SCREAMING_SNAKE_CASE__ ) def _check_local_values(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ): __a : Union[str, Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE__ , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
47
0
"""simple docstring""" import os from distutils.util import strtobool def _lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] ): for e in env_keys: lowercase__ : List[str] = int(os.environ.get(lowerCamelCase_ , -1 ) ) if val >= 0: return val return default def _lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str=False ): lowercase__ : Dict = os.environ.get(lowerCamelCase_ , str(lowerCamelCase_ ) ) return strtobool(lowerCamelCase_ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Tuple="no" ): lowercase__ : str = os.environ.get(lowerCamelCase_ , str(lowerCamelCase_ ) ) return value
200
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''roberta''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : str=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Tuple="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Any , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = vocab_size __a : Tuple = hidden_size __a : List[str] = num_hidden_layers __a : List[Any] = num_attention_heads __a : str = hidden_act __a : Optional[Any] = intermediate_size __a : Dict = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[Any] = max_position_embeddings __a : Dict = type_vocab_size __a : str = initializer_range __a : List[str] = layer_norm_eps __a : Optional[int] = position_embedding_type __a : Union[str, Any] = use_cache __a : str = classifier_dropout class _UpperCamelCase( __lowerCamelCase ): @property def __lowerCAmelCase ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": __a : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
47
0
import math import flax.linen as nn import jax.numpy as jnp def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1.0E4 , lowerCAmelCase_ = False , lowerCAmelCase_ = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" lowerCamelCase_ : Dict = float(embedding_dim // 2) lowerCamelCase_ : str = math.log(max_timescale / min_timescale) / (num_timescales - freq_shift) lowerCamelCase_ : Any = min_timescale * jnp.exp(jnp.arange(lowerCamelCase_ , dtype=jnp.floataa) * -log_timescale_increment) lowerCamelCase_ : List[Any] = jnp.expand_dims(lowerCamelCase_ , 1) * jnp.expand_dims(lowerCamelCase_ , 0) # scale embeddings lowerCamelCase_ : Optional[int] = scale * emb if flip_sin_to_cos: lowerCamelCase_ : Any = jnp.concatenate([jnp.cos(lowerCamelCase_), jnp.sin(lowerCamelCase_)] , axis=1) else: lowerCamelCase_ : Tuple = jnp.concatenate([jnp.sin(lowerCamelCase_), jnp.cos(lowerCamelCase_)] , axis=1) lowerCamelCase_ : str = jnp.reshape(lowerCamelCase_ , [jnp.shape(lowerCamelCase_)[0], embedding_dim]) return signal class lowerCAmelCase__ ( nn.Module ): """simple docstring""" __UpperCAmelCase : int = 32 __UpperCAmelCase : jnp.dtype = jnp.floataa @nn.compact def __call__( self , a_ ): lowerCamelCase_ : int = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ : str = nn.silu(SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ : Tuple = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(SCREAMING_SNAKE_CASE__ ) return temb class lowerCAmelCase__ ( nn.Module ): """simple docstring""" __UpperCAmelCase : int = 32 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 1 @nn.compact def __call__( self , a_ ): return get_sinusoidal_embeddings( SCREAMING_SNAKE_CASE__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
250
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '''▁''' SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } SCREAMING_SNAKE_CASE__ = { '''facebook/xglm-564M''': 2048, } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : Dict="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ): '''simple docstring''' __a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __a : Any = 7 __a : Union[str, Any] = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] __a : Union[str, Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) __a : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __a : Any = 1 # Mimic fairseq token-to-id alignment for the first 4 token __a : str = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __a : List[str] = len(self.sp_model ) __a : Optional[int] = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) __a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ): '''simple docstring''' __a : Tuple = self.__dict__.copy() __a : List[str] = None __a : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a : Dict = {} __a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __a : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' __a : Optional[int] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __a : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' __a : Optional[int] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a : Any = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: __a : List[Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
47
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int a_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): UpperCamelCase =None def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , ): import pyspark def generate_fn(): __lowercase : List[Any] = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: __lowercase : Optional[int] = df_with_partition_id.select('''*''' ).where(f"""part_id = {partition_id}""" ).drop('''part_id''' ) __lowercase : Optional[Any] = partition_df.collect() __lowercase : Union[str, Any] = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCAmelCase_ ( _BaseExamplesIterable ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=None , ) -> Optional[Any]: __lowercase : List[str] = df __lowercase : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) __lowercase : List[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> Optional[int]: yield from self.generate_examples_fn() def _lowerCamelCase ( self , UpperCamelCase_ ) -> Tuple: __lowercase : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: __lowercase : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) @property def _lowerCamelCase ( self ) -> int: return len(self.partition_order ) class UpperCAmelCase_ ( datasets.DatasetBuilder ): UpperCamelCase =SparkConfig def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> List[str]: import pyspark __lowercase : int = pyspark.sql.SparkSession.builder.getOrCreate() __lowercase : Optional[int] = df __lowercase : List[Any] = working_dir super().__init__( cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , ) def _lowerCamelCase ( self ) -> Optional[Any]: def create_cache_and_write_probe(UpperCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) __lowercase : List[Any] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(SCREAMING_SNAKE_CASE__ , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __lowercase : List[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def _lowerCamelCase ( self ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Tuple: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[Any]: import pyspark def get_arrow_batch_size(UpperCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) __lowercase : List[str] = self.df.count() __lowercase : Dict = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __lowercase : List[str] = ( self.df.limit(SCREAMING_SNAKE_CASE__ ) .repartition(1 ) .mapInArrow(SCREAMING_SNAKE_CASE__ , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __lowercase : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) ) __lowercase : int = self.df.repartition(SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> List[str]: import pyspark __lowercase : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter __lowercase : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath __lowercase : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __lowercase : List[str] = self.config.features __lowercase : int = self._writer_batch_size __lowercase : Union[str, Any] = self._fs.storage_options def write_arrow(UpperCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __lowercase : Any = pyspark.TaskContext().taskAttemptId() __lowercase : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) __lowercase : Any = 0 __lowercase : List[str] = writer_class( features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __lowercase : Optional[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __lowercase : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 __lowercase : Optional[Any] = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __lowercase : Union[str, Any] = pa.Table.from_batches([batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) if writer._num_bytes > 0: __lowercase : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ): __lowercase : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowercase : Dict = ( self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = "arrow" , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> Union[str, Any]: self._validate_cache_dir() __lowercase : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ ) __lowercase : Union[str, Any] = not is_remote_filesystem(self._fs ) __lowercase : Optional[Any] = os.path.join if is_local else posixpath.join __lowercase : Any = '-TTTTT-SSSSS-of-NNNNN' __lowercase : Union[str, Any] = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" __lowercase : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ ) __lowercase : Any = 0 __lowercase : Dict = 0 __lowercase : int = 0 __lowercase : List[str] = [] __lowercase : Optional[int] = [] for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ( __lowercase ) : Optional[int] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ ) __lowercase : List[str] = total_num_examples __lowercase : Optional[int] = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: __lowercase : Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __lowercase : Dict = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): rename( SCREAMING_SNAKE_CASE__ , fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace('''TTTTT-SSSSS''' , F"""{global_shard_id:05d}""" ).replace('''NNNNN''' , F"""{total_shards:05d}""" ) , ) __lowercase : Union[str, Any] = [] __lowercase : List[str] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __lowercase : Union[str, Any] = task_id_and_num_shards[i] for shard_id in range(SCREAMING_SNAKE_CASE__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda UpperCamelCase_ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect() else: # don't use any pattern __lowercase : List[Any] = 0 __lowercase : Any = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '''''' ) , ) def _lowerCamelCase ( self , UpperCamelCase_ , ) -> List[str]: return SparkExamplesIterable(self.df )
76
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] SCREAMING_SNAKE_CASE__ = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] ): __a : str = torch.load(lowerCamelCase_ , map_location='cpu' ) return sd def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=rename_keys_prefix ): __a : Optional[Any] = OrderedDict() __a : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __a : List[Any] = key for name_pair in rename_keys_prefix: __a : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __a : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __a : int = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ): assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __a : Dict = 'pretraining' if "vcr" in checkpoint_path: __a : int = {'visual_embedding_dim': 5_1_2} elif "vqa_advanced" in checkpoint_path: __a : int = {'visual_embedding_dim': 2_0_4_8} elif "vqa" in checkpoint_path: __a : Tuple = {'visual_embedding_dim': 2_0_4_8} elif "nlvr" in checkpoint_path: __a : List[Any] = {'visual_embedding_dim': 1_0_2_4} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __a : int = {'visual_embedding_dim': 5_1_2} __a : Any = 'multichoice' elif "vqa_advanced" in checkpoint_path: __a : Any = {'visual_embedding_dim': 2_0_4_8} __a : List[str] = 'vqa_advanced' elif "vqa" in checkpoint_path: __a : List[Any] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9} __a : List[Any] = 'vqa' elif "nlvr" in checkpoint_path: __a : Optional[int] = { 'visual_embedding_dim': 1_0_2_4, 'num_labels': 2, } __a : Optional[Any] = 'nlvr' __a : str = VisualBertConfig(**lowerCamelCase_ ) # Load State Dict __a : str = load_state_dict(lowerCamelCase_ ) __a : str = get_new_dict(lowerCamelCase_ , lowerCamelCase_ ) if model_type == "pretraining": __a : Optional[Any] = VisualBertForPreTraining(lowerCamelCase_ ) elif model_type == "vqa": __a : Any = VisualBertForQuestionAnswering(lowerCamelCase_ ) elif model_type == "nlvr": __a : int = VisualBertForVisualReasoning(lowerCamelCase_ ) elif model_type == "multichoice": __a : Optional[int] = VisualBertForMultipleChoice(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # Save Checkpoints Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
47
0
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" _lowerCamelCase = (DDPMParallelScheduler,) def UpperCAmelCase__ ( self , **_lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : str = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Union[str, Any] = self.scheduler_classes[0] snake_case_ : Dict = self.get_scheduler_config() snake_case_ : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : int = self.scheduler_classes[0] snake_case_ : Dict = self.get_scheduler_config() snake_case_ : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = self.dummy_model() snake_case_ : Optional[int] = self.dummy_sample_deter snake_case_ : Any = self.dummy_sample_deter + 0.1 snake_case_ : Any = self.dummy_sample_deter - 0.1 snake_case_ : Optional[int] = samplea.shape[0] snake_case_ : int = torch.stack([samplea, samplea, samplea] , dim=0 ) snake_case_ : Dict = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) snake_case_ : Optional[int] = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) snake_case_ : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case_ : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.scheduler_classes[0] snake_case_ : int = self.get_scheduler_config() snake_case_ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = len(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = self.dummy_model() snake_case_ : Any = self.dummy_sample_deter snake_case_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ): # 1. predict noise residual snake_case_ : str = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 snake_case_ : int = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample snake_case_ : List[Any] = pred_prev_sample snake_case_ : List[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case_ : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = self.scheduler_classes[0] snake_case_ : int = self.get_scheduler_config(prediction_type="""v_prediction""" ) snake_case_ : str = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case_ : str = len(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = self.dummy_model() snake_case_ : Optional[Any] = self.dummy_sample_deter snake_case_ : int = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ): # 1. predict noise residual snake_case_ : Dict = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 snake_case_ : str = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample snake_case_ : List[Any] = pred_prev_sample snake_case_ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case_ : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = self.scheduler_classes[0] snake_case_ : Tuple = self.get_scheduler_config() snake_case_ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE__ ): if i == len(SCREAMING_SNAKE_CASE__ ) - 1: snake_case_ : List[str] = -1 else: snake_case_ : Dict = timesteps[i + 1] snake_case_ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.scheduler_classes[0] snake_case_ : Union[str, Any] = self.get_scheduler_config() snake_case_ : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case_ : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = self.scheduler_classes[0] snake_case_ : Dict = self.get_scheduler_config() snake_case_ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case_ : str = [1_0_0, 8_7, 5_0, 1, 0] snake_case_ : int = len(SCREAMING_SNAKE_CASE__ ) with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE__ , timesteps=SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : str = self.scheduler_classes[0] snake_case_ : Optional[int] = self.get_scheduler_config() snake_case_ : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE__ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
58
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
47
0
'''simple docstring''' # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = {} _SCREAMING_SNAKE_CASE : int = {} _SCREAMING_SNAKE_CASE : List[str] = {} def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , ): """simple docstring""" __magic_name__ : str = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) __magic_name__ : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) __magic_name__ : Dict = format_type def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None ): """simple docstring""" __magic_name__ : List[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __magic_name__ : int = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: _SCREAMING_SNAKE_CASE : Optional[int] = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: _SCREAMING_SNAKE_CASE : Optional[int] = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCamelCase ( UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" __magic_name__ : Optional[int] = get_format_type_from_alias(lowerCamelCase_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCamelCase_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'""" )
436
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _UpperCamelCase( __lowerCamelCase ): def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : List[Any] = tempfile.mkdtemp() __a : int = 8 # DPR tok __a : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __a : int = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __a : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : List[str] = {'unk_token': '<unk>'} __a : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['vocab_file'] ) __a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowerCAmelCase ( self : str ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : Tuple = os.path.join(self.tmpdirname , 'rag_tokenizer' ) __a : Optional[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __a : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) rag_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , SCREAMING_SNAKE_CASE__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , SCREAMING_SNAKE_CASE__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : Optional[Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) __a : List[Any] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __a : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Any = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) __a : Union[str, Any] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __a : str = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
47
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : Optional[int] = logging.get_logger(__name__) @dataclass class UpperCamelCase__( __lowerCamelCase ): __magic_name__ : Union[str, Any] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[int] , **lowerCAmelCase : Any )-> Tuple: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase = deprecated_arg[3:] setattr(self , SCREAMING_SNAKE_CASE__ , not kwargs.pop(SCREAMING_SNAKE_CASE__ ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) UpperCAmelCase = kwargs.pop('''torchscript''' , self.torchscript ) UpperCAmelCase = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) UpperCAmelCase = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**SCREAMING_SNAKE_CASE__ ) __magic_name__ : bool = field(default=__lowerCamelCase , metadata={"help": "Trace the models using torchscript"} ) __magic_name__ : bool = field(default=__lowerCamelCase , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) __magic_name__ : str = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def a__( self : Dict )-> str: """simple docstring""" requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: UpperCAmelCase = torch.device('''cpu''' ) UpperCAmelCase = 0 elif is_torch_tpu_available(): UpperCAmelCase = xm.xla_device() UpperCAmelCase = 0 else: UpperCAmelCase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) UpperCAmelCase = torch.cuda.device_count() return device, n_gpu @property def a__( self : List[str] )-> List[str]: """simple docstring""" return is_torch_tpu_available() and self.tpu @property def a__( self : Dict )-> Optional[int]: """simple docstring""" requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def a__( self : int )-> List[Any]: """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def a__( self : Tuple )-> Optional[int]: """simple docstring""" return self.n_gpu > 0
210
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } SCREAMING_SNAKE_CASE__ = {'''bert_for_seq_generation''': 512} class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask'''] def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<::::>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __a : int = vocab_file __a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): '''simple docstring''' __a : Union[str, Any] = self.__dict__.copy() __a : Any = None return state def __setstate__( self : int , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' __a : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a : str = {} __a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : int = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : Optional[Any] = [] __a : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token __a : Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a : Tuple = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: __a : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
47
0
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list[int] , lowercase : int ): '''simple docstring''' def count_of_possible_combinations(lowercase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list[int] , lowercase : int ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( lowercase : int , lowercase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase_ = sum( count_of_possible_combinations_with_dp_array(target - item , lowerCamelCase_ ) for item in array ) lowerCamelCase_ = answer return answer lowerCamelCase_ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowerCamelCase_ , lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : list[int] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = [0] * (target + 1) lowerCamelCase_ = 1 for i in range(1 , target + 1 ): for j in range(lowerCamelCase_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = 3 lowerCamelCase : List[str] = 5 lowerCamelCase : Optional[Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
70
from ..utils import DummyObject, requires_backends class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : str , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Dict , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Dict = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _UpperCamelCase( metaclass=__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls : int , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
47
0
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __SCREAMING_SNAKE_CASE = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , 'sklearn' ) return (preds == labels).mean() def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , 'sklearn' ) lowerCAmelCase :List[str] = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase :Any = fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , 'sklearn' ) lowerCAmelCase :Dict = pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] lowerCAmelCase :List[str] = spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCAmelCase ( a__ , a__ , a__ ): '''simple docstring''' warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , 'sklearn' ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ), F"""Predictions and labels have mismatched lengths {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "mrpc": return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ ) elif task_name == "sts-b": return pearson_and_spearman(lowerCamelCase_ , lowerCamelCase_ ) elif task_name == "qqp": return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} else: raise KeyError(lowerCamelCase_ ) def UpperCAmelCase ( a__ , a__ , a__ ): '''simple docstring''' warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , 'sklearn' ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} else: raise KeyError(lowerCamelCase_ )
553
import math from datetime import datetime, timedelta def UpperCAmelCase__ ( lowerCamelCase_ : int ): __a : Union[str, Any] = year % 1_9 __a : int = year % 4 __a : Optional[int] = year % 7 __a : Dict = math.floor(year / 1_0_0 ) __a : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __a : Union[str, Any] = leap_day_inhibits / 4 __a : str = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __a : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __a : List[Any] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __a : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase_ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase_ , 4 , 1_8 ) else: return datetime(lowerCamelCase_ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): SCREAMING_SNAKE_CASE__ = '''will be''' if year > datetime.now().year else '''was''' print(F"Easter in {year} {tense} {gauss_easter(year)}")
47
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase_ : Dict = 250004 lowerCAmelCase_ : str = 250020 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __lowerCamelCase , unittest.TestCase ): snake_case : List[str] = MBartTokenizer snake_case : Tuple = MBartTokenizerFast snake_case : Optional[int] = True snake_case : Tuple = True def snake_case_ (self ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : Any = MBartTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ (self ): _UpperCAmelCase : List[Any] = MBartTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _UpperCAmelCase : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def snake_case_ (self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCAmelCase : Tuple = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = tempfile.mkdtemp() _UpperCAmelCase : Any = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _UpperCAmelCase : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way _UpperCAmelCase : Dict = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=True _UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() _UpperCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way _UpperCAmelCase : Optional[Any] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=False _UpperCAmelCase : Tuple = tempfile.mkdtemp() _UpperCAmelCase : List[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Tuple = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCAmelCase : Union[str, Any] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Union[str, Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): snake_case : List[Any] = '''facebook/mbart-large-en-ro''' snake_case : Optional[Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] snake_case : Dict = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] snake_case : Optional[int] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def snake_case_ (cls ): _UpperCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) _UpperCAmelCase : Dict = 1 return cls def snake_case_ (self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def snake_case_ (self ): _UpperCAmelCase : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE__ ) def snake_case_ (self ): self.assertIn(SCREAMING_SNAKE_CASE__ , self.tokenizer.all_special_ids ) _UpperCAmelCase : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] _UpperCAmelCase : Union[str, Any] = self.tokenizer.decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE__ ) def snake_case_ (self ): _UpperCAmelCase : Any = ['this is gunna be a long sentence ' * 2_0] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = 1_0 _UpperCAmelCase : Dict = self.tokenizer(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def snake_case_ (self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def snake_case_ (self ): _UpperCAmelCase : Tuple = tempfile.mkdtemp() _UpperCAmelCase : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE__ ) @require_torch def snake_case_ (self ): _UpperCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) _UpperCAmelCase : Any = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def snake_case_ (self ): _UpperCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) _UpperCAmelCase : Optional[int] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) _UpperCAmelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def snake_case_ (self ): _UpperCAmelCase : str = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=3 , return_tensors="""pt""" ) _UpperCAmelCase : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=1_0 , return_tensors="""pt""" ) _UpperCAmelCase : Optional[Any] = targets['input_ids'] _UpperCAmelCase : Dict = shift_tokens_right(SCREAMING_SNAKE_CASE__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def snake_case_ (self ): _UpperCAmelCase : Dict = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
414
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = '''informer''' __SCREAMING_SNAKE_CASE : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str = "prob" , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Dict = prediction_length __a : Tuple = context_length or prediction_length __a : Tuple = distribution_output __a : Tuple = loss __a : str = input_size __a : Dict = num_time_features __a : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __a : str = scaling __a : Tuple = num_dynamic_real_features __a : int = num_static_real_features __a : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __a : Optional[Any] = cardinality else: __a : Optional[int] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __a : int = embedding_dimension else: __a : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __a : int = num_parallel_samples # Transformer architecture configuration __a : str = input_size * len(self.lags_sequence ) + self._number_of_features __a : Optional[int] = d_model __a : Union[str, Any] = encoder_attention_heads __a : int = decoder_attention_heads __a : Any = encoder_ffn_dim __a : Union[str, Any] = decoder_ffn_dim __a : List[Any] = encoder_layers __a : Optional[int] = decoder_layers __a : int = dropout __a : Optional[Any] = attention_dropout __a : Dict = activation_dropout __a : Union[str, Any] = encoder_layerdrop __a : Optional[int] = decoder_layerdrop __a : List[str] = activation_function __a : str = init_std __a : Optional[int] = use_cache # Informer __a : Union[str, Any] = attention_type __a : str = sampling_factor __a : Dict = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Any ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
47
0
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowercase_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Union[str, Any] ) -> List[Any]: self.assertEqual(len(SCREAMING_SNAKE_CASE__ ), len(SCREAMING_SNAKE_CASE__ ) ) for a, b in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, delta=SCREAMING_SNAKE_CASE__ ) def __UpperCAmelCase ( self : Any ) -> Any: _A = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step, 3 ) self.assertEqual(len(accumulator.gradients ), 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step, 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1e-2 ) def __UpperCAmelCase ( self : Dict ) -> Dict: _A = None ops.enable_eager_execution_internal() _A = tf.config.list_physical_devices('CPU' ) if len(SCREAMING_SNAKE_CASE__ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) _A = tf.config.list_logical_devices(device_type='CPU' ) _A = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): _A = GradientAccumulator() _A = tf.Variable([4.0, 3.0] ) _A = create_optimizer(5e-5, 10, 5 ) _A = tf.Variable([0.0, 0.0], trainable=SCREAMING_SNAKE_CASE__ ) def accumulate_on_replica(UpperCamelCase__ : Optional[Any] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients, [variable] ) ) ) @tf.function def accumulate(UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple ): with strategy.scope(): _A = strategy.experimental_local_results(SCREAMING_SNAKE_CASE__ ) local_variables[0].assign(SCREAMING_SNAKE_CASE__ ) local_variables[1].assign(SCREAMING_SNAKE_CASE__ ) strategy.run(SCREAMING_SNAKE_CASE__, args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(SCREAMING_SNAKE_CASE__ ) def _check_local_values(UpperCamelCase__ : Optional[Any], UpperCamelCase__ : int ): _A = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value(), SCREAMING_SNAKE_CASE__, tol=1e-2 ) self.assertListAlmostEqual(values[1].value(), SCREAMING_SNAKE_CASE__, tol=1e-2 ) accumulate([1.0, 2.0], [-1.0, 1.0] ) accumulate([3.0, -1.0], [-1.0, -1.0] ) accumulate([-2.0, 2.0], [3.0, -2.0] ) self.assertEqual(accumulator.step, 3 ) _check_local_values([2.0, 3.0], [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step, 0 ) _check_local_values([0.0, 0.0], [0.0, 0.0] )
107
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = (DDIMParallelScheduler,) __SCREAMING_SNAKE_CASE : Union[str, Any] = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : List[Any] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : Tuple = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) __a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a , __a : List[str] = 1_0, 0.0 __a : Dict = self.dummy_model() __a : str = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for t in scheduler.timesteps: __a : str = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : List[str] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' for timesteps in [1_0_0, 5_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = self.scheduler_classes[0] __a : List[str] = self.get_scheduler_config(steps_offset=1 ) __a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for t in [1, 1_0, 4_9]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ): self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : List[str] = self.scheduler_classes[0] __a : Union[str, Any] = self.get_scheduler_config() __a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5 def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : List[str] = self.scheduler_classes[0] __a : List[str] = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a , __a : Any = 1_0, 0.0 scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = self.dummy_model() __a : int = self.dummy_sample_deter __a : List[Any] = self.dummy_sample_deter + 0.1 __a : List[str] = self.dummy_sample_deter - 0.1 __a : Optional[Any] = samplea.shape[0] __a : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) __a : Union[str, Any] = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ ) __a : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __a : int = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE__ ) __a : Dict = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : List[str] = self.full_loop() __a : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Optional[int] = self.full_loop(prediction_type='v_prediction' ) __a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Union[str, Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) __a : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : Dict = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) __a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
47
0
'''simple docstring''' class _UpperCamelCase : '''simple docstring''' def __init__( self , a_ ) -> Union[str, Any]: lowercase : Union[str, Any] = size lowercase : Optional[Any] = [0] * size lowercase : Any = [0] * size @staticmethod def a__ ( a_ ) -> Optional[int]: return index | (index + 1) @staticmethod def a__ ( a_ ) -> List[Any]: return (index & (index + 1)) - 1 def a__ ( self , a_ , a_ ) -> Optional[int]: lowercase : str = value while index < self.size: lowercase : int = self.get_prev(SCREAMING_SNAKE_CASE__ ) + 1 if current_left_border == index: lowercase : List[Any] = value else: lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = self.get_next(SCREAMING_SNAKE_CASE__ ) def a__ ( self , a_ , a_ ) -> Union[str, Any]: right -= 1 # Because of right is exclusive lowercase : int = 0 while left <= right: lowercase : str = self.get_prev(SCREAMING_SNAKE_CASE__ ) if left <= current_left: lowercase : int = max(SCREAMING_SNAKE_CASE__ , self.tree[right] ) lowercase : str = current_left else: lowercase : Optional[Any] = max(SCREAMING_SNAKE_CASE__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
372
def UpperCAmelCase__ ( lowerCamelCase_ : list[int] , lowerCamelCase_ : list[int] ): # Check if the input is valid if not len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients __a , __a , __a : Optional[Any] = equationa __a , __a , __a : Optional[int] = equationa # Calculate the determinants of the matrices __a : str = aa * ba - aa * ba __a : Tuple = ca * ba - ca * ba __a : Union[str, Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __a : Any = determinant_x / determinant __a : Optional[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
47
0
"""simple docstring""" from collections import deque class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: lowercase__ : int = process_name # process name lowercase__ : Dict = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ : int = arrival_time lowercase__ : Any = burst_time # remaining burst time lowercase__ : List[str] = 0 # total time of the process wait in ready queue lowercase__ : Union[str, Any] = 0 # time from arrival time to completion time class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Dict: lowercase__ : Dict = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ : int = time_slices # unfinished process is in this ready_queue lowercase__ : List[Any] = queue # current time lowercase__ : Dict = current_time # finished process is in this sequence queue lowercase__ : deque[Process] = deque() def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : List[Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCAmelCase__( self , lowerCamelCase__ ) -> Union[str, Any]: lowercase__ : str = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: lowercase__ : List[str] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCAmelCase__( self , lowerCamelCase__ ) -> Any: lowercase__ : Tuple = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCAmelCase__( self , lowerCamelCase__ ) -> Dict: return [q.burst_time for q in queue] def UpperCAmelCase__( self , lowerCamelCase__ ) -> Dict: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: lowercase__ : deque[Process] = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE__ ) != 0: lowercase__ : Any = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ : str = 0 # set the process's turnaround time because it is finished lowercase__ : str = self.current_time - cp.arrival_time # set the completion time lowercase__ : Optional[Any] = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE__ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: lowercase__ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase__ : str = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ : Union[str, Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ : Optional[int] = 0 # set the finish time lowercase__ : Dict = self.current_time # update the process' turnaround time because it is finished lowercase__ : Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE__ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase__( self ) -> List[str]: for i in range(self.number_of_queues - 1 ): lowercase__ : Union[str, Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __snake_case = Process('P1', 0, 53) __snake_case = Process('P2', 0, 17) __snake_case = Process('P3', 0, 68) __snake_case = Process('P4', 0, 24) __snake_case = 3 __snake_case = [17, 25] __snake_case = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) __snake_case = Process('P1', 0, 53) __snake_case = Process('P2', 0, 17) __snake_case = Process('P3', 0, 68) __snake_case = Process('P4', 0, 24) __snake_case = 3 __snake_case = [17, 25] __snake_case = deque([Pa, Pa, Pa, Pa]) __snake_case = MLFQ(number_of_queues, time_slices, queue, 0) __snake_case = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( F"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( F"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
200
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
47
0
def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Dict = [] lowerCamelCase_ : Dict = set({"(", "[", "{"}) lowerCamelCase_ : str = set({")", "]", "}"}) lowerCamelCase_ : Dict = {'{': '}', '[': ']', '(': ')'} for i in range(len(lowerCamelCase_)): if s[i] in open_brackets: stack.append(s[i]) elif s[i] in closed_brackets and ( len(lowerCamelCase_) == 0 or (len(lowerCamelCase_) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase_) == 0 def __magic_name__ ( ): '''simple docstring''' lowerCamelCase_ : Any = input("Enter sequence of brackets: ") if is_balanced(lowerCamelCase_): print(lowerCamelCase_ , "is balanced") else: print(lowerCamelCase_ , "is not balanced") if __name__ == "__main__": main()
250
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__ = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
47
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Tuple = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = 'wavlm' def __init__( self : Dict , __magic_name__ : Dict=32 , __magic_name__ : Tuple=768 , __magic_name__ : Tuple=12 , __magic_name__ : int=12 , __magic_name__ : int=3072 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Tuple=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Dict=0.0 , __magic_name__ : List[Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[Any]=1E-5 , __magic_name__ : Union[str, Any]="group" , __magic_name__ : Tuple="gelu" , __magic_name__ : List[str]=(512, 512, 512, 512, 512, 512, 512) , __magic_name__ : Any=(5, 2, 2, 2, 2, 2, 2) , __magic_name__ : List[Any]=(10, 3, 3, 3, 3, 2, 2) , __magic_name__ : List[str]=False , __magic_name__ : List[str]=128 , __magic_name__ : int=16 , __magic_name__ : Dict=320 , __magic_name__ : Optional[Any]=800 , __magic_name__ : str=False , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[int]=0.05 , __magic_name__ : Tuple=10 , __magic_name__ : Any=2 , __magic_name__ : List[str]=0.0 , __magic_name__ : Dict=10 , __magic_name__ : Optional[Any]=320 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Dict=0.1 , __magic_name__ : Tuple=100 , __magic_name__ : int=256 , __magic_name__ : Union[str, Any]=256 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Optional[Any]="mean" , __magic_name__ : Dict=False , __magic_name__ : List[str]=False , __magic_name__ : List[str]=256 , __magic_name__ : Optional[Any]=(512, 512, 512, 512, 1500) , __magic_name__ : Dict=(5, 3, 3, 1, 1) , __magic_name__ : Optional[Any]=(1, 2, 3, 1, 1) , __magic_name__ : int=512 , __magic_name__ : Any=80 , __magic_name__ : List[str]=0 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[int]=2 , __magic_name__ : int=False , __magic_name__ : List[str]=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[str]=3 , __magic_name__ : Optional[Any]=None , **__magic_name__ : Optional[Any] , ): """simple docstring""" super().__init__(**__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = feat_extract_norm lowerCAmelCase__ = feat_extract_activation lowerCAmelCase__ = list(__magic_name__ ) lowerCAmelCase__ = list(__magic_name__ ) lowerCAmelCase__ = list(__magic_name__ ) lowerCAmelCase__ = conv_bias lowerCAmelCase__ = num_buckets lowerCAmelCase__ = max_bucket_distance lowerCAmelCase__ = num_conv_pos_embeddings lowerCAmelCase__ = num_conv_pos_embedding_groups lowerCAmelCase__ = len(self.conv_dim ) lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = feat_proj_dropout lowerCAmelCase__ = final_dropout lowerCAmelCase__ = layerdrop lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_ctc_classes lowerCAmelCase__ = vocab_size lowerCAmelCase__ = do_stable_layer_norm lowerCAmelCase__ = use_weighted_layer_sum lowerCAmelCase__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ = apply_spec_augment lowerCAmelCase__ = mask_time_prob lowerCAmelCase__ = mask_time_length lowerCAmelCase__ = mask_time_min_masks lowerCAmelCase__ = mask_feature_prob lowerCAmelCase__ = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCAmelCase__ = num_codevectors_per_group lowerCAmelCase__ = num_codevector_groups lowerCAmelCase__ = contrastive_logits_temperature lowerCAmelCase__ = num_negatives lowerCAmelCase__ = codevector_dim lowerCAmelCase__ = proj_codevector_dim lowerCAmelCase__ = diversity_loss_weight # ctc loss lowerCAmelCase__ = ctc_loss_reduction lowerCAmelCase__ = ctc_zero_infinity # adapter lowerCAmelCase__ = add_adapter lowerCAmelCase__ = adapter_kernel_size lowerCAmelCase__ = adapter_stride lowerCAmelCase__ = num_adapter_layers lowerCAmelCase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase__ = list(__magic_name__ ) lowerCAmelCase__ = list(__magic_name__ ) lowerCAmelCase__ = list(__magic_name__ ) lowerCAmelCase__ = xvector_output_dim @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
48
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : Optional[Any] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = 13 lowerCAmelCase__ = 7 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = 99 lowerCAmelCase__ = 32 lowerCAmelCase__ = 2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 37 lowerCAmelCase__ = "gelu" lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 512 lowerCAmelCase__ = 16 lowerCAmelCase__ = 2 lowerCAmelCase__ = 0.02 lowerCAmelCase__ = 3 lowerCAmelCase__ = 4 lowerCAmelCase__ = None def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = TFDistilBertModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = TFDistilBertForMaskedLM(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = TFDistilBertForQuestionAnswering(config=__magic_name__ ) lowerCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFDistilBertForSequenceClassification(__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFDistilBertForMultipleChoice(__magic_name__ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFDistilBertForTokenClassification(__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ((lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__)) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :List[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) snake_case__ :Dict = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) snake_case__ :List[str] = False snake_case__ :Tuple = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = TFDistilBertModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ , dim=37 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__magic_name__ ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase__ = TFDistilBertModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_tf class A ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) lowerCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ = model(__magic_name__ )[0] lowerCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __magic_name__ ) lowerCAmelCase__ = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1E-4 )
48
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any: '''simple docstring''' lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ ) else: lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCAmelCase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
48
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , *__magic_name__ : Any , **__magic_name__ : Dict ): """simple docstring""" warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
48
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class A : def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = block_sizes lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = d_model lowerCAmelCase__ = n_head lowerCAmelCase__ = d_head lowerCAmelCase__ = d_inner lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = 2 lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase__ = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase__ = self.num_hidden_layers + 2 def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case__ :Any = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case__ :str = False snake_case__ :Any = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @require_tf class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case__ :int = False snake_case__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
48
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :List[Any] = KandinskyInpaintPipeline snake_case__ :str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ :List[str] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ :List[Any] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ :Tuple = False @property def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return 32 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 32 @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.time_input_dim * 4 @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return 100 @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCAmelCase__ = MultilingualCLIP(__magic_name__ ) lowerCAmelCase__ = text_encoder.eval() return text_encoder @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase__ = UNetaDConditionModel(**__magic_name__ ) return model @property def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = self.dummy_tokenizer lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , steps_offset=1 , prediction_type="epsilon" , thresholding=__magic_name__ , ) lowerCAmelCase__ = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]=0 ): """simple docstring""" lowerCAmelCase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) lowerCAmelCase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(__magic_name__ ) ).convert("RGB" ).resize((256, 256) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(__magic_name__ ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(__magic_name__ ) else: lowerCAmelCase__ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) lowerCAmelCase__ = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = "cpu" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**__magic_name__ ) lowerCAmelCase__ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(__magic_name__ ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) lowerCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase__ = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = "a hat" lowerCAmelCase__ = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) lowerCAmelCase__ = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ ,lowerCAmelCase__ = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase__ = pipeline( __magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
48
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'umt5' snake_case__ :Any = ['past_key_values'] def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ): """simple docstring""" super().__init__( is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = d_kv lowerCAmelCase__ = d_ff lowerCAmelCase__ = num_layers lowerCAmelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase__ = num_heads lowerCAmelCase__ = relative_attention_num_buckets lowerCAmelCase__ = relative_attention_max_distance lowerCAmelCase__ = dropout_rate lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_factor lowerCAmelCase__ = feed_forward_proj lowerCAmelCase__ = use_cache lowerCAmelCase__ = self.feed_forward_proj.split("-" ) lowerCAmelCase__ = act_info[-1] lowerCAmelCase__ = act_info[0] == "gated" if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": lowerCAmelCase__ = "gelu_new" @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return self.d_model @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.num_heads @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.num_layers class A ( SCREAMING_SNAKE_CASE__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: lowerCAmelCase__ = "past_encoder_sequence + sequence" lowerCAmelCase__ = {0: "batch"} lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 13 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 5E-4
48
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :List[str] = 'bloom' snake_case__ :str = ['past_key_values'] snake_case__ :Optional[Any] = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : Any , __magic_name__ : List[str]=250880 , __magic_name__ : Dict=64 , __magic_name__ : List[str]=2 , __magic_name__ : Optional[int]=8 , __magic_name__ : Any=1E-5 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : int=True , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]=2 , __magic_name__ : str=False , __magic_name__ : int=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[int]=1 , __magic_name__ : Dict=False , **__magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase__ = kwargs.pop("n_embed" , __magic_name__ ) lowerCAmelCase__ = hidden_size if n_embed is None else n_embed lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = use_cache lowerCAmelCase__ = pretraining_tp lowerCAmelCase__ = apply_residual_connection_post_layernorm lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = slow_but_exact super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[Any] = version.parse('1.12' ) def __init__( self : Dict , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ): """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , "pad_token_id" , __magic_name__ ): # TODO: how to do that better? lowerCAmelCase__ = 0 @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__magic_name__ , direction="inputs" , inverted_values_shape=__magic_name__ ) lowerCAmelCase__ = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "sequence"} return common_inputs @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._config.n_layer @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._config.n_head @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return 1E-3 def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : "PreTrainedTokenizer" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , ): """simple docstring""" lowerCAmelCase__ = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase__ ,lowerCAmelCase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase__ = seqlen + 2 lowerCAmelCase__ = self._config.hidden_size // self.num_attention_heads lowerCAmelCase__ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase__ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase__ = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] lowerCAmelCase__ = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase__ = ordered_inputs["attention_mask"].dtype lowerCAmelCase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return 13
48
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class A : def __init__( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ): """simple docstring""" if nodea not in self.connections: self.add_node(__magic_name__ ) if nodea not in self.connections: self.add_node(__magic_name__ ) lowerCAmelCase__ = probability def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return list(self.connections ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]: '''simple docstring''' lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = Counter(graph.get_nodes() ) lowerCAmelCase__ = start for _ in range(UpperCamelCase_ ): lowerCAmelCase__ = graph.transition(UpperCamelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
48
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'dpt' def __init__( self : int , __magic_name__ : int=768 , __magic_name__ : int=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : Union[str, Any]=3072 , __magic_name__ : str="gelu" , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : str=0.02 , __magic_name__ : List[str]=1E-12 , __magic_name__ : Union[str, Any]=384 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Any=3 , __magic_name__ : List[str]=False , __magic_name__ : int=True , __magic_name__ : List[Any]=[2, 5, 8, 11] , __magic_name__ : List[Any]="project" , __magic_name__ : Tuple=[4, 2, 1, 0.5] , __magic_name__ : List[str]=[96, 192, 384, 768] , __magic_name__ : List[str]=256 , __magic_name__ : Any=-1 , __magic_name__ : Dict=False , __magic_name__ : Any=True , __magic_name__ : int=0.4 , __magic_name__ : Tuple=255 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Tuple=[1, 1024, 24, 24] , __magic_name__ : List[Any]=[0, 1] , __magic_name__ : str=None , **__magic_name__ : Union[str, Any] , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) lowerCAmelCase__ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } lowerCAmelCase__ = BitConfig(**__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): logger.info("Initializing the config with a `BiT` backbone." ) lowerCAmelCase__ = BitConfig(**__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) lowerCAmelCase__ = backbone_featmap_shape lowerCAmelCase__ = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = [] lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) lowerCAmelCase__ = readout_type lowerCAmelCase__ = reassemble_factors lowerCAmelCase__ = neck_hidden_sizes lowerCAmelCase__ = fusion_hidden_size lowerCAmelCase__ = head_in_index lowerCAmelCase__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase__ = use_auxiliary_head lowerCAmelCase__ = auxiliary_loss_weight lowerCAmelCase__ = semantic_loss_ignore_index lowerCAmelCase__ = semantic_classifier_dropout def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase__ = self.backbone_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output
48
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase__ : Optional[Any] = pytest.mark.integration UpperCAmelCase__ : str = {"comet"} UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None UpperCAmelCase__ : Optional[int] = {"code_eval"} UpperCAmelCase__ : List[Any] = os.name == "nt" UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"} UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : int ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : Any ) -> int: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class A ( parameterized.TestCase ): snake_case__ :Union[str, Any] = {} snake_case__ :Optional[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ ) # check parameters lowerCAmelCase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ): yield else: yield @contextmanager def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ): return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ ) with patch("datasets.load_metric" ) as mock_load_metric: lowerCAmelCase__ = load_local_metric yield @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ): """simple docstring""" def wrapper(__magic_name__ : Dict ): lowerCAmelCase__ = contextmanager(__magic_name__ ) lowerCAmelCase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowerCAmelCase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' import torch def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowerCAmelCase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def A ( UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' def load_from_checkpoint(UpperCamelCase_ : Tuple ): class A : def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ): """simple docstring""" assert len(__magic_name__ ) == 2 lowerCAmelCase__ = [0.19, 0.92] return scores, sum(__magic_name__ ) / len(__magic_name__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowerCAmelCase__ = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowerCAmelCase__ = load_from_checkpoint yield def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) ) lowerCAmelCase__ = "ERROR" lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
48
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase__ : str = get_tests_dir("fixtures") class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = mock.Mock() lowerCAmelCase__ = 500 lowerCAmelCase__ = {} lowerCAmelCase__ = HTTPError lowerCAmelCase__ = {} # Download this model to make sure it's in the cache. lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__magic_name__ ) as mock_head: lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class A ( unittest.TestCase ): @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any ): """simple docstring""" lowerCAmelCase__ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __magic_name__ , repo_id="test-feature-extractor" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __magic_name__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() lowerCAmelCase__ = CustomFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) lowerCAmelCase__ = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=__magic_name__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
48
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase__ : int = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M' snake_case__ :Optional[Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case__ :List[Any] = 'translator' snake_case__ :List[Any] = AutoTokenizer snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM snake_case__ :List[str] = LANGUAGE_CODES snake_case__ :List[Any] = ['text', 'text', 'text'] snake_case__ :List[Any] = ['text'] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) lowerCAmelCase__ = self.lang_to_code[src_lang] lowerCAmelCase__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
48
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = "▁" UpperCAmelCase__ : Dict = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : int = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } UpperCAmelCase__ : Dict = { "facebook/xglm-564M": 20_48, } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :List[Any] = VOCAB_FILES_NAMES snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Tuple = ['input_ids', 'attention_mask'] def __init__( self : int , __magic_name__ : str , __magic_name__ : Optional[int]="<s>" , __magic_name__ : int="</s>" , __magic_name__ : Optional[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : List[str]="<unk>" , __magic_name__ : Optional[int]="<pad>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Optional[Any] , ): """simple docstring""" lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCAmelCase__ = 7 lowerCAmelCase__ = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None lowerCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCAmelCase__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) if token_ids_a is None: return [1] + ([0] * len(__magic_name__ )) return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Dict ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Tuple ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = "".join(__magic_name__ ).replace(__magic_name__ , " " ).strip() return out_string def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
48
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'timm_backbone' def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = backbone lowerCAmelCase__ = num_channels lowerCAmelCase__ = features_only lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = True lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
48
1
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : Optional[Any] = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :List[str] = 'mask2former' snake_case__ :Dict = ['swin'] snake_case__ :List[str] = {'hidden_size': 'hidden_dim'} def __init__( self : Tuple , __magic_name__ : Optional[Dict] = None , __magic_name__ : int = 256 , __magic_name__ : int = 256 , __magic_name__ : int = 256 , __magic_name__ : int = 1024 , __magic_name__ : str = "relu" , __magic_name__ : int = 6 , __magic_name__ : int = 10 , __magic_name__ : int = 8 , __magic_name__ : float = 0.0 , __magic_name__ : int = 2048 , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : int = 4 , __magic_name__ : int = 255 , __magic_name__ : int = 100 , __magic_name__ : float = 0.1 , __magic_name__ : float = 2.0 , __magic_name__ : float = 5.0 , __magic_name__ : float = 5.0 , __magic_name__ : int = 12544 , __magic_name__ : float = 3.0 , __magic_name__ : float = 0.75 , __magic_name__ : float = 0.02 , __magic_name__ : float = 1.0 , __magic_name__ : bool = True , __magic_name__ : List[int] = [4, 8, 16, 32] , __magic_name__ : bool = None , **__magic_name__ : str , ): """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) lowerCAmelCase__ = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__magic_name__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = backbone_config.pop("model_type" ) lowerCAmelCase__ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ = config_class.from_dict(__magic_name__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) lowerCAmelCase__ = backbone_config lowerCAmelCase__ = feature_size lowerCAmelCase__ = mask_feature_size lowerCAmelCase__ = hidden_dim lowerCAmelCase__ = encoder_feedforward_dim lowerCAmelCase__ = activation_function lowerCAmelCase__ = encoder_layers lowerCAmelCase__ = decoder_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = dropout lowerCAmelCase__ = dim_feedforward lowerCAmelCase__ = pre_norm lowerCAmelCase__ = enforce_input_projection lowerCAmelCase__ = common_stride lowerCAmelCase__ = ignore_value lowerCAmelCase__ = num_queries lowerCAmelCase__ = no_object_weight lowerCAmelCase__ = class_weight lowerCAmelCase__ = mask_weight lowerCAmelCase__ = dice_weight lowerCAmelCase__ = train_num_points lowerCAmelCase__ = oversample_ratio lowerCAmelCase__ = importance_sample_ratio lowerCAmelCase__ = init_std lowerCAmelCase__ = init_xavier_std lowerCAmelCase__ = use_auxiliary_loss lowerCAmelCase__ = feature_strides lowerCAmelCase__ = output_auxiliary_logits lowerCAmelCase__ = decoder_layers super().__init__(**__magic_name__ ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : PretrainedConfig , **__magic_name__ : str ): """simple docstring""" return cls( backbone_config=__magic_name__ , **__magic_name__ , ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.backbone_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output
48
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base' snake_case__ :List[Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case__ :List[Any] = 'image_captioner' snake_case__ :Optional[int] = AutoModelForVisionaSeq snake_case__ :Optional[int] = ['image'] snake_case__ :Any = ['text'] def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ): """simple docstring""" return self.pre_processor(images=__magic_name__ , return_tensors="pt" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
48
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) def A ( UpperCamelCase_ : Union[tf.Tensor, np.ndarray] ) -> List[int]: '''simple docstring''' if isinstance(UpperCamelCase_ , np.ndarray ): return list(tensor.shape ) lowerCAmelCase__ = tf.shape(UpperCamelCase_ ) if tensor.shape == tf.TensorShape(UpperCamelCase_ ): return dynamic lowerCAmelCase__ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCamelCase_ )] def A ( UpperCamelCase_ : tf.Tensor , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[str] = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCamelCase_ , name=UpperCamelCase_ ) def A ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str=1E-5 , UpperCamelCase_ : Dict=-1 ) -> int: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized lowerCAmelCase__ ,lowerCAmelCase__ = tf.nn.moments(UpperCamelCase_ , axes=[axis] , keepdims=UpperCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCAmelCase__ = [1] * inputs.shape.rank lowerCAmelCase__ = shape_list(UpperCamelCase_ )[axis] lowerCAmelCase__ = tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) # Compute layer normalization using the batch_normalization # function. lowerCAmelCase__ = tf.nn.batch_normalization( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , offset=UpperCamelCase_ , scale=UpperCamelCase_ , variance_epsilon=UpperCamelCase_ , ) return outputs def A ( UpperCamelCase_ : int , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : str=-1 ) -> Union[str, Any]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCAmelCase__ = tf.shape(UpperCamelCase_ ) lowerCAmelCase__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowerCAmelCase__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) def A ( UpperCamelCase_ : tf.Tensor ) -> tf.Tensor: '''simple docstring''' if not isinstance(UpperCamelCase_ , tf.Tensor ): lowerCAmelCase__ = tf.convert_to_tensor(UpperCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCAmelCase__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCAmelCase__ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCAmelCase__ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A ( UpperCamelCase_ : tf.Tensor , UpperCamelCase_ : int , UpperCamelCase_ : str = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( UpperCamelCase_ , tf.cast(UpperCamelCase_ , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCamelCase_ )}) must be smaller than the embedding """ F"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def A ( UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCAmelCase__ = [x for x in data if len(UpperCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) lowerCAmelCase__ = np.asarray(UpperCamelCase_ ) lowerCAmelCase__ = 1 lowerCAmelCase__ = np.array_split(UpperCamelCase_ , UpperCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowerCAmelCase__ = np.array_split(UpperCamelCase_ , UpperCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCamelCase_ ): lowerCAmelCase__ = chunk_data else: lowerCAmelCase__ = data def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> Optional[Any]: '''simple docstring''' if name in group.attrs: lowerCAmelCase__ = [n.decode("utf8" ) if hasattr(UpperCamelCase_ , "decode" ) else n for n in group.attrs[name]] else: lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(UpperCamelCase_ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def A ( UpperCamelCase_ : Dict ) -> List[str]: '''simple docstring''' def _expand_single_ad_tensor(UpperCamelCase_ : Optional[Any] ): if isinstance(UpperCamelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCamelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCamelCase_ )
48
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = "▁" UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ : Optional[Any] = { "facebook/mbart-large-50-one-to-many-mmt": 10_24, } # fmt: off UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = VOCAB_FILES_NAMES snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Tuple = ['input_ids', 'attention_mask'] snake_case__ :List[int] = [] snake_case__ :List[int] = [] def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ): """simple docstring""" lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX" lowerCAmelCase__ = self.lang_code_to_id[self._src_lang] lowerCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : List[Any] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = "" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(__magic_name__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) lowerCAmelCase__ = [1] * len(self.prefix_tokens ) lowerCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase__ = src_lang lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ ) lowerCAmelCase__ = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[src_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[tgt_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id]
48
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class A ( unittest.TestCase ): snake_case__ :Optional[int] = MODEL_FOR_MASKED_LM_MAPPING snake_case__ :str = TF_MODEL_FOR_MASKED_LM_MAPPING def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) lowerCAmelCase__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(__magic_name__ , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1E-05, "token": 38015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1E-05, "token": 25506, "token_str": " accuser"}, ] , ) lowerCAmelCase__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(__magic_name__ , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1E-05, "token": 38015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1E-05, "token": 25506, "token_str": " accuser", }, ] , ) lowerCAmelCase__ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(__magic_name__ , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2E-05, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2E-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9E-05, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) lowerCAmelCase__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(__magic_name__ , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2E-05, "token": 35676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2E-05, "token": 16416, "token_str": "ELS"}, ] , ) lowerCAmelCase__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(__magic_name__ , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2E-05, "token": 35676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2E-05, "token": 16416, "token_str": "ELS"}, ] , ) lowerCAmelCase__ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(__magic_name__ , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1E-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2E-05, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2E-05, "token": 13606, "token_str": " Clara"}, ] , ) lowerCAmelCase__ = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(__magic_name__ , decimals=6 ) , [ [ { "score": 2.2E-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2E-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2E-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2E-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() lowerCAmelCase__ = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__magic_name__ , __magic_name__ ) @slow @require_torch def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(__magic_name__ ) @slow @require_tf def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"}, ] , ) lowerCAmelCase__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(__magic_name__ ) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 12790, "token_str": " Lyon", }, ] , ) lowerCAmelCase__ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) lowerCAmelCase__ = None lowerCAmelCase__ = None self.run_pipeline_test(__magic_name__ , [] ) @require_tf def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) lowerCAmelCase__ = None lowerCAmelCase__ = None self.run_pipeline_test(__magic_name__ , [] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : List[str] ): """simple docstring""" if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) lowerCAmelCase__ = FillMaskPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) lowerCAmelCase__ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = fill_masker.tokenizer lowerCAmelCase__ = fill_masker.model lowerCAmelCase__ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( __magic_name__ , [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ] , ) lowerCAmelCase__ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( __magic_name__ , [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ] , ) lowerCAmelCase__ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( __magic_name__ , [ [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ], [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ], ] , ) with self.assertRaises(__magic_name__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__magic_name__ ): fill_masker("This is" ) self.run_test_top_k(__magic_name__ , __magic_name__ ) self.run_test_targets(__magic_name__ , __magic_name__ ) self.run_test_top_k_targets(__magic_name__ , __magic_name__ ) self.fill_mask_with_duplicate_targets_and_top_k(__magic_name__ , __magic_name__ ) self.fill_mask_with_multiple_masks(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = tokenizer.get_vocab() lowerCAmelCase__ = sorted(vocab.keys() )[:2] # Pipeline argument lowerCAmelCase__ = FillMaskPipeline(model=__magic_name__ , tokenizer=__magic_name__ , targets=__magic_name__ ) lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __magic_name__ , [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ] , ) lowerCAmelCase__ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , __magic_name__ ) lowerCAmelCase__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(__magic_name__ ) ) # Call argument lowerCAmelCase__ = FillMaskPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__magic_name__ ) self.assertEqual( __magic_name__ , [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ] , ) lowerCAmelCase__ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , __magic_name__ ) lowerCAmelCase__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(__magic_name__ ) ) # Score equivalence lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__magic_name__ ) lowerCAmelCase__ = [top_mask["token_str"] for top_mask in outputs] lowerCAmelCase__ = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__magic_name__ ) == set(__magic_name__ ): lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__magic_name__ ) lowerCAmelCase__ = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__magic_name__ ) , nested_simplify(__magic_name__ ) ) # Raises with invalid with self.assertRaises(__magic_name__ ): lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__magic_name__ ): lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[""] ) with self.assertRaises(__magic_name__ ): lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets="" ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = FillMaskPipeline(model=__magic_name__ , tokenizer=__magic_name__ , top_k=2 ) lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __magic_name__ , [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ] , ) lowerCAmelCase__ = FillMaskPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __magic_name__ , [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ] , ) self.assertEqual(nested_simplify(__magic_name__ ) , nested_simplify(__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Dict , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = tokenizer.get_vocab() lowerCAmelCase__ = FillMaskPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) # top_k=2, ntargets=3 lowerCAmelCase__ = sorted(vocab.keys() )[:3] lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=__magic_name__ ) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCAmelCase__ = [el["token_str"] for el in sorted(__magic_name__ , key=lambda __magic_name__ : x["score"] , reverse=__magic_name__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__magic_name__ ).issubset(__magic_name__ ): lowerCAmelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=__magic_name__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(__magic_name__ ) , nested_simplify(__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = FillMaskPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) lowerCAmelCase__ = tokenizer.get_vocab() # String duplicates + id duplicates lowerCAmelCase__ = sorted(vocab.keys() )[:3] lowerCAmelCase__ = [targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCAmelCase__ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=__magic_name__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__magic_name__ ) , 3 ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : str , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = FillMaskPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) lowerCAmelCase__ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __magic_name__ , [ [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ], [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ], [ {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, {"sequence": ANY(__magic_name__ ), "score": ANY(__magic_name__ ), "token": ANY(__magic_name__ ), "token_str": ANY(__magic_name__ )}, ], ] , )
48
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 if start < end: lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 ) count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ ) return count def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ = start - 1 for index in range(UpperCamelCase_ , UpperCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ = new_pivot_index + 1 lowerCAmelCase__ = a[new_pivot_index] lowerCAmelCase__ = a[index] lowerCAmelCase__ = temp lowerCAmelCase__ = a[new_pivot_index + 1] lowerCAmelCase__ = a[end] lowerCAmelCase__ = temp return new_pivot_index + 1, count UpperCAmelCase__ : Tuple = TemporaryFile() UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase__ : Optional[Any] = np.load(outfile) UpperCAmelCase__ : Any = len(M) - 1 UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
48
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A ( unittest.TestCase ): snake_case__ :List[Any] = ViTImageProcessor if is_vision_available() else None @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = (3, 32, 128) lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) lowerCAmelCase__ = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } lowerCAmelCase__ = os.path.join(self.tmpdirname , __magic_name__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__magic_name__ : Optional[int] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__magic_name__ : Optional[int] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) lowerCAmelCase__ = Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) return image_input def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__magic_name__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) lowerCAmelCase__ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__magic_name__ , return_tensors="np" ) lowerCAmelCase__ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = "test" lowerCAmelCase__ = processor(text=__magic_name__ ) lowerCAmelCase__ = tokenizer(__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = "test" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.char_decode(__magic_name__ ) lowerCAmelCase__ = tokenizer.batch_decode(__magic_name__ ) lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = None lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCAmelCase__ = torch.randn(1 , 27 , 38 ) lowerCAmelCase__ = torch.randn(1 , 27 , 50257 ) lowerCAmelCase__ = torch.randn(1 , 27 , 30522 ) lowerCAmelCase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
48
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A ( UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase__ = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase__ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase__ = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase__ = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase__ = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] else: lowerCAmelCase__ = rename_key(UpperCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ = val.squeeze_() else: lowerCAmelCase__ = val return orig_state_dict def A ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any: '''simple docstring''' lowerCAmelCase__ = GroupViTConfig() lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval() lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0) # verify result lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase_ ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 ) processor.save_pretrained(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) print("Successfully saved processor and model to" , UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(UpperCamelCase_ , organization="nielsr" ) model.push_to_hub(UpperCamelCase_ , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) UpperCAmelCase__ : Any = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
48
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[Any] = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ : Optional[Any] = 1_00 UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def A ( UpperCamelCase_ : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase__ = set() lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( UpperCamelCase_ : int = 50_00 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , UpperCamelCase_ ): if len(partition(UpperCamelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
48
1
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore UpperCAmelCase__ : Any = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" UpperCAmelCase__ : Dict = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print("\n".join(upper_files) + "\n") UpperCAmelCase__ : Union[str, Any] = [file for file in filepaths if " " in file] if space_files: print(F"{len(space_files)} files contain space characters:") print("\n".join(space_files) + "\n") UpperCAmelCase__ : Any = [file for file in filepaths if "-" in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print("\n".join(hyphen_files) + "\n") UpperCAmelCase__ : Any = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print("\n".join(nodir_files) + "\n") UpperCAmelCase__ : Optional[Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
48
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"} UpperCAmelCase__ : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27} class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ): """simple docstring""" return self.decoder.get(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" ) return (vocab_file,)
48
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
'''simple docstring''' from math import sqrt def A ( UpperCamelCase_ : int ) -> int: '''simple docstring''' lowerCAmelCase__ = 0 for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase_ ): total += i + n // i elif i == sqrt(UpperCamelCase_ ): total += i return total - n def A ( UpperCamelCase_ : int = 1_00_00 ) -> int: '''simple docstring''' lowerCAmelCase__ = sum( i for i in range(1 , UpperCamelCase_ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
48
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = ['pixel_values'] def __init__( self : Union[str, Any] , __magic_name__ : bool = True , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 255 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : Any , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = size if size is not None else {"shortest_edge": 256} lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase__ = get_resize_output_image_size(__magic_name__ , size=size["shortest_edge"] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__magic_name__ , size=(size["height"], size["width"]) , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] ): """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Tuple , ): """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : ImageInput , __magic_name__ : Optional[bool] = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[float] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: lowerCAmelCase__ = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : List[Tuple] = None ): """simple docstring""" lowerCAmelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__magic_name__ ): lowerCAmelCase__ = target_sizes.numpy() lowerCAmelCase__ = [] for idx in range(len(__magic_name__ ) ): lowerCAmelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__magic_name__ ) lowerCAmelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__magic_name__ ) else: lowerCAmelCase__ = logits.argmax(dim=1 ) lowerCAmelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
48
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.mean(1 ) # Centralize the data of class i lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase_ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = features.mean(1 ) lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.shape[1] lowerCAmelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' if features.any(): lowerCAmelCase__ = features.mean(1 ) # Center the dataset lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) ) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1] lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: lowerCAmelCase__ ,lowerCAmelCase__ = eigh( covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , ) lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions] lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ ) lowerCAmelCase__ = svd_matrix[:, 0:dimensions] lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = linear_discriminant_analysis( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if isinstance(UpperCamelCase_ , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ ) if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
48
1
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split UpperCAmelCase__ : Tuple = datasets.load_iris() UpperCAmelCase__ : Any = np.array(data["data"]) UpperCAmelCase__ : Union[str, Any] = np.array(data["target"]) UpperCAmelCase__ : List[str] = data["target_names"] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = train_test_split(X, y) def A ( UpperCamelCase_ : str , UpperCamelCase_ : Tuple ) -> str: '''simple docstring''' return np.linalg.norm(np.array(UpperCamelCase_ ) - np.array(UpperCamelCase_ ) ) def A ( UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str=5 ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = zip(UpperCamelCase_ , UpperCamelCase_ ) # List of distances of all points from the point to be classified lowerCAmelCase__ = [] for data_point in data: lowerCAmelCase__ = euclidean_distance(data_point[0] , UpperCamelCase_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCAmelCase__ = [i[1] for i in sorted(UpperCamelCase_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCAmelCase__ = Counter(UpperCamelCase_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
48
'''simple docstring''' def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list: '''simple docstring''' lowerCAmelCase__ = word.split() def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str: lowerCAmelCase__ = max_width - width lowerCAmelCase__ = len(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase_ ): num_spaces_between_words_list[i] += 1 lowerCAmelCase__ = [] for i in range(UpperCamelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 for word in words: if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase_ ) width += len(UpperCamelCase_ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) # reset new line and new width lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ ) lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ ) answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
48
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = 'falcon' snake_case__ :Optional[Any] = ['past_key_values'] def __init__( self : int , __magic_name__ : Dict=65024 , __magic_name__ : Tuple=4544 , __magic_name__ : Union[str, Any]=32 , __magic_name__ : List[Any]=71 , __magic_name__ : Tuple=1E-5 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Any=None , __magic_name__ : Optional[int]=False , __magic_name__ : List[Any]=False , __magic_name__ : Optional[Any]=True , __magic_name__ : Tuple=True , __magic_name__ : int=False , __magic_name__ : Optional[Any]=11 , __magic_name__ : Dict=11 , **__magic_name__ : List[Any] , ): """simple docstring""" lowerCAmelCase__ = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase__ = kwargs.pop("n_embed" , __magic_name__ ) lowerCAmelCase__ = hidden_size if n_embed is None else n_embed lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = use_cache lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = num_attention_heads if num_kv_heads is None else num_kv_heads lowerCAmelCase__ = alibi lowerCAmelCase__ = new_decoder_architecture lowerCAmelCase__ = multi_query # Ignored when new_decoder_architecture is True lowerCAmelCase__ = parallel_attn lowerCAmelCase__ = bias super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return self.hidden_size // self.num_attention_heads @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return not self.alibi
48
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase__ : str = sys.version_info >= (3, 10) def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class A : snake_case__ :int snake_case__ :float snake_case__ :str snake_case__ :bool @dataclass class A : snake_case__ :int = 42 snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :Optional[bool] = None class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'titi' snake_case__ :Optional[int] = 'toto' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'titi' snake_case__ :str = 'toto' snake_case__ :int = 42 @dataclass class A : snake_case__ :BasicEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.foo ) @dataclass class A : snake_case__ :MixedTypeEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = MixedTypeEnum(self.foo ) @dataclass class A : snake_case__ :Optional[int] = None snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :Optional[str] = None snake_case__ :Optional[List[str]] = list_field(default=[] ) snake_case__ :Optional[List[int]] = list_field(default=[] ) @dataclass class A : snake_case__ :List[int] = list_field(default=[] ) snake_case__ :List[int] = list_field(default=[1, 2, 3] ) snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : snake_case__ :List[int] = field() snake_case__ :str = field() snake_case__ :BasicEnum = field() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.required_enum ) @dataclass class A : snake_case__ :int snake_case__ :"BasicEnum" = field() snake_case__ :"Optional[bool]" = None snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} ) snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :bool | None = None @dataclass class A : snake_case__ :int | None = None snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :str | None = None snake_case__ :list[str] | None = list_field(default=[] ) snake_case__ :list[int] | None = list_field(default=[] ) class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) lowerCAmelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" @dataclass class A : snake_case__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) lowerCAmelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
48
1
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class A : def __init__( self : Dict , __magic_name__ : List[str] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : List[Any]=None , __magic_name__ : int="resnet50" , __magic_name__ : List[Any]=3 , __magic_name__ : Dict=32 , __magic_name__ : int=3 , __magic_name__ : List[str]=True , __magic_name__ : Any=True , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = out_indices if out_indices is not None else [4] lowerCAmelCase__ = stage_names lowerCAmelCase__ = out_features lowerCAmelCase__ = backbone lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = is_training def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = TimmBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ ,lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Any = (TimmBackbone,) if is_torch_available() else () snake_case__ :Optional[int] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case__ :Optional[Any] = False snake_case__ :Union[str, Any] = False snake_case__ :Tuple = False snake_case__ :int = False def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = TimmBackboneModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = "resnet18" lowerCAmelCase__ = "microsoft/resnet-18" lowerCAmelCase__ = AutoBackbone.from_pretrained(__magic_name__ , use_timm_backbone=__magic_name__ ) lowerCAmelCase__ = AutoBackbone.from_pretrained(__magic_name__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase__ = AutoBackbone.from_pretrained(__magic_name__ , use_timm_backbone=__magic_name__ , out_indices=[1, 2, 3] ) lowerCAmelCase__ = AutoBackbone.from_pretrained(__magic_name__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(__magic_name__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True lowerCAmelCase__ = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase__ = self.all_model_classes[0] lowerCAmelCase__ = model_class(__magic_name__ ) model.to(__magic_name__ ) lowerCAmelCase__ = self._prepare_for_class(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = model(**__magic_name__ ) lowerCAmelCase__ = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase__ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase__ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__magic_name__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(**__magic_name__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase__ = copy.deepcopy(__magic_name__ ) lowerCAmelCase__ = None lowerCAmelCase__ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(**__magic_name__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase__ = copy.deepcopy(__magic_name__ ) lowerCAmelCase__ = False lowerCAmelCase__ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(**__magic_name__ )
48
'''simple docstring''' import sys from collections import defaultdict class A : def __init__( self : Any ): """simple docstring""" lowerCAmelCase__ = [] def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ): """simple docstring""" return self.node_position[vertex] def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = pos def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase__ = 2 * start + 1 else: lowerCAmelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child] lowerCAmelCase__ ,lowerCAmelCase__ = ( heap[start], positions[start], ) lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa lowerCAmelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __magic_name__ ) self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = position[index] while index != 0: lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase__ = heap[parent] lowerCAmelCase__ = position[parent] self.set_position(position[parent] , __magic_name__ ) else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , __magic_name__ ) break lowerCAmelCase__ = parent else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , 0 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1 for i in range(__magic_name__ , -1 , -1 ): self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = positions[0] lowerCAmelCase__ = sys.maxsize self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ ) return temp def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = Heap() lowerCAmelCase__ = [0] * len(UpperCamelCase_ ) lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase__ = [] for vertex in range(len(UpperCamelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase_ ) heap.node_position.append(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = 1 lowerCAmelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase__ = 0 lowerCAmelCase__ = distance heap.heapify(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(1 , len(UpperCamelCase_ ) ): lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase_ )] ): lowerCAmelCase__ = distance heap.bottom_to_top( UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ : str = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ : int = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
48
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } UpperCAmelCase__ : Tuple = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ) -> Dict: '''simple docstring''' for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase__ = "lm_head" lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: lowerCAmelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(UpperCamelCase_ )[0].split("." )[-2] lowerCAmelCase__ = mapped_key.replace("*" , UpperCamelCase_ ) if "weight_g" in name: lowerCAmelCase__ = "weight_g" elif "weight_v" in name: lowerCAmelCase__ = "weight_v" elif "bias" in name: lowerCAmelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = "weight" else: lowerCAmelCase__ = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase__ = full_name.split("conv_layers." )[-1] lowerCAmelCase__ = name.split("." ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase_ ) @torch.no_grad() def A ( UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : int=True ) -> Tuple: '''simple docstring''' if config_path is not None: lowerCAmelCase__ = UniSpeechConfig.from_pretrained(UpperCamelCase_ ) else: lowerCAmelCase__ = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load_from_json(UpperCamelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "vocab.json" ) if not os.path.isdir(UpperCamelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCamelCase_ ) ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 42 lowerCAmelCase__ = 43 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = WavaVecaPhonemeCTCTokenizer( UpperCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCamelCase_ , ) lowerCAmelCase__ = True if config.feat_extract_norm == "layer" else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = UniSpeechForCTC(UpperCamelCase_ ) else: lowerCAmelCase__ = UniSpeechForPreTraining(UpperCamelCase_ ) if is_finetuned: lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) hf_unispeech.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCAmelCase__ : List[str] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
48
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase__ : Tuple = 5 UpperCAmelCase__ : List[Any] = 10 @require_sentencepiece @require_tokenizers class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Tuple = SpeechaTextTokenizer snake_case__ :Dict = False snake_case__ :Optional[int] = True def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() lowerCAmelCase__ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = "<pad>" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class A ( unittest.TestCase ): snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium' snake_case__ :Tuple = 'C\'est trop cool' snake_case__ :List[str] = 'Esto es genial' @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = "fr" lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase__ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
48
1
'''simple docstring''' def A ( UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ = [], [] while len(UpperCamelCase_ ) > 1: lowerCAmelCase__ ,lowerCAmelCase__ = min(UpperCamelCase_ ), max(UpperCamelCase_ ) start.append(UpperCamelCase_ ) end.append(UpperCamelCase_ ) collection.remove(UpperCamelCase_ ) collection.remove(UpperCamelCase_ ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCAmelCase__ : str = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ : str = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
48
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ : Tuple = logging.get_logger(__name__) # General docstring UpperCAmelCase__ : int = "RegNetConfig" # Base docstring UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase__ : Tuple = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat" UpperCAmelCase__ : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) ) lowerCAmelCase__ = self.normalization(__magic_name__ ) lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config.num_channels lowerCAmelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = shape_list(__magic_name__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) ) lowerCAmelCase__ = self.embedder(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ): """simple docstring""" return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ ) class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) lowerCAmelCase__ = [ tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.pooler(__magic_name__ ) for layer_module in self.attention: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ), *[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ): """simple docstring""" for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ): """simple docstring""" lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(__magic_name__ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ ) @keras_serializable class A ( tf.keras.layers.Layer ): snake_case__ :List[Any] = RegNetConfig def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" ) lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) @unpack_inputs def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = self.encoder( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(__magic_name__ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = RegNetConfig snake_case__ :Optional[Any] = 'regnet' snake_case__ :Tuple = 'pixel_values' @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) # classification head lowerCAmelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier[0](__magic_name__ ) lowerCAmelCase__ = self.classifier[1](__magic_name__ ) lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
48
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase__ : str = sys.version_info >= (3, 10) def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class A : snake_case__ :int snake_case__ :float snake_case__ :str snake_case__ :bool @dataclass class A : snake_case__ :int = 42 snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :Optional[bool] = None class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'titi' snake_case__ :Optional[int] = 'toto' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'titi' snake_case__ :str = 'toto' snake_case__ :int = 42 @dataclass class A : snake_case__ :BasicEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.foo ) @dataclass class A : snake_case__ :MixedTypeEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = MixedTypeEnum(self.foo ) @dataclass class A : snake_case__ :Optional[int] = None snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :Optional[str] = None snake_case__ :Optional[List[str]] = list_field(default=[] ) snake_case__ :Optional[List[int]] = list_field(default=[] ) @dataclass class A : snake_case__ :List[int] = list_field(default=[] ) snake_case__ :List[int] = list_field(default=[1, 2, 3] ) snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : snake_case__ :List[int] = field() snake_case__ :str = field() snake_case__ :BasicEnum = field() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.required_enum ) @dataclass class A : snake_case__ :int snake_case__ :"BasicEnum" = field() snake_case__ :"Optional[bool]" = None snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} ) snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :bool | None = None @dataclass class A : snake_case__ :int | None = None snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :str | None = None snake_case__ :list[str] | None = list_field(default=[] ) snake_case__ :list[int] | None = list_field(default=[] ) class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) lowerCAmelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" @dataclass class A : snake_case__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) lowerCAmelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
48
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def A ( UpperCamelCase_ : Tuple ) -> int: '''simple docstring''' for param in module.parameters(): lowerCAmelCase__ = False def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def A ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = datetime.now() lowerCAmelCase__ = current_time.strftime("%H:%M:%S" ) return timestamp
48
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCAmelCase__ : Union[str, Any] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase__ : Tuple = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" UpperCAmelCase__ : Optional[int] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , ): """simple docstring""" lowerCAmelCase__ = len(references[0] ) if any(len(__magic_name__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(__magic_name__ )] lowerCAmelCase__ = TER( normalized=__magic_name__ , no_punct=__magic_name__ , asian_support=__magic_name__ , case_sensitive=__magic_name__ , ) lowerCAmelCase__ = sb_ter.corpus_score(__magic_name__ , __magic_name__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
48
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCAmelCase__ : List[str] = "src/diffusers" # Matches is_xxx_available() UpperCAmelCase__ : Tuple = re.compile(R"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla UpperCAmelCase__ : Optional[int] = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") UpperCAmelCase__ : Tuple = "\n{0} = None\n" UpperCAmelCase__ : str = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" UpperCAmelCase__ : Dict = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def A ( UpperCamelCase_ : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = _re_backend.findall(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 0: return None return "_and_".join(UpperCamelCase_ ) def A ( ) -> Tuple: '''simple docstring''' with open(os.path.join(UpperCamelCase_ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCAmelCase__ = 0 lowerCAmelCase__ = {} # Go through the end of the file while line_index < len(UpperCamelCase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCAmelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(UpperCamelCase_ ) and len(lines[line_index] ) > 1: lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_single_line_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = objects else: line_index += 1 return backend_specific_objects def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(UpperCamelCase_ ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCamelCase_ , UpperCamelCase_ ) else: return DUMMY_CLASS.format(UpperCamelCase_ , UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[Any]=None ) -> int: '''simple docstring''' if backend_specific_objects is None: lowerCAmelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCAmelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCAmelCase__ = "[" + ", ".join(F"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" lowerCAmelCase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCamelCase_ , UpperCamelCase_ ) for o in objects] ) lowerCAmelCase__ = dummy_file return dummy_files def A ( UpperCamelCase_ : Dict=False ) -> str: '''simple docstring''' lowerCAmelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCAmelCase__ = {"torch": "pt"} # Locate actual dummy modules and read their content. lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "utils" ) lowerCAmelCase__ = { backend: os.path.join(UpperCamelCase_ , F"""dummy_{short_names.get(UpperCamelCase_ , UpperCamelCase_ )}_objects.py""" ) for backend in dummy_files.keys() } lowerCAmelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.read() else: lowerCAmelCase__ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(UpperCamelCase_ , UpperCamelCase_ )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"""diffusers.utils.dummy_{short_names.get(UpperCamelCase_ , UpperCamelCase_ )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() check_dummies(args.fix_and_overwrite)
48
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any: '''simple docstring''' lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ ) else: lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCAmelCase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
48
1
'''simple docstring''' from PIL import Image def A ( UpperCamelCase_ : Image , UpperCamelCase_ : int ) -> Image: '''simple docstring''' lowerCAmelCase__ = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(UpperCamelCase_ : int ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(UpperCamelCase_ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 UpperCAmelCase__ : List[str] = change_contrast(img, 1_70) cont_img.save("image_data/lena_high_contrast.png", format="png")
48
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class A : def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = block_sizes lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = d_model lowerCAmelCase__ = n_head lowerCAmelCase__ = d_head lowerCAmelCase__ = d_inner lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = 2 lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase__ = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase__ = self.num_hidden_layers + 2 def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case__ :Any = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case__ :str = False snake_case__ :Any = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @require_tf class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case__ :int = False snake_case__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
48
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings UpperCAmelCase__ : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(SCREAMING_SNAKE_CASE__ ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'rag' snake_case__ :int = True def __init__( self : Dict , __magic_name__ : Tuple=None , __magic_name__ : Tuple=True , __magic_name__ : List[Any]=None , __magic_name__ : int=None , __magic_name__ : Optional[int]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : int=None , __magic_name__ : Dict=" / " , __magic_name__ : Optional[Any]=" // " , __magic_name__ : Dict=5 , __magic_name__ : Any=300 , __magic_name__ : int=768 , __magic_name__ : Any=8 , __magic_name__ : Optional[int]="wiki_dpr" , __magic_name__ : Union[str, Any]="train" , __magic_name__ : str="compressed" , __magic_name__ : List[str]=None , __magic_name__ : List[Any]=None , __magic_name__ : int=False , __magic_name__ : Dict=False , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=True , __magic_name__ : Optional[Any]=False , __magic_name__ : Union[str, Any]=False , __magic_name__ : Dict=False , __magic_name__ : List[str]=True , __magic_name__ : Dict=None , **__magic_name__ : List[str] , ): """simple docstring""" super().__init__( bos_token_id=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , prefix=__magic_name__ , vocab_size=__magic_name__ , **__magic_name__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCAmelCase__ = kwargs.pop("question_encoder" ) lowerCAmelCase__ = question_encoder_config.pop("model_type" ) lowerCAmelCase__ = kwargs.pop("generator" ) lowerCAmelCase__ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowerCAmelCase__ = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = reduce_loss lowerCAmelCase__ = label_smoothing lowerCAmelCase__ = exclude_bos_score lowerCAmelCase__ = do_marginalize lowerCAmelCase__ = title_sep lowerCAmelCase__ = doc_sep lowerCAmelCase__ = n_docs lowerCAmelCase__ = max_combined_length lowerCAmelCase__ = dataset lowerCAmelCase__ = dataset_split lowerCAmelCase__ = index_name lowerCAmelCase__ = retrieval_vector_size lowerCAmelCase__ = retrieval_batch_size lowerCAmelCase__ = passages_path lowerCAmelCase__ = index_path lowerCAmelCase__ = use_dummy_dataset lowerCAmelCase__ = output_retrieved lowerCAmelCase__ = do_deduplication lowerCAmelCase__ = use_cache if self.forced_eos_token_id is None: lowerCAmelCase__ = getattr(self.generator , "forced_eos_token_id" , __magic_name__ ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Tuple , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , **__magic_name__ : Optional[Any] ): """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.question_encoder.to_dict() lowerCAmelCase__ = self.generator.to_dict() lowerCAmelCase__ = self.__class__.model_type return output
48
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'umt5' snake_case__ :Any = ['past_key_values'] def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ): """simple docstring""" super().__init__( is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = d_kv lowerCAmelCase__ = d_ff lowerCAmelCase__ = num_layers lowerCAmelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase__ = num_heads lowerCAmelCase__ = relative_attention_num_buckets lowerCAmelCase__ = relative_attention_max_distance lowerCAmelCase__ = dropout_rate lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_factor lowerCAmelCase__ = feed_forward_proj lowerCAmelCase__ = use_cache lowerCAmelCase__ = self.feed_forward_proj.split("-" ) lowerCAmelCase__ = act_info[-1] lowerCAmelCase__ = act_info[0] == "gated" if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": lowerCAmelCase__ = "gelu_new" @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return self.d_model @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.num_heads @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.num_layers class A ( SCREAMING_SNAKE_CASE__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: lowerCAmelCase__ = "past_encoder_sequence + sequence" lowerCAmelCase__ = {0: "batch"} lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 13 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 5E-4
48
1
'''simple docstring''' from __future__ import annotations def A ( UpperCamelCase_ : list[int] ) -> int: '''simple docstring''' if not nums: return 0 lowerCAmelCase__ = nums[0] lowerCAmelCase__ = 0 for num in nums[1:]: lowerCAmelCase__ ,lowerCAmelCase__ = ( max_excluding + num, max(UpperCamelCase_ , UpperCamelCase_ ), ) return max(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class A : def __init__( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ): """simple docstring""" if nodea not in self.connections: self.add_node(__magic_name__ ) if nodea not in self.connections: self.add_node(__magic_name__ ) lowerCAmelCase__ = probability def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return list(self.connections ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]: '''simple docstring''' lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = Counter(graph.get_nodes() ) lowerCAmelCase__ = start for _ in range(UpperCamelCase_ ): lowerCAmelCase__ = graph.transition(UpperCamelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
48
1
'''simple docstring''' def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = len(UpperCamelCase_ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCAmelCase__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase_ ): return None lowerCAmelCase__ = sorted_collection[point] if current_item == item: return point else: if point < left: lowerCAmelCase__ = left lowerCAmelCase__ = point elif point > right: lowerCAmelCase__ = right lowerCAmelCase__ = point else: if item < current_item: lowerCAmelCase__ = point - 1 else: lowerCAmelCase__ = point + 1 return None def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ) -> Any: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCAmelCase__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase_ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase_ , UpperCamelCase_ , point + 1 , UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if collection != sorted(UpperCamelCase_ ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys UpperCAmelCase__ : Dict = 0 if debug == 1: UpperCAmelCase__ : Tuple = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") UpperCAmelCase__ : Any = 67 UpperCAmelCase__ : Optional[Any] = interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print("Not found")
48
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase__ : Optional[Any] = pytest.mark.integration UpperCAmelCase__ : str = {"comet"} UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None UpperCAmelCase__ : Optional[int] = {"code_eval"} UpperCAmelCase__ : List[Any] = os.name == "nt" UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"} UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : int ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : Any ) -> int: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class A ( parameterized.TestCase ): snake_case__ :Union[str, Any] = {} snake_case__ :Optional[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ ) # check parameters lowerCAmelCase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ): yield else: yield @contextmanager def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ): return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ ) with patch("datasets.load_metric" ) as mock_load_metric: lowerCAmelCase__ = load_local_metric yield @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ): """simple docstring""" def wrapper(__magic_name__ : Dict ): lowerCAmelCase__ = contextmanager(__magic_name__ ) lowerCAmelCase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowerCAmelCase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' import torch def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowerCAmelCase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def A ( UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' def load_from_checkpoint(UpperCamelCase_ : Tuple ): class A : def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ): """simple docstring""" assert len(__magic_name__ ) == 2 lowerCAmelCase__ = [0.19, 0.92] return scores, sum(__magic_name__ ) / len(__magic_name__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowerCAmelCase__ = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowerCAmelCase__ = load_from_checkpoint yield def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) ) lowerCAmelCase__ = "ERROR" lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
48
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = ['pixel_values'] def __init__( self : Union[str, Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : int = 0.9 , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : Union[int, float] = 1 / 255 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : List[Any] , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = size if size is not None else {"shortest_edge": 224} lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = crop_pct lowerCAmelCase__ = resample lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[float] = None , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: lowerCAmelCase__ = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowerCAmelCase__ = int(size["height"] / crop_pct ) else: lowerCAmelCase__ = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(__magic_name__ ) ) lowerCAmelCase__ = get_resize_output_image_size(__magic_name__ , size=__magic_name__ , default_to_square=__magic_name__ ) else: if "shortest_edge" in size: lowerCAmelCase__ = get_resize_output_image_size(__magic_name__ , size=size["shortest_edge"] , default_to_square=__magic_name__ ) elif "height" in size and "width" in size: lowerCAmelCase__ = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(__magic_name__ ) ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__magic_name__ , size=(size["height"], size["width"]) , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ): """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] , ): """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : int = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCAmelCase__ = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=__magic_name__ , size=__magic_name__ , crop_pct=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: lowerCAmelCase__ = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
48
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase__ : int = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M' snake_case__ :Optional[Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case__ :List[Any] = 'translator' snake_case__ :List[Any] = AutoTokenizer snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM snake_case__ :List[str] = LANGUAGE_CODES snake_case__ :List[Any] = ['text', 'text', 'text'] snake_case__ :List[Any] = ['text'] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) lowerCAmelCase__ = self.lang_to_code[src_lang] lowerCAmelCase__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
48
1
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase__ : Tuple = 5 UpperCAmelCase__ : List[Any] = 10 @require_sentencepiece @require_tokenizers class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Tuple = SpeechaTextTokenizer snake_case__ :Dict = False snake_case__ :Optional[int] = True def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() lowerCAmelCase__ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = "<pad>" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class A ( unittest.TestCase ): snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium' snake_case__ :Tuple = 'C\'est trop cool' snake_case__ :List[str] = 'Esto es genial' @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = "fr" lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase__ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
48
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'timm_backbone' def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = backbone lowerCAmelCase__ = num_channels lowerCAmelCase__ = features_only lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = True lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
48
1
'''simple docstring''' UpperCAmelCase__ : str = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} UpperCAmelCase__ : Any = ["a", "b", "c", "d", "e"] def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = start # add current to visited visited.append(UpperCamelCase_ ) lowerCAmelCase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCAmelCase__ = topological_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase_ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): for vertice in vertices: if vertice not in visited: lowerCAmelCase__ = topological_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase__ : Dict = topological_sort("a", [], []) print(sort)
48
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base' snake_case__ :List[Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case__ :List[Any] = 'image_captioner' snake_case__ :Optional[int] = AutoModelForVisionaSeq snake_case__ :Optional[int] = ['image'] snake_case__ :Any = ['text'] def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ): """simple docstring""" return self.pre_processor(images=__magic_name__ , return_tensors="pt" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
48
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class A ( SCREAMING_SNAKE_CASE__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case__ :str = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) snake_case__ :ClassVar[Features] = Features({'text': Value('string' )} ) snake_case__ :ClassVar[Features] = Features({'summary': Value('string' )} ) snake_case__ :str = "text" snake_case__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
48
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = "▁" UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ : Optional[Any] = { "facebook/mbart-large-50-one-to-many-mmt": 10_24, } # fmt: off UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = VOCAB_FILES_NAMES snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Tuple = ['input_ids', 'attention_mask'] snake_case__ :List[int] = [] snake_case__ :List[int] = [] def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ): """simple docstring""" lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX" lowerCAmelCase__ = self.lang_code_to_id[self._src_lang] lowerCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : List[Any] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = "" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(__magic_name__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) lowerCAmelCase__ = [1] * len(self.prefix_tokens ) lowerCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase__ = src_lang lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ ) lowerCAmelCase__ = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[src_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[tgt_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id]
48
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A ( unittest.TestCase ): def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any]=7 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Union[str, Any]=18 , __magic_name__ : Optional[int]=30 , __magic_name__ : int=400 , __magic_name__ : Any=True , __magic_name__ : Tuple=None , __magic_name__ : Optional[int]=True , __magic_name__ : str=None , __magic_name__ : Optional[Any]=True , ): """simple docstring""" lowerCAmelCase__ = size if size is not None else {"shortest_edge": 20} lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_flip_channel_order def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Dict = MobileViTImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = MobileViTImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , "do_resize" ) ) self.assertTrue(hasattr(__magic_name__ , "size" ) ) self.assertTrue(hasattr(__magic_name__ , "do_center_crop" ) ) self.assertTrue(hasattr(__magic_name__ , "center_crop" ) ) self.assertTrue(hasattr(__magic_name__ , "do_flip_channel_order" ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
48
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 if start < end: lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 ) count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ ) return count def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ = start - 1 for index in range(UpperCamelCase_ , UpperCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ = new_pivot_index + 1 lowerCAmelCase__ = a[new_pivot_index] lowerCAmelCase__ = a[index] lowerCAmelCase__ = temp lowerCAmelCase__ = a[new_pivot_index + 1] lowerCAmelCase__ = a[end] lowerCAmelCase__ = temp return new_pivot_index + 1, count UpperCAmelCase__ : Tuple = TemporaryFile() UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase__ : Optional[Any] = np.load(outfile) UpperCAmelCase__ : Any = len(M) - 1 UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
48
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def A ( ) -> str: '''simple docstring''' lowerCAmelCase__ = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) lowerCAmelCase__ = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(UpperCamelCase_ ) DownloadCommand.register_subcommand(UpperCamelCase_ ) EnvironmentCommand.register_subcommand(UpperCamelCase_ ) RunCommand.register_subcommand(UpperCamelCase_ ) ServeCommand.register_subcommand(UpperCamelCase_ ) UserCommands.register_subcommand(UpperCamelCase_ ) AddNewModelCommand.register_subcommand(UpperCamelCase_ ) AddNewModelLikeCommand.register_subcommand(UpperCamelCase_ ) LfsCommands.register_subcommand(UpperCamelCase_ ) PTtoTFCommand.register_subcommand(UpperCamelCase_ ) # Let's go lowerCAmelCase__ = parser.parse_args() if not hasattr(UpperCamelCase_ , "func" ): parser.print_help() exit(1 ) # Run lowerCAmelCase__ = args.func(UpperCamelCase_ ) service.run() if __name__ == "__main__": main()
48
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A ( UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase__ = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase__ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase__ = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase__ = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase__ = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] else: lowerCAmelCase__ = rename_key(UpperCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ = val.squeeze_() else: lowerCAmelCase__ = val return orig_state_dict def A ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any: '''simple docstring''' lowerCAmelCase__ = GroupViTConfig() lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval() lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0) # verify result lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase_ ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 ) processor.save_pretrained(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) print("Successfully saved processor and model to" , UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(UpperCamelCase_ , organization="nielsr" ) model.push_to_hub(UpperCamelCase_ , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) UpperCAmelCase__ : Any = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
48
1
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def A ( UpperCamelCase_ : Tuple ) -> List[Any]: # picklable for multiprocessing '''simple docstring''' return x.sum() def A ( UpperCamelCase_ : int ) -> int: # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class A : snake_case__ :int snake_case__ :str class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = [] lowerCAmelCase__ = 1 lowerCAmelCase__ = [1, 2] lowerCAmelCase__ = {"a": 1, "b": 2} lowerCAmelCase__ = {"a": [1, 2], "b": [3, 4]} lowerCAmelCase__ = {"a": {"1": 1}, "b": 2} lowerCAmelCase__ = {"a": 1, "b": 2, "c": 3, "d": 4} lowerCAmelCase__ = {} lowerCAmelCase__ = [] lowerCAmelCase__ = 2 lowerCAmelCase__ = [2, 3] lowerCAmelCase__ = {"a": 2, "b": 3} lowerCAmelCase__ = {"a": [2, 3], "b": [4, 5]} lowerCAmelCase__ = {"a": {"1": 2}, "b": 3} lowerCAmelCase__ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowerCAmelCase__ = 2 self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) lowerCAmelCase__ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} lowerCAmelCase__ = {"a": 2, "b": 0, "c": 2} lowerCAmelCase__ = { "a": np.eye(2 ).astype(__magic_name__ ), "b": np.zeros(3 ).astype(__magic_name__ ), "c": np.ones(2 ).astype(__magic_name__ ), } self.assertEqual(map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ ) , __magic_name__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ , num_proc=__magic_name__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__magic_name__ ): # can't pickle a local lambda map_nested(lambda __magic_name__ : x + 1 , __magic_name__ , num_proc=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = {"a": 1, "b": 2} lowerCAmelCase__ = {"a": 3, "b": 4} lowerCAmelCase__ = {"a": 5, "b": 6} lowerCAmelCase__ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__magic_name__ , __magic_name__ , __magic_name__ ) ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" class A : snake_case__ :Union[str, Any] = 'bar' lowerCAmelCase__ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(__magic_name__ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def A ( UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> Dict: '''simple docstring''' with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: lowerCAmelCase__ = {F"""{i}""": i for i in range(UpperCamelCase_ )} lowerCAmelCase__ = map_nested(lambda UpperCamelCase_ : x + 10 , UpperCamelCase_ , num_proc=UpperCamelCase_ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( SCREAMING_SNAKE_CASE__ ): @require_tf def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" import tensorflow as tf from tensorflow.keras import layers lowerCAmelCase__ = layers.Dense(2 ) def gen_random_output(): lowerCAmelCase__ = tf.random.uniform((1, 3) ) return model(__magic_name__ ).numpy() with temp_seed(42 , set_tensorflow=__magic_name__ ): lowerCAmelCase__ = gen_random_output() with temp_seed(42 , set_tensorflow=__magic_name__ ): lowerCAmelCase__ = gen_random_output() lowerCAmelCase__ = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" import torch def gen_random_output(): lowerCAmelCase__ = torch.nn.Linear(3 , 2 ) lowerCAmelCase__ = torch.rand(1 , 3 ) return model(__magic_name__ ).detach().numpy() with temp_seed(42 , set_pytorch=__magic_name__ ): lowerCAmelCase__ = gen_random_output() with temp_seed(42 , set_pytorch=__magic_name__ ): lowerCAmelCase__ = gen_random_output() lowerCAmelCase__ = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowerCAmelCase__ = gen_random_output() with temp_seed(42 ): lowerCAmelCase__ = gen_random_output() lowerCAmelCase__ = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def A ( UpperCamelCase_ : str ) -> str: '''simple docstring''' lowerCAmelCase__ = NestedDataStructure(UpperCamelCase_ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = NestedDataStructure(UpperCamelCase_ ).flatten() assert output == expected_output def A ( ) -> Dict: '''simple docstring''' lowerCAmelCase__ = A(x=1 , y="foobar" ) lowerCAmelCase__ = {"x": 1, "y": "foobar"} assert asdict(UpperCamelCase_ ) == expected_output lowerCAmelCase__ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} lowerCAmelCase__ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(UpperCamelCase_ ) == expected_output with pytest.raises(UpperCamelCase_ ): asdict([1, A(x=10 , y="foo" )] ) def A ( UpperCamelCase_ : str ) -> Dict: '''simple docstring''' return text.split() def A ( UpperCamelCase_ : Optional[Any] ) -> int: '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def A ( ) -> Optional[int]: '''simple docstring''' with Pool(2 ) as pool: lowerCAmelCase__ = list(iflatmap_unordered(UpperCamelCase_ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(UpperCamelCase_ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowerCAmelCase__ = list(iflatmap_unordered(UpperCamelCase_ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(UpperCamelCase_ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowerCAmelCase__ = [] for yield_time, content in iflatmap_unordered( UpperCamelCase_ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCamelCase_ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(UpperCamelCase_ ) == 4
48
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ : Optional[Any] = 1_00 UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def A ( UpperCamelCase_ : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase__ = set() lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( UpperCamelCase_ : int = 50_00 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , UpperCamelCase_ ): if len(partition(UpperCamelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
48
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Optional[Any] = StableDiffusionPanoramaPipeline snake_case__ :Tuple = TEXT_TO_IMAGE_PARAMS snake_case__ :List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ :Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case__ :Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCAmelCase__ = DDIMScheduler() torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase__ = CLIPTextModel(__magic_name__ ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : int=0 ): """simple docstring""" lowerCAmelCase__ = torch.manual_seed(__magic_name__ ) lowerCAmelCase__ = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = StableDiffusionPanoramaPipeline(**__magic_name__ ) lowerCAmelCase__ = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = self.get_dummy_inputs(__magic_name__ ) lowerCAmelCase__ = sd_pipe(**__magic_name__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = StableDiffusionPanoramaPipeline(**__magic_name__ ) lowerCAmelCase__ = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = self.get_dummy_inputs(__magic_name__ ) lowerCAmelCase__ = "french fries" lowerCAmelCase__ = sd_pipe(**__magic_name__ , negative_prompt=__magic_name__ ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = StableDiffusionPanoramaPipeline(**__magic_name__ ) lowerCAmelCase__ = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = self.get_dummy_inputs(__magic_name__ ) lowerCAmelCase__ = sd_pipe(**__magic_name__ , view_batch_size=2 ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" ) lowerCAmelCase__ = StableDiffusionPanoramaPipeline(**__magic_name__ ) lowerCAmelCase__ = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = self.get_dummy_inputs(__magic_name__ ) lowerCAmelCase__ = sd_pipe(**__magic_name__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , skip_prk_steps=__magic_name__ ) lowerCAmelCase__ = StableDiffusionPanoramaPipeline(**__magic_name__ ) lowerCAmelCase__ = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = self.get_dummy_inputs(__magic_name__ ) lowerCAmelCase__ = sd_pipe(**__magic_name__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : int=0 ): """simple docstring""" lowerCAmelCase__ = torch.manual_seed(__magic_name__ ) lowerCAmelCase__ = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = "stabilityai/stable-diffusion-2-base" lowerCAmelCase__ = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="scheduler" ) lowerCAmelCase__ = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = self.get_inputs() lowerCAmelCase__ = pipe(**__magic_name__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowerCAmelCase__ = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=__magic_name__ ) lowerCAmelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = self.get_inputs() lowerCAmelCase__ = pipe(**__magic_name__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowerCAmelCase__ = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = 0 def callback_fn(__magic_name__ : int , __magic_name__ : int , __magic_name__ : torch.FloatTensor ) -> None: lowerCAmelCase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCAmelCase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCAmelCase__ = latents[0, -3:, -3:, -1] lowerCAmelCase__ = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowerCAmelCase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCAmelCase__ = latents[0, -3:, -3:, -1] lowerCAmelCase__ = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowerCAmelCase__ = False lowerCAmelCase__ = "stabilityai/stable-diffusion-2-base" lowerCAmelCase__ = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="scheduler" ) lowerCAmelCase__ = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) lowerCAmelCase__ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = self.get_inputs() pipe(**__magic_name__ , callback=__magic_name__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase__ = "stabilityai/stable-diffusion-2-base" lowerCAmelCase__ = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="scheduler" ) lowerCAmelCase__ = StableDiffusionPanoramaPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) lowerCAmelCase__ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = self.get_inputs() lowerCAmelCase__ = pipe(**__magic_name__ ) lowerCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
48
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"} UpperCAmelCase__ : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27} class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ): """simple docstring""" return self.decoder.get(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" ) return (vocab_file,)
48
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class A : def __init__( self : str , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = data lowerCAmelCase__ = None class A : def __init__( self : Tuple ): """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = None def __iter__( self : Any ): """simple docstring""" lowerCAmelCase__ = self.head while self.head: yield node.data lowerCAmelCase__ = node.next if node == self.head: break def __len__( self : Tuple ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self : int ): """simple docstring""" return "->".join(str(__magic_name__ ) for item in iter(self ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Any ): """simple docstring""" self.insert_nth(len(self ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Any ): """simple docstring""" self.insert_nth(0 , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Any ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError("list index out of range." ) lowerCAmelCase__ = Node(__magic_name__ ) if self.head is None: lowerCAmelCase__ = new_node # first node points itself lowerCAmelCase__ = lowerCAmelCase__ = new_node elif index == 0: # insert at head lowerCAmelCase__ = self.head lowerCAmelCase__ = lowerCAmelCase__ = new_node else: lowerCAmelCase__ = self.head for _ in range(index - 1 ): lowerCAmelCase__ = temp.next lowerCAmelCase__ = temp.next lowerCAmelCase__ = new_node if index == len(self ) - 1: # insert at tail lowerCAmelCase__ = new_node def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return self.delete_nth(0 ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : int = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError("list index out of range." ) lowerCAmelCase__ = self.head if self.head == self.tail: # just one node lowerCAmelCase__ = lowerCAmelCase__ = None elif index == 0: # delete head node lowerCAmelCase__ = self.tail.next.next lowerCAmelCase__ = self.head.next else: lowerCAmelCase__ = self.head for _ in range(index - 1 ): lowerCAmelCase__ = temp.next lowerCAmelCase__ = temp.next lowerCAmelCase__ = temp.next.next if index == len(self ) - 1: # delete at tail lowerCAmelCase__ = temp return delete_node.data def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return len(self ) == 0 def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = CircularLinkedList() assert len(UpperCamelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase_ ) == i circular_linked_list.insert_nth(UpperCamelCase_ , i + 1 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' from math import sqrt def A ( UpperCamelCase_ : int ) -> int: '''simple docstring''' lowerCAmelCase__ = 0 for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase_ ): total += i + n // i elif i == sqrt(UpperCamelCase_ ): total += i return total - n def A ( UpperCamelCase_ : int = 1_00_00 ) -> int: '''simple docstring''' lowerCAmelCase__ = sum( i for i in range(1 , UpperCamelCase_ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
48
1
'''simple docstring''' import torch from transformers import AutoModel class A ( torch.nn.Module ): def __init__( self : str , __magic_name__ : List[Any]="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__magic_name__ , self ).__init__() lowerCAmelCase__ = AutoModel.from_pretrained(__magic_name__ , return_dict=__magic_name__ ) lowerCAmelCase__ = torch.nn.CosineSimilarity(3 , 1E-08 ) lowerCAmelCase__ = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" return self.bert(**__magic_name__ ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[int]=1 ): """simple docstring""" return self.softmax(T * self.cos(__magic_name__ , __magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = W_supports["sizes"].tolist() lowerCAmelCase__ = W_supports["start_token_id"].item() lowerCAmelCase__ = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase__ = self.BERT(**__magic_name__ ) lowerCAmelCase__ = self.BERT(**__magic_name__ ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = W_supports["input_ids"] == start_token_id lowerCAmelCase__ = W_supports["input_ids"] == end_token_id for i, size in enumerate(__magic_name__ ): if i == 0: lowerCAmelCase__ = 0 else: lowerCAmelCase__ = support_sizes[i - 1] lowerCAmelCase__ = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase__ = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase__ = torch.vstack((p_starts, p_start) ) lowerCAmelCase__ = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase__ = p_start lowerCAmelCase__ = p_end return p_starts, p_ends
48
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.mean(1 ) # Centralize the data of class i lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase_ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = features.mean(1 ) lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.shape[1] lowerCAmelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' if features.any(): lowerCAmelCase__ = features.mean(1 ) # Center the dataset lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) ) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1] lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: lowerCAmelCase__ ,lowerCAmelCase__ = eigh( covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , ) lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions] lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ ) lowerCAmelCase__ = svd_matrix[:, 0:dimensions] lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = linear_discriminant_analysis( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if isinstance(UpperCamelCase_ , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ ) if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
48
1
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : Optional[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
48
'''simple docstring''' def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list: '''simple docstring''' lowerCAmelCase__ = word.split() def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str: lowerCAmelCase__ = max_width - width lowerCAmelCase__ = len(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase_ ): num_spaces_between_words_list[i] += 1 lowerCAmelCase__ = [] for i in range(UpperCamelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 for word in words: if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase_ ) width += len(UpperCamelCase_ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) # reset new line and new width lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ ) lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ ) answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
48
1
'''simple docstring''' from itertools import permutations def A ( UpperCamelCase_ : tuple ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCAmelCase__ = [7, 11, 13, 17] for i, test in enumerate(UpperCamelCase_ ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def A ( UpperCamelCase_ : int = 10 ) -> int: '''simple docstring''' return sum( int("".join(map(UpperCamelCase_ , UpperCamelCase_ ) ) ) for num in permutations(range(UpperCamelCase_ ) ) if is_substring_divisible(UpperCamelCase_ ) ) if __name__ == "__main__": print(F"{solution() = }")
48
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase__ : str = sys.version_info >= (3, 10) def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class A : snake_case__ :int snake_case__ :float snake_case__ :str snake_case__ :bool @dataclass class A : snake_case__ :int = 42 snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :Optional[bool] = None class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'titi' snake_case__ :Optional[int] = 'toto' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'titi' snake_case__ :str = 'toto' snake_case__ :int = 42 @dataclass class A : snake_case__ :BasicEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.foo ) @dataclass class A : snake_case__ :MixedTypeEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = MixedTypeEnum(self.foo ) @dataclass class A : snake_case__ :Optional[int] = None snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :Optional[str] = None snake_case__ :Optional[List[str]] = list_field(default=[] ) snake_case__ :Optional[List[int]] = list_field(default=[] ) @dataclass class A : snake_case__ :List[int] = list_field(default=[] ) snake_case__ :List[int] = list_field(default=[1, 2, 3] ) snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : snake_case__ :List[int] = field() snake_case__ :str = field() snake_case__ :BasicEnum = field() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.required_enum ) @dataclass class A : snake_case__ :int snake_case__ :"BasicEnum" = field() snake_case__ :"Optional[bool]" = None snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} ) snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :bool | None = None @dataclass class A : snake_case__ :int | None = None snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :str | None = None snake_case__ :list[str] | None = list_field(default=[] ) snake_case__ :list[int] | None = list_field(default=[] ) class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) lowerCAmelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" @dataclass class A : snake_case__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) lowerCAmelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
48
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class A : def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = block_sizes lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = d_model lowerCAmelCase__ = n_head lowerCAmelCase__ = d_head lowerCAmelCase__ = d_inner lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = 2 lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase__ = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase__ = self.num_hidden_layers + 2 def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case__ :Any = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case__ :str = False snake_case__ :Any = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @require_tf class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case__ :int = False snake_case__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
48
'''simple docstring''' import sys from collections import defaultdict class A : def __init__( self : Any ): """simple docstring""" lowerCAmelCase__ = [] def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ): """simple docstring""" return self.node_position[vertex] def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = pos def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase__ = 2 * start + 1 else: lowerCAmelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child] lowerCAmelCase__ ,lowerCAmelCase__ = ( heap[start], positions[start], ) lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa lowerCAmelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __magic_name__ ) self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = position[index] while index != 0: lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase__ = heap[parent] lowerCAmelCase__ = position[parent] self.set_position(position[parent] , __magic_name__ ) else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , __magic_name__ ) break lowerCAmelCase__ = parent else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , 0 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1 for i in range(__magic_name__ , -1 , -1 ): self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = positions[0] lowerCAmelCase__ = sys.maxsize self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ ) return temp def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = Heap() lowerCAmelCase__ = [0] * len(UpperCamelCase_ ) lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase__ = [] for vertex in range(len(UpperCamelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase_ ) heap.node_position.append(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = 1 lowerCAmelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase__ = 0 lowerCAmelCase__ = distance heap.heapify(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(1 , len(UpperCamelCase_ ) ): lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase_ )] ): lowerCAmelCase__ = distance heap.bottom_to_top( UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ : str = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ : int = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
48
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A ( UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase__ = TextDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ).read() _check_text_dataset(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = {"text": "string"} lowerCAmelCase__ = features.copy() if features else default_expected_features lowerCAmelCase__ = ( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase__ = TextDatasetReader(UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_text_dataset(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any ) -> str: '''simple docstring''' lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = {"text": "string"} lowerCAmelCase__ = TextDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ , split=UpperCamelCase_ ).read() _check_text_dataset(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' if issubclass(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = text_path elif issubclass(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = [text_path] lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = {"text": "string"} lowerCAmelCase__ = TextDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_text_dataset(UpperCamelCase_ , UpperCamelCase_ ) def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any]=("train",) ) -> int: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) for split in splits: lowerCAmelCase__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase__ = TextDatasetReader({"train": text_path} , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ).read() _check_text_datasetdict(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase__ = {"text": "string"} lowerCAmelCase__ = features.copy() if features else default_expected_features lowerCAmelCase__ = ( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase__ = TextDatasetReader({"train": text_path} , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_text_datasetdict(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ) -> List[str]: '''simple docstring''' if split: lowerCAmelCase__ = {split: text_path} else: lowerCAmelCase__ = "train" lowerCAmelCase__ = {"train": text_path, "test": text_path} lowerCAmelCase__ = tmp_path / "cache" lowerCAmelCase__ = {"text": "string"} lowerCAmelCase__ = TextDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_text_datasetdict(UpperCamelCase_ , UpperCamelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase__ : Tuple = 5 UpperCAmelCase__ : List[Any] = 10 @require_sentencepiece @require_tokenizers class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Tuple = SpeechaTextTokenizer snake_case__ :Dict = False snake_case__ :Optional[int] = True def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() lowerCAmelCase__ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = "<pad>" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class A ( unittest.TestCase ): snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium' snake_case__ :Tuple = 'C\'est trop cool' snake_case__ :List[str] = 'Esto es genial' @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = "fr" lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase__ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
48
1
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : int=1024 , __magic_name__ : Union[str, Any]=1024 , __magic_name__ : Union[str, Any]=3.6 ): """simple docstring""" lowerCAmelCase__ = tokenizer lowerCAmelCase__ = tokenizer.bos_token_id lowerCAmelCase__ = dataset lowerCAmelCase__ = seq_length lowerCAmelCase__ = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ): """simple docstring""" lowerCAmelCase__ = iter(self.dataset ) lowerCAmelCase__ = True while more_examples: lowerCAmelCase__ ,lowerCAmelCase__ = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__magic_name__ )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: lowerCAmelCase__ = False break lowerCAmelCase__ = tokenizer(__magic_name__ , truncation=__magic_name__ )["input_ids"] lowerCAmelCase__ = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__magic_name__ ) , self.seq_length ): lowerCAmelCase__ = all_token_ids[i : i + self.seq_length] if len(__magic_name__ ) == self.seq_length: yield torch.tensor(__magic_name__ ) def A ( UpperCamelCase_ : str ) -> int: '''simple docstring''' lowerCAmelCase__ = {"streaming": True} lowerCAmelCase__ = load_dataset(args.dataset_name , split="train" , **UpperCamelCase_ ) lowerCAmelCase__ = ConstantLengthDataset(UpperCamelCase_ , UpperCamelCase_ , seq_length=args.seq_length ) lowerCAmelCase__ = DataLoader(UpperCamelCase_ , batch_size=args.batch_size ) return eval_dataloader def A ( UpperCamelCase_ : Tuple ) -> str: '''simple docstring''' model.eval() lowerCAmelCase__ = [] for step, batch in enumerate(UpperCamelCase_ ): with torch.no_grad(): lowerCAmelCase__ = model(UpperCamelCase_ , labels=UpperCamelCase_ ) lowerCAmelCase__ = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(UpperCamelCase_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowerCAmelCase__ = torch.mean(torch.cat(UpperCamelCase_ ) ) try: lowerCAmelCase__ = torch.exp(UpperCamelCase_ ) except OverflowError: lowerCAmelCase__ = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase__ : Any = Accelerator() # Parse configuration UpperCAmelCase__ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase__ : int = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase__ : Any = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer UpperCAmelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase__ : Tuple = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = evaluate(args) logger.info(F"loss/eval: {eval_loss}, perplexity: {perplexity}")
48
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ : Tuple = logging.get_logger(__name__) # General docstring UpperCAmelCase__ : int = "RegNetConfig" # Base docstring UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase__ : Tuple = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat" UpperCAmelCase__ : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) ) lowerCAmelCase__ = self.normalization(__magic_name__ ) lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config.num_channels lowerCAmelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = shape_list(__magic_name__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) ) lowerCAmelCase__ = self.embedder(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ): """simple docstring""" return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ ) class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) lowerCAmelCase__ = [ tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.pooler(__magic_name__ ) for layer_module in self.attention: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ), *[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ): """simple docstring""" for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ): """simple docstring""" lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(__magic_name__ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ ) @keras_serializable class A ( tf.keras.layers.Layer ): snake_case__ :List[Any] = RegNetConfig def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" ) lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) @unpack_inputs def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = self.encoder( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(__magic_name__ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = RegNetConfig snake_case__ :Optional[Any] = 'regnet' snake_case__ :Tuple = 'pixel_values' @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) # classification head lowerCAmelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier[0](__magic_name__ ) lowerCAmelCase__ = self.classifier[1](__magic_name__ ) lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
48
1
'''simple docstring''' def A ( UpperCamelCase_ : int ) -> str: '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) lowerCAmelCase__ = len(bin(UpperCamelCase_ )[3:] ) lowerCAmelCase__ = bin(abs(UpperCamelCase_ ) - (1 << binary_number_length) )[3:] lowerCAmelCase__ = ( ( "1" + "0" * (binary_number_length - len(UpperCamelCase_ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def A ( UpperCamelCase_ : Tuple ) -> int: '''simple docstring''' for param in module.parameters(): lowerCAmelCase__ = False def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def A ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = datetime.now() lowerCAmelCase__ = current_time.strftime("%H:%M:%S" ) return timestamp
48
1
'''simple docstring''' from __future__ import annotations UpperCAmelCase__ : Optional[Any] = "Muhammad Umer Farooq" UpperCAmelCase__ : Dict = "MIT" UpperCAmelCase__ : int = "1.0.0" UpperCAmelCase__ : Optional[int] = "Muhammad Umer Farooq" UpperCAmelCase__ : Optional[Any] = "[email protected]" UpperCAmelCase__ : List[str] = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : str ): """simple docstring""" super().__init__() lowerCAmelCase__ = [] lowerCAmelCase__ = domain def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str , __magic_name__ : list[tuple[str, str | None]] ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowerCAmelCase__ = parse.urljoin(self.domain , __magic_name__ ) self.urls.append(__magic_name__ ) def A ( UpperCamelCase_ : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(UpperCamelCase_ ).split("." )[-2:] ) def A ( UpperCamelCase_ : str ) -> str: '''simple docstring''' return parse.urlparse(UpperCamelCase_ ).netloc def A ( UpperCamelCase_ : str = "https://github.com" ) -> list[str]: '''simple docstring''' lowerCAmelCase__ = get_domain_name(UpperCamelCase_ ) # Initialize the parser lowerCAmelCase__ = Parser(UpperCamelCase_ ) try: # Open URL lowerCAmelCase__ = requests.get(UpperCamelCase_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowerCAmelCase__ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowerCAmelCase__ = requests.get(UpperCamelCase_ ) # Get the valid email. lowerCAmelCase__ = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCamelCase_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Dict = emails_from_url("https://github.com") print(F"{len(emails)} emails found:") print("\n".join(sorted(emails)))
48
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
1
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
48
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any: '''simple docstring''' lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ ) else: lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCAmelCase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
48
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCAmelCase__ : Any = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : int , *__magic_name__ : Any , **__magic_name__ : Any ): """simple docstring""" warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
48
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class A : def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = block_sizes lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = d_model lowerCAmelCase__ = n_head lowerCAmelCase__ = d_head lowerCAmelCase__ = d_inner lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = 2 lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase__ = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase__ = self.num_hidden_layers + 2 def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case__ :Any = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case__ :str = False snake_case__ :Any = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @require_tf class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case__ :int = False snake_case__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
48
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = 'fnet' def __init__( self : Optional[Any] , __magic_name__ : Tuple=32000 , __magic_name__ : str=768 , __magic_name__ : int=12 , __magic_name__ : Any=3072 , __magic_name__ : str="gelu_new" , __magic_name__ : Dict=0.1 , __magic_name__ : int=512 , __magic_name__ : int=4 , __magic_name__ : List[Any]=0.02 , __magic_name__ : Tuple=1E-12 , __magic_name__ : List[str]=False , __magic_name__ : Union[str, Any]=512 , __magic_name__ : str=3 , __magic_name__ : Tuple=1 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = use_tpu_fourier_optimizations lowerCAmelCase__ = tpu_short_seq_length
48
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'umt5' snake_case__ :Any = ['past_key_values'] def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ): """simple docstring""" super().__init__( is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = d_kv lowerCAmelCase__ = d_ff lowerCAmelCase__ = num_layers lowerCAmelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase__ = num_heads lowerCAmelCase__ = relative_attention_num_buckets lowerCAmelCase__ = relative_attention_max_distance lowerCAmelCase__ = dropout_rate lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_factor lowerCAmelCase__ = feed_forward_proj lowerCAmelCase__ = use_cache lowerCAmelCase__ = self.feed_forward_proj.split("-" ) lowerCAmelCase__ = act_info[-1] lowerCAmelCase__ = act_info[0] == "gated" if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": lowerCAmelCase__ = "gelu_new" @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return self.d_model @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.num_heads @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.num_layers class A ( SCREAMING_SNAKE_CASE__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: lowerCAmelCase__ = "past_encoder_sequence + sequence" lowerCAmelCase__ = {0: "batch"} lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 13 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 5E-4
48
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class A : def __init__( self : Optional[Any] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = data lowerCAmelCase__ = [0X6745_2301, 0XEFCD_AB89, 0X98BA_DCFE, 0X1032_5476, 0XC3D2_E1F0] @staticmethod def __SCREAMING_SNAKE_CASE ( __magic_name__ : Optional[int] , __magic_name__ : str ): """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XFFFF_FFFF def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = B"\x80" + B"\x00" * (63 - (len(self.data ) + 8) % 64) lowerCAmelCase__ = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) ) return padded_data def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = list(struct.unpack(">16L" , __magic_name__ ) ) + [0] * 64 for i in range(16 , 80 ): lowerCAmelCase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.padding() lowerCAmelCase__ = self.split_blocks() for block in self.blocks: lowerCAmelCase__ = self.expand_block(__magic_name__ ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowerCAmelCase__ = (b & c) | ((~b) & d) lowerCAmelCase__ = 0X5A82_7999 elif 20 <= i < 40: lowerCAmelCase__ = b ^ c ^ d lowerCAmelCase__ = 0X6ED9_EBA1 elif 40 <= i < 60: lowerCAmelCase__ = (b & c) | (b & d) | (c & d) lowerCAmelCase__ = 0X8F1B_BCDC elif 60 <= i < 80: lowerCAmelCase__ = b ^ c ^ d lowerCAmelCase__ = 0XCA62_C1D6 lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = ( self.rotate(__magic_name__ , 5 ) + f + e + k + expanded_block[i] & 0XFFFF_FFFF, a, self.rotate(__magic_name__ , 30 ), c, d, ) lowerCAmelCase__ = ( self.h[0] + a & 0XFFFF_FFFF, self.h[1] + b & 0XFFFF_FFFF, self.h[2] + c & 0XFFFF_FFFF, self.h[3] + d & 0XFFFF_FFFF, self.h[4] + e & 0XFFFF_FFFF, ) return ("{:08x}" * 5).format(*self.h ) def A ( ) -> int: '''simple docstring''' lowerCAmelCase__ = B"Test String" assert SHAaHash(UpperCamelCase_ ).final_hash() == hashlib.shaa(UpperCamelCase_ ).hexdigest() # noqa: S324 def A ( ) -> Dict: '''simple docstring''' lowerCAmelCase__ = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: lowerCAmelCase__ = f.read() else: lowerCAmelCase__ = bytes(UpperCamelCase_ , "utf-8" ) print(SHAaHash(UpperCamelCase_ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class A : def __init__( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ): """simple docstring""" if nodea not in self.connections: self.add_node(__magic_name__ ) if nodea not in self.connections: self.add_node(__magic_name__ ) lowerCAmelCase__ = probability def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return list(self.connections ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]: '''simple docstring''' lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = Counter(graph.get_nodes() ) lowerCAmelCase__ = start for _ in range(UpperCamelCase_ ): lowerCAmelCase__ = graph.transition(UpperCamelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
48
1
'''simple docstring''' def A ( UpperCamelCase_ : list[int] ) -> list[int]: '''simple docstring''' lowerCAmelCase__ = len(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): for j in range(i + 1 , UpperCamelCase_ ): if numbers[j] < numbers[i]: lowerCAmelCase__ ,lowerCAmelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ : str = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
48
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase__ : Optional[Any] = pytest.mark.integration UpperCAmelCase__ : str = {"comet"} UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None UpperCAmelCase__ : Optional[int] = {"code_eval"} UpperCAmelCase__ : List[Any] = os.name == "nt" UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"} UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : int ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : Any ) -> int: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class A ( parameterized.TestCase ): snake_case__ :Union[str, Any] = {} snake_case__ :Optional[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ ) # check parameters lowerCAmelCase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ): yield else: yield @contextmanager def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ): return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ ) with patch("datasets.load_metric" ) as mock_load_metric: lowerCAmelCase__ = load_local_metric yield @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ): """simple docstring""" def wrapper(__magic_name__ : Dict ): lowerCAmelCase__ = contextmanager(__magic_name__ ) lowerCAmelCase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowerCAmelCase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' import torch def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowerCAmelCase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def A ( UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' def load_from_checkpoint(UpperCamelCase_ : Tuple ): class A : def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ): """simple docstring""" assert len(__magic_name__ ) == 2 lowerCAmelCase__ = [0.19, 0.92] return scores, sum(__magic_name__ ) / len(__magic_name__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowerCAmelCase__ = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowerCAmelCase__ = load_from_checkpoint yield def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) ) lowerCAmelCase__ = "ERROR" lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
48
1
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase__ : Any = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ : Optional[int] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) UpperCAmelCase__ : int = spec.loader.load_module() UpperCAmelCase__ : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCAmelCase__ : List[Any] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") UpperCAmelCase__ : Union[str, Any] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def A ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCAmelCase__ = False # source code of `config_class` lowerCAmelCase__ = inspect.getsource(UpperCamelCase_ ) lowerCAmelCase__ = _re_checkpoint.findall(UpperCamelCase_ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCAmelCase__ ,lowerCAmelCase__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase__ = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCAmelCase__ = True break lowerCAmelCase__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(sorted(UpperCamelCase_ ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
48
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase__ : int = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M' snake_case__ :Optional[Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case__ :List[Any] = 'translator' snake_case__ :List[Any] = AutoTokenizer snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM snake_case__ :List[str] = LANGUAGE_CODES snake_case__ :List[Any] = ['text', 'text', 'text'] snake_case__ :List[Any] = ['text'] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) lowerCAmelCase__ = self.lang_to_code[src_lang] lowerCAmelCase__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
48
1
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class A : def __init__( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = cva.imread(__magic_name__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) lowerCAmelCase__ = np.sum(__magic_name__ ) for i in range(len(__magic_name__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__magic_name__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCAmelCase__ : Any = os.path.join(os.path.basename(__file__), "image_data/input.jpg") UpperCAmelCase__ : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
48
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'timm_backbone' def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = backbone lowerCAmelCase__ = num_channels lowerCAmelCase__ = features_only lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = True lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
48
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : str = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base' snake_case__ :List[Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case__ :List[Any] = 'image_captioner' snake_case__ :Optional[int] = AutoModelForVisionaSeq snake_case__ :Optional[int] = ['image'] snake_case__ :Any = ['text'] def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ): """simple docstring""" return self.pre_processor(images=__magic_name__ , return_tensors="pt" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
48
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : int = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
48
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = "▁" UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ : Optional[Any] = { "facebook/mbart-large-50-one-to-many-mmt": 10_24, } # fmt: off UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = VOCAB_FILES_NAMES snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Tuple = ['input_ids', 'attention_mask'] snake_case__ :List[int] = [] snake_case__ :List[int] = [] def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ): """simple docstring""" lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX" lowerCAmelCase__ = self.lang_code_to_id[self._src_lang] lowerCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : List[Any] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = "" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(__magic_name__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) lowerCAmelCase__ = [1] * len(self.prefix_tokens ) lowerCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase__ = src_lang lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ ) lowerCAmelCase__ = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[src_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[tgt_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id]
48
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :jnp.ndarray @flax_register_to_config class A ( nn.Module , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case__ :int = 32 snake_case__ :int = 4 snake_case__ :int = 4 snake_case__ :Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case__ :Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") snake_case__ :Union[bool, Tuple[bool]] = False snake_case__ :Tuple[int] = (320, 640, 1280, 1280) snake_case__ :int = 2 snake_case__ :Union[int, Tuple[int]] = 8 snake_case__ :Optional[Union[int, Tuple[int]]] = None snake_case__ :int = 1280 snake_case__ :float = 0.0 snake_case__ :bool = False snake_case__ :jnp.dtype = jnp.floataa snake_case__ :bool = True snake_case__ :int = 0 snake_case__ :bool = False def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : jax.random.KeyArray ): """simple docstring""" lowerCAmelCase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase__ = jnp.zeros(__magic_name__ , dtype=jnp.floataa ) lowerCAmelCase__ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase__ ,lowerCAmelCase__ = jax.random.split(__magic_name__ ) lowerCAmelCase__ = {"params": params_rng, "dropout": dropout_rng} return self.init(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )["params"] def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.block_out_channels lowerCAmelCase__ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase__ = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase__ = FlaxTimestepEmbedding(__magic_name__ , dtype=self.dtype ) lowerCAmelCase__ = self.only_cross_attention if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase__ = [] lowerCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase__ = output_channel lowerCAmelCase__ = block_out_channels[i] lowerCAmelCase__ = i == len(__magic_name__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase__ = FlaxCrossAttnDownBlockaD( in_channels=__magic_name__ , out_channels=__magic_name__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase__ = FlaxDownBlockaD( in_channels=__magic_name__ , out_channels=__magic_name__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__magic_name__ ) lowerCAmelCase__ = down_blocks # mid lowerCAmelCase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCAmelCase__ = [] lowerCAmelCase__ = list(reversed(__magic_name__ ) ) lowerCAmelCase__ = list(reversed(__magic_name__ ) ) lowerCAmelCase__ = list(reversed(__magic_name__ ) ) lowerCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowerCAmelCase__ = output_channel lowerCAmelCase__ = reversed_block_out_channels[i] lowerCAmelCase__ = reversed_block_out_channels[min(i + 1 , len(__magic_name__ ) - 1 )] lowerCAmelCase__ = i == len(__magic_name__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCAmelCase__ = FlaxCrossAttnUpBlockaD( in_channels=__magic_name__ , out_channels=__magic_name__ , prev_output_channel=__magic_name__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase__ = FlaxUpBlockaD( in_channels=__magic_name__ , out_channels=__magic_name__ , prev_output_channel=__magic_name__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__magic_name__ ) lowerCAmelCase__ = output_channel lowerCAmelCase__ = up_blocks # out lowerCAmelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowerCAmelCase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=None , __magic_name__ : bool = True , __magic_name__ : bool = False , ): """simple docstring""" if not isinstance(__magic_name__ , jnp.ndarray ): lowerCAmelCase__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__magic_name__ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase__ = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase__ = jnp.expand_dims(__magic_name__ , 0 ) lowerCAmelCase__ = self.time_proj(__magic_name__ ) lowerCAmelCase__ = self.time_embedding(__magic_name__ ) # 2. pre-process lowerCAmelCase__ = jnp.transpose(__magic_name__ , (0, 2, 3, 1) ) lowerCAmelCase__ = self.conv_in(__magic_name__ ) # 3. down lowerCAmelCase__ = (sample,) for down_block in self.down_blocks: if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ ,lowerCAmelCase__ = down_block(__magic_name__ , __magic_name__ , __magic_name__ , deterministic=not train ) else: lowerCAmelCase__ ,lowerCAmelCase__ = down_block(__magic_name__ , __magic_name__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCAmelCase__ = () for down_block_res_sample, down_block_additional_residual in zip( __magic_name__ , __magic_name__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase__ = new_down_block_res_samples # 4. mid lowerCAmelCase__ = self.mid_block(__magic_name__ , __magic_name__ , __magic_name__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCAmelCase__ = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCAmelCase__ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = up_block( __magic_name__ , temb=__magic_name__ , encoder_hidden_states=__magic_name__ , res_hidden_states_tuple=__magic_name__ , deterministic=not train , ) else: lowerCAmelCase__ = up_block(__magic_name__ , temb=__magic_name__ , res_hidden_states_tuple=__magic_name__ , deterministic=not train ) # 6. post-process lowerCAmelCase__ = self.conv_norm_out(__magic_name__ ) lowerCAmelCase__ = nn.silu(__magic_name__ ) lowerCAmelCase__ = self.conv_out(__magic_name__ ) lowerCAmelCase__ = jnp.transpose(__magic_name__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__magic_name__ )
48
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 if start < end: lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 ) count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ ) return count def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ = start - 1 for index in range(UpperCamelCase_ , UpperCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ = new_pivot_index + 1 lowerCAmelCase__ = a[new_pivot_index] lowerCAmelCase__ = a[index] lowerCAmelCase__ = temp lowerCAmelCase__ = a[new_pivot_index + 1] lowerCAmelCase__ = a[end] lowerCAmelCase__ = temp return new_pivot_index + 1, count UpperCAmelCase__ : Tuple = TemporaryFile() UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase__ : Optional[Any] = np.load(outfile) UpperCAmelCase__ : Any = len(M) - 1 UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
48
1
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } UpperCAmelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' for attribute in key.split("." ): lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: lowerCAmelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCAmelCase__ = None for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase__ = True elif name.split("." )[0] == "proj": lowerCAmelCase__ = fairseq_model.proj lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(UpperCamelCase_ )[0].split("." )[-2] lowerCAmelCase__ = mapped_key.replace("*" , UpperCamelCase_ ) if "weight_g" in name: lowerCAmelCase__ = "weight_g" elif "weight_v" in name: lowerCAmelCase__ = "weight_v" elif "bias" in name: lowerCAmelCase__ = "bias" elif "weight" in name: lowerCAmelCase__ = "weight" else: lowerCAmelCase__ = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def A ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = full_name.split("conv_layers." )[-1] lowerCAmelCase__ = name.split("." ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase_ ) def A ( UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ = emb.weight.shape lowerCAmelCase__ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) lowerCAmelCase__ = emb.weight.data return lin_layer def A ( UpperCamelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [line.split(" " )[0] for line in lines] lowerCAmelCase__ = len(UpperCamelCase_ ) lowerCAmelCase__ = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(UpperCamelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , ) -> str: '''simple docstring''' lowerCAmelCase__ = WavaVecaConfig.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SpeechaTextaConfig.from_pretrained( UpperCamelCase_ , vocab_size=UpperCamelCase_ , decoder_layers=UpperCamelCase_ , do_stable_layer_norm=UpperCamelCase_ ) lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowerCAmelCase__ = model[0].eval() # set weights for wav2vec2 encoder lowerCAmelCase__ = WavaVecaModel(UpperCamelCase_ ) lowerCAmelCase__ = recursively_load_weights_wavaveca(model.encoder , UpperCamelCase_ ) lowerCAmelCase__ = SpeechaTextaForCausalLM(UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase_ ) # set output linear layer unexpected_keys.remove("embed_out" ) lowerCAmelCase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowerCAmelCase__ = SpeechEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) lowerCAmelCase__ = False # add projection layer lowerCAmelCase__ = nn.Parameter(projection_layer.weight ) lowerCAmelCase__ = nn.Parameter(projection_layer.bias ) lowerCAmelCase__ = create_vocab_dict(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , "vocab.json" ) , "w" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = SpeechaTextaTokenizer(os.path.join(UpperCamelCase_ , "vocab.json" ) ) tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = hf_wavavec.config.to_dict() lowerCAmelCase__ = tokenizer.pad_token_id lowerCAmelCase__ = tokenizer.bos_token_id lowerCAmelCase__ = tokenizer.eos_token_id lowerCAmelCase__ = "speech_to_text_2" lowerCAmelCase__ = "wav2vec2" lowerCAmelCase__ = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) feature_extractor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_02_24, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") UpperCAmelCase__ : str = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
48
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A ( UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase__ = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase__ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase__ = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase__ = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase__ = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] else: lowerCAmelCase__ = rename_key(UpperCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ = val.squeeze_() else: lowerCAmelCase__ = val return orig_state_dict def A ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any: '''simple docstring''' lowerCAmelCase__ = GroupViTConfig() lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval() lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0) # verify result lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase_ ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 ) processor.save_pretrained(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) print("Successfully saved processor and model to" , UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(UpperCamelCase_ , organization="nielsr" ) model.push_to_hub(UpperCamelCase_ , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) UpperCAmelCase__ : Any = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
48
1
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class A : snake_case__ :Dict = None def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = os.path.join(__magic_name__ , "feat_extract.json" ) feat_extract_first.to_json_file(__magic_name__ ) lowerCAmelCase__ = self.feature_extraction_class.from_json_file(__magic_name__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) lowerCAmelCase__ = self.feature_extraction_class.from_pretrained(__magic_name__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.feature_extraction_class() self.assertIsNotNone(__magic_name__ )
48
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ : Optional[Any] = 1_00 UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def A ( UpperCamelCase_ : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase__ = set() lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( UpperCamelCase_ : int = 50_00 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , UpperCamelCase_ ): if len(partition(UpperCamelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
48
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) class A : def __init__( self : Optional[Any] , __magic_name__ : str = None , __magic_name__ : uuid.UUID = None , __magic_name__ : Optional[Any]=None , __magic_name__ : Union[str, Any]=None ): """simple docstring""" if not conversation_id: lowerCAmelCase__ = uuid.uuida() if past_user_inputs is None: lowerCAmelCase__ = [] if generated_responses is None: lowerCAmelCase__ = [] lowerCAmelCase__ = conversation_id lowerCAmelCase__ = past_user_inputs lowerCAmelCase__ = generated_responses lowerCAmelCase__ = text def __eq__( self : Any , __magic_name__ : Tuple ): """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : str , __magic_name__ : bool = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) lowerCAmelCase__ = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: lowerCAmelCase__ = text def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCAmelCase__ = None def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : str ): """simple docstring""" self.generated_responses.append(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Dict ): """simple docstring""" lowerCAmelCase__ = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): lowerCAmelCase__ = "user" if is_user else "bot" output += f"""{name} >> {text} \n""" return output @add_end_docstrings( SCREAMING_SNAKE_CASE__ , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , *__magic_name__ : str , **__magic_name__ : str ): """simple docstring""" super().__init__(*__magic_name__ , **__magic_name__ ) if self.tokenizer.pad_token_id is None: lowerCAmelCase__ = self.tokenizer.eos_token def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=None , **__magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} if min_length_for_response is not None: lowerCAmelCase__ = min_length_for_response if minimum_tokens is not None: lowerCAmelCase__ = minimum_tokens if "max_length" in generate_kwargs: lowerCAmelCase__ = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCAmelCase__ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__magic_name__ ) return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , __magic_name__ : Union[Conversation, List[Conversation]] , __magic_name__ : Tuple=0 , **__magic_name__ : Optional[int] ): """simple docstring""" lowerCAmelCase__ = super().__call__(__magic_name__ , num_workers=__magic_name__ , **__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) == 1: return outputs[0] return outputs def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Conversation , __magic_name__ : str=32 ): """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): lowerCAmelCase__ = self.tokenizer._build_conversation_input_ids(__magic_name__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCAmelCase__ = self._legacy_parse_and_tokenize(__magic_name__ ) if self.framework == "pt": lowerCAmelCase__ = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCAmelCase__ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : int , __magic_name__ : Union[str, Any]=10 , **__magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) lowerCAmelCase__ = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) lowerCAmelCase__ = max_length - minimum_tokens lowerCAmelCase__ = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: lowerCAmelCase__ = model_inputs["attention_mask"][:, -trim:] lowerCAmelCase__ = model_inputs.pop("conversation" ) lowerCAmelCase__ = max_length lowerCAmelCase__ = self.model.generate(**__magic_name__ , **__magic_name__ ) if self.model.config.is_encoder_decoder: lowerCAmelCase__ = 1 else: lowerCAmelCase__ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict=True ): """simple docstring""" lowerCAmelCase__ = model_outputs["output_ids"] lowerCAmelCase__ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ , ) lowerCAmelCase__ = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(__magic_name__ ) return conversation def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Conversation ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.eos_token_id lowerCAmelCase__ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) ) if len(__magic_name__ ) > self.tokenizer.model_max_length: lowerCAmelCase__ = input_ids[-self.tokenizer.model_max_length :] return input_ids
48
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"} UpperCAmelCase__ : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27} class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ): """simple docstring""" return self.decoder.get(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" ) return (vocab_file,)
48
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class A ( SCREAMING_SNAKE_CASE__ ): def __get__( self : List[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any]=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) lowerCAmelCase__ = "__cached_" + self.fget.__name__ lowerCAmelCase__ = getattr(__magic_name__ , __magic_name__ , __magic_name__ ) if cached is None: lowerCAmelCase__ = self.fget(__magic_name__ ) setattr(__magic_name__ , __magic_name__ , __magic_name__ ) return cached def A ( UpperCamelCase_ : List[str] ) -> str: '''simple docstring''' lowerCAmelCase__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def A ( UpperCamelCase_ : List[Any] ) -> Any: '''simple docstring''' if is_torch_fx_proxy(UpperCamelCase_ ): return True if is_torch_available(): import torch if isinstance(UpperCamelCase_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCamelCase_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCamelCase_ , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCamelCase_ , np.ndarray ) def A ( UpperCamelCase_ : Any ) -> Any: '''simple docstring''' return isinstance(UpperCamelCase_ , np.ndarray ) def A ( UpperCamelCase_ : str ) -> Union[str, Any]: '''simple docstring''' return _is_numpy(UpperCamelCase_ ) def A ( UpperCamelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' import torch return isinstance(UpperCamelCase_ , torch.Tensor ) def A ( UpperCamelCase_ : str ) -> Optional[Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch(UpperCamelCase_ ) def A ( UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' import torch return isinstance(UpperCamelCase_ , torch.device ) def A ( UpperCamelCase_ : Any ) -> str: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ): if hasattr(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) else: return False return isinstance(UpperCamelCase_ , torch.dtype ) def A ( UpperCamelCase_ : int ) -> Any: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase_ ) def A ( UpperCamelCase_ : str ) -> Tuple: '''simple docstring''' import tensorflow as tf return isinstance(UpperCamelCase_ , tf.Tensor ) def A ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[int] ) -> str: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCamelCase_ , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(UpperCamelCase_ ) return type(UpperCamelCase_ ) == tf.Tensor def A ( UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(UpperCamelCase_ , jnp.ndarray ) def A ( UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' return False if not is_flax_available() else _is_jax(UpperCamelCase_ ) def A ( UpperCamelCase_ : List[str] ) -> Tuple: '''simple docstring''' if isinstance(UpperCamelCase_ , (dict, UserDict) ): return {k: to_py_obj(UpperCamelCase_ ) for k, v in obj.items()} elif isinstance(UpperCamelCase_ , (list, tuple) ): return [to_py_obj(UpperCamelCase_ ) for o in obj] elif is_tf_tensor(UpperCamelCase_ ): return obj.numpy().tolist() elif is_torch_tensor(UpperCamelCase_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCamelCase_ ): return np.asarray(UpperCamelCase_ ).tolist() elif isinstance(UpperCamelCase_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A ( UpperCamelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' if isinstance(UpperCamelCase_ , (dict, UserDict) ): return {k: to_numpy(UpperCamelCase_ ) for k, v in obj.items()} elif isinstance(UpperCamelCase_ , (list, tuple) ): return np.array(UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): return obj.numpy() elif is_torch_tensor(UpperCamelCase_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCamelCase_ ): return np.asarray(UpperCamelCase_ ) else: return obj class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = fields(self ) # Safety and consistency checks if not len(__magic_name__ ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) lowerCAmelCase__ = getattr(self , class_fields[0].name ) lowerCAmelCase__ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__magic_name__ ): if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = first_field.items() lowerCAmelCase__ = True else: try: lowerCAmelCase__ = iter(__magic_name__ ) lowerCAmelCase__ = True except TypeError: lowerCAmelCase__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__magic_name__ ): if ( not isinstance(__magic_name__ , (list, tuple) ) or not len(__magic_name__ ) == 2 or not isinstance(element[0] , __magic_name__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCAmelCase__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowerCAmelCase__ = element[1] elif first_field is not None: lowerCAmelCase__ = first_field else: for field in class_fields: lowerCAmelCase__ = getattr(self , field.name ) if v is not None: lowerCAmelCase__ = v def __delitem__( self : Union[str, Any] , *__magic_name__ : Tuple , **__magic_name__ : Dict ): """simple docstring""" raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def __SCREAMING_SNAKE_CASE ( self : Tuple , *__magic_name__ : Tuple , **__magic_name__ : Dict ): """simple docstring""" raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def __SCREAMING_SNAKE_CASE ( self : int , *__magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , *__magic_name__ : List[Any] , **__magic_name__ : List[Any] ): """simple docstring""" raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Union[str, Any] , __magic_name__ : Optional[int] ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__magic_name__ , __magic_name__ ) super().__setattr__(__magic_name__ , __magic_name__ ) def __setitem__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] ): """simple docstring""" super().__setitem__(__magic_name__ , __magic_name__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): @classmethod def __SCREAMING_SNAKE_CASE ( cls : int , __magic_name__ : Optional[int] ): """simple docstring""" raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :int = 'longest' snake_case__ :Optional[Any] = 'max_length' snake_case__ :str = 'do_not_pad' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'pt' snake_case__ :Union[str, Any] = 'tf' snake_case__ :Any = 'np' snake_case__ :List[str] = 'jax' class A : def __init__( self : Dict , __magic_name__ : List[ContextManager] ): """simple docstring""" lowerCAmelCase__ = context_managers lowerCAmelCase__ = ExitStack() def __enter__( self : str ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(__magic_name__ ) def __exit__( self : Dict , *__magic_name__ : Dict , **__magic_name__ : int ): """simple docstring""" self.stack.__exit__(*__magic_name__ , **__magic_name__ ) def A ( UpperCamelCase_ : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = infer_framework(UpperCamelCase_ ) if framework == "tf": lowerCAmelCase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCAmelCase__ = inspect.signature(model_class.forward ) # PyTorch models else: lowerCAmelCase__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A ( UpperCamelCase_ : int ) -> int: '''simple docstring''' lowerCAmelCase__ = model_class.__name__ lowerCAmelCase__ = infer_framework(UpperCamelCase_ ) if framework == "tf": lowerCAmelCase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCAmelCase__ = inspect.signature(model_class.forward ) # PyTorch models else: lowerCAmelCase__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A ( UpperCamelCase_ : MutableMapping , UpperCamelCase_ : str = "" , UpperCamelCase_ : str = "." ) -> List[Any]: '''simple docstring''' def _flatten_dict(UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]="" , UpperCamelCase_ : Any="." ): for k, v in d.items(): lowerCAmelCase__ = str(UpperCamelCase_ ) + delimiter + str(UpperCamelCase_ ) if parent_key else k if v and isinstance(UpperCamelCase_ , UpperCamelCase_ ): yield from flatten_dict(UpperCamelCase_ , UpperCamelCase_ , delimiter=UpperCamelCase_ ).items() else: yield key, v return dict(_flatten_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) @contextmanager def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : bool = False ) -> Any: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any]=None ) -> Tuple: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.transpose(UpperCamelCase_ , axes=UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.T if axes is None else array.permute(*UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.transpose(UpperCamelCase_ , perm=UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.transpose(UpperCamelCase_ , axes=UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for transpose: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> Dict: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.reshape(UpperCamelCase_ , UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.reshape(*UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.reshape(UpperCamelCase_ , UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for reshape: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=None ) -> Optional[int]: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.squeeze(UpperCamelCase_ , axis=UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.squeeze(UpperCamelCase_ , axis=UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.squeeze(UpperCamelCase_ , axis=UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for squeeze: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.expand_dims(UpperCamelCase_ , UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.unsqueeze(dim=UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.expand_dims(UpperCamelCase_ , axis=UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.expand_dims(UpperCamelCase_ , axis=UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.size(UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.numel() elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.size(UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' for key, value in auto_map.items(): if isinstance(UpperCamelCase_ , (tuple, list) ): lowerCAmelCase__ = [F"""{repo_id}--{v}""" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: lowerCAmelCase__ = F"""{repo_id}--{value}""" return auto_map def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' for base_class in inspect.getmro(UpperCamelCase_ ): lowerCAmelCase__ = base_class.__module__ lowerCAmelCase__ = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
48
'''simple docstring''' from math import sqrt def A ( UpperCamelCase_ : int ) -> int: '''simple docstring''' lowerCAmelCase__ = 0 for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase_ ): total += i + n // i elif i == sqrt(UpperCamelCase_ ): total += i return total - n def A ( UpperCamelCase_ : int = 1_00_00 ) -> int: '''simple docstring''' lowerCAmelCase__ = sum( i for i in range(1 , UpperCamelCase_ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
48
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> str | Literal[False]: '''simple docstring''' lowerCAmelCase__ = list(UpperCamelCase_ ) lowerCAmelCase__ = list(UpperCamelCase_ ) lowerCAmelCase__ = 0 for i in range(len(UpperCamelCase_ ) ): if lista[i] != lista[i]: count += 1 lowerCAmelCase__ = "_" if count > 1: return False else: return "".join(UpperCamelCase_ ) def A ( UpperCamelCase_ : list[str] ) -> list[str]: '''simple docstring''' lowerCAmelCase__ = [] while True: lowerCAmelCase__ = ["$"] * len(UpperCamelCase_ ) lowerCAmelCase__ = [] for i in range(len(UpperCamelCase_ ) ): for j in range(i + 1 , len(UpperCamelCase_ ) ): lowerCAmelCase__ = compare_string(binary[i] , binary[j] ) if k is False: lowerCAmelCase__ = "*" lowerCAmelCase__ = "*" temp.append("X" ) for i in range(len(UpperCamelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(UpperCamelCase_ ) == 0: return pi lowerCAmelCase__ = list(set(UpperCamelCase_ ) ) def A ( UpperCamelCase_ : int , UpperCamelCase_ : Sequence[float] ) -> list[str]: '''simple docstring''' lowerCAmelCase__ = [] for minterm in minterms: lowerCAmelCase__ = "" for _ in range(UpperCamelCase_ ): lowerCAmelCase__ = str(minterm % 2 ) + string minterm //= 2 temp.append(UpperCamelCase_ ) return temp def A ( UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int ) -> bool: '''simple docstring''' lowerCAmelCase__ = list(UpperCamelCase_ ) lowerCAmelCase__ = list(UpperCamelCase_ ) lowerCAmelCase__ = 0 for i in range(len(UpperCamelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def A ( UpperCamelCase_ : list[list[int]] , UpperCamelCase_ : list[str] ) -> list[str]: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = [0] * len(UpperCamelCase_ ) for i in range(len(chart[0] ) ): lowerCAmelCase__ = 0 lowerCAmelCase__ = -1 for j in range(len(UpperCamelCase_ ) ): if chart[j][i] == 1: count += 1 lowerCAmelCase__ = j if count == 1: lowerCAmelCase__ = 1 for i in range(len(UpperCamelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(UpperCamelCase_ ) ): lowerCAmelCase__ = 0 temp.append(prime_implicants[i] ) while True: lowerCAmelCase__ = 0 lowerCAmelCase__ = -1 lowerCAmelCase__ = 0 for i in range(len(UpperCamelCase_ ) ): lowerCAmelCase__ = chart[i].count(1 ) if count_n > max_n: lowerCAmelCase__ = count_n lowerCAmelCase__ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(UpperCamelCase_ ) ): lowerCAmelCase__ = 0 def A ( UpperCamelCase_ : list[str] , UpperCamelCase_ : list[str] ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase__ = [[0 for x in range(len(UpperCamelCase_ ) )] for x in range(len(UpperCamelCase_ ) )] for i in range(len(UpperCamelCase_ ) ): lowerCAmelCase__ = prime_implicants[i].count("_" ) for j in range(len(UpperCamelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , UpperCamelCase_ ): lowerCAmelCase__ = 1 return chart def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = int(input("Enter the no. of variables\n" ) ) lowerCAmelCase__ = [ float(UpperCamelCase_ ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] lowerCAmelCase__ = decimal_to_binary(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = check(UpperCamelCase_ ) print("Prime Implicants are:" ) print(UpperCamelCase_ ) lowerCAmelCase__ = prime_implicant_chart(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = selection(UpperCamelCase_ , UpperCamelCase_ ) print("Essential Prime Implicants are:" ) print(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
48
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.mean(1 ) # Centralize the data of class i lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase_ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = features.mean(1 ) lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.shape[1] lowerCAmelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' if features.any(): lowerCAmelCase__ = features.mean(1 ) # Center the dataset lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) ) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1] lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: lowerCAmelCase__ ,lowerCAmelCase__ = eigh( covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , ) lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions] lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ ) lowerCAmelCase__ = svd_matrix[:, 0:dimensions] lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = linear_discriminant_analysis( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if isinstance(UpperCamelCase_ , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ ) if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
48
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :List[str] = ['pixel_values'] def __init__( self : Union[str, Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Optional[Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[Any] , ): """simple docstring""" lowerCAmelCase__ = do_resize lowerCAmelCase__ = do_rescale lowerCAmelCase__ = size_divisor lowerCAmelCase__ = resample super().__init__(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = get_image_size(__magic_name__ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCAmelCase__ = height // size_divisor * size_divisor lowerCAmelCase__ = width // size_divisor * size_divisor lowerCAmelCase__ = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) return image def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[int] ): """simple docstring""" return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Optional[Any] , ): """simple docstring""" lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = size_divisor if size_divisor is not None else self.size_divisor lowerCAmelCase__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) lowerCAmelCase__ = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(__magic_name__ ) for img in images] if do_resize: lowerCAmelCase__ = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(__magic_name__ , scale=1 / 255 ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
48
'''simple docstring''' def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list: '''simple docstring''' lowerCAmelCase__ = word.split() def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str: lowerCAmelCase__ = max_width - width lowerCAmelCase__ = len(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase_ ): num_spaces_between_words_list[i] += 1 lowerCAmelCase__ = [] for i in range(UpperCamelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 for word in words: if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase_ ) width += len(UpperCamelCase_ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) # reset new line and new width lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ ) lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ ) answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
48
1
'''simple docstring''' import sys from collections import defaultdict class A : def __init__( self : Any ): """simple docstring""" lowerCAmelCase__ = [] def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ): """simple docstring""" return self.node_position[vertex] def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = pos def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase__ = 2 * start + 1 else: lowerCAmelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child] lowerCAmelCase__ ,lowerCAmelCase__ = ( heap[start], positions[start], ) lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa lowerCAmelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __magic_name__ ) self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = position[index] while index != 0: lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase__ = heap[parent] lowerCAmelCase__ = position[parent] self.set_position(position[parent] , __magic_name__ ) else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , __magic_name__ ) break lowerCAmelCase__ = parent else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , 0 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1 for i in range(__magic_name__ , -1 , -1 ): self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = positions[0] lowerCAmelCase__ = sys.maxsize self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ ) return temp def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = Heap() lowerCAmelCase__ = [0] * len(UpperCamelCase_ ) lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase__ = [] for vertex in range(len(UpperCamelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase_ ) heap.node_position.append(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = 1 lowerCAmelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase__ = 0 lowerCAmelCase__ = distance heap.heapify(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(1 , len(UpperCamelCase_ ) ): lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase_ )] ): lowerCAmelCase__ = distance heap.bottom_to_top( UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ : str = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ : int = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
48
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase__ : str = sys.version_info >= (3, 10) def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class A : snake_case__ :int snake_case__ :float snake_case__ :str snake_case__ :bool @dataclass class A : snake_case__ :int = 42 snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :Optional[bool] = None class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'titi' snake_case__ :Optional[int] = 'toto' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'titi' snake_case__ :str = 'toto' snake_case__ :int = 42 @dataclass class A : snake_case__ :BasicEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.foo ) @dataclass class A : snake_case__ :MixedTypeEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = MixedTypeEnum(self.foo ) @dataclass class A : snake_case__ :Optional[int] = None snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :Optional[str] = None snake_case__ :Optional[List[str]] = list_field(default=[] ) snake_case__ :Optional[List[int]] = list_field(default=[] ) @dataclass class A : snake_case__ :List[int] = list_field(default=[] ) snake_case__ :List[int] = list_field(default=[1, 2, 3] ) snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : snake_case__ :List[int] = field() snake_case__ :str = field() snake_case__ :BasicEnum = field() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.required_enum ) @dataclass class A : snake_case__ :int snake_case__ :"BasicEnum" = field() snake_case__ :"Optional[bool]" = None snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} ) snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :bool | None = None @dataclass class A : snake_case__ :int | None = None snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :str | None = None snake_case__ :list[str] | None = list_field(default=[] ) snake_case__ :list[int] | None = list_field(default=[] ) class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) lowerCAmelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" @dataclass class A : snake_case__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) lowerCAmelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
48
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def A ( UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase__ = AlbertConfig.from_json_file(UpperCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = AlbertForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
48
'''simple docstring''' import sys from collections import defaultdict class A : def __init__( self : Any ): """simple docstring""" lowerCAmelCase__ = [] def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ): """simple docstring""" return self.node_position[vertex] def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = pos def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase__ = 2 * start + 1 else: lowerCAmelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child] lowerCAmelCase__ ,lowerCAmelCase__ = ( heap[start], positions[start], ) lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa lowerCAmelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __magic_name__ ) self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = position[index] while index != 0: lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase__ = heap[parent] lowerCAmelCase__ = position[parent] self.set_position(position[parent] , __magic_name__ ) else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , __magic_name__ ) break lowerCAmelCase__ = parent else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , 0 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1 for i in range(__magic_name__ , -1 , -1 ): self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = positions[0] lowerCAmelCase__ = sys.maxsize self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ ) return temp def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = Heap() lowerCAmelCase__ = [0] * len(UpperCamelCase_ ) lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase__ = [] for vertex in range(len(UpperCamelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase_ ) heap.node_position.append(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = 1 lowerCAmelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase__ = 0 lowerCAmelCase__ = distance heap.heapify(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(1 , len(UpperCamelCase_ ) ): lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase_ )] ): lowerCAmelCase__ = distance heap.bottom_to_top( UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ : str = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ : int = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
48
1
'''simple docstring''' import argparse import json import subprocess def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" " https://api.github.com/repos/huggingface/transformers/actions/runners" ) lowerCAmelCase__ = subprocess.run(UpperCamelCase_ , shell=UpperCamelCase_ , stdout=subprocess.PIPE ) lowerCAmelCase__ = output.stdout.decode("utf-8" ) lowerCAmelCase__ = json.loads(UpperCamelCase_ ) lowerCAmelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(UpperCamelCase_ ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def A ( UpperCamelCase_ : List[Any] ) -> int: '''simple docstring''' return values.split("," ) UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) UpperCAmelCase__ : Any = parser.parse_args() get_runner_status(args.target_runners, args.token)
48
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase__ : Tuple = 5 UpperCAmelCase__ : List[Any] = 10 @require_sentencepiece @require_tokenizers class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Tuple = SpeechaTextTokenizer snake_case__ :Dict = False snake_case__ :Optional[int] = True def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() lowerCAmelCase__ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = "<pad>" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class A ( unittest.TestCase ): snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium' snake_case__ :Tuple = 'C\'est trop cool' snake_case__ :List[str] = 'Esto es genial' @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = "fr" lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase__ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
48
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def A ( UpperCamelCase_ : Dict ) -> List[str]: '''simple docstring''' return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def A ( UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCAmelCase__ = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) lowerCAmelCase__ = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) lowerCAmelCase__ = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) lowerCAmelCase__ = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) lowerCAmelCase__ = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) lowerCAmelCase__ = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) lowerCAmelCase__ = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) lowerCAmelCase__ = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) lowerCAmelCase__ = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) lowerCAmelCase__ = key.replace("image_encoder.module" , "flava.image_model" ) lowerCAmelCase__ = key.replace("text_encoder.module" , "flava.text_model" ) lowerCAmelCase__ = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) lowerCAmelCase__ = key.replace("mm_encoder.module" , "flava.multimodal_model" ) lowerCAmelCase__ = key.replace("text_projection" , "flava.text_projection" ) lowerCAmelCase__ = key.replace("image_projection" , "flava.image_projection" ) lowerCAmelCase__ = value.float() for key, value in codebook_state_dict.items(): lowerCAmelCase__ = value return upgrade @torch.no_grad() def A ( UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=None ) -> Dict: '''simple docstring''' if config_path is not None: lowerCAmelCase__ = FlavaConfig.from_pretrained(UpperCamelCase_ ) else: lowerCAmelCase__ = FlavaConfig() lowerCAmelCase__ = FlavaForPreTraining(UpperCamelCase_ ).eval() lowerCAmelCase__ = convert_dalle_checkpoint(UpperCamelCase_ , UpperCamelCase_ , save_checkpoint=UpperCamelCase_ ) if os.path.exists(UpperCamelCase_ ): lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" ) else: lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" ) lowerCAmelCase__ = upgrade_state_dict(UpperCamelCase_ , UpperCamelCase_ ) hf_model.load_state_dict(UpperCamelCase_ ) lowerCAmelCase__ = hf_model.state_dict() lowerCAmelCase__ = count_parameters(UpperCamelCase_ ) lowerCAmelCase__ = count_parameters(UpperCamelCase_ ) + count_parameters(UpperCamelCase_ ) assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) hf_model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCAmelCase__ : int = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
48
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ : Tuple = logging.get_logger(__name__) # General docstring UpperCAmelCase__ : int = "RegNetConfig" # Base docstring UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase__ : Tuple = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat" UpperCAmelCase__ : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) ) lowerCAmelCase__ = self.normalization(__magic_name__ ) lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config.num_channels lowerCAmelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = shape_list(__magic_name__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) ) lowerCAmelCase__ = self.embedder(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ): """simple docstring""" return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ ) class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) lowerCAmelCase__ = [ tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.pooler(__magic_name__ ) for layer_module in self.attention: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ), *[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ): """simple docstring""" for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ): """simple docstring""" lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(__magic_name__ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ ) @keras_serializable class A ( tf.keras.layers.Layer ): snake_case__ :List[Any] = RegNetConfig def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" ) lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) @unpack_inputs def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = self.encoder( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(__magic_name__ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = RegNetConfig snake_case__ :Optional[Any] = 'regnet' snake_case__ :Tuple = 'pixel_values' @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) # classification head lowerCAmelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier[0](__magic_name__ ) lowerCAmelCase__ = self.classifier[1](__magic_name__ ) lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
48
1
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def A ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> int: '''simple docstring''' lowerCAmelCase__ = RemBertConfig.from_json_file(UpperCamelCase_ ) print("Building PyTorch model from configuration: {}".format(str(UpperCamelCase_ ) ) ) lowerCAmelCase__ = RemBertModel(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print("Save PyTorch model to {}".format(UpperCamelCase_ ) ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ : Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
48
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def A ( UpperCamelCase_ : Tuple ) -> int: '''simple docstring''' for param in module.parameters(): lowerCAmelCase__ = False def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def A ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = datetime.now() lowerCAmelCase__ = current_time.strftime("%H:%M:%S" ) return timestamp
48
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ : Tuple = logging.get_logger(__name__) # General docstring UpperCAmelCase__ : int = "RegNetConfig" # Base docstring UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase__ : Tuple = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat" UpperCAmelCase__ : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) ) lowerCAmelCase__ = self.normalization(__magic_name__ ) lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config.num_channels lowerCAmelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = shape_list(__magic_name__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) ) lowerCAmelCase__ = self.embedder(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ): """simple docstring""" return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ ) class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) lowerCAmelCase__ = [ tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.pooler(__magic_name__ ) for layer_module in self.attention: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ), *[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ): """simple docstring""" for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ): """simple docstring""" lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(__magic_name__ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ ) @keras_serializable class A ( tf.keras.layers.Layer ): snake_case__ :List[Any] = RegNetConfig def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" ) lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) @unpack_inputs def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = self.encoder( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(__magic_name__ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = RegNetConfig snake_case__ :Optional[Any] = 'regnet' snake_case__ :Tuple = 'pixel_values' @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) # classification head lowerCAmelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier[0](__magic_name__ ) lowerCAmelCase__ = self.classifier[1](__magic_name__ ) lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
48
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
1
'''simple docstring''' UpperCAmelCase__ : int = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def A ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def A ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
48
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any: '''simple docstring''' lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ ) else: lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCAmelCase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
48
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ : List[str] = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[PIL.Image.Image, np.ndarray] class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : List[Any] , __magic_name__ : PriorTransformer , __magic_name__ : CLIPVisionModel , __magic_name__ : CLIPImageProcessor , __magic_name__ : HeunDiscreteScheduler , __magic_name__ : ShapERenderer , ): """simple docstring""" super().__init__() self.register_modules( prior=__magic_name__ , image_encoder=__magic_name__ , image_processor=__magic_name__ , scheduler=__magic_name__ , renderer=__magic_name__ , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] ): """simple docstring""" if latents is None: lowerCAmelCase__ = randn_tensor(__magic_name__ , generator=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCAmelCase__ = latents.to(__magic_name__ ) lowerCAmelCase__ = latents * scheduler.init_noise_sigma return latents def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Union[str, Any]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCAmelCase__ = torch.device(f"""cuda:{gpu_id}""" ) lowerCAmelCase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__magic_name__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Any , ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ) and isinstance(image[0] , torch.Tensor ): lowerCAmelCase__ = torch.cat(__magic_name__ , axis=0 ) if image[0].ndim == 4 else torch.stack(__magic_name__ , axis=0 ) if not isinstance(__magic_name__ , torch.Tensor ): lowerCAmelCase__ = self.image_processor(__magic_name__ , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) lowerCAmelCase__ = image.to(dtype=self.image_encoder.dtype , device=__magic_name__ ) lowerCAmelCase__ = self.image_encoder(__magic_name__ )["last_hidden_state"] lowerCAmelCase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCAmelCase__ = image_embeds.repeat_interleave(__magic_name__ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase__ = torch.zeros_like(__magic_name__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__magic_name__ ) def __call__( self : str , __magic_name__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , __magic_name__ : int = 1 , __magic_name__ : int = 25 , __magic_name__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : float = 4.0 , __magic_name__ : int = 64 , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , ): """simple docstring""" if isinstance(__magic_name__ , PIL.Image.Image ): lowerCAmelCase__ = 1 elif isinstance(__magic_name__ , torch.Tensor ): lowerCAmelCase__ = image.shape[0] elif isinstance(__magic_name__ , __magic_name__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCAmelCase__ = len(__magic_name__ ) else: raise ValueError( f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__magic_name__ )}""" ) lowerCAmelCase__ = self._execution_device lowerCAmelCase__ = batch_size * num_images_per_prompt lowerCAmelCase__ = guidance_scale > 1.0 lowerCAmelCase__ = self._encode_image(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # prior self.scheduler.set_timesteps(__magic_name__ , device=__magic_name__ ) lowerCAmelCase__ = self.scheduler.timesteps lowerCAmelCase__ = self.prior.config.num_embeddings lowerCAmelCase__ = self.prior.config.embedding_dim lowerCAmelCase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __magic_name__ , __magic_name__ , __magic_name__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCAmelCase__ = latents.reshape(latents.shape[0] , __magic_name__ , __magic_name__ ) for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase__ = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = self.prior( __magic_name__ , timestep=__magic_name__ , proj_embedding=__magic_name__ , ).predicted_image_embedding # remove the variance lowerCAmelCase__ ,lowerCAmelCase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCAmelCase__ ,lowerCAmelCase__ = noise_pred.chunk(2 ) lowerCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCAmelCase__ = self.scheduler.step( __magic_name__ , timestep=__magic_name__ , sample=__magic_name__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__magic_name__ ) lowerCAmelCase__ = [] for i, latent in enumerate(__magic_name__ ): print() lowerCAmelCase__ = self.renderer.decode( latent[None, :] , __magic_name__ , size=__magic_name__ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(__magic_name__ ) lowerCAmelCase__ = torch.stack(__magic_name__ ) if output_type not in ["np", "pil"]: raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) lowerCAmelCase__ = images.cpu().numpy() if output_type == "pil": lowerCAmelCase__ = [self.numpy_to_pil(__magic_name__ ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__magic_name__ )
48
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class A : def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = block_sizes lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = d_model lowerCAmelCase__ = n_head lowerCAmelCase__ = d_head lowerCAmelCase__ = d_inner lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = 2 lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase__ = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase__ = self.num_hidden_layers + 2 def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case__ :Any = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case__ :str = False snake_case__ :Any = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @require_tf class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case__ :int = False snake_case__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
48
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'timm_backbone' def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = backbone lowerCAmelCase__ = num_channels lowerCAmelCase__ = features_only lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = True lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
48
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'umt5' snake_case__ :Any = ['past_key_values'] def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ): """simple docstring""" super().__init__( is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = d_kv lowerCAmelCase__ = d_ff lowerCAmelCase__ = num_layers lowerCAmelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase__ = num_heads lowerCAmelCase__ = relative_attention_num_buckets lowerCAmelCase__ = relative_attention_max_distance lowerCAmelCase__ = dropout_rate lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_factor lowerCAmelCase__ = feed_forward_proj lowerCAmelCase__ = use_cache lowerCAmelCase__ = self.feed_forward_proj.split("-" ) lowerCAmelCase__ = act_info[-1] lowerCAmelCase__ = act_info[0] == "gated" if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": lowerCAmelCase__ = "gelu_new" @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return self.d_model @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.num_heads @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.num_layers class A ( SCREAMING_SNAKE_CASE__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: lowerCAmelCase__ = "past_encoder_sequence + sequence" lowerCAmelCase__ = {0: "batch"} lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 13 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 5E-4
48
1
'''simple docstring''' def A ( UpperCamelCase_ : str ) -> int: '''simple docstring''' lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 while i * i <= n: lowerCAmelCase__ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def A ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 while True: i += 1 t_num += i if count_divisors(UpperCamelCase_ ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
48
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class A : def __init__( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ): """simple docstring""" if nodea not in self.connections: self.add_node(__magic_name__ ) if nodea not in self.connections: self.add_node(__magic_name__ ) lowerCAmelCase__ = probability def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return list(self.connections ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]: '''simple docstring''' lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = Counter(graph.get_nodes() ) lowerCAmelCase__ = start for _ in range(UpperCamelCase_ ): lowerCAmelCase__ = graph.transition(UpperCamelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
48
1
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Optional[Any] = VQModel snake_case__ :str = 'sample' @property def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict=(32, 32) ): """simple docstring""" lowerCAmelCase__ = 4 lowerCAmelCase__ = 3 lowerCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(__magic_name__ ) return {"sample": image} @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return (3, 32, 32) @property def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return (3, 32, 32) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } lowerCAmelCase__ = self.dummy_input return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__magic_name__ ) lowerCAmelCase__ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(__magic_name__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase__ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowerCAmelCase__ = image.to(__magic_name__ ) with torch.no_grad(): lowerCAmelCase__ = model(__magic_name__ ).sample lowerCAmelCase__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
48
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase__ : Optional[Any] = pytest.mark.integration UpperCAmelCase__ : str = {"comet"} UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None UpperCAmelCase__ : Optional[int] = {"code_eval"} UpperCAmelCase__ : List[Any] = os.name == "nt" UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"} UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : int ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : Any ) -> int: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class A ( parameterized.TestCase ): snake_case__ :Union[str, Any] = {} snake_case__ :Optional[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ ) # check parameters lowerCAmelCase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ): yield else: yield @contextmanager def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ): return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ ) with patch("datasets.load_metric" ) as mock_load_metric: lowerCAmelCase__ = load_local_metric yield @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ): """simple docstring""" def wrapper(__magic_name__ : Dict ): lowerCAmelCase__ = contextmanager(__magic_name__ ) lowerCAmelCase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowerCAmelCase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' import torch def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowerCAmelCase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def A ( UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' def load_from_checkpoint(UpperCamelCase_ : Tuple ): class A : def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ): """simple docstring""" assert len(__magic_name__ ) == 2 lowerCAmelCase__ = [0.19, 0.92] return scores, sum(__magic_name__ ) / len(__magic_name__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowerCAmelCase__ = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowerCAmelCase__ = load_from_checkpoint yield def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) ) lowerCAmelCase__ = "ERROR" lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
48
1
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} UpperCAmelCase__ : Any = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } UpperCAmelCase__ : int = { "abeja/gpt-neox-japanese-2.7b": 20_48, } def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ) -> List[Any]: '''simple docstring''' with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = collections.OrderedDict() lowerCAmelCase__ = collections.OrderedDict() lowerCAmelCase__ = collections.OrderedDict() with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(UpperCamelCase_ ): lowerCAmelCase__ = b lowerCAmelCase__ = idx for wd in b: lowerCAmelCase__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :List[str] = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :int = ['input_ids', 'attention_mask'] def __init__( self : Dict , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Dict="<|endoftext|>" , __magic_name__ : List[str]="<|endoftext|>" , __magic_name__ : Tuple="<|startoftext|>" , __magic_name__ : Optional[int]="<|endoftext|>" , __magic_name__ : List[Any]=False , **__magic_name__ : Dict , ): """simple docstring""" super().__init__( unk_token=__magic_name__ , pad_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , do_clean_text=__magic_name__ , **__magic_name__ , ) if not os.path.isfile(__magic_name__ ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__magic_name__ ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) lowerCAmelCase__ = do_clean_text lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = load_vocab_and_emoji(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return len(self.raw_vocab ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : int ): """simple docstring""" return self.subword_tokenizer.tokenize(__magic_name__ , clean=self.do_clean_text ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Any ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] ): """simple docstring""" return self.subword_tokenizer.convert_id_to_token(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = "".join(__magic_name__ ).strip() return out_string def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : "Conversation" ): """simple docstring""" lowerCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__magic_name__ , add_special_tokens=__magic_name__ ) + [self.eos_token_id] ) if len(__magic_name__ ) > self.model_max_length: lowerCAmelCase__ = input_ids[-self.model_max_length :] return input_ids def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" lowerCAmelCase__ = 0 if os.path.isdir(__magic_name__ ): lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: lowerCAmelCase__ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase__ = token_index writer.write(",".join(__magic_name__ ) + "\n" ) index += 1 with open(__magic_name__ , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __magic_name__ ) return vocab_file, emoji_file class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : List[str] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = vocab # same as swe lowerCAmelCase__ = ids_to_tokens # same as bpe lowerCAmelCase__ = emoji lowerCAmelCase__ = np.max([len(__magic_name__ ) for w in self.vocab.keys()] ) lowerCAmelCase__ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) lowerCAmelCase__ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) lowerCAmelCase__ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) lowerCAmelCase__ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCAmelCase__ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCAmelCase__ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) lowerCAmelCase__ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" lowerCAmelCase__ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" lowerCAmelCase__ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : Dict ): """simple docstring""" return len(self.ids_to_tokens ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.content_repattera.sub("<URL>" , __magic_name__ ) lowerCAmelCase__ = self.content_repattera.sub("<EMAIL>" , __magic_name__ ) lowerCAmelCase__ = self.content_repattera.sub("<TEL>" , __magic_name__ ) lowerCAmelCase__ = self.content_repattera.sub("<DATE>" , __magic_name__ ) lowerCAmelCase__ = self.content_repattera.sub("<DATE>" , __magic_name__ ) lowerCAmelCase__ = self.content_repattera.sub("<PRICE>" , __magic_name__ ) lowerCAmelCase__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCAmelCase__ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Dict , __magic_name__ : Optional[int]=False ): """simple docstring""" lowerCAmelCase__ = text.replace(" " , "<SP>" ) lowerCAmelCase__ = text.replace(" " , "<SP>" ) lowerCAmelCase__ = text.replace("\r\n" , "<BR>" ) lowerCAmelCase__ = text.replace("\n" , "<BR>" ) lowerCAmelCase__ = text.replace("\r" , "<BR>" ) lowerCAmelCase__ = text.replace("\t" , "<TAB>" ) lowerCAmelCase__ = text.replace("—" , "ー" ) lowerCAmelCase__ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCAmelCase__ = text.replace(__magic_name__ , __magic_name__ ) if clean: lowerCAmelCase__ = self.clean_text(__magic_name__ ) def check_simbol(__magic_name__ : int ): lowerCAmelCase__ = x.encode() if len(__magic_name__ ) == 1 and len(__magic_name__ ) == 2: lowerCAmelCase__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(__magic_name__ : int ): lowerCAmelCase__ = x.encode() if len(__magic_name__ ) == 1 and len(__magic_name__ ) == 3: lowerCAmelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False lowerCAmelCase__ = 0 lowerCAmelCase__ = [] while pos < len(__magic_name__ ): lowerCAmelCase__ = min(len(__magic_name__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 lowerCAmelCase__ = [] # (token_id, token, pos) for e in range(__magic_name__ , __magic_name__ , -1 ): lowerCAmelCase__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__magic_name__ ) > 2: lowerCAmelCase__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__magic_name__ ) > 0: # the smallest token_id is adopted lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = sorted(__magic_name__ , key=lambda __magic_name__ : x[0] )[0] result.append(__magic_name__ ) lowerCAmelCase__ = e else: lowerCAmelCase__ = pos + 1 lowerCAmelCase__ = text[pos:end] if check_simbol(__magic_name__ ): result.append("<KIGOU>" ) elif checkuae(__magic_name__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) lowerCAmelCase__ = end return result def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str , __magic_name__ : str="\n" ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__magic_name__ ) > 0: words.append(bytearray(__magic_name__ ).decode("utf-8" , errors="replace" ) ) lowerCAmelCase__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__magic_name__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__magic_name__ ) if len(__magic_name__ ) > 0: words.append(bytearray(__magic_name__ ).decode("utf-8" , errors="replace" ) ) lowerCAmelCase__ = "".join(__magic_name__ ) return text
48
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase__ : int = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M' snake_case__ :Optional[Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case__ :List[Any] = 'translator' snake_case__ :List[Any] = AutoTokenizer snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM snake_case__ :List[str] = LANGUAGE_CODES snake_case__ :List[Any] = ['text', 'text', 'text'] snake_case__ :List[Any] = ['text'] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) lowerCAmelCase__ = self.lang_to_code[src_lang] lowerCAmelCase__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
48
1
'''simple docstring''' import random def A ( UpperCamelCase_ : int , UpperCamelCase_ : float , UpperCamelCase_ : bool = False ) -> dict: '''simple docstring''' lowerCAmelCase__ = {i: [] for i in range(UpperCamelCase_ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase_ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase_ ): for j in range(i + 1 , UpperCamelCase_ ): if random.random() < probability: graph[i].append(UpperCamelCase_ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase_ ) return graph def A ( UpperCamelCase_ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase_ ) if i != j] for i in range(UpperCamelCase_ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'timm_backbone' def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = backbone lowerCAmelCase__ = num_channels lowerCAmelCase__ = features_only lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = True lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
48
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase__ : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") UpperCAmelCase__ : List[Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) UpperCAmelCase__ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : snake_case__ :Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) snake_case__ :Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A folder containing the training data.'} ) snake_case__ :Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A folder containing the validation data.'} ) snake_case__ :Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) snake_case__ :int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) snake_case__ :float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = {} if self.train_dir is not None: lowerCAmelCase__ = self.train_dir if self.validation_dir is not None: lowerCAmelCase__ = self.validation_dir lowerCAmelCase__ = data_files if data_files else None @dataclass class A : snake_case__ :str = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(SCREAMING_SNAKE_CASE__ )} , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) snake_case__ :str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case__ :str = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'} ) snake_case__ :bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Stride to use for the encoder.'} , ) class A : def __init__( self : Any , __magic_name__ : List[Any]=192 , __magic_name__ : int=32 , __magic_name__ : Dict=4 , __magic_name__ : List[Any]=0.6 ): """simple docstring""" lowerCAmelCase__ = input_size lowerCAmelCase__ = mask_patch_size lowerCAmelCase__ = model_patch_size lowerCAmelCase__ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) lowerCAmelCase__ = self.input_size // self.mask_patch_size lowerCAmelCase__ = self.mask_patch_size // self.model_patch_size lowerCAmelCase__ = self.rand_size**2 lowerCAmelCase__ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = np.random.permutation(self.token_count )[: self.mask_count] lowerCAmelCase__ = np.zeros(self.token_count , dtype=__magic_name__ ) lowerCAmelCase__ = 1 lowerCAmelCase__ = mask.reshape((self.rand_size, self.rand_size) ) lowerCAmelCase__ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def A ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = torch.stack([example["pixel_values"] for example in examples] ) lowerCAmelCase__ = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim" , UpperCamelCase_ , UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase__ = training_args.get_process_log_level() logger.setLevel(UpperCamelCase_ ) transformers.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. lowerCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCAmelCase__ = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase_ ) and data_args.train_val_split > 0.0: lowerCAmelCase__ = ds["train"].train_test_split(data_args.train_val_split ) lowerCAmelCase__ = split["train"] lowerCAmelCase__ = split["test"] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCamelCase_ ) elif model_args.model_name_or_path: lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase_ ) else: lowerCAmelCase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCamelCase_ , "decoder_type" ): lowerCAmelCase__ = "simmim" # adapt config lowerCAmelCase__ = model_args.image_size if model_args.image_size is not None else config.image_size lowerCAmelCase__ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowerCAmelCase__ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowerCAmelCase__ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase_ ) elif model_args.model_name_or_path: lowerCAmelCase__ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase_ ) else: lowerCAmelCase__ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowerCAmelCase__ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowerCAmelCase__ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) lowerCAmelCase__ = AutoModelForMaskedImageModeling.from_config(UpperCamelCase_ ) if training_args.do_train: lowerCAmelCase__ = ds["train"].column_names else: lowerCAmelCase__ = ds["validation"].column_names if data_args.image_column_name is not None: lowerCAmelCase__ = data_args.image_column_name elif "image" in column_names: lowerCAmelCase__ = "image" elif "img" in column_names: lowerCAmelCase__ = "img" else: lowerCAmelCase__ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowerCAmelCase__ = Compose( [ Lambda(lambda UpperCamelCase_ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowerCAmelCase__ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCamelCase_ : List[Any] ): lowerCAmelCase__ = [transforms(UpperCamelCase_ ) for image in examples[image_column_name]] lowerCAmelCase__ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: lowerCAmelCase__ = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCamelCase_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: lowerCAmelCase__ = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCamelCase_ ) # Initialize our trainer lowerCAmelCase__ = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=UpperCamelCase_ , data_collator=UpperCamelCase_ , ) # Training if training_args.do_train: lowerCAmelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ = last_checkpoint lowerCAmelCase__ = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase__ = trainer.evaluate() trainer.log_metrics("eval" , UpperCamelCase_ ) trainer.save_metrics("eval" , UpperCamelCase_ ) # Write model card and (optionally) push to hub lowerCAmelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "masked-image-modeling", "dataset": data_args.dataset_name, "tags": ["masked-image-modeling"], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase_ ) else: trainer.create_model_card(**UpperCamelCase_ ) if __name__ == "__main__": main()
48
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base' snake_case__ :List[Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case__ :List[Any] = 'image_captioner' snake_case__ :Optional[int] = AutoModelForVisionaSeq snake_case__ :Optional[int] = ['image'] snake_case__ :Any = ['text'] def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ): """simple docstring""" return self.pre_processor(images=__magic_name__ , return_tensors="pt" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
48
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device UpperCAmelCase__ : str = False class A ( unittest.TestCase ): pass @slow @require_torch_gpu class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( image=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images lowerCAmelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
48
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = "▁" UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ : Optional[Any] = { "facebook/mbart-large-50-one-to-many-mmt": 10_24, } # fmt: off UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = VOCAB_FILES_NAMES snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Tuple = ['input_ids', 'attention_mask'] snake_case__ :List[int] = [] snake_case__ :List[int] = [] def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ): """simple docstring""" lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX" lowerCAmelCase__ = self.lang_code_to_id[self._src_lang] lowerCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : List[Any] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = "" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(__magic_name__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) lowerCAmelCase__ = [1] * len(self.prefix_tokens ) lowerCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase__ = src_lang lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ ) lowerCAmelCase__ = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[src_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[tgt_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id]
48
1
'''simple docstring''' def A ( ) -> int: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = 1 while len(UpperCamelCase_ ) < 1E6: constant.append(str(UpperCamelCase_ ) ) i += 1 lowerCAmelCase__ = "".join(UpperCamelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
48
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 if start < end: lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 ) count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ ) return count def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ = start - 1 for index in range(UpperCamelCase_ , UpperCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ = new_pivot_index + 1 lowerCAmelCase__ = a[new_pivot_index] lowerCAmelCase__ = a[index] lowerCAmelCase__ = temp lowerCAmelCase__ = a[new_pivot_index + 1] lowerCAmelCase__ = a[end] lowerCAmelCase__ = temp return new_pivot_index + 1, count UpperCAmelCase__ : Tuple = TemporaryFile() UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase__ : Optional[Any] = np.load(outfile) UpperCAmelCase__ : Any = len(M) - 1 UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
48
1
'''simple docstring''' def A ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> int: '''simple docstring''' lowerCAmelCase__ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def A ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = 0 while b > 0: if b & 1: lowerCAmelCase__ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
48
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A ( UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase__ = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase__ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase__ = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase__ = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase__ = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] else: lowerCAmelCase__ = rename_key(UpperCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ = val.squeeze_() else: lowerCAmelCase__ = val return orig_state_dict def A ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any: '''simple docstring''' lowerCAmelCase__ = GroupViTConfig() lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval() lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0) # verify result lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase_ ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 ) processor.save_pretrained(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) print("Successfully saved processor and model to" , UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(UpperCamelCase_ , organization="nielsr" ) model.push_to_hub(UpperCamelCase_ , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) UpperCAmelCase__ : Any = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
48
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :int = StableUnCLIPPipeline snake_case__ :int = TEXT_TO_IMAGE_PARAMS snake_case__ :str = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ :Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case__ :str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false snake_case__ :Tuple = False def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = 32 lowerCAmelCase__ = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__magic_name__ , projection_dim=__magic_name__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCAmelCase__ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__magic_name__ , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase__ = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=__magic_name__ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase__ = StableUnCLIPImageNormalizer(embedding_dim=__magic_name__ ) lowerCAmelCase__ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__magic_name__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__magic_name__ , layers_per_block=1 , upcast_attention=__magic_name__ , use_linear_projection=__magic_name__ , ) torch.manual_seed(0 ) lowerCAmelCase__ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=__magic_name__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL() lowerCAmelCase__ = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=0 ): """simple docstring""" if str(__magic_name__ ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(__magic_name__ ) else: lowerCAmelCase__ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) lowerCAmelCase__ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__magic_name__ ) @slow @require_torch_gpu class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowerCAmelCase__ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ = pipe("anime turle" , generator=__magic_name__ , output_type="np" ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase__ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
48
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ : Optional[Any] = 1_00 UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def A ( UpperCamelCase_ : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase__ = set() lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( UpperCamelCase_ : int = 50_00 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , UpperCamelCase_ ): if len(partition(UpperCamelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
48
1
'''simple docstring''' def A ( UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> Tuple: '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : str=0 ) -> Optional[int]: '''simple docstring''' return sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x[column] ) def A ( UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[str]=float("inf" ) ) -> Any: '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCamelCase_ ): lowerCAmelCase__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCAmelCase__ = current_dis return min_dis def A ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple=float("inf" ) ) -> Union[str, Any]: '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , UpperCamelCase_ ): for j in range(max(0 , i - 6 ) , UpperCamelCase_ ): lowerCAmelCase__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCAmelCase__ = current_dis return min_dis def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] ) -> Optional[int]: '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(UpperCamelCase_ , UpperCamelCase_ ) # recursion lowerCAmelCase__ = points_counts // 2 lowerCAmelCase__ = closest_pair_of_points_sqr( UpperCamelCase_ , points_sorted_on_y[:mid] , UpperCamelCase_ ) lowerCAmelCase__ = closest_pair_of_points_sqr( UpperCamelCase_ , points_sorted_on_y[mid:] , points_counts - mid ) lowerCAmelCase__ = min(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCamelCase_ ) lowerCAmelCase__ = dis_between_closest_in_strip( UpperCamelCase_ , len(UpperCamelCase_ ) , UpperCamelCase_ ) return min(UpperCamelCase_ , UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict ) -> int: '''simple docstring''' lowerCAmelCase__ = column_based_sort(UpperCamelCase_ , column=0 ) lowerCAmelCase__ = column_based_sort(UpperCamelCase_ , column=1 ) return ( closest_pair_of_points_sqr( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase__ : str = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
48
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"} UpperCAmelCase__ : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27} class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ): """simple docstring""" return self.decoder.get(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" ) return (vocab_file,)
48
1