code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
def A ( ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = 0
for i in range(1 , 10_01 ):
total += i**i
return str(UpperCamelCase_ )[-10:]
if __name__ == "__main__":
print(solution())
| 48 |
'''simple docstring'''
from math import sqrt
def A ( UpperCamelCase_ : int ) -> int:
'''simple docstring'''
lowerCAmelCase__ = 0
for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ):
if n % i == 0 and i != sqrt(UpperCamelCase_ ):
total += i + n // i
elif i == sqrt(UpperCamelCase_ ):
total += i
return total - n
def A ( UpperCamelCase_ : int = 1_00_00 ) -> int:
'''simple docstring'''
lowerCAmelCase__ = sum(
i
for i in range(1 , UpperCamelCase_ )
if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 48 | 1 |
'''simple docstring'''
import baseaa
import io
import json
import os
from copy import deepcopy
from ..optimizer import AcceleratedOptimizer
from ..scheduler import AcceleratedScheduler
class A :
def __init__( self : int , __magic_name__ : Optional[int] ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overridden
lowerCAmelCase__ = deepcopy(__magic_name__ )
elif os.path.exists(__magic_name__ ):
with io.open(__magic_name__ , "r" , encoding="utf-8" ) as f:
lowerCAmelCase__ = json.load(__magic_name__ )
else:
try:
lowerCAmelCase__ = baseaa.urlsafe_baadecode(__magic_name__ ).decode("utf-8" )
lowerCAmelCase__ = json.loads(__magic_name__ )
except (UnicodeDecodeError, AttributeError, ValueError):
raise ValueError(
f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" )
lowerCAmelCase__ = config
self.set_stage_and_offload()
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = self.get_value("zero_optimization.stage" , -1 )
# offload
lowerCAmelCase__ = False
if self.is_zeroa() or self.is_zeroa():
lowerCAmelCase__ = set(["cpu", "nvme"] )
lowerCAmelCase__ = set(
[
self.get_value("zero_optimization.offload_optimizer.device" ),
self.get_value("zero_optimization.offload_param.device" ),
] )
if len(offload_devices & offload_devices_valid ) > 0:
lowerCAmelCase__ = True
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.config
# find the config node of interest if it exists
lowerCAmelCase__ = ds_key_long.split("." )
lowerCAmelCase__ = nodes.pop()
for node in nodes:
lowerCAmelCase__ = config.get(__magic_name__ )
if config is None:
return None, ds_key
return config, ds_key
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ = self.find_config_node(__magic_name__ )
if config is None:
return default
return config.get(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict , __magic_name__ : Union[str, Any]=False ):
"""simple docstring"""
lowerCAmelCase__ = self.config
# find the config node of interest if it exists
lowerCAmelCase__ = ds_key_long.split("." )
for node in nodes:
lowerCAmelCase__ = config
lowerCAmelCase__ = config.get(__magic_name__ )
if config is None:
if must_exist:
raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" )
else:
return
# if found remove it
if parent_config is not None:
parent_config.pop(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.get_value(__magic_name__ )
return False if value is None else bool(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.get_value(__magic_name__ )
return False if value is None else not bool(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
return self._stage == 2
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return self._stage == 3
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return self._offload
class A :
def __init__( self : Union[str, Any] , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = engine
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : int , **__magic_name__ : int ):
"""simple docstring"""
self.engine.backward(__magic_name__ , **__magic_name__ )
# Deepspeed's `engine.step` performs the following operations:
# - gradient accumulation check
# - gradient clipping
# - optimizer step
# - zero grad
# - checking overflow
# - lr_scheduler step (only if engine.lr_scheduler is not None)
self.engine.step()
# and this plugin overrides the above calls with no-ops when Accelerate runs under
# Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple
# training loop that works transparently under many training regimes.
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Any , __magic_name__ : Optional[Any] ):
"""simple docstring"""
super().__init__(__magic_name__ , device_placement=__magic_name__ , scaler=__magic_name__ )
lowerCAmelCase__ = hasattr(self.optimizer , "overflow" )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any]=None ):
"""simple docstring"""
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
if self.__has_overflow__:
return self.optimizer.overflow
return False
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : str , __magic_name__ : List[str] , __magic_name__ : Tuple ):
"""simple docstring"""
super().__init__(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
class A :
def __init__( self : List[Any] , __magic_name__ : Any , __magic_name__ : List[Any]=0.001 , __magic_name__ : Any=0 , **__magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = params
lowerCAmelCase__ = lr
lowerCAmelCase__ = weight_decay
lowerCAmelCase__ = kwargs
class A :
def __init__( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : List[Any]=None , __magic_name__ : Tuple=0 , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = optimizer
lowerCAmelCase__ = total_num_steps
lowerCAmelCase__ = warmup_num_steps
lowerCAmelCase__ = kwargs
| 48 |
'''simple docstring'''
import logging
import numpy as np
import pytest
from scipy.linalg import eigh
logging.basicConfig(level=logging.INFO, format="%(message)s")
def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return input_array.reshape((input_array.size, 1) )
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.mean(1 )
# Centralize the data of class i
lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ )
if i > 0:
# If covariance_sum is not None
covariance_sum += np.dot(UpperCamelCase_ , centered_data.T )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = features.mean(1 )
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.shape[1]
lowerCAmelCase__ = data.mean(1 )
if i > 0:
# If covariance_sum is not None
covariance_sum += device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
if features.any():
lowerCAmelCase__ = features.mean(1 )
# Center the dataset
lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) )
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1]
lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ )
# Take all the columns in the reverse order (-1), and then takes only the first
lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions]
# Project the database on the new space
lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ )
logging.info("Principal Component Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
assert classes > dimensions
# Check if features have been already loaded
if features.any:
lowerCAmelCase__ ,lowerCAmelCase__ = eigh(
covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , )
lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions]
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ )
lowerCAmelCase__ = svd_matrix[:, 0:dimensions]
lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ )
logging.info("Linear Discriminant Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] )
lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = 2
# Assert that the function raises an AssertionError if dimensions > classes
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = linear_discriminant_analysis(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if isinstance(UpperCamelCase_ , np.ndarray ):
raise AssertionError(
"Did not raise AssertionError for dimensions > classes" )
assert error_info.type is AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] )
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ )
if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ):
raise AssertionError
assert error_info.type is AssertionError
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class A :
def __init__( self : Dict , __magic_name__ : Collection[float] | None = None ):
"""simple docstring"""
if components is None:
lowerCAmelCase__ = []
lowerCAmelCase__ = list(__magic_name__ )
def __len__( self : Optional[Any] ):
"""simple docstring"""
return len(self.__components )
def __str__( self : Optional[Any] ):
"""simple docstring"""
return "(" + ",".join(map(__magic_name__ , self.__components ) ) + ")"
def __add__( self : Dict , __magic_name__ : Vector ):
"""simple docstring"""
lowerCAmelCase__ = len(self )
if size == len(__magic_name__ ):
lowerCAmelCase__ = [self.__components[i] + other.component(__magic_name__ ) for i in range(__magic_name__ )]
return Vector(__magic_name__ )
else:
raise Exception("must have the same size" )
def __sub__( self : Tuple , __magic_name__ : Vector ):
"""simple docstring"""
lowerCAmelCase__ = len(self )
if size == len(__magic_name__ ):
lowerCAmelCase__ = [self.__components[i] - other.component(__magic_name__ ) for i in range(__magic_name__ )]
return Vector(__magic_name__ )
else: # error case
raise Exception("must have the same size" )
@overload
def __mul__( self : Optional[Any] , __magic_name__ : float ):
"""simple docstring"""
...
@overload
def __mul__( self : Union[str, Any] , __magic_name__ : Vector ):
"""simple docstring"""
...
def __mul__( self : Union[str, Any] , __magic_name__ : float | Vector ):
"""simple docstring"""
if isinstance(__magic_name__ , (float, int) ):
lowerCAmelCase__ = [c * other for c in self.__components]
return Vector(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ) and len(self ) == len(__magic_name__ ):
lowerCAmelCase__ = len(self )
lowerCAmelCase__ = [self.__components[i] * other.component(__magic_name__ ) for i in range(__magic_name__ )]
return sum(__magic_name__ )
else: # error case
raise Exception("invalid operand!" )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return Vector(self.__components )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : int ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("index out of range" )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : int , __magic_name__ : float ):
"""simple docstring"""
assert -len(self.__components ) <= pos < len(self.__components )
lowerCAmelCase__ = value
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
if len(self.__components ) == 0:
raise Exception("Vector is empty" )
lowerCAmelCase__ = [c**2 for c in self.__components]
return math.sqrt(sum(__magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Vector , __magic_name__ : bool = False ):
"""simple docstring"""
lowerCAmelCase__ = self * other
lowerCAmelCase__ = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def A ( UpperCamelCase_ : int ) -> Vector:
'''simple docstring'''
assert isinstance(UpperCamelCase_ , UpperCamelCase_ )
return Vector([0] * dimension )
def A ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Vector:
'''simple docstring'''
assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (isinstance(UpperCamelCase_ , UpperCamelCase_ ))
lowerCAmelCase__ = [0] * dimension
lowerCAmelCase__ = 1
return Vector(UpperCamelCase_ )
def A ( UpperCamelCase_ : float , UpperCamelCase_ : Vector , UpperCamelCase_ : Vector ) -> Vector:
'''simple docstring'''
assert (
isinstance(UpperCamelCase_ , UpperCamelCase_ )
and isinstance(UpperCamelCase_ , UpperCamelCase_ )
and (isinstance(UpperCamelCase_ , (int, float) ))
)
return x * scalar + y
def A ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Vector:
'''simple docstring'''
random.seed(UpperCamelCase_ )
lowerCAmelCase__ = [random.randint(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(UpperCamelCase_ )]
return Vector(UpperCamelCase_ )
class A :
def __init__( self : Dict , __magic_name__ : list[list[float]] , __magic_name__ : int , __magic_name__ : int ):
"""simple docstring"""
lowerCAmelCase__ = matrix
lowerCAmelCase__ = w
lowerCAmelCase__ = h
def __str__( self : str ):
"""simple docstring"""
lowerCAmelCase__ = ""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self : int , __magic_name__ : Matrix ):
"""simple docstring"""
if self.__width == other.width() and self.__height == other.height():
lowerCAmelCase__ = []
for i in range(self.__height ):
lowerCAmelCase__ = [
self.__matrix[i][j] + other.component(__magic_name__ , __magic_name__ )
for j in range(self.__width )
]
matrix.append(__magic_name__ )
return Matrix(__magic_name__ , self.__width , self.__height )
else:
raise Exception("matrix must have the same dimension!" )
def __sub__( self : Dict , __magic_name__ : Matrix ):
"""simple docstring"""
if self.__width == other.width() and self.__height == other.height():
lowerCAmelCase__ = []
for i in range(self.__height ):
lowerCAmelCase__ = [
self.__matrix[i][j] - other.component(__magic_name__ , __magic_name__ )
for j in range(self.__width )
]
matrix.append(__magic_name__ )
return Matrix(__magic_name__ , self.__width , self.__height )
else:
raise Exception("matrices must have the same dimension!" )
@overload
def __mul__( self : Optional[Any] , __magic_name__ : float ):
"""simple docstring"""
...
@overload
def __mul__( self : Optional[Any] , __magic_name__ : Vector ):
"""simple docstring"""
...
def __mul__( self : Optional[int] , __magic_name__ : float | Vector ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ): # matrix-vector
if len(__magic_name__ ) == self.__width:
lowerCAmelCase__ = zero_vector(self.__height )
for i in range(self.__height ):
lowerCAmelCase__ = [
self.__matrix[i][j] * other.component(__magic_name__ )
for j in range(self.__width )
]
ans.change_component(__magic_name__ , sum(__magic_name__ ) )
return ans
else:
raise Exception(
"vector must have the same size as the "
"number of columns of the matrix!" )
elif isinstance(__magic_name__ , (int, float) ): # matrix-scalar
lowerCAmelCase__ = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(__magic_name__ , self.__width , self.__height )
return None
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return self.__height
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return self.__width
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ):
"""simple docstring"""
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("change_component: indices out of bounds" )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float ):
"""simple docstring"""
if 0 <= x < self.__height and 0 <= y < self.__width:
lowerCAmelCase__ = value
else:
raise Exception("change_component: indices out of bounds" )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : int , __magic_name__ : int ):
"""simple docstring"""
if self.__height != self.__width:
raise Exception("Matrix is not square" )
lowerCAmelCase__ = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(__magic_name__ ) ):
lowerCAmelCase__ = minor[i][:y] + minor[i][y + 1 :]
return Matrix(__magic_name__ , self.__width - 1 , self.__height - 1 ).determinant()
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : int , __magic_name__ : int ):
"""simple docstring"""
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(__magic_name__ , __magic_name__ )
else:
raise Exception("Indices out of bounds" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if self.__height < 1:
raise Exception("Matrix has no element" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
lowerCAmelCase__ = [
self.__matrix[0][y] * self.cofactor(0 , __magic_name__ ) for y in range(self.__width )
]
return sum(__magic_name__ )
def A ( UpperCamelCase_ : int ) -> Matrix:
'''simple docstring'''
lowerCAmelCase__ = [[0] * n for _ in range(UpperCamelCase_ )]
return Matrix(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def A ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Matrix:
'''simple docstring'''
random.seed(UpperCamelCase_ )
lowerCAmelCase__ = [
[random.randint(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(UpperCamelCase_ )] for _ in range(UpperCamelCase_ )
]
return Matrix(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
| 48 |
'''simple docstring'''
def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list:
'''simple docstring'''
lowerCAmelCase__ = word.split()
def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str:
lowerCAmelCase__ = max_width - width
lowerCAmelCase__ = len(UpperCamelCase_ )
if len(UpperCamelCase_ ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
lowerCAmelCase__ = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
lowerCAmelCase__ = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
lowerCAmelCase__ = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(UpperCamelCase_ ):
num_spaces_between_words_list[i] += 1
lowerCAmelCase__ = []
for i in range(UpperCamelCase_ ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * " " )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
for word in words:
if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(UpperCamelCase_ )
width += len(UpperCamelCase_ )
else:
# justify the line and add it to result
answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) )
# reset new line and new width
lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ )
lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ )
answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 48 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
UpperCAmelCase__ : int = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M'
snake_case__ :Optional[Any] = (
'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '
'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '
'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '
'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'
)
snake_case__ :List[Any] = 'translator'
snake_case__ :List[Any] = AutoTokenizer
snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM
snake_case__ :List[str] = LANGUAGE_CODES
snake_case__ :List[Any] = ['text', 'text', 'text']
snake_case__ :List[Any] = ['text']
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ):
"""simple docstring"""
if src_lang not in self.lang_to_code:
raise ValueError(f"""{src_lang} is not a supported language.""" )
if tgt_lang not in self.lang_to_code:
raise ValueError(f"""{tgt_lang} is not a supported language.""" )
lowerCAmelCase__ = self.lang_to_code[src_lang]
lowerCAmelCase__ = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
__magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ):
"""simple docstring"""
return self.model.generate(**__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
| 48 |
'''simple docstring'''
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
UpperCAmelCase__ : str = sys.version_info >= (3, 10)
def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=UpperCamelCase_ )
@dataclass
class A :
snake_case__ :int
snake_case__ :float
snake_case__ :str
snake_case__ :bool
@dataclass
class A :
snake_case__ :int = 42
snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} )
@dataclass
class A :
snake_case__ :bool = False
snake_case__ :bool = True
snake_case__ :Optional[bool] = None
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = 'titi'
snake_case__ :Optional[int] = 'toto'
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'titi'
snake_case__ :str = 'toto'
snake_case__ :int = 42
@dataclass
class A :
snake_case__ :BasicEnum = "toto"
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = BasicEnum(self.foo )
@dataclass
class A :
snake_case__ :MixedTypeEnum = "toto"
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = MixedTypeEnum(self.foo )
@dataclass
class A :
snake_case__ :Optional[int] = None
snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} )
snake_case__ :Optional[str] = None
snake_case__ :Optional[List[str]] = list_field(default=[] )
snake_case__ :Optional[List[int]] = list_field(default=[] )
@dataclass
class A :
snake_case__ :List[int] = list_field(default=[] )
snake_case__ :List[int] = list_field(default=[1, 2, 3] )
snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class A :
snake_case__ :List[int] = field()
snake_case__ :str = field()
snake_case__ :BasicEnum = field()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = BasicEnum(self.required_enum )
@dataclass
class A :
snake_case__ :int
snake_case__ :"BasicEnum" = field()
snake_case__ :"Optional[bool]" = None
snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} )
snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
if is_python_no_less_than_3_10:
@dataclass
class A :
snake_case__ :bool = False
snake_case__ :bool = True
snake_case__ :bool | None = None
@dataclass
class A :
snake_case__ :int | None = None
snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} )
snake_case__ :str | None = None
snake_case__ :list[str] | None = list_field(default=[] )
snake_case__ :list[int] | None = list_field(default=[] )
class A ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ):
"""simple docstring"""
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"}
lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) )
del xx["type"], yy["type"]
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"]
((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ )
self.assertFalse(example.flag )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=42 , type=__magic_name__ )
expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" )
expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ )
lowerCAmelCase__ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
lowerCAmelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
@dataclass
class A :
snake_case__ :Literal["titi", "toto", 42] = "toto"
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
lowerCAmelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ )
expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ )
expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(
__magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , )
lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() )
self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" )
expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ )
expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ )
lowerCAmelCase__ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) )
lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() )
self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , )
expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ )
expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
"extra": 42,
}
self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" )
os.mkdir(__magic_name__ )
with open(temp_local_path + ".json" , "w+" ) as f:
json.dump(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" )
os.mkdir(__magic_name__ )
with open(temp_local_path + ".yaml" , "w+" ) as f:
yaml.dump(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
| 48 | 1 |
'''simple docstring'''
def A ( UpperCamelCase_ : int = 50 ) -> int:
'''simple docstring'''
lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F"{solution() = }")
| 48 |
'''simple docstring'''
import sys
from collections import defaultdict
class A :
def __init__( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = []
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ):
"""simple docstring"""
return self.node_position[vertex]
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = pos
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ):
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
lowerCAmelCase__ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
lowerCAmelCase__ = 2 * start + 1
else:
lowerCAmelCase__ = 2 * start + 2
if heap[smallest_child] < heap[start]:
lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child]
lowerCAmelCase__ ,lowerCAmelCase__ = (
heap[start],
positions[start],
)
lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa
lowerCAmelCase__ = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , __magic_name__ )
self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = position[index]
while index != 0:
lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
lowerCAmelCase__ = heap[parent]
lowerCAmelCase__ = position[parent]
self.set_position(position[parent] , __magic_name__ )
else:
lowerCAmelCase__ = val
lowerCAmelCase__ = temp
self.set_position(__magic_name__ , __magic_name__ )
break
lowerCAmelCase__ = parent
else:
lowerCAmelCase__ = val
lowerCAmelCase__ = temp
self.set_position(__magic_name__ , 0 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ):
"""simple docstring"""
lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1
for i in range(__magic_name__ , -1 , -1 ):
self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = positions[0]
lowerCAmelCase__ = sys.maxsize
self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ )
return temp
def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = Heap()
lowerCAmelCase__ = [0] * len(UpperCamelCase_ )
lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex
lowerCAmelCase__ = []
for vertex in range(len(UpperCamelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase_ )
heap.node_position.append(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = 1
lowerCAmelCase__ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
lowerCAmelCase__ = 0
lowerCAmelCase__ = distance
heap.heapify(UpperCamelCase_ , UpperCamelCase_ )
for _ in range(1 , len(UpperCamelCase_ ) ):
lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
lowerCAmelCase__ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase_ )]
):
lowerCAmelCase__ = distance
heap.bottom_to_top(
UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip())
UpperCAmelCase__ : str = defaultdict(list)
for _ in range(edges_number):
UpperCAmelCase__ : int = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 48 | 1 |
'''simple docstring'''
import copy
import random
from transformers import CLIPTokenizer
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Any , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(*__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Dict , *__magic_name__ : List[str] , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = super().add_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ )
if num_added_tokens == 0:
raise ValueError(
f"""The tokenizer already contains the token {placeholder_token}. Please pass a different"""
" `placeholder_token` that is not already in the tokenizer." )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Any , *__magic_name__ : Optional[Any] , __magic_name__ : Optional[int]=1 , **__magic_name__ : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = []
if num_vec_per_token == 1:
self.try_adding_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ )
output.append(__magic_name__ )
else:
lowerCAmelCase__ = []
for i in range(__magic_name__ ):
lowerCAmelCase__ = placeholder_token + f"""_{i}"""
self.try_adding_tokens(__magic_name__ , *__magic_name__ , **__magic_name__ )
output.append(__magic_name__ )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
f"""The tokenizer already has placeholder token {token} that can get confused with"""
f""" {placeholder_token}keep placeholder tokens independent""" )
lowerCAmelCase__ = output
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=False , __magic_name__ : List[str]=1.0 ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
lowerCAmelCase__ = []
for i in range(len(__magic_name__ ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__magic_name__ ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
lowerCAmelCase__ = self.token_map[placeholder_token]
lowerCAmelCase__ = tokens[: 1 + int(len(__magic_name__ ) * prop_tokens_to_load )]
if vector_shuffle:
lowerCAmelCase__ = copy.copy(__magic_name__ )
random.shuffle(__magic_name__ )
lowerCAmelCase__ = text.replace(__magic_name__ , " ".join(__magic_name__ ) )
return text
def __call__( self : List[Any] , __magic_name__ : Union[str, Any] , *__magic_name__ : int , __magic_name__ : Union[str, Any]=False , __magic_name__ : Union[str, Any]=1.0 , **__magic_name__ : List[str] ):
"""simple docstring"""
return super().__call__(
self.replace_placeholder_tokens_in_text(
__magic_name__ , vector_shuffle=__magic_name__ , prop_tokens_to_load=__magic_name__ ) , *__magic_name__ , **__magic_name__ , )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Union[str, Any] , *__magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=False , __magic_name__ : Union[str, Any]=1.0 , **__magic_name__ : Any ):
"""simple docstring"""
return super().encode(
self.replace_placeholder_tokens_in_text(
__magic_name__ , vector_shuffle=__magic_name__ , prop_tokens_to_load=__magic_name__ ) , *__magic_name__ , **__magic_name__ , )
| 48 |
'''simple docstring'''
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model")
if is_sentencepiece_available():
import sentencepiece as sp
UpperCAmelCase__ : Tuple = 5
UpperCAmelCase__ : List[Any] = 10
@require_sentencepiece
@require_tokenizers
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Tuple = SpeechaTextTokenizer
snake_case__ :Dict = False
snake_case__ :Optional[int] = True
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
super().setUp()
lowerCAmelCase__ = sp.SentencePieceProcessor()
spm_model.Load(__magic_name__ )
lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"]
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )]
lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
lowerCAmelCase__ = Path(self.tmpdirname )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] )
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = "<pad>"
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(__magic_name__ ) , 1001 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1001 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = tokenizer.tokenize("This is a test" )
self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , )
lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , )
@require_sentencepiece
class A ( unittest.TestCase ):
snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium'
snake_case__ :Tuple = 'C\'est trop cool'
snake_case__ :List[str] = 'Esto es genial'
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 10000 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self.assertIn(__magic_name__ , self.tokenizer.all_special_ids )
lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2]
lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
self.assertNotIn(self.tokenizer.eos_token , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = "fr"
lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , __magic_name__ )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = "fr"
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
lowerCAmelCase__ = "es"
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 48 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class A ( unittest.TestCase ):
def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Dict=7 , __magic_name__ : int=3 , __magic_name__ : int=18 , __magic_name__ : Optional[Any]=30 , __magic_name__ : Tuple=400 , __magic_name__ : Dict=True , __magic_name__ : Dict=None , __magic_name__ : Tuple=True , __magic_name__ : int=None , ):
"""simple docstring"""
lowerCAmelCase__ = size if size is not None else {"shortest_edge": 20}
lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 18, "width": 18}
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = image_size
lowerCAmelCase__ = min_resolution
lowerCAmelCase__ = max_resolution
lowerCAmelCase__ = do_resize
lowerCAmelCase__ = size
lowerCAmelCase__ = do_center_crop
lowerCAmelCase__ = crop_size
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :List[str] = MobileNetVaImageProcessor if is_vision_available() else None
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = MobileNetVaImageProcessingTester(self )
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__magic_name__ , "do_resize" ) )
self.assertTrue(hasattr(__magic_name__ , "size" ) )
self.assertTrue(hasattr(__magic_name__ , "do_center_crop" ) )
self.assertTrue(hasattr(__magic_name__ , "crop_size" ) )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 20} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
pass
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , Image.Image )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , np.ndarray )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , torch.Tensor )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 48 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
# General docstring
UpperCAmelCase__ : int = "RegNetConfig"
# Base docstring
UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7]
# Image classification docstring
UpperCAmelCase__ : Tuple = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat"
UpperCAmelCase__ : int = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A ( tf.keras.layers.Layer ):
def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
lowerCAmelCase__ = tf.keras.layers.ConvaD(
filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , )
lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) )
lowerCAmelCase__ = self.normalization(__magic_name__ )
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = config.num_channels
lowerCAmelCase__ = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = shape_list(__magic_name__ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) )
lowerCAmelCase__ = self.embedder(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = tf.keras.layers.ConvaD(
filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" )
lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ):
"""simple docstring"""
return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ )
class A ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" )
lowerCAmelCase__ = [
tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ),
tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ),
]
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.pooler(__magic_name__ )
for layer_module in self.attention:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = hidden_state * pooled
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = in_channels != out_channels or stride != 1
lowerCAmelCase__ = max(1 , out_channels // config.groups_width )
lowerCAmelCase__ = (
TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
lowerCAmelCase__ = [
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
__magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ),
]
lowerCAmelCase__ = ACTaFN[config.hidden_act]
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = hidden_state
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = self.shortcut(__magic_name__ )
hidden_state += residual
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = in_channels != out_channels or stride != 1
lowerCAmelCase__ = max(1 , out_channels // config.groups_width )
lowerCAmelCase__ = (
TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
lowerCAmelCase__ = [
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
__magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ),
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ),
]
lowerCAmelCase__ = ACTaFN[config.hidden_act]
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = hidden_state
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = self.shortcut(__magic_name__ )
hidden_state += residual
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
lowerCAmelCase__ = [
# downsampling is done in the first layer with stride of 2
layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ),
*[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ):
"""simple docstring"""
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) )
lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ):
"""simple docstring"""
lowerCAmelCase__ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowerCAmelCase__ = hidden_states + (hidden_state,)
lowerCAmelCase__ = stage_module(__magic_name__ )
if output_hidden_states:
lowerCAmelCase__ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ )
@keras_serializable
class A ( tf.keras.layers.Layer ):
snake_case__ :List[Any] = RegNetConfig
def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = config
lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" )
lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" )
lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" )
@unpack_inputs
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = self.encoder(
__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = encoder_outputs[0]
lowerCAmelCase__ = self.pooler(__magic_name__ )
# Change to NCHW output format have uniformity in the modules
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) )
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :str = RegNetConfig
snake_case__ :Optional[Any] = 'regnet'
snake_case__ :Tuple = 'pixel_values'
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , )
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.regnet(
pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , )
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ):
"""simple docstring"""
super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = config.num_labels
lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" )
# classification head
lowerCAmelCase__ = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.regnet(
__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1]
lowerCAmelCase__ = self.classifier[0](__magic_name__ )
lowerCAmelCase__ = self.classifier[1](__magic_name__ )
lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ )
if not return_dict:
lowerCAmelCase__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
| 48 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase__ : Union[str, Any] = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[Any] = ["ConditionalDetrFeatureExtractor"]
UpperCAmelCase__ : Dict = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[str] = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 |
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def A ( UpperCamelCase_ : Tuple ) -> int:
'''simple docstring'''
for param in module.parameters():
lowerCAmelCase__ = False
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
lowerCAmelCase__ = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = plt.imshow(UpperCamelCase_ )
fig.axes.get_xaxis().set_visible(UpperCamelCase_ )
fig.axes.get_yaxis().set_visible(UpperCamelCase_ )
plt.show()
def A ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = datetime.now()
lowerCAmelCase__ = current_time.strftime("%H:%M:%S" )
return timestamp
| 48 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class A ( metaclass=SCREAMING_SNAKE_CASE__ ):
snake_case__ :int = ['onnx']
def __init__( self : Dict , *__magic_name__ : Optional[Any] , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
requires_backends(self , ["onnx"] )
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *__magic_name__ : str , **__magic_name__ : List[str] ):
"""simple docstring"""
requires_backends(cls , ["onnx"] )
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : List[Any] , *__magic_name__ : Any , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
requires_backends(cls , ["onnx"] )
| 48 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 | 1 |
'''simple docstring'''
import random
def A ( UpperCamelCase_ : int ) -> bool:
'''simple docstring'''
lowerCAmelCase__ = num - 1
lowerCAmelCase__ = 0
while s % 2 == 0:
lowerCAmelCase__ = s // 2
t += 1
for _ in range(5 ):
lowerCAmelCase__ = random.randrange(2 , num - 1 )
lowerCAmelCase__ = pow(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if v != 1:
lowerCAmelCase__ = 0
while v != (num - 1):
if i == t - 1:
return False
else:
lowerCAmelCase__ = i + 1
lowerCAmelCase__ = (v**2) % num
return True
def A ( UpperCamelCase_ : int ) -> bool:
'''simple docstring'''
if num < 2:
return False
lowerCAmelCase__ = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
1_01,
1_03,
1_07,
1_09,
1_13,
1_27,
1_31,
1_37,
1_39,
1_49,
1_51,
1_57,
1_63,
1_67,
1_73,
1_79,
1_81,
1_91,
1_93,
1_97,
1_99,
2_11,
2_23,
2_27,
2_29,
2_33,
2_39,
2_41,
2_51,
2_57,
2_63,
2_69,
2_71,
2_77,
2_81,
2_83,
2_93,
3_07,
3_11,
3_13,
3_17,
3_31,
3_37,
3_47,
3_49,
3_53,
3_59,
3_67,
3_73,
3_79,
3_83,
3_89,
3_97,
4_01,
4_09,
4_19,
4_21,
4_31,
4_33,
4_39,
4_43,
4_49,
4_57,
4_61,
4_63,
4_67,
4_79,
4_87,
4_91,
4_99,
5_03,
5_09,
5_21,
5_23,
5_41,
5_47,
5_57,
5_63,
5_69,
5_71,
5_77,
5_87,
5_93,
5_99,
6_01,
6_07,
6_13,
6_17,
6_19,
6_31,
6_41,
6_43,
6_47,
6_53,
6_59,
6_61,
6_73,
6_77,
6_83,
6_91,
7_01,
7_09,
7_19,
7_27,
7_33,
7_39,
7_43,
7_51,
7_57,
7_61,
7_69,
7_73,
7_87,
7_97,
8_09,
8_11,
8_21,
8_23,
8_27,
8_29,
8_39,
8_53,
8_57,
8_59,
8_63,
8_77,
8_81,
8_83,
8_87,
9_07,
9_11,
9_19,
9_29,
9_37,
9_41,
9_47,
9_53,
9_67,
9_71,
9_77,
9_83,
9_91,
9_97,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(UpperCamelCase_ )
def A ( UpperCamelCase_ : int = 10_24 ) -> int:
'''simple docstring'''
while True:
lowerCAmelCase__ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(UpperCamelCase_ ):
return num
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num)))
| 48 |
'''simple docstring'''
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ )
print(F"""Building PyTorch model from configuration: {config}""" )
if is_trivia_qa:
lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ )
else:
lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--big_bird_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
)
UpperCAmelCase__ : int = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 48 | 1 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = ['image_processor', 'tokenizer']
snake_case__ :List[Any] = 'ChineseCLIPImageProcessor'
snake_case__ :Optional[int] = ('BertTokenizer', 'BertTokenizerFast')
def __init__( self : Dict , __magic_name__ : List[str]=None , __magic_name__ : List[Any]=None , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __magic_name__ , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = self.image_processor
def __call__( self : List[Any] , __magic_name__ : Tuple=None , __magic_name__ : Any=None , __magic_name__ : str=None , **__magic_name__ : List[str] ):
"""simple docstring"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
lowerCAmelCase__ = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
if images is not None:
lowerCAmelCase__ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
if text is not None and images is not None:
lowerCAmelCase__ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[str] ):
"""simple docstring"""
return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any , *__magic_name__ : str , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
return self.tokenizer.decode(*__magic_name__ , **__magic_name__ )
@property
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer.model_input_names
lowerCAmelCase__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __magic_name__ , )
return self.image_processor_class
| 48 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class A :
def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ):
"""simple docstring"""
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_input_mask
lowerCAmelCase__ = use_token_type_ids
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = block_sizes
lowerCAmelCase__ = num_decoder_layers
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_head
lowerCAmelCase__ = d_head
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = 2
lowerCAmelCase__ = num_labels
lowerCAmelCase__ = num_choices
lowerCAmelCase__ = scope
lowerCAmelCase__ = initializer_std
# Used in the tests to check the size of the first attention layer
lowerCAmelCase__ = n_head
# Used in the tests to check the size of the first hidden state
lowerCAmelCase__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowerCAmelCase__ = self.num_hidden_layers + 2
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = None
if self.use_input_mask:
lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase__ = None
if self.use_token_type_ids:
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase__ = None
lowerCAmelCase__ = None
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = [input_ids, input_mask]
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = [input_ids, input_mask]
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_choices
lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.prepare_config_and_inputs()
(
(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,
) = config_and_inputs
lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :int = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
snake_case__ :Any = (
{
'feature-extraction': (TFFunnelBaseModel, TFFunnelModel),
'fill-mask': TFFunnelForMaskedLM,
'question-answering': TFFunnelForQuestionAnswering,
'text-classification': TFFunnelForSequenceClassification,
'token-classification': TFFunnelForTokenClassification,
'zero-shot': TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ :str = False
snake_case__ :Any = False
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Any = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
snake_case__ :int = False
snake_case__ :List[Any] = False
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
| 48 | 1 |
'''simple docstring'''
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
UpperCAmelCase__ : int = "python tqdm regex requests packaging filelock numpy tokenizers".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("dataclasses")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("importlib_metadata")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def A ( UpperCamelCase_ : str , UpperCamelCase_ : Dict=None ) -> int:
'''simple docstring'''
require_version(deps[pkg] , UpperCamelCase_ )
| 48 |
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'umt5'
snake_case__ :Any = ['past_key_values']
def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ):
"""simple docstring"""
super().__init__(
is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = d_kv
lowerCAmelCase__ = d_ff
lowerCAmelCase__ = num_layers
lowerCAmelCase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowerCAmelCase__ = num_heads
lowerCAmelCase__ = relative_attention_num_buckets
lowerCAmelCase__ = relative_attention_max_distance
lowerCAmelCase__ = dropout_rate
lowerCAmelCase__ = layer_norm_epsilon
lowerCAmelCase__ = initializer_factor
lowerCAmelCase__ = feed_forward_proj
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = self.feed_forward_proj.split("-" )
lowerCAmelCase__ = act_info[-1]
lowerCAmelCase__ = act_info[0] == "gated"
if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'" )
if feed_forward_proj == "gated-gelu":
lowerCAmelCase__ = "gelu_new"
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return self.d_model
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return self.num_heads
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.num_layers
class A ( SCREAMING_SNAKE_CASE__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
lowerCAmelCase__ = "past_encoder_sequence + sequence"
lowerCAmelCase__ = {0: "batch"}
lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="inputs" )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 13
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 5E-4
| 48 | 1 |
'''simple docstring'''
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=10_24 ) -> Any:
'''simple docstring'''
lowerCAmelCase__ ,lowerCAmelCase__ = [], []
lowerCAmelCase__ = list(zip(UpperCamelCase_ , UpperCamelCase_ ) )
lowerCAmelCase__ ,lowerCAmelCase__ = sorted_examples[0]
def is_too_big(UpperCamelCase_ : Union[str, Any] ):
return tok(UpperCamelCase_ , return_tensors="pt" ).input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:] ):
lowerCAmelCase__ = new_src + " " + src
lowerCAmelCase__ = new_tgt + " " + tgt
if is_too_big(UpperCamelCase_ ) or is_too_big(UpperCamelCase_ ): # cant fit, finalize example
finished_src.append(UpperCamelCase_ )
finished_tgt.append(UpperCamelCase_ )
lowerCAmelCase__ ,lowerCAmelCase__ = src, tgt
else: # can fit, keep adding
lowerCAmelCase__ ,lowerCAmelCase__ = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(UpperCamelCase_ )
finished_tgt.append(UpperCamelCase_ )
return finished_src, finished_tgt
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Path , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase__ = Path(UpperCamelCase_ )
save_path.mkdir(exist_ok=UpperCamelCase_ )
for split in ["train"]:
lowerCAmelCase__ ,lowerCAmelCase__ = data_dir / F"""{split}.source""", data_dir / F"""{split}.target"""
lowerCAmelCase__ = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()]
lowerCAmelCase__ = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()]
lowerCAmelCase__ ,lowerCAmelCase__ = pack_examples(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
print(F"""packed {split} split from {len(UpperCamelCase_ )} examples -> {len(UpperCamelCase_ )}.""" )
Path(save_path / F"""{split}.source""" ).open("w" ).write("\n".join(UpperCamelCase_ ) )
Path(save_path / F"""{split}.target""" ).open("w" ).write("\n".join(UpperCamelCase_ ) )
for split in ["val", "test"]:
lowerCAmelCase__ ,lowerCAmelCase__ = data_dir / F"""{split}.source""", data_dir / F"""{split}.target"""
shutil.copyfile(UpperCamelCase_ , save_path / F"""{split}.source""" )
shutil.copyfile(UpperCamelCase_ , save_path / F"""{split}.target""" )
def A ( ) -> int:
'''simple docstring'''
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--tok_name" , type=UpperCamelCase_ , help="like facebook/bart-large-cnn,t5-base, etc." )
parser.add_argument("--max_seq_len" , type=UpperCamelCase_ , default=1_28 )
parser.add_argument("--data_dir" , type=UpperCamelCase_ )
parser.add_argument("--save_path" , type=UpperCamelCase_ )
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.tok_name )
return pack_data_dir(UpperCamelCase_ , Path(args.data_dir ) , args.max_seq_len , args.save_path )
if __name__ == "__main__":
packer_cli()
| 48 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class A :
def __init__( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ):
"""simple docstring"""
if nodea not in self.connections:
self.add_node(__magic_name__ )
if nodea not in self.connections:
self.add_node(__magic_name__ )
lowerCAmelCase__ = probability
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
return list(self.connections )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]:
'''simple docstring'''
lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = Counter(graph.get_nodes() )
lowerCAmelCase__ = start
for _ in range(UpperCamelCase_ ):
lowerCAmelCase__ = graph.transition(UpperCamelCase_ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 | 1 |
'''simple docstring'''
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
UpperCAmelCase__ : Union[str, Any] = logging.getLogger(__name__)
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Optional[Any] , __magic_name__ : Dict=-1 ):
"""simple docstring"""
lowerCAmelCase__ = label_idx
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[Split, str] ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
lowerCAmelCase__ = mode.value
lowerCAmelCase__ = os.path.join(__magic_name__ , f"""{mode}.txt""" )
lowerCAmelCase__ = 1
lowerCAmelCase__ = []
with open(__magic_name__ , encoding="utf-8" ) as f:
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for line in f:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=__magic_name__ , labels=__magic_name__ ) )
guid_index += 1
lowerCAmelCase__ = []
lowerCAmelCase__ = []
else:
lowerCAmelCase__ = line.split(" " )
words.append(splits[0] )
if len(__magic_name__ ) > 1:
labels.append(splits[self.label_idx].replace("\n" , "" ) )
else:
# Examples could have no label for mode = "test"
labels.append("O" )
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=__magic_name__ , labels=__magic_name__ ) )
return examples
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : TextIO , __magic_name__ : TextIO , __magic_name__ : List ):
"""simple docstring"""
lowerCAmelCase__ = 0
for line in test_input_reader:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
writer.write(__magic_name__ )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
lowerCAmelCase__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n"
writer.write(__magic_name__ )
else:
logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : str ):
"""simple docstring"""
if path:
with open(__magic_name__ , "r" ) as f:
lowerCAmelCase__ = f.read().splitlines()
if "O" not in labels:
lowerCAmelCase__ = ["O"] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Optional[int] ):
"""simple docstring"""
super().__init__(label_idx=-2 )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
if path:
with open(__magic_name__ , "r" ) as f:
lowerCAmelCase__ = f.read().splitlines()
if "O" not in labels:
lowerCAmelCase__ = ["O"] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class A ( SCREAMING_SNAKE_CASE__ ):
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Union[Split, str] ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
lowerCAmelCase__ = mode.value
lowerCAmelCase__ = os.path.join(__magic_name__ , f"""{mode}.txt""" )
lowerCAmelCase__ = 1
lowerCAmelCase__ = []
with open(__magic_name__ , encoding="utf-8" ) as f:
for sentence in parse_incr(__magic_name__ ):
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for token in sentence:
words.append(token["form"] )
labels.append(token["upos"] )
assert len(__magic_name__ ) == len(__magic_name__ )
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=__magic_name__ , labels=__magic_name__ ) )
guid_index += 1
return examples
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : TextIO , __magic_name__ : TextIO , __magic_name__ : List ):
"""simple docstring"""
lowerCAmelCase__ = 0
for sentence in parse_incr(__magic_name__ ):
lowerCAmelCase__ = preds_list[example_id]
lowerCAmelCase__ = ""
for token in sentence:
out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """
out += "\n"
writer.write(__magic_name__ )
example_id += 1
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ):
"""simple docstring"""
if path:
with open(__magic_name__ , "r" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 48 |
'''simple docstring'''
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
UpperCAmelCase__ : Optional[Any] = pytest.mark.integration
UpperCAmelCase__ : str = {"comet"}
UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None
UpperCAmelCase__ : Optional[int] = {"code_eval"}
UpperCAmelCase__ : List[Any] = os.name == "nt"
UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"}
UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None
def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( UpperCamelCase_ : List[Any] ) -> str:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[int] , UpperCamelCase_ : int ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( UpperCamelCase_ : Any ) -> int:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@local
class A ( parameterized.TestCase ):
snake_case__ :Union[str, Any] = {}
snake_case__ :Optional[Any] = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = "[...]"
lowerCAmelCase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path )
lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ )
# check parameters
lowerCAmelCase__ = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ):
with self.use_local_metrics():
try:
lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = "[...]"
lowerCAmelCase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path )
# run doctest
with self.use_local_metrics():
lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ):
yield
else:
yield
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ):
return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ )
with patch("datasets.load_metric" ) as mock_load_metric:
lowerCAmelCase__ = load_local_metric
yield
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ):
"""simple docstring"""
def wrapper(__magic_name__ : Dict ):
lowerCAmelCase__ = contextmanager(__magic_name__ )
lowerCAmelCase__ = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt" )
def A ( UpperCamelCase_ : str ) -> Any:
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags
class A ( SCREAMING_SNAKE_CASE__ ):
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ):
"""simple docstring"""
assert len(input_dict["input_ids"] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor" ) as mock_create_predictor:
lowerCAmelCase__ = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore" )
def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
import torch
def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model" ), patch(
"bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf:
lowerCAmelCase__ = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet" )
def A ( UpperCamelCase_ : Optional[int] ) -> Any:
'''simple docstring'''
def load_from_checkpoint(UpperCamelCase_ : Tuple ):
class A :
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ):
"""simple docstring"""
assert len(__magic_name__ ) == 2
lowerCAmelCase__ = [0.19, 0.92]
return scores, sum(__magic_name__ ) / len(__magic_name__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model" ) as mock_download_model:
lowerCAmelCase__ = None
with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint:
lowerCAmelCase__ = load_from_checkpoint
yield
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) )
lowerCAmelCase__ = "ERROR"
lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"""
with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ):
metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
| 48 | 1 |
'''simple docstring'''
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
UpperCAmelCase__ : List[Any] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
UpperCAmelCase__ : Dict = direct_transformers_import(PATH_TO_TRANSFORMERS)
UpperCAmelCase__ : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
UpperCAmelCase__ : Dict = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F"""config.{attribute}""" in modeling_source
or F"""getattr(config, \"{attribute}\"""" in modeling_source
or F"""getattr(self.config, \"{attribute}\"""" in modeling_source
):
lowerCAmelCase__ = True
# Deal with multi-line cases
elif (
re.search(
rF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , UpperCamelCase_ , )
is not None
):
lowerCAmelCase__ = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
lowerCAmelCase__ = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
lowerCAmelCase__ = [
"bos_index",
"eos_index",
"pad_index",
"unk_index",
"mask_index",
"image_size",
"use_cache",
"out_features",
"out_indices",
]
lowerCAmelCase__ = ["encoder_no_repeat_ngram_size"]
# Special cases to be allowed
lowerCAmelCase__ = True
if not attribute_used:
lowerCAmelCase__ = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
lowerCAmelCase__ = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
lowerCAmelCase__ = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
lowerCAmelCase__ = True
elif attribute.endswith("_token_id" ):
lowerCAmelCase__ = True
# configuration class specific cases
if not case_allowed:
lowerCAmelCase__ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
lowerCAmelCase__ = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def A ( UpperCamelCase_ : str ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = dict(inspect.signature(config_class.__init__ ).parameters )
lowerCAmelCase__ = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]]
lowerCAmelCase__ = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
lowerCAmelCase__ = {}
if len(config_class.attribute_map ) > 0:
lowerCAmelCase__ = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
lowerCAmelCase__ = inspect.getsourcefile(UpperCamelCase_ )
lowerCAmelCase__ = os.path.dirname(UpperCamelCase_ )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
lowerCAmelCase__ = [os.path.join(UpperCamelCase_ , UpperCamelCase_ ) for fn in os.listdir(UpperCamelCase_ ) if fn.startswith("modeling_" )]
# Get the source code strings
lowerCAmelCase__ = []
for path in modeling_paths:
if os.path.isfile(UpperCamelCase_ ):
with open(UpperCamelCase_ ) as fp:
modeling_sources.append(fp.read() )
lowerCAmelCase__ = []
for config_param, default_value in zip(UpperCamelCase_ , UpperCamelCase_ ):
# `attributes` here is all the variant names for `config_param`
lowerCAmelCase__ = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
unused_attributes.append(attributes[0] )
return sorted(UpperCamelCase_ )
def A ( ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
lowerCAmelCase__ = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda UpperCamelCase_ : inspect.isclass(UpperCamelCase_ )
and issubclass(UpperCamelCase_ , UpperCamelCase_ )
and inspect.getmodule(UpperCamelCase_ ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
lowerCAmelCase__ = check_config_attributes_being_used(UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = unused_attributes
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = "The following configuration classes contain unused attributes in the corresponding modeling files:\n"
for name, attributes in configs_with_unused_attributes.items():
error += F"""{name}: {attributes}\n"""
raise ValueError(UpperCamelCase_ )
if __name__ == "__main__":
check_config_attributes()
| 48 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
UpperCAmelCase__ : int = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M'
snake_case__ :Optional[Any] = (
'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '
'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '
'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '
'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'
)
snake_case__ :List[Any] = 'translator'
snake_case__ :List[Any] = AutoTokenizer
snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM
snake_case__ :List[str] = LANGUAGE_CODES
snake_case__ :List[Any] = ['text', 'text', 'text']
snake_case__ :List[Any] = ['text']
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ):
"""simple docstring"""
if src_lang not in self.lang_to_code:
raise ValueError(f"""{src_lang} is not a supported language.""" )
if tgt_lang not in self.lang_to_code:
raise ValueError(f"""{tgt_lang} is not a supported language.""" )
lowerCAmelCase__ = self.lang_to_code[src_lang]
lowerCAmelCase__ = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
__magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ):
"""simple docstring"""
return self.model.generate(**__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
| 48 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase__ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
UpperCAmelCase__ : Optional[int] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
UpperCAmelCase__ : int = {
"facebook/bart-base": 10_24,
"facebook/bart-large": 10_24,
"facebook/bart-large-mnli": 10_24,
"facebook/bart-large-cnn": 10_24,
"facebook/bart-large-xsum": 10_24,
"yjernite/bart_eli5": 10_24,
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Optional[int] = VOCAB_FILES_NAMES
snake_case__ :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ :List[Any] = ['input_ids', 'attention_mask']
snake_case__ :Union[str, Any] = BartTokenizer
def __init__( self : List[str] , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Tuple=None , __magic_name__ : List[Any]="replace" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : Optional[int]="</s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : Optional[int]="<unk>" , __magic_name__ : str="<pad>" , __magic_name__ : Dict="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Optional[Any] , ):
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , __magic_name__ ) != add_prefix_space:
lowerCAmelCase__ = getattr(__magic_name__ , pre_tok_state.pop("type" ) )
lowerCAmelCase__ = add_prefix_space
lowerCAmelCase__ = pre_tok_class(**__magic_name__ )
lowerCAmelCase__ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowerCAmelCase__ = "post_processor"
lowerCAmelCase__ = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
lowerCAmelCase__ = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowerCAmelCase__ = tuple(state["sep"] )
if "cls" in state:
lowerCAmelCase__ = tuple(state["cls"] )
lowerCAmelCase__ = False
if state.get("add_prefix_space" , __magic_name__ ) != add_prefix_space:
lowerCAmelCase__ = add_prefix_space
lowerCAmelCase__ = True
if state.get("trim_offsets" , __magic_name__ ) != trim_offsets:
lowerCAmelCase__ = trim_offsets
lowerCAmelCase__ = True
if changes_to_apply:
lowerCAmelCase__ = getattr(__magic_name__ , state.pop("type" ) )
lowerCAmelCase__ = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
lowerCAmelCase__ = value
def __SCREAMING_SNAKE_CASE ( self : str , *__magic_name__ : List[Any] , **__magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = kwargs.get("is_split_into_words" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs." )
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , *__magic_name__ : Any , **__magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = kwargs.get("is_split_into_words" , __magic_name__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs." )
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
lowerCAmelCase__ = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Any , __magic_name__ : int=None ):
"""simple docstring"""
lowerCAmelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 48 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : int = logging.get_logger(__name__)
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = 'timm_backbone'
def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = backbone
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = features_only
lowerCAmelCase__ = use_pretrained_backbone
lowerCAmelCase__ = True
lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
| 48 | 1 |
'''simple docstring'''
import logging
import numpy as np
import pytest
from scipy.linalg import eigh
logging.basicConfig(level=logging.INFO, format="%(message)s")
def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return input_array.reshape((input_array.size, 1) )
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.mean(1 )
# Centralize the data of class i
lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ )
if i > 0:
# If covariance_sum is not None
covariance_sum += np.dot(UpperCamelCase_ , centered_data.T )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = features.mean(1 )
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.shape[1]
lowerCAmelCase__ = data.mean(1 )
if i > 0:
# If covariance_sum is not None
covariance_sum += device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
if features.any():
lowerCAmelCase__ = features.mean(1 )
# Center the dataset
lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) )
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1]
lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ )
# Take all the columns in the reverse order (-1), and then takes only the first
lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions]
# Project the database on the new space
lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ )
logging.info("Principal Component Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
assert classes > dimensions
# Check if features have been already loaded
if features.any:
lowerCAmelCase__ ,lowerCAmelCase__ = eigh(
covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , )
lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions]
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ )
lowerCAmelCase__ = svd_matrix[:, 0:dimensions]
lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ )
logging.info("Linear Discriminant Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] )
lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = 2
# Assert that the function raises an AssertionError if dimensions > classes
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = linear_discriminant_analysis(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if isinstance(UpperCamelCase_ , np.ndarray ):
raise AssertionError(
"Did not raise AssertionError for dimensions > classes" )
assert error_info.type is AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] )
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ )
if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ):
raise AssertionError
assert error_info.type is AssertionError
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base'
snake_case__ :List[Any] = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
snake_case__ :List[Any] = 'image_captioner'
snake_case__ :Optional[int] = AutoModelForVisionaSeq
snake_case__ :Optional[int] = ['image']
snake_case__ :Any = ['text']
def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ):
"""simple docstring"""
requires_backends(self , ["vision"] )
super().__init__(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ):
"""simple docstring"""
return self.pre_processor(images=__magic_name__ , return_tensors="pt" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
return self.model.generate(**__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ):
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
| 48 | 1 |
'''simple docstring'''
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
UpperCAmelCase__ : List[Any] = logging.get_logger(__name__)
@add_end_docstrings(
SCREAMING_SNAKE_CASE__ , r'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , )
class A ( SCREAMING_SNAKE_CASE__ ):
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : GenericTensor ):
"""simple docstring"""
if self.framework == "tf":
lowerCAmelCase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
lowerCAmelCase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__magic_name__ )
else:
raise ValueError("Unsupported framework" )
return masked_index
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : GenericTensor ):
"""simple docstring"""
lowerCAmelCase__ = self.get_masked_index(__magic_name__ )
lowerCAmelCase__ = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
"fill-mask" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : GenericTensor ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input["input_ids"][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Dict , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
if return_tensors is None:
lowerCAmelCase__ = self.framework
lowerCAmelCase__ = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ )
self.ensure_exactly_one_mask_token(__magic_name__ )
return model_inputs
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model(**__magic_name__ )
lowerCAmelCase__ = model_inputs["input_ids"]
return model_outputs
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : str=5 , __magic_name__ : Any=None ):
"""simple docstring"""
if target_ids is not None and target_ids.shape[0] < top_k:
lowerCAmelCase__ = target_ids.shape[0]
lowerCAmelCase__ = model_outputs["input_ids"][0]
lowerCAmelCase__ = model_outputs["logits"]
if self.framework == "tf":
lowerCAmelCase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
lowerCAmelCase__ = outputs.numpy()
lowerCAmelCase__ = outputs[0, masked_index, :]
lowerCAmelCase__ = stable_softmax(__magic_name__ , axis=-1 )
if target_ids is not None:
lowerCAmelCase__ = tf.gather_nd(tf.squeeze(__magic_name__ , 0 ) , target_ids.reshape(-1 , 1 ) )
lowerCAmelCase__ = tf.expand_dims(__magic_name__ , 0 )
lowerCAmelCase__ = tf.math.top_k(__magic_name__ , k=__magic_name__ )
lowerCAmelCase__ ,lowerCAmelCase__ = topk.values.numpy(), topk.indices.numpy()
else:
lowerCAmelCase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__magic_name__ ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
lowerCAmelCase__ = outputs[0, masked_index, :]
lowerCAmelCase__ = logits.softmax(dim=-1 )
if target_ids is not None:
lowerCAmelCase__ = probs[..., target_ids]
lowerCAmelCase__ ,lowerCAmelCase__ = probs.topk(__magic_name__ )
lowerCAmelCase__ = []
lowerCAmelCase__ = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
lowerCAmelCase__ = []
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
lowerCAmelCase__ = input_ids.numpy().copy()
if target_ids is not None:
lowerCAmelCase__ = target_ids[p].tolist()
lowerCAmelCase__ = p
# Filter padding out:
lowerCAmelCase__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
lowerCAmelCase__ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence}
row.append(__magic_name__ )
result.append(__magic_name__ )
if single_mask:
return result[0]
return result
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Tuple , __magic_name__ : int=None ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
lowerCAmelCase__ = [targets]
try:
lowerCAmelCase__ = self.tokenizer.get_vocab()
except Exception:
lowerCAmelCase__ = {}
lowerCAmelCase__ = []
for target in targets:
lowerCAmelCase__ = vocab.get(__magic_name__ , __magic_name__ )
if id_ is None:
lowerCAmelCase__ = self.tokenizer(
__magic_name__ , add_special_tokens=__magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , max_length=1 , truncation=__magic_name__ , )["input_ids"]
if len(__magic_name__ ) == 0:
logger.warning(
f"""The specified target token `{target}` does not exist in the model vocabulary. """
"We cannot replace it with anything meaningful, ignoring it" )
continue
lowerCAmelCase__ = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f"""The specified target token `{target}` does not exist in the model vocabulary. """
f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" )
target_ids.append(id_ )
lowerCAmelCase__ = list(set(__magic_name__ ) )
if len(__magic_name__ ) == 0:
raise ValueError("At least one target must be provided when passed." )
lowerCAmelCase__ = np.array(__magic_name__ )
return target_ids
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str=None , __magic_name__ : int=None ):
"""simple docstring"""
lowerCAmelCase__ = {}
if targets is not None:
lowerCAmelCase__ = self.get_target_ids(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = target_ids
if top_k is not None:
lowerCAmelCase__ = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
"fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." )
return {}, {}, postprocess_params
def __call__( self : List[str] , __magic_name__ : List[str] , *__magic_name__ : Any , **__magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = super().__call__(__magic_name__ , **__magic_name__ )
if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) == 1:
return outputs[0]
return outputs
| 48 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : Union[str, Any] = "▁"
UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"}
UpperCAmelCase__ : Union[str, Any] = {
"vocab_file": {
"facebook/mbart-large-50-one-to-many-mmt": (
"https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model"
),
}
}
UpperCAmelCase__ : Optional[Any] = {
"facebook/mbart-large-50-one-to-many-mmt": 10_24,
}
# fmt: off
UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"]
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Optional[int] = VOCAB_FILES_NAMES
snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Tuple = ['input_ids', 'attention_mask']
snake_case__ :List[int] = []
snake_case__ :List[int] = []
def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ):
"""simple docstring"""
lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] )
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__magic_name__ ) )
lowerCAmelCase__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowerCAmelCase__ = 1
lowerCAmelCase__ = len(self.sp_model )
lowerCAmelCase__ = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ )
}
lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()}
lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX"
lowerCAmelCase__ = self.lang_code_to_id[self._src_lang]
lowerCAmelCase__ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.__dict__.copy()
lowerCAmelCase__ = None
return state
def __setstate__( self : List[Any] , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCAmelCase__ = {}
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ):
"""simple docstring"""
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = ""
lowerCAmelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
lowerCAmelCase__ = True
lowerCAmelCase__ = []
else:
current_sub_tokens.append(__magic_name__ )
lowerCAmelCase__ = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string.strip()
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , "wb" ) as fi:
lowerCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
lowerCAmelCase__ = [1] * len(self.prefix_tokens )
lowerCAmelCase__ = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones
return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ )
lowerCAmelCase__ = tgt_lang_id
return inputs
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ):
"""simple docstring"""
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = tgt_lang
return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.lang_code_to_id[src_lang]
lowerCAmelCase__ = [self.cur_lang_code_id]
lowerCAmelCase__ = [self.eos_token_id]
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.lang_code_to_id[tgt_lang]
lowerCAmelCase__ = [self.cur_lang_code_id]
lowerCAmelCase__ = [self.eos_token_id]
| 48 | 1 |
'''simple docstring'''
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.integrations import is_fairscale_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_tpu_available
if is_fairscale_available():
from fairscale.optim import OSS
UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__)
UpperCAmelCase__ : Tuple = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
"constant": get_constant_schedule,
"constant_w_warmup": get_constant_schedule_with_warmup,
}
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : str , __magic_name__ : int=None , __magic_name__ : Optional[int]=None , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(*__magic_name__ , **__magic_name__ )
if config is None:
assert isinstance(self.model , __magic_name__ ), (
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
f""" {self.model.__class__}"""
)
lowerCAmelCase__ = self.model.config
else:
lowerCAmelCase__ = config
lowerCAmelCase__ = data_args
lowerCAmelCase__ = self.config.tgt_vocab_size if isinstance(self.config , __magic_name__ ) else self.config.vocab_size
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
assert self.config.pad_token_id is not None, (
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss"
" calculation or doing label smoothing."
)
if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warning(
f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for"""
" padding.." )
if self.args.label_smoothing == 0:
lowerCAmelCase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id )
else:
# dynamically import label_smoothed_nll_loss
from utils import label_smoothed_nll_loss
lowerCAmelCase__ = label_smoothed_nll_loss
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int ):
"""simple docstring"""
if self.optimizer is None:
lowerCAmelCase__ = ["bias", "LayerNorm.weight"]
lowerCAmelCase__ = [
{
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )],
"weight_decay": 0.0,
},
]
lowerCAmelCase__ = Adafactor if self.args.adafactor else AdamW
if self.args.adafactor:
lowerCAmelCase__ = Adafactor
lowerCAmelCase__ = {"scale_parameter": False, "relative_step": False}
else:
lowerCAmelCase__ = AdamW
lowerCAmelCase__ = {
"betas": (self.args.adam_betaa, self.args.adam_betaa),
"eps": self.args.adam_epsilon,
}
lowerCAmelCase__ = self.args.learning_rate
if self.sharded_ddp:
lowerCAmelCase__ = OSS(
params=__magic_name__ , optim=__magic_name__ , **__magic_name__ , )
else:
lowerCAmelCase__ = optimizer_cls(__magic_name__ , **__magic_name__ )
if self.lr_scheduler is None:
lowerCAmelCase__ = self._get_lr_scheduler(__magic_name__ )
else: # ignoring --lr_scheduler
logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = arg_to_scheduler[self.args.lr_scheduler]
if self.args.lr_scheduler == "constant":
lowerCAmelCase__ = schedule_func(self.optimizer )
elif self.args.lr_scheduler == "constant_w_warmup":
lowerCAmelCase__ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps )
else:
lowerCAmelCase__ = schedule_func(
self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__magic_name__ )
return scheduler
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
if isinstance(self.train_dataset , torch.utils.data.IterableDataset ):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset )
else:
if self.args.sortish_sampler:
self.train_dataset.make_sortish_sampler(
self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , )
return (
RandomSampler(self.train_dataset )
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset )
)
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any ):
"""simple docstring"""
if self.args.label_smoothing == 0:
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
# force training to ignore pad token
lowerCAmelCase__ = model(**__magic_name__ , use_cache=__magic_name__ )[0]
lowerCAmelCase__ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) )
else:
# compute usual loss via models
lowerCAmelCase__ ,lowerCAmelCase__ = model(**__magic_name__ , labels=__magic_name__ , use_cache=__magic_name__ )[:2]
else:
# compute label smoothed loss
lowerCAmelCase__ = model(**__magic_name__ , use_cache=__magic_name__ )[0]
lowerCAmelCase__ = torch.nn.functional.log_softmax(__magic_name__ , dim=-1 )
lowerCAmelCase__ ,lowerCAmelCase__ = self.loss_fn(__magic_name__ , __magic_name__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id )
return loss, logits
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = inputs.pop("labels" )
lowerCAmelCase__ ,lowerCAmelCase__ = self._compute_loss(__magic_name__ , __magic_name__ , __magic_name__ )
return loss
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : nn.Module , __magic_name__ : Dict[str, Union[torch.Tensor, Any]] , __magic_name__ : bool , __magic_name__ : Optional[List[str]] = None , ):
"""simple docstring"""
lowerCAmelCase__ = self._prepare_inputs(__magic_name__ )
lowerCAmelCase__ = {
"max_length": self.data_args.val_max_target_length
if self.data_args is not None
else self.config.max_length,
"num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
}
if self.args.predict_with_generate and not self.args.prediction_loss_only:
lowerCAmelCase__ = self.model.generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **__magic_name__ , )
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
lowerCAmelCase__ = self._pad_tensors_to_max_len(__magic_name__ , gen_kwargs["max_length"] )
lowerCAmelCase__ = inputs.pop("labels" )
with torch.no_grad():
# compute loss on predict data
lowerCAmelCase__ ,lowerCAmelCase__ = self._compute_loss(__magic_name__ , __magic_name__ , __magic_name__ )
lowerCAmelCase__ = loss.mean().detach()
if self.args.prediction_loss_only:
return (loss, None, None)
lowerCAmelCase__ = generated_tokens if self.args.predict_with_generate else logits
if labels.shape[-1] < gen_kwargs["max_length"]:
lowerCAmelCase__ = self._pad_tensors_to_max_len(__magic_name__ , gen_kwargs["max_length"] )
return (loss, logits, labels)
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int , __magic_name__ : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id
if pad_token_id is None:
raise ValueError(
"Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be"
f""" padded to `max_length`={max_length}""" )
lowerCAmelCase__ = pad_token_id * torch.ones(
(tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device )
lowerCAmelCase__ = tensor
return padded_tensor
| 48 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
if start < end:
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 )
count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ )
return count
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ = start - 1
for index in range(UpperCamelCase_ , UpperCamelCase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowerCAmelCase__ = new_pivot_index + 1
lowerCAmelCase__ = a[new_pivot_index]
lowerCAmelCase__ = a[index]
lowerCAmelCase__ = temp
lowerCAmelCase__ = a[new_pivot_index + 1]
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = temp
return new_pivot_index + 1, count
UpperCAmelCase__ : Tuple = TemporaryFile()
UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted
UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation
UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase__ : Optional[Any] = np.load(outfile)
UpperCAmelCase__ : Any = len(M) - 1
UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 48 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class A ( unittest.TestCase ):
@slow
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = XLMRobertaModel.from_pretrained("xlm-roberta-base" )
lowerCAmelCase__ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase__ = torch.tensor(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase__ = model(__magic_name__ )["last_hidden_state"].detach()
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , __magic_name__ , atol=1E-3 ) )
@slow
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = XLMRobertaModel.from_pretrained("xlm-roberta-large" )
lowerCAmelCase__ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] )
# The dog is cute and lives in the garden house
lowerCAmelCase__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim
lowerCAmelCase__ = torch.tensor(
[[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCAmelCase__ = model(__magic_name__ )["last_hidden_state"].detach()
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , __magic_name__ , atol=1E-3 ) )
| 48 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def A ( UpperCamelCase_ : List[Any] ) -> Tuple:
'''simple docstring'''
if "img_encoder.pos_embed" in name:
lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" )
if "img_encoder.patch_embed.proj" in name:
lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" )
if "img_encoder.patch_embed.norm" in name:
lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" )
if "img_encoder.layers" in name:
lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" )
if "blocks" in name and "res" not in name:
lowerCAmelCase__ = name.replace("blocks" , "layers" )
if "attn" in name and "pre_assign" not in name:
lowerCAmelCase__ = name.replace("attn" , "self_attn" )
if "proj" in name and "self_attn" in name and "text" not in name:
lowerCAmelCase__ = name.replace("proj" , "out_proj" )
if "pre_assign_attn.attn.proj" in name:
lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" )
if "norm1" in name:
lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" )
if "norm2" in name and "pre_assign" not in name:
lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" )
if "img_encoder.norm" in name:
lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" )
# text encoder
if "text_encoder.token_embedding" in name:
lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" )
if "text_encoder.positional_embedding" in name:
lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" )
if "text_encoder.transformer.resblocks." in name:
lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." )
if "ln_1" in name:
lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" )
if "ln_2" in name:
lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" )
if "c_fc" in name:
lowerCAmelCase__ = name.replace("c_fc" , "fc1" )
if "c_proj" in name:
lowerCAmelCase__ = name.replace("c_proj" , "fc2" )
if "text_encoder" in name:
lowerCAmelCase__ = name.replace("text_encoder" , "text_model" )
if "ln_final" in name:
lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" )
# projection layers
if "img_projector.linear_hidden." in name:
lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." )
if "img_projector.linear_out." in name:
lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." )
if "text_projector.linear_hidden" in name:
lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" )
if "text_projector.linear_out" in name:
lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" )
return name
def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase__ = key.split("." )
lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] )
lowerCAmelCase__ = config.vision_config.hidden_size
if "weight" in key:
lowerCAmelCase__ = val[:dim, :]
lowerCAmelCase__ = val[dim : dim * 2, :]
lowerCAmelCase__ = val[-dim:, :]
else:
lowerCAmelCase__ = val[:dim]
lowerCAmelCase__ = val[dim : dim * 2]
lowerCAmelCase__ = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase__ = key.split("." )
lowerCAmelCase__ = int(key_split[3] )
lowerCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase__ = val[:dim, :]
lowerCAmelCase__ = val[
dim : dim * 2, :
]
lowerCAmelCase__ = val[-dim:, :]
else:
lowerCAmelCase__ = val[:dim]
lowerCAmelCase__ = val[dim : dim * 2]
lowerCAmelCase__ = val[-dim:]
else:
lowerCAmelCase__ = rename_key(UpperCamelCase_ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowerCAmelCase__ = val.squeeze_()
else:
lowerCAmelCase__ = val
return orig_state_dict
def A ( ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = GroupViTConfig()
lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval()
lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"]
lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0)
# verify result
lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" )
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" )
with torch.no_grad():
lowerCAmelCase__ = model(**UpperCamelCase_ )
if model_name == "groupvit-gcc-yfcc":
lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] )
elif model_name == "groupvit-gcc-redcaps":
lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] )
else:
raise ValueError(F"""Model name {model_name} not supported.""" )
assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 )
processor.save_pretrained(UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
print("Successfully saved processor and model to" , UpperCamelCase_ )
if push_to_hub:
print("Pushing to the hub..." )
processor.push_to_hub(UpperCamelCase_ , organization="nielsr" )
model.push_to_hub(UpperCamelCase_ , organization="nielsr" )
if __name__ == "__main__":
UpperCAmelCase__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model."
)
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint")
parser.add_argument(
"--model_name",
default="groupvit-gccy-fcc",
type=str,
help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.",
)
UpperCAmelCase__ : Any = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 48 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ : Optional[Any] = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 |
'''simple docstring'''
from __future__ import annotations
from functools import lru_cache
from math import ceil
UpperCAmelCase__ : Optional[Any] = 1_00
UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2))
primes.add(2)
UpperCAmelCase__ : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=1_00 )
def A ( UpperCamelCase_ : int ) -> set[int]:
'''simple docstring'''
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
lowerCAmelCase__ = set()
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def A ( UpperCamelCase_ : int = 50_00 ) -> int | None:
'''simple docstring'''
for number_to_partition in range(1 , UpperCamelCase_ ):
if len(partition(UpperCamelCase_ ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(F"{solution() = }")
| 48 | 1 |
'''simple docstring'''
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
@register_to_config
def __init__( self : str , __magic_name__ : bool , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None ):
"""simple docstring"""
super().__init__()
lowerCAmelCase__ = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
lowerCAmelCase__ = torch.zeros(__magic_name__ , __magic_name__ )
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = torch.nn.Parameter(__magic_name__ )
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :VQModel
snake_case__ :CLIPTextModel
snake_case__ :CLIPTokenizer
snake_case__ :TransformeraDModel
snake_case__ :LearnedClassifierFreeSamplingEmbeddings
snake_case__ :VQDiffusionScheduler
def __init__( self : Union[str, Any] , __magic_name__ : VQModel , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : TransformeraDModel , __magic_name__ : VQDiffusionScheduler , __magic_name__ : LearnedClassifierFreeSamplingEmbeddings , ):
"""simple docstring"""
super().__init__()
self.register_modules(
vqvae=__magic_name__ , transformer=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , scheduler=__magic_name__ , learned_classifier_free_sampling_embeddings=__magic_name__ , )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = len(__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else 1
# get prompt text embeddings
lowerCAmelCase__ = self.tokenizer(
__magic_name__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , )
lowerCAmelCase__ = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
lowerCAmelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
lowerCAmelCase__ = text_input_ids[:, : self.tokenizer.model_max_length]
lowerCAmelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
lowerCAmelCase__ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__magic_name__ )
# duplicate text embeddings for each generation per prompt
lowerCAmelCase__ = prompt_embeds.repeat_interleave(__magic_name__ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
lowerCAmelCase__ = self.learned_classifier_free_sampling_embeddings.embeddings
lowerCAmelCase__ = negative_prompt_embeds.unsqueeze(0 ).repeat(__magic_name__ , 1 , 1 )
else:
lowerCAmelCase__ = [""] * batch_size
lowerCAmelCase__ = text_input_ids.shape[-1]
lowerCAmelCase__ = self.tokenizer(
__magic_name__ , padding="max_length" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="pt" , )
lowerCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
lowerCAmelCase__ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__magic_name__ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
lowerCAmelCase__ = negative_prompt_embeds.shape[1]
lowerCAmelCase__ = negative_prompt_embeds.repeat(1 , __magic_name__ , 1 )
lowerCAmelCase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __magic_name__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowerCAmelCase__ = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self : Any , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 100 , __magic_name__ : float = 5.0 , __magic_name__ : float = 1.0 , __magic_name__ : int = 1 , __magic_name__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
lowerCAmelCase__ = 1
elif isinstance(__magic_name__ , __magic_name__ ):
lowerCAmelCase__ = len(__magic_name__ )
else:
raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}""" )
lowerCAmelCase__ = batch_size * num_images_per_prompt
lowerCAmelCase__ = guidance_scale > 1.0
lowerCAmelCase__ = self._encode_prompt(__magic_name__ , __magic_name__ , __magic_name__ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0)
):
raise ValueError(
f"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
f""" {type(__magic_name__ )}.""" )
# get the initial completely masked latents unless the user supplied it
lowerCAmelCase__ = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
lowerCAmelCase__ = self.transformer.num_vector_embeds - 1
lowerCAmelCase__ = torch.full(__magic_name__ , __magic_name__ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"
f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" )
lowerCAmelCase__ = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(__magic_name__ , device=self.device )
lowerCAmelCase__ = self.scheduler.timesteps.to(self.device )
lowerCAmelCase__ = latents
for i, t in enumerate(self.progress_bar(__magic_name__ ) ):
# expand the sample if we are doing classifier free guidance
lowerCAmelCase__ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
lowerCAmelCase__ = self.transformer(__magic_name__ , encoder_hidden_states=__magic_name__ , timestep=__magic_name__ ).sample
if do_classifier_free_guidance:
lowerCAmelCase__ ,lowerCAmelCase__ = model_output.chunk(2 )
lowerCAmelCase__ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(__magic_name__ , dim=1 , keepdim=__magic_name__ )
lowerCAmelCase__ = self.truncate(__magic_name__ , __magic_name__ )
# remove `log(0)`'s (`-inf`s)
lowerCAmelCase__ = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
lowerCAmelCase__ = self.scheduler.step(__magic_name__ , timestep=__magic_name__ , sample=__magic_name__ , generator=__magic_name__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(__magic_name__ , __magic_name__ , __magic_name__ )
lowerCAmelCase__ = self.vqvae.config.vq_embed_dim
lowerCAmelCase__ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
lowerCAmelCase__ = self.vqvae.quantize.get_codebook_entry(__magic_name__ , shape=__magic_name__ )
lowerCAmelCase__ = self.vqvae.decode(__magic_name__ , force_not_quantize=__magic_name__ ).sample
lowerCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase__ = self.numpy_to_pil(__magic_name__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : torch.FloatTensor , __magic_name__ : float ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ = torch.sort(__magic_name__ , 1 , descending=__magic_name__ )
lowerCAmelCase__ = torch.exp(__magic_name__ )
lowerCAmelCase__ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
lowerCAmelCase__ = torch.full_like(keep_mask[:, 0:1, :] , __magic_name__ )
lowerCAmelCase__ = torch.cat((all_true, keep_mask) , dim=1 )
lowerCAmelCase__ = keep_mask[:, :-1, :]
lowerCAmelCase__ = keep_mask.gather(1 , indices.argsort(1 ) )
lowerCAmelCase__ = log_p_x_0.clone()
lowerCAmelCase__ = -torch.inf # -inf = log(0)
return rv
| 48 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : List[Any] = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"}
UpperCAmelCase__ : Optional[Any] = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = VOCAB_FILES_NAMES
snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(
unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding="utf-8" ) as vocab_handle:
lowerCAmelCase__ = json.load(__magic_name__ )
lowerCAmelCase__ = {v: k for k, v in self.vocab.items()}
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return len(self.vocab )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = []
for s in text:
char_tokens.extend(__magic_name__ )
return char_tokens
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ):
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ):
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" )
return (vocab_file,)
| 48 | 1 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
UpperCAmelCase__ : Optional[Any] = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$")
@total_ordering
@dataclass
class A :
snake_case__ :str
snake_case__ :Optional[str] = None
snake_case__ :Optional[Union[str, int]] = None
snake_case__ :Optional[Union[str, int]] = None
snake_case__ :Optional[Union[str, int]] = None
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = _str_to_version_tuple(self.version_str )
def __repr__( self : Tuple ):
"""simple docstring"""
return f"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}"""
@property
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return self.major, self.minor, self.patch
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : str ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return Version(__magic_name__ )
elif isinstance(__magic_name__ , __magic_name__ ):
return other
raise TypeError(f"""{other} (type {type(__magic_name__ )}) cannot be compared to version.""" )
def __eq__( self : List[Any] , __magic_name__ : str ):
"""simple docstring"""
try:
lowerCAmelCase__ = self._validate_operand(__magic_name__ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : str , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self._validate_operand(__magic_name__ )
return self.tuple < other.tuple
def __hash__( self : Tuple ):
"""simple docstring"""
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
return self.version_str
def A ( UpperCamelCase_ : Any ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = _VERSION_REG.match(UpperCamelCase_ )
if not res:
raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" )
return tuple(int(UpperCamelCase_ ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] )
def A ( UpperCamelCase_ : List[Any] ) -> int:
'''simple docstring'''
return ".".join(str(UpperCamelCase_ ) for v in version_tuple )
| 48 |
'''simple docstring'''
from math import sqrt
def A ( UpperCamelCase_ : int ) -> int:
'''simple docstring'''
lowerCAmelCase__ = 0
for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ):
if n % i == 0 and i != sqrt(UpperCamelCase_ ):
total += i + n // i
elif i == sqrt(UpperCamelCase_ ):
total += i
return total - n
def A ( UpperCamelCase_ : int = 1_00_00 ) -> int:
'''simple docstring'''
lowerCAmelCase__ = sum(
i
for i in range(1 , UpperCamelCase_ )
if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 48 | 1 |
'''simple docstring'''
import argparse
import copy
def A ( UpperCamelCase_ : str ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = {}
with open(UpperCamelCase_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
lowerCAmelCase__ = []
_list.append([line.split()[1], line.split()[2]] )
lowerCAmelCase__ = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
lowerCAmelCase__ = []
_list.append([line.split()[0], line.split()[2]] )
lowerCAmelCase__ = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def A ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ) -> List[str]:
'''simple docstring'''
with open(UpperCamelCase_ ) as f:
lowerCAmelCase__ = f.read(1 )
lowerCAmelCase__ = start_node
lowerCAmelCase__ = []
lowerCAmelCase__ = start_node
lowerCAmelCase__ = 0
while visiting not in first_solution:
lowerCAmelCase__ = 1_00_00
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(UpperCamelCase_ ) and k[0] not in first_solution:
lowerCAmelCase__ = k[1]
lowerCAmelCase__ = k[0]
first_solution.append(UpperCamelCase_ )
lowerCAmelCase__ = distance_of_first_solution + int(UpperCamelCase_ )
lowerCAmelCase__ = best_node
first_solution.append(UpperCamelCase_ )
lowerCAmelCase__ = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
lowerCAmelCase__ = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_00_00
)
return first_solution, distance_of_first_solution
def A ( UpperCamelCase_ : str , UpperCamelCase_ : Dict ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = []
for n in solution[1:-1]:
lowerCAmelCase__ = solution.index(UpperCamelCase_ )
for kn in solution[1:-1]:
lowerCAmelCase__ = solution.index(UpperCamelCase_ )
if n == kn:
continue
lowerCAmelCase__ = copy.deepcopy(UpperCamelCase_ )
lowerCAmelCase__ = kn
lowerCAmelCase__ = n
lowerCAmelCase__ = 0
for k in _tmp[:-1]:
lowerCAmelCase__ = _tmp[_tmp.index(UpperCamelCase_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
lowerCAmelCase__ = distance + int(i[1] )
_tmp.append(UpperCamelCase_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
lowerCAmelCase__ = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda UpperCamelCase_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 1
lowerCAmelCase__ = first_solution
lowerCAmelCase__ = []
lowerCAmelCase__ = distance_of_first_solution
lowerCAmelCase__ = solution
while count <= iters:
lowerCAmelCase__ = find_neighborhood(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = 0
lowerCAmelCase__ = neighborhood[index_of_best_solution]
lowerCAmelCase__ = len(UpperCamelCase_ ) - 1
lowerCAmelCase__ = False
while not found:
lowerCAmelCase__ = 0
while i < len(UpperCamelCase_ ):
if best_solution[i] != solution[i]:
lowerCAmelCase__ = best_solution[i]
lowerCAmelCase__ = solution[i]
break
lowerCAmelCase__ = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
lowerCAmelCase__ = True
lowerCAmelCase__ = best_solution[:-1]
lowerCAmelCase__ = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
lowerCAmelCase__ = cost
lowerCAmelCase__ = solution
else:
lowerCAmelCase__ = index_of_best_solution + 1
lowerCAmelCase__ = neighborhood[index_of_best_solution]
if len(UpperCamelCase_ ) >= size:
tabu_list.pop(0 )
lowerCAmelCase__ = count + 1
return best_solution_ever, best_cost
def A ( UpperCamelCase_ : Optional[int]=None ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = generate_neighbours(args.File )
lowerCAmelCase__ ,lowerCAmelCase__ = generate_first_solution(
args.File , UpperCamelCase_ )
lowerCAmelCase__ ,lowerCAmelCase__ = tabu_search(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , args.Iterations , args.Size , )
print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" )
if __name__ == "__main__":
UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser(description="Tabu Search")
parser.add_argument(
"-f",
"--File",
type=str,
help="Path to the file containing the data",
required=True,
)
parser.add_argument(
"-i",
"--Iterations",
type=int,
help="How many iterations the algorithm should perform",
required=True,
)
parser.add_argument(
"-s", "--Size", type=int, help="Size of the tabu list", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 48 |
'''simple docstring'''
import logging
import numpy as np
import pytest
from scipy.linalg import eigh
logging.basicConfig(level=logging.INFO, format="%(message)s")
def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return input_array.reshape((input_array.size, 1) )
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.mean(1 )
# Centralize the data of class i
lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ )
if i > 0:
# If covariance_sum is not None
covariance_sum += np.dot(UpperCamelCase_ , centered_data.T )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = features.mean(1 )
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.shape[1]
lowerCAmelCase__ = data.mean(1 )
if i > 0:
# If covariance_sum is not None
covariance_sum += device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
if features.any():
lowerCAmelCase__ = features.mean(1 )
# Center the dataset
lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) )
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1]
lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ )
# Take all the columns in the reverse order (-1), and then takes only the first
lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions]
# Project the database on the new space
lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ )
logging.info("Principal Component Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
assert classes > dimensions
# Check if features have been already loaded
if features.any:
lowerCAmelCase__ ,lowerCAmelCase__ = eigh(
covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , )
lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions]
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ )
lowerCAmelCase__ = svd_matrix[:, 0:dimensions]
lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ )
logging.info("Linear Discriminant Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] )
lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = 2
# Assert that the function raises an AssertionError if dimensions > classes
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = linear_discriminant_analysis(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if isinstance(UpperCamelCase_ , np.ndarray ):
raise AssertionError(
"Did not raise AssertionError for dimensions > classes" )
assert error_info.type is AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] )
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ )
if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ):
raise AssertionError
assert error_info.type is AssertionError
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 | 1 |
'''simple docstring'''
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ )
print(F"""Building PyTorch model from configuration: {config}""" )
if is_trivia_qa:
lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ )
else:
lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--big_bird_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
)
UpperCAmelCase__ : int = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 48 |
'''simple docstring'''
def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list:
'''simple docstring'''
lowerCAmelCase__ = word.split()
def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str:
lowerCAmelCase__ = max_width - width
lowerCAmelCase__ = len(UpperCamelCase_ )
if len(UpperCamelCase_ ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
lowerCAmelCase__ = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
lowerCAmelCase__ = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
lowerCAmelCase__ = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(UpperCamelCase_ ):
num_spaces_between_words_list[i] += 1
lowerCAmelCase__ = []
for i in range(UpperCamelCase_ ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * " " )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
for word in words:
if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(UpperCamelCase_ )
width += len(UpperCamelCase_ )
else:
# justify the line and add it to result
answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) )
# reset new line and new width
lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ )
lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ )
answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 48 | 1 |
'''simple docstring'''
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
UpperCAmelCase__ : str = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Dict , *__magic_name__ : Optional[int] , __magic_name__ : Dict=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(*__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = eval_examples
lowerCAmelCase__ = post_process_function
lowerCAmelCase__ = quant_trainer_args
lowerCAmelCase__ = 128 # default number of calibration samples
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : int=None ):
"""simple docstring"""
if calib_dataset is None and self.calib_dataset is None:
raise ValueError("Trainer: calibration requires an calib_dataset." )
lowerCAmelCase__ = calib_dataset if calib_dataset is not None else self.calib_dataset
lowerCAmelCase__ = self._remove_unused_columns(__magic_name__ , description="Calibration" )
return DataLoader(
__magic_name__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__magic_name__ , )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any]=None ):
"""simple docstring"""
lowerCAmelCase__ = self.train_dataset if calib_dataset is None else calib_dataset
lowerCAmelCase__ = self.get_calib_dataloader(__magic_name__ )
lowerCAmelCase__ = self.model
quant_trainer.configure_model(__magic_name__ , self.quant_trainer_args , calib=__magic_name__ )
model.eval()
quant_trainer.enable_calibration(__magic_name__ )
logger.info("***** Running calibration *****" )
logger.info(f""" Num examples = {self.calib_num}""" )
logger.info(f""" Batch size = {calib_dataloader.batch_size}""" )
for step, inputs in enumerate(__magic_name__ ):
# Prediction step
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self.prediction_step(__magic_name__ , __magic_name__ , prediction_loss_only=__magic_name__ )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(__magic_name__ , self.quant_trainer_args )
lowerCAmelCase__ = model
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Dict=None , __magic_name__ : str = "eval" ):
"""simple docstring"""
lowerCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset
lowerCAmelCase__ = self.get_eval_dataloader(__magic_name__ )
lowerCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowerCAmelCase__ = self.compute_metrics
lowerCAmelCase__ = None
lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCAmelCase__ = eval_loop(
__magic_name__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__magic_name__ , )
finally:
lowerCAmelCase__ = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
lowerCAmelCase__ = self.post_process_function(__magic_name__ , __magic_name__ , output.predictions )
lowerCAmelCase__ = self.compute_metrics(__magic_name__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"""{metric_key_prefix}_""" ):
lowerCAmelCase__ = metrics.pop(__magic_name__ )
self.log(__magic_name__ )
else:
lowerCAmelCase__ = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
lowerCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , __magic_name__ )
return metrics
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Any=None , __magic_name__ : str = "test" ):
"""simple docstring"""
lowerCAmelCase__ = self.get_test_dataloader(__magic_name__ )
# Temporarily disable metric computation, we will do it in the loop here.
lowerCAmelCase__ = self.compute_metrics
lowerCAmelCase__ = None
lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCAmelCase__ = eval_loop(
__magic_name__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__magic_name__ , )
finally:
lowerCAmelCase__ = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
lowerCAmelCase__ = self.post_process_function(__magic_name__ , __magic_name__ , output.predictions , "predict" )
lowerCAmelCase__ = self.compute_metrics(__magic_name__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"""{metric_key_prefix}_""" ):
lowerCAmelCase__ = metrics.pop(__magic_name__ )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any]="./" ):
"""simple docstring"""
lowerCAmelCase__ = self.eval_dataset
lowerCAmelCase__ = self.get_eval_dataloader(__magic_name__ )
lowerCAmelCase__ = next(iter(__magic_name__ ) )
# saving device - to make it consistent
lowerCAmelCase__ = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
# convert to tuple
lowerCAmelCase__ = tuple(v.to(__magic_name__ ) for k, v in batch.items() )
logger.info("Converting model to be onnx compatible" )
from pytorch_quantization.nn import TensorQuantizer
lowerCAmelCase__ = True
lowerCAmelCase__ = self.model.to(__magic_name__ )
model.eval()
model.float()
lowerCAmelCase__ = model.module if hasattr(__magic_name__ , "module" ) else model
quant_trainer.configure_model(__magic_name__ , self.quant_trainer_args )
lowerCAmelCase__ = os.path.join(__magic_name__ , "model.onnx" )
logger.info(f"""exporting model to {output_model_file}""" )
lowerCAmelCase__ = {0: "batch_size", 1: "seq_len"}
torch.onnx.export(
__magic_name__ , __magic_name__ , __magic_name__ , export_params=__magic_name__ , opset_version=13 , do_constant_folding=__magic_name__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={
"input_ids": axes,
"attention_mask": axes,
"token_type_ids": axes,
"output_start_logits": axes,
"output_end_logits": axes,
} , verbose=__magic_name__ , )
logger.info("onnx export finished" )
| 48 |
'''simple docstring'''
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
UpperCAmelCase__ : str = sys.version_info >= (3, 10)
def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=UpperCamelCase_ )
@dataclass
class A :
snake_case__ :int
snake_case__ :float
snake_case__ :str
snake_case__ :bool
@dataclass
class A :
snake_case__ :int = 42
snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} )
@dataclass
class A :
snake_case__ :bool = False
snake_case__ :bool = True
snake_case__ :Optional[bool] = None
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = 'titi'
snake_case__ :Optional[int] = 'toto'
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'titi'
snake_case__ :str = 'toto'
snake_case__ :int = 42
@dataclass
class A :
snake_case__ :BasicEnum = "toto"
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = BasicEnum(self.foo )
@dataclass
class A :
snake_case__ :MixedTypeEnum = "toto"
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = MixedTypeEnum(self.foo )
@dataclass
class A :
snake_case__ :Optional[int] = None
snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} )
snake_case__ :Optional[str] = None
snake_case__ :Optional[List[str]] = list_field(default=[] )
snake_case__ :Optional[List[int]] = list_field(default=[] )
@dataclass
class A :
snake_case__ :List[int] = list_field(default=[] )
snake_case__ :List[int] = list_field(default=[1, 2, 3] )
snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class A :
snake_case__ :List[int] = field()
snake_case__ :str = field()
snake_case__ :BasicEnum = field()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = BasicEnum(self.required_enum )
@dataclass
class A :
snake_case__ :int
snake_case__ :"BasicEnum" = field()
snake_case__ :"Optional[bool]" = None
snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} )
snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
if is_python_no_less_than_3_10:
@dataclass
class A :
snake_case__ :bool = False
snake_case__ :bool = True
snake_case__ :bool | None = None
@dataclass
class A :
snake_case__ :int | None = None
snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} )
snake_case__ :str | None = None
snake_case__ :list[str] | None = list_field(default=[] )
snake_case__ :list[int] | None = list_field(default=[] )
class A ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ):
"""simple docstring"""
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"}
lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) )
del xx["type"], yy["type"]
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"]
((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ )
self.assertFalse(example.flag )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=42 , type=__magic_name__ )
expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" )
expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ )
lowerCAmelCase__ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
lowerCAmelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
@dataclass
class A :
snake_case__ :Literal["titi", "toto", 42] = "toto"
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
lowerCAmelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ )
expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ )
expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(
__magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , )
lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() )
self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" )
expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ )
expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ )
lowerCAmelCase__ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) )
lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() )
self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , )
expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ )
expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
"extra": 42,
}
self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" )
os.mkdir(__magic_name__ )
with open(temp_local_path + ".json" , "w+" ) as f:
json.dump(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" )
os.mkdir(__magic_name__ )
with open(temp_local_path + ".yaml" , "w+" ) as f:
yaml.dump(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
| 48 | 1 |
'''simple docstring'''
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
UpperCAmelCase__ : List[str] = logging.get_logger(__name__)
def A ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> List[Any]:
'''simple docstring'''
return [
int(10_00 * (box[0] / width) ),
int(10_00 * (box[1] / height) ),
int(10_00 * (box[2] / width) ),
int(10_00 * (box[3] / height) ),
]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Optional[str] , UpperCamelCase_ : Optional[str] = None ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = tesseract_config if tesseract_config is not None else ""
# apply OCR
lowerCAmelCase__ = to_pil_image(UpperCamelCase_ )
lowerCAmelCase__ ,lowerCAmelCase__ = pil_image.size
lowerCAmelCase__ = pytesseract.image_to_data(UpperCamelCase_ , lang=UpperCamelCase_ , output_type="dict" , config=UpperCamelCase_ )
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = data["text"], data["left"], data["top"], data["width"], data["height"]
# filter empty words and corresponding coordinates
lowerCAmelCase__ = [idx for idx, word in enumerate(UpperCamelCase_ ) if not word.strip()]
lowerCAmelCase__ = [word for idx, word in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices]
lowerCAmelCase__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices]
lowerCAmelCase__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices]
lowerCAmelCase__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices]
lowerCAmelCase__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowerCAmelCase__ = []
for x, y, w, h in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase__ = [x, y, x + w, y + h]
actual_boxes.append(UpperCamelCase_ )
# finally, normalize the bounding boxes
lowerCAmelCase__ = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :int = ['pixel_values']
def __init__( self : List[str] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = "" , **__magic_name__ : Optional[int] , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = size if size is not None else {"height": 224, "width": 224}
lowerCAmelCase__ = get_size_dict(__magic_name__ )
lowerCAmelCase__ = do_resize
lowerCAmelCase__ = size
lowerCAmelCase__ = resample
lowerCAmelCase__ = apply_ocr
lowerCAmelCase__ = ocr_lang
lowerCAmelCase__ = tesseract_config
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[Any] , ):
"""simple docstring"""
lowerCAmelCase__ = get_size_dict(__magic_name__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
lowerCAmelCase__ = (size["height"], size["width"])
return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase__ = size if size is not None else self.size
lowerCAmelCase__ = get_size_dict(__magic_name__ )
lowerCAmelCase__ = resample if resample is not None else self.resample
lowerCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr
lowerCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang
lowerCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config
lowerCAmelCase__ = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
# All transformations expect numpy arrays.
lowerCAmelCase__ = [to_numpy_array(__magic_name__ ) for image in images]
if apply_ocr:
requires_backends(self , "pytesseract" )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for image in images:
lowerCAmelCase__ ,lowerCAmelCase__ = apply_tesseract(__magic_name__ , __magic_name__ , __magic_name__ )
words_batch.append(__magic_name__ )
boxes_batch.append(__magic_name__ )
if do_resize:
lowerCAmelCase__ = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
lowerCAmelCase__ = [flip_channel_order(__magic_name__ ) for image in images]
lowerCAmelCase__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
lowerCAmelCase__ = BatchFeature(data={"pixel_values": images} , tensor_type=__magic_name__ )
if apply_ocr:
lowerCAmelCase__ = words_batch
lowerCAmelCase__ = boxes_batch
return data
| 48 |
'''simple docstring'''
import sys
from collections import defaultdict
class A :
def __init__( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = []
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ):
"""simple docstring"""
return self.node_position[vertex]
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = pos
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ):
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
lowerCAmelCase__ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
lowerCAmelCase__ = 2 * start + 1
else:
lowerCAmelCase__ = 2 * start + 2
if heap[smallest_child] < heap[start]:
lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child]
lowerCAmelCase__ ,lowerCAmelCase__ = (
heap[start],
positions[start],
)
lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa
lowerCAmelCase__ = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , __magic_name__ )
self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = position[index]
while index != 0:
lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
lowerCAmelCase__ = heap[parent]
lowerCAmelCase__ = position[parent]
self.set_position(position[parent] , __magic_name__ )
else:
lowerCAmelCase__ = val
lowerCAmelCase__ = temp
self.set_position(__magic_name__ , __magic_name__ )
break
lowerCAmelCase__ = parent
else:
lowerCAmelCase__ = val
lowerCAmelCase__ = temp
self.set_position(__magic_name__ , 0 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ):
"""simple docstring"""
lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1
for i in range(__magic_name__ , -1 , -1 ):
self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = positions[0]
lowerCAmelCase__ = sys.maxsize
self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ )
return temp
def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = Heap()
lowerCAmelCase__ = [0] * len(UpperCamelCase_ )
lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex
lowerCAmelCase__ = []
for vertex in range(len(UpperCamelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase_ )
heap.node_position.append(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = 1
lowerCAmelCase__ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
lowerCAmelCase__ = 0
lowerCAmelCase__ = distance
heap.heapify(UpperCamelCase_ , UpperCamelCase_ )
for _ in range(1 , len(UpperCamelCase_ ) ):
lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
lowerCAmelCase__ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase_ )]
):
lowerCAmelCase__ = distance
heap.bottom_to_top(
UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip())
UpperCAmelCase__ : str = defaultdict(list)
for _ in range(edges_number):
UpperCAmelCase__ : int = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 48 | 1 |
'''simple docstring'''
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
UpperCAmelCase__ : Dict = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--txt2img_unclip",
default="kakaobrain/karlo-v1-alpha",
type=str,
required=False,
help="The pretrained txt2img unclip.",
)
UpperCAmelCase__ : str = parser.parse_args()
UpperCAmelCase__ : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
UpperCAmelCase__ : str = CLIPImageProcessor()
UpperCAmelCase__ : List[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
UpperCAmelCase__ : List[Any] = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 48 |
'''simple docstring'''
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model")
if is_sentencepiece_available():
import sentencepiece as sp
UpperCAmelCase__ : Tuple = 5
UpperCAmelCase__ : List[Any] = 10
@require_sentencepiece
@require_tokenizers
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Tuple = SpeechaTextTokenizer
snake_case__ :Dict = False
snake_case__ :Optional[int] = True
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
super().setUp()
lowerCAmelCase__ = sp.SentencePieceProcessor()
spm_model.Load(__magic_name__ )
lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"]
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )]
lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
lowerCAmelCase__ = Path(self.tmpdirname )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] )
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = "<pad>"
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(__magic_name__ ) , 1001 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1001 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = tokenizer.tokenize("This is a test" )
self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , )
lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , )
@require_sentencepiece
class A ( unittest.TestCase ):
snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium'
snake_case__ :Tuple = 'C\'est trop cool'
snake_case__ :List[str] = 'Esto es genial'
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 10000 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self.assertIn(__magic_name__ , self.tokenizer.all_special_ids )
lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2]
lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
self.assertNotIn(self.tokenizer.eos_token , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = "fr"
lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , __magic_name__ )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = "fr"
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
lowerCAmelCase__ = "es"
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 48 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : int = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :int = 'trocr'
snake_case__ :Any = ['past_key_values']
snake_case__ :Tuple = {
'num_attention_heads': 'decoder_attention_heads',
'hidden_size': 'd_model',
'num_hidden_layers': 'decoder_layers',
}
def __init__( self : Optional[Any] , __magic_name__ : Dict=50265 , __magic_name__ : Union[str, Any]=1024 , __magic_name__ : Optional[Any]=12 , __magic_name__ : int=16 , __magic_name__ : Optional[Any]=4096 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Dict=512 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : str=0.0 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Tuple=0.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=False , __magic_name__ : str=True , __magic_name__ : Any=True , __magic_name__ : Union[str, Any]=1 , __magic_name__ : Dict=0 , __magic_name__ : Optional[int]=2 , **__magic_name__ : int , ):
"""simple docstring"""
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = decoder_layers
lowerCAmelCase__ = decoder_attention_heads
lowerCAmelCase__ = decoder_ffn_dim
lowerCAmelCase__ = activation_function
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = init_std
lowerCAmelCase__ = decoder_layerdrop
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = scale_embedding
lowerCAmelCase__ = use_learned_position_embeddings
lowerCAmelCase__ = layernorm_embedding
super().__init__(
pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
| 48 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
# General docstring
UpperCAmelCase__ : int = "RegNetConfig"
# Base docstring
UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7]
# Image classification docstring
UpperCAmelCase__ : Tuple = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat"
UpperCAmelCase__ : int = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A ( tf.keras.layers.Layer ):
def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
lowerCAmelCase__ = tf.keras.layers.ConvaD(
filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , )
lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) )
lowerCAmelCase__ = self.normalization(__magic_name__ )
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = config.num_channels
lowerCAmelCase__ = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = shape_list(__magic_name__ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) )
lowerCAmelCase__ = self.embedder(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = tf.keras.layers.ConvaD(
filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" )
lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ):
"""simple docstring"""
return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ )
class A ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" )
lowerCAmelCase__ = [
tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ),
tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ),
]
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.pooler(__magic_name__ )
for layer_module in self.attention:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = hidden_state * pooled
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = in_channels != out_channels or stride != 1
lowerCAmelCase__ = max(1 , out_channels // config.groups_width )
lowerCAmelCase__ = (
TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
lowerCAmelCase__ = [
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
__magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ),
]
lowerCAmelCase__ = ACTaFN[config.hidden_act]
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = hidden_state
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = self.shortcut(__magic_name__ )
hidden_state += residual
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = in_channels != out_channels or stride != 1
lowerCAmelCase__ = max(1 , out_channels // config.groups_width )
lowerCAmelCase__ = (
TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
lowerCAmelCase__ = [
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
__magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ),
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ),
]
lowerCAmelCase__ = ACTaFN[config.hidden_act]
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = hidden_state
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = self.shortcut(__magic_name__ )
hidden_state += residual
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
lowerCAmelCase__ = [
# downsampling is done in the first layer with stride of 2
layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ),
*[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ):
"""simple docstring"""
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) )
lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ):
"""simple docstring"""
lowerCAmelCase__ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowerCAmelCase__ = hidden_states + (hidden_state,)
lowerCAmelCase__ = stage_module(__magic_name__ )
if output_hidden_states:
lowerCAmelCase__ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ )
@keras_serializable
class A ( tf.keras.layers.Layer ):
snake_case__ :List[Any] = RegNetConfig
def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = config
lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" )
lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" )
lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" )
@unpack_inputs
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = self.encoder(
__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = encoder_outputs[0]
lowerCAmelCase__ = self.pooler(__magic_name__ )
# Change to NCHW output format have uniformity in the modules
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) )
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :str = RegNetConfig
snake_case__ :Optional[Any] = 'regnet'
snake_case__ :Tuple = 'pixel_values'
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , )
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.regnet(
pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , )
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ):
"""simple docstring"""
super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = config.num_labels
lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" )
# classification head
lowerCAmelCase__ = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.regnet(
__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1]
lowerCAmelCase__ = self.classifier[0](__magic_name__ )
lowerCAmelCase__ = self.classifier[1](__magic_name__ )
lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ )
if not return_dict:
lowerCAmelCase__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
| 48 | 1 |
'''simple docstring'''
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
UpperCAmelCase__ : Optional[int] = "."
if __name__ == "__main__":
UpperCAmelCase__ : Optional[int] = os.path.join(REPO_PATH, "utils/documentation_tests.txt")
UpperCAmelCase__ : List[str] = []
UpperCAmelCase__ : Dict = []
with open(doctest_file_path) as fp:
for line in fp:
UpperCAmelCase__ : Tuple = line.strip()
UpperCAmelCase__ : Optional[int] = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
UpperCAmelCase__ : Tuple = "\n".join(non_existent_paths)
raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}")
if all_paths != sorted(all_paths):
raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
| 48 |
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def A ( UpperCamelCase_ : Tuple ) -> int:
'''simple docstring'''
for param in module.parameters():
lowerCAmelCase__ = False
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
lowerCAmelCase__ = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = plt.imshow(UpperCamelCase_ )
fig.axes.get_xaxis().set_visible(UpperCamelCase_ )
fig.axes.get_yaxis().set_visible(UpperCamelCase_ )
plt.show()
def A ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = datetime.now()
lowerCAmelCase__ = current_time.strftime("%H:%M:%S" )
return timestamp
| 48 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class A :
snake_case__ :str = BlenderbotConfig
snake_case__ :Optional[int] = {}
snake_case__ :int = 'gelu'
def __init__( self : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int]=13 , __magic_name__ : Tuple=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[int]=False , __magic_name__ : Any=99 , __magic_name__ : List[str]=32 , __magic_name__ : List[str]=2 , __magic_name__ : Dict=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : Optional[Any]=20 , __magic_name__ : Tuple=2 , __magic_name__ : Any=1 , __magic_name__ : Union[str, Any]=0 , ):
"""simple docstring"""
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = eos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = bos_token_id
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCAmelCase__ = prepare_blenderbot_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ )
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = TFBlenderbotModel(config=__magic_name__ ).get_decoder()
lowerCAmelCase__ = inputs_dict["input_ids"]
lowerCAmelCase__ = input_ids[:1, :]
lowerCAmelCase__ = inputs_dict["attention_mask"][:1, :]
lowerCAmelCase__ = inputs_dict["head_mask"]
lowerCAmelCase__ = 1
# first forward pass
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ )
lowerCAmelCase__ ,lowerCAmelCase__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ )[0]
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-3 )
def A ( UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : List[str]=None , ) -> Dict:
'''simple docstring'''
if attention_mask is None:
lowerCAmelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
lowerCAmelCase__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
lowerCAmelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Tuple = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
snake_case__ :Optional[Any] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
snake_case__ :List[Any] = (
{
'conversational': TFBlenderbotForConditionalGeneration,
'feature-extraction': TFBlenderbotModel,
'summarization': TFBlenderbotForConditionalGeneration,
'text2text-generation': TFBlenderbotForConditionalGeneration,
'translation': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
snake_case__ :int = True
snake_case__ :Optional[Any] = False
snake_case__ :Tuple = False
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = TFBlenderbotModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ )
@require_tokenizers
@require_tf
class A ( unittest.TestCase ):
snake_case__ :Any = ['My friends are cool but they eat too many carbs.']
snake_case__ :Optional[int] = 'facebook/blenderbot-400M-distill'
@cached_property
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer(self.src_text , return_tensors="tf" )
lowerCAmelCase__ = self.model.generate(
model_inputs.input_ids , )
lowerCAmelCase__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__magic_name__ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 48 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase__ : Tuple = {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"
),
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Dict = 'dpr'
def __init__( self : List[str] , __magic_name__ : List[Any]=30522 , __magic_name__ : Optional[Any]=768 , __magic_name__ : str=12 , __magic_name__ : Optional[int]=12 , __magic_name__ : List[str]=3072 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Tuple=512 , __magic_name__ : int=2 , __magic_name__ : Dict=0.02 , __magic_name__ : Any=1E-12 , __magic_name__ : Tuple=0 , __magic_name__ : Union[str, Any]="absolute" , __magic_name__ : int = 0 , **__magic_name__ : List[str] , ):
"""simple docstring"""
super().__init__(pad_token_id=__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = projection_dim
lowerCAmelCase__ = position_embedding_type
| 48 |
'''simple docstring'''
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ )
print(F"""Building PyTorch model from configuration: {config}""" )
if is_trivia_qa:
lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ )
else:
lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--big_bird_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
)
UpperCAmelCase__ : int = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 48 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Optional[int] = ['image_processor', 'tokenizer']
snake_case__ :List[str] = 'BlipImageProcessor'
snake_case__ :Any = 'AutoTokenizer'
def __init__( self : Any , __magic_name__ : str , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = False
super().__init__(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = self.image_processor
def __call__( self : Any , __magic_name__ : ImageInput = None , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : str , ):
"""simple docstring"""
if images is None and text is None:
raise ValueError("You have to specify either images or text." )
# Get only text
if images is None:
lowerCAmelCase__ = self.tokenizer
lowerCAmelCase__ = self.tokenizer(
text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
return text_encoding
# add pixel_values
lowerCAmelCase__ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ )
if text is not None:
lowerCAmelCase__ = self.tokenizer(
text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
else:
lowerCAmelCase__ = None
if text_encoding is not None:
encoding_image_processor.update(__magic_name__ )
return encoding_image_processor
def __SCREAMING_SNAKE_CASE ( self : List[str] , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[int] ):
"""simple docstring"""
return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , *__magic_name__ : Any , **__magic_name__ : List[Any] ):
"""simple docstring"""
return self.tokenizer.decode(*__magic_name__ , **__magic_name__ )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer.model_input_names
lowerCAmelCase__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 48 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class A :
def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ):
"""simple docstring"""
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_input_mask
lowerCAmelCase__ = use_token_type_ids
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = block_sizes
lowerCAmelCase__ = num_decoder_layers
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_head
lowerCAmelCase__ = d_head
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = 2
lowerCAmelCase__ = num_labels
lowerCAmelCase__ = num_choices
lowerCAmelCase__ = scope
lowerCAmelCase__ = initializer_std
# Used in the tests to check the size of the first attention layer
lowerCAmelCase__ = n_head
# Used in the tests to check the size of the first hidden state
lowerCAmelCase__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowerCAmelCase__ = self.num_hidden_layers + 2
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = None
if self.use_input_mask:
lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase__ = None
if self.use_token_type_ids:
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase__ = None
lowerCAmelCase__ = None
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = [input_ids, input_mask]
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = [input_ids, input_mask]
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_choices
lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.prepare_config_and_inputs()
(
(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,
) = config_and_inputs
lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :int = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
snake_case__ :Any = (
{
'feature-extraction': (TFFunnelBaseModel, TFFunnelModel),
'fill-mask': TFFunnelForMaskedLM,
'question-answering': TFFunnelForQuestionAnswering,
'text-classification': TFFunnelForSequenceClassification,
'token-classification': TFFunnelForTokenClassification,
'zero-shot': TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ :str = False
snake_case__ :Any = False
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Any = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
snake_case__ :int = False
snake_case__ :List[Any] = False
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
| 48 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :str = IFInpaintingPipeline
snake_case__ :List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'}
snake_case__ :Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
snake_case__ :int = PipelineTesterMixin.required_optional_params - {'latents'}
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self._get_dummy_components()
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple=0 ):
"""simple docstring"""
if str(__magic_name__ ).startswith("mps" ):
lowerCAmelCase__ = torch.manual_seed(__magic_name__ )
else:
lowerCAmelCase__ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
lowerCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
lowerCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
lowerCAmelCase__ = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
self._test_save_load_local()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 48 |
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'umt5'
snake_case__ :Any = ['past_key_values']
def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ):
"""simple docstring"""
super().__init__(
is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = d_kv
lowerCAmelCase__ = d_ff
lowerCAmelCase__ = num_layers
lowerCAmelCase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowerCAmelCase__ = num_heads
lowerCAmelCase__ = relative_attention_num_buckets
lowerCAmelCase__ = relative_attention_max_distance
lowerCAmelCase__ = dropout_rate
lowerCAmelCase__ = layer_norm_epsilon
lowerCAmelCase__ = initializer_factor
lowerCAmelCase__ = feed_forward_proj
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = self.feed_forward_proj.split("-" )
lowerCAmelCase__ = act_info[-1]
lowerCAmelCase__ = act_info[0] == "gated"
if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'" )
if feed_forward_proj == "gated-gelu":
lowerCAmelCase__ = "gelu_new"
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return self.d_model
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return self.num_heads
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.num_layers
class A ( SCREAMING_SNAKE_CASE__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
lowerCAmelCase__ = "past_encoder_sequence + sequence"
lowerCAmelCase__ = {0: "batch"}
lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="inputs" )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 13
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 5E-4
| 48 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ : Any = {
"configuration_time_series_transformer": [
"TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TimeSeriesTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[Any] = [
"TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimeSeriesTransformerForPrediction",
"TimeSeriesTransformerModel",
"TimeSeriesTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class A :
def __init__( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ):
"""simple docstring"""
if nodea not in self.connections:
self.add_node(__magic_name__ )
if nodea not in self.connections:
self.add_node(__magic_name__ )
lowerCAmelCase__ = probability
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
return list(self.connections )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]:
'''simple docstring'''
lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = Counter(graph.get_nodes() )
lowerCAmelCase__ = start
for _ in range(UpperCamelCase_ ):
lowerCAmelCase__ = graph.transition(UpperCamelCase_ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 | 1 |
'''simple docstring'''
def A ( UpperCamelCase_ : int ) -> str:
'''simple docstring'''
lowerCAmelCase__ = int(UpperCamelCase_ )
if decimal in (0, 1): # Exit cases for the recursion
return str(UpperCamelCase_ )
lowerCAmelCase__ ,lowerCAmelCase__ = divmod(UpperCamelCase_ , 2 )
return binary_recursive(UpperCamelCase_ ) + str(UpperCamelCase_ )
def A ( UpperCamelCase_ : str ) -> str:
'''simple docstring'''
lowerCAmelCase__ = str(UpperCamelCase_ ).strip()
if not number:
raise ValueError("No input value was provided" )
lowerCAmelCase__ = "-" if number.startswith("-" ) else ""
lowerCAmelCase__ = number.lstrip("-" )
if not number.isnumeric():
raise ValueError("Input value is not an integer" )
return F"""{negative}0b{binary_recursive(int(UpperCamelCase_ ) )}"""
if __name__ == "__main__":
from doctest import testmod
testmod()
| 48 |
'''simple docstring'''
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
UpperCAmelCase__ : Optional[Any] = pytest.mark.integration
UpperCAmelCase__ : str = {"comet"}
UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None
UpperCAmelCase__ : Optional[int] = {"code_eval"}
UpperCAmelCase__ : List[Any] = os.name == "nt"
UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"}
UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None
def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( UpperCamelCase_ : List[Any] ) -> str:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[int] , UpperCamelCase_ : int ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( UpperCamelCase_ : Any ) -> int:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@local
class A ( parameterized.TestCase ):
snake_case__ :Union[str, Any] = {}
snake_case__ :Optional[Any] = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = "[...]"
lowerCAmelCase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path )
lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ )
# check parameters
lowerCAmelCase__ = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ):
with self.use_local_metrics():
try:
lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = "[...]"
lowerCAmelCase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path )
# run doctest
with self.use_local_metrics():
lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ):
yield
else:
yield
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ):
return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ )
with patch("datasets.load_metric" ) as mock_load_metric:
lowerCAmelCase__ = load_local_metric
yield
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ):
"""simple docstring"""
def wrapper(__magic_name__ : Dict ):
lowerCAmelCase__ = contextmanager(__magic_name__ )
lowerCAmelCase__ = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt" )
def A ( UpperCamelCase_ : str ) -> Any:
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags
class A ( SCREAMING_SNAKE_CASE__ ):
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ):
"""simple docstring"""
assert len(input_dict["input_ids"] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor" ) as mock_create_predictor:
lowerCAmelCase__ = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore" )
def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
import torch
def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model" ), patch(
"bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf:
lowerCAmelCase__ = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet" )
def A ( UpperCamelCase_ : Optional[int] ) -> Any:
'''simple docstring'''
def load_from_checkpoint(UpperCamelCase_ : Tuple ):
class A :
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ):
"""simple docstring"""
assert len(__magic_name__ ) == 2
lowerCAmelCase__ = [0.19, 0.92]
return scores, sum(__magic_name__ ) / len(__magic_name__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model" ) as mock_download_model:
lowerCAmelCase__ = None
with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint:
lowerCAmelCase__ = load_from_checkpoint
yield
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) )
lowerCAmelCase__ = "ERROR"
lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"""
with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ):
metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
| 48 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
UpperCAmelCase__ : str = "0.12" # assumed parallelism: 8
if is_torch_available():
import torch
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int]=None ) -> Optional[int]:
'''simple docstring'''
if rng is None:
lowerCAmelCase__ = random.Random()
lowerCAmelCase__ = 1
for dim in shape:
total_dims *= dim
lowerCAmelCase__ = []
for _ in range(UpperCamelCase_ ):
values.append(rng.randint(0 , vocab_size - 1 ) )
lowerCAmelCase__ = np.array(UpperCamelCase_ , dtype=jnp.intaa ).reshape(UpperCamelCase_ )
return output
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=None ) -> int:
'''simple docstring'''
lowerCAmelCase__ = ids_tensor(UpperCamelCase_ , vocab_size=2 , rng=UpperCamelCase_ )
# make sure that at least one token is attended to for each batch
lowerCAmelCase__ = 1
return attn_mask
@require_flax
class A :
snake_case__ :Dict = None
snake_case__ :Optional[Any] = ()
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
lowerCAmelCase__ = 2
lowerCAmelCase__ = inputs["input_ids"].shape[-1] // 2
lowerCAmelCase__ = inputs["input_ids"][:max_batch_size, :sequence_length]
lowerCAmelCase__ = jnp.ones_like(__magic_name__ )
lowerCAmelCase__ = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
lowerCAmelCase__ = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
lowerCAmelCase__ = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = False
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 0
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase__ = getattr(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = pt_model_class(__magic_name__ ).eval()
lowerCAmelCase__ = load_flax_weights_in_pytorch_model(__magic_name__ , flax_model.params )
lowerCAmelCase__ = flax_model.generate(__magic_name__ ).sequences
lowerCAmelCase__ = pt_model.generate(torch.tensor(__magic_name__ , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
lowerCAmelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = False
lowerCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = True
lowerCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = False
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 2
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = False
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 2
lowerCAmelCase__ = 2
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = True
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 0.8
lowerCAmelCase__ = 10
lowerCAmelCase__ = 0.3
lowerCAmelCase__ = 1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
lowerCAmelCase__ = max_length
lowerCAmelCase__ = 2
lowerCAmelCase__ = 1
lowerCAmelCase__ = 8
lowerCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model.generate(__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
lowerCAmelCase__ = False
lowerCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model.generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
lowerCAmelCase__ = True
lowerCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model.generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
lowerCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
lowerCAmelCase__ = 2
lowerCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ = model_class(__magic_name__ )
lowerCAmelCase__ = model.generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertEqual(generation_outputs.shape[-1] , __magic_name__ )
lowerCAmelCase__ = jit(model.generate )
lowerCAmelCase__ = jit_generate(__magic_name__ , attention_mask=__magic_name__ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class A ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" )
lowerCAmelCase__ = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
lowerCAmelCase__ = "Hello world"
lowerCAmelCase__ = tokenizer(__magic_name__ , return_tensors="np" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__magic_name__ , "do_samples" ):
model.generate(__magic_name__ , do_samples=__magic_name__ )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__magic_name__ , "foo" ):
lowerCAmelCase__ = {"foo": "bar"}
model.generate(__magic_name__ , **__magic_name__ )
| 48 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
UpperCAmelCase__ : int = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M'
snake_case__ :Optional[Any] = (
'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '
'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '
'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '
'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'
)
snake_case__ :List[Any] = 'translator'
snake_case__ :List[Any] = AutoTokenizer
snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM
snake_case__ :List[str] = LANGUAGE_CODES
snake_case__ :List[Any] = ['text', 'text', 'text']
snake_case__ :List[Any] = ['text']
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ):
"""simple docstring"""
if src_lang not in self.lang_to_code:
raise ValueError(f"""{src_lang} is not a supported language.""" )
if tgt_lang not in self.lang_to_code:
raise ValueError(f"""{tgt_lang} is not a supported language.""" )
lowerCAmelCase__ = self.lang_to_code[src_lang]
lowerCAmelCase__ = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
__magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ):
"""simple docstring"""
return self.model.generate(**__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
| 48 | 1 |
'''simple docstring'''
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )
lowerCAmelCase__ = chkpt["model"]
# We have the base model one level deeper than the original XLM repository
lowerCAmelCase__ = {}
for k, v in state_dict.items():
if "pred_layer" in k:
lowerCAmelCase__ = v
else:
lowerCAmelCase__ = v
lowerCAmelCase__ = chkpt["params"]
lowerCAmelCase__ = {n: v for n, v in config.items() if not isinstance(UpperCamelCase_ , (torch.FloatTensor, numpy.ndarray) )}
lowerCAmelCase__ = chkpt["dico_word2id"]
lowerCAmelCase__ = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()}
# Save pytorch-model
lowerCAmelCase__ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
lowerCAmelCase__ = pytorch_dump_folder_path + "/" + CONFIG_NAME
lowerCAmelCase__ = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"]
print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(UpperCamelCase_ , UpperCamelCase_ )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(UpperCamelCase_ , indent=2 ) + "\n" )
print(F"""Save vocab file to {pytorch_config_dump_path}""" )
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(UpperCamelCase_ , indent=2 ) + "\n" )
if __name__ == "__main__":
UpperCAmelCase__ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase__ : Any = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 48 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : int = logging.get_logger(__name__)
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = 'timm_backbone'
def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = backbone
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = features_only
lowerCAmelCase__ = use_pretrained_backbone
lowerCAmelCase__ = True
lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
| 48 | 1 |
'''simple docstring'''
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def A ( UpperCamelCase_ : Any ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = {}
lowerCAmelCase__ = job["started_at"]
lowerCAmelCase__ = job["completed_at"]
lowerCAmelCase__ = date_parser.parse(UpperCamelCase_ )
lowerCAmelCase__ = date_parser.parse(UpperCamelCase_ )
lowerCAmelCase__ = round((end_datetime - start_datetime).total_seconds() / 60.0 )
lowerCAmelCase__ = start
lowerCAmelCase__ = end
lowerCAmelCase__ = duration_in_min
return job_info
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = None
if token is not None:
lowerCAmelCase__ = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
lowerCAmelCase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
lowerCAmelCase__ = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ ).json()
lowerCAmelCase__ = {}
try:
job_time.update({job["name"]: extract_time_from_single_job(UpperCamelCase_ ) for job in result["jobs"]} )
lowerCAmelCase__ = math.ceil((result["total_count"] - 1_00) / 1_00 )
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = requests.get(url + F"""&page={i + 2}""" , headers=UpperCamelCase_ ).json()
job_time.update({job["name"]: extract_time_from_single_job(UpperCamelCase_ ) for job in result["jobs"]} )
return job_time
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
if __name__ == "__main__":
UpperCAmelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
UpperCAmelCase__ : Dict = parser.parse_args()
UpperCAmelCase__ : List[Any] = get_job_time(args.workflow_run_id)
UpperCAmelCase__ : Tuple = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(F"{k}: {v['duration']}")
| 48 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base'
snake_case__ :List[Any] = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
snake_case__ :List[Any] = 'image_captioner'
snake_case__ :Optional[int] = AutoModelForVisionaSeq
snake_case__ :Optional[int] = ['image']
snake_case__ :Any = ['text']
def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ):
"""simple docstring"""
requires_backends(self , ["vision"] )
super().__init__(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ):
"""simple docstring"""
return self.pre_processor(images=__magic_name__ , return_tensors="pt" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
return self.model.generate(**__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ):
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
| 48 | 1 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
UpperCAmelCase__ : int = 3
def A ( UpperCamelCase_ : int ) -> int:
'''simple docstring'''
print("Generating primitive root of p" )
while True:
lowerCAmelCase__ = random.randrange(3 , UpperCamelCase_ )
if pow(UpperCamelCase_ , 2 , UpperCamelCase_ ) == 1:
continue
if pow(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) == 1:
continue
return g
def A ( UpperCamelCase_ : int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
'''simple docstring'''
print("Generating prime p..." )
lowerCAmelCase__ = rabin_miller.generate_large_prime(UpperCamelCase_ ) # select large prime number.
lowerCAmelCase__ = primitive_root(UpperCamelCase_ ) # one primitive root on modulo p.
lowerCAmelCase__ = random.randrange(3 , UpperCamelCase_ ) # private_key -> have to be greater than 2 for safety.
lowerCAmelCase__ = cryptomath.find_mod_inverse(pow(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
lowerCAmelCase__ = (key_size, e_a, e_a, p)
lowerCAmelCase__ = (key_size, d)
return public_key, private_key
def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> None:
'''simple docstring'''
if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ):
print("\nWARNING:" )
print(
F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"Use a different name or delete these files and re-run this program." )
sys.exit()
lowerCAmelCase__ ,lowerCAmelCase__ = generate_key(UpperCamelCase_ )
print(F"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(F"""{name}_pubkey.txt""" , "w" ) as fo:
fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" )
print(F"""Writing private key to file {name}_privkey.txt...""" )
with open(F"""{name}_privkey.txt""" , "w" ) as fo:
fo.write(F"""{private_key[0]},{private_key[1]}""" )
def A ( ) -> None:
'''simple docstring'''
print("Making key files..." )
make_key_files("elgamal" , 20_48 )
print("Key files generation successful" )
if __name__ == "__main__":
main()
| 48 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : Union[str, Any] = "▁"
UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"}
UpperCAmelCase__ : Union[str, Any] = {
"vocab_file": {
"facebook/mbart-large-50-one-to-many-mmt": (
"https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model"
),
}
}
UpperCAmelCase__ : Optional[Any] = {
"facebook/mbart-large-50-one-to-many-mmt": 10_24,
}
# fmt: off
UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"]
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Optional[int] = VOCAB_FILES_NAMES
snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Tuple = ['input_ids', 'attention_mask']
snake_case__ :List[int] = []
snake_case__ :List[int] = []
def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ):
"""simple docstring"""
lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] )
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__magic_name__ ) )
lowerCAmelCase__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowerCAmelCase__ = 1
lowerCAmelCase__ = len(self.sp_model )
lowerCAmelCase__ = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ )
}
lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()}
lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX"
lowerCAmelCase__ = self.lang_code_to_id[self._src_lang]
lowerCAmelCase__ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.__dict__.copy()
lowerCAmelCase__ = None
return state
def __setstate__( self : List[Any] , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCAmelCase__ = {}
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ):
"""simple docstring"""
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = ""
lowerCAmelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
lowerCAmelCase__ = True
lowerCAmelCase__ = []
else:
current_sub_tokens.append(__magic_name__ )
lowerCAmelCase__ = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string.strip()
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , "wb" ) as fi:
lowerCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
lowerCAmelCase__ = [1] * len(self.prefix_tokens )
lowerCAmelCase__ = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones
return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ )
lowerCAmelCase__ = tgt_lang_id
return inputs
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ):
"""simple docstring"""
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = tgt_lang
return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.lang_code_to_id[src_lang]
lowerCAmelCase__ = [self.cur_lang_code_id]
lowerCAmelCase__ = [self.eos_token_id]
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.lang_code_to_id[tgt_lang]
lowerCAmelCase__ = [self.cur_lang_code_id]
lowerCAmelCase__ = [self.eos_token_id]
| 48 | 1 |
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase__ : List[str] = get_tests_dir("fixtures/test_sentencepiece.model")
UpperCAmelCase__ : List[str] = {"target_lang": "fi", "source_lang": "en"}
UpperCAmelCase__ : str = ">>zh<<"
UpperCAmelCase__ : List[Any] = "Helsinki-NLP/"
if is_torch_available():
UpperCAmelCase__ : Tuple = "pt"
elif is_tf_available():
UpperCAmelCase__ : Union[str, Any] = "tf"
else:
UpperCAmelCase__ : Optional[Any] = "jax"
@require_sentencepiece
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Any = MarianTokenizer
snake_case__ :Any = False
snake_case__ :Optional[int] = True
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
super().setUp()
lowerCAmelCase__ = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
lowerCAmelCase__ = Path(self.tmpdirname )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab"] )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["source_spm"] )
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["target_spm"] )
lowerCAmelCase__ = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : str , **__magic_name__ : Optional[int] ):
"""simple docstring"""
return MarianTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = "</s>"
lowerCAmelCase__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(__magic_name__ ) , 9 )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" )
lowerCAmelCase__ = en_de_tokenizer(["I am a small frog"] , return_tensors=__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = [38, 121, 14, 697, 38848, 0]
self.assertListEqual(__magic_name__ , batch.input_ids[0] )
lowerCAmelCase__ = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(__magic_name__ )
lowerCAmelCase__ = [x.name for x in Path(__magic_name__ ).glob("*" )]
self.assertIn("source.spm" , __magic_name__ )
MarianTokenizer.from_pretrained(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = tok(
["I am a small frog" * 1000, "I am a small frog"] , padding=__magic_name__ , truncation=__magic_name__ , return_tensors=__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
self.assertEqual(batch.input_ids.shape , (2, 512) )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = tok(["I am a tiny frog", "I am a small frog"] , padding=__magic_name__ , return_tensors=__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = {"input_ids": [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" )
lowerCAmelCase__ = "Tämä on testi"
lowerCAmelCase__ = "This is a test"
lowerCAmelCase__ = [76, 7, 2047, 2]
lowerCAmelCase__ = [69, 12, 11, 940, 2]
lowerCAmelCase__ = tokenizer(__magic_name__ ).input_ids
self.assertListEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = tokenizer(text_target=__magic_name__ ).input_ids
self.assertListEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
| 48 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
if start < end:
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 )
count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ )
return count
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ = start - 1
for index in range(UpperCamelCase_ , UpperCamelCase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowerCAmelCase__ = new_pivot_index + 1
lowerCAmelCase__ = a[new_pivot_index]
lowerCAmelCase__ = a[index]
lowerCAmelCase__ = temp
lowerCAmelCase__ = a[new_pivot_index + 1]
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = temp
return new_pivot_index + 1, count
UpperCAmelCase__ : Tuple = TemporaryFile()
UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted
UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation
UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase__ : Optional[Any] = np.load(outfile)
UpperCAmelCase__ : Any = len(M) - 1
UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 48 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base'
snake_case__ :List[Any] = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
snake_case__ :List[Any] = 'image_captioner'
snake_case__ :Optional[int] = AutoModelForVisionaSeq
snake_case__ :Optional[int] = ['image']
snake_case__ :Any = ['text']
def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ):
"""simple docstring"""
requires_backends(self , ["vision"] )
super().__init__(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ):
"""simple docstring"""
return self.pre_processor(images=__magic_name__ , return_tensors="pt" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
return self.model.generate(**__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ):
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
| 48 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def A ( UpperCamelCase_ : List[Any] ) -> Tuple:
'''simple docstring'''
if "img_encoder.pos_embed" in name:
lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" )
if "img_encoder.patch_embed.proj" in name:
lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" )
if "img_encoder.patch_embed.norm" in name:
lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" )
if "img_encoder.layers" in name:
lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" )
if "blocks" in name and "res" not in name:
lowerCAmelCase__ = name.replace("blocks" , "layers" )
if "attn" in name and "pre_assign" not in name:
lowerCAmelCase__ = name.replace("attn" , "self_attn" )
if "proj" in name and "self_attn" in name and "text" not in name:
lowerCAmelCase__ = name.replace("proj" , "out_proj" )
if "pre_assign_attn.attn.proj" in name:
lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" )
if "norm1" in name:
lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" )
if "norm2" in name and "pre_assign" not in name:
lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" )
if "img_encoder.norm" in name:
lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" )
# text encoder
if "text_encoder.token_embedding" in name:
lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" )
if "text_encoder.positional_embedding" in name:
lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" )
if "text_encoder.transformer.resblocks." in name:
lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." )
if "ln_1" in name:
lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" )
if "ln_2" in name:
lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" )
if "c_fc" in name:
lowerCAmelCase__ = name.replace("c_fc" , "fc1" )
if "c_proj" in name:
lowerCAmelCase__ = name.replace("c_proj" , "fc2" )
if "text_encoder" in name:
lowerCAmelCase__ = name.replace("text_encoder" , "text_model" )
if "ln_final" in name:
lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" )
# projection layers
if "img_projector.linear_hidden." in name:
lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." )
if "img_projector.linear_out." in name:
lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." )
if "text_projector.linear_hidden" in name:
lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" )
if "text_projector.linear_out" in name:
lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" )
return name
def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase__ = key.split("." )
lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] )
lowerCAmelCase__ = config.vision_config.hidden_size
if "weight" in key:
lowerCAmelCase__ = val[:dim, :]
lowerCAmelCase__ = val[dim : dim * 2, :]
lowerCAmelCase__ = val[-dim:, :]
else:
lowerCAmelCase__ = val[:dim]
lowerCAmelCase__ = val[dim : dim * 2]
lowerCAmelCase__ = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase__ = key.split("." )
lowerCAmelCase__ = int(key_split[3] )
lowerCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase__ = val[:dim, :]
lowerCAmelCase__ = val[
dim : dim * 2, :
]
lowerCAmelCase__ = val[-dim:, :]
else:
lowerCAmelCase__ = val[:dim]
lowerCAmelCase__ = val[dim : dim * 2]
lowerCAmelCase__ = val[-dim:]
else:
lowerCAmelCase__ = rename_key(UpperCamelCase_ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowerCAmelCase__ = val.squeeze_()
else:
lowerCAmelCase__ = val
return orig_state_dict
def A ( ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = GroupViTConfig()
lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval()
lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"]
lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0)
# verify result
lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" )
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" )
with torch.no_grad():
lowerCAmelCase__ = model(**UpperCamelCase_ )
if model_name == "groupvit-gcc-yfcc":
lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] )
elif model_name == "groupvit-gcc-redcaps":
lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] )
else:
raise ValueError(F"""Model name {model_name} not supported.""" )
assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 )
processor.save_pretrained(UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
print("Successfully saved processor and model to" , UpperCamelCase_ )
if push_to_hub:
print("Pushing to the hub..." )
processor.push_to_hub(UpperCamelCase_ , organization="nielsr" )
model.push_to_hub(UpperCamelCase_ , organization="nielsr" )
if __name__ == "__main__":
UpperCAmelCase__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model."
)
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint")
parser.add_argument(
"--model_name",
default="groupvit-gccy-fcc",
type=str,
help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.",
)
UpperCAmelCase__ : Any = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 48 | 1 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
if start < end:
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 )
count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ )
return count
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ = start - 1
for index in range(UpperCamelCase_ , UpperCamelCase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowerCAmelCase__ = new_pivot_index + 1
lowerCAmelCase__ = a[new_pivot_index]
lowerCAmelCase__ = a[index]
lowerCAmelCase__ = temp
lowerCAmelCase__ = a[new_pivot_index + 1]
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = temp
return new_pivot_index + 1, count
UpperCAmelCase__ : Tuple = TemporaryFile()
UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted
UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation
UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase__ : Optional[Any] = np.load(outfile)
UpperCAmelCase__ : Any = len(M) - 1
UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 48 |
'''simple docstring'''
from __future__ import annotations
from functools import lru_cache
from math import ceil
UpperCAmelCase__ : Optional[Any] = 1_00
UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2))
primes.add(2)
UpperCAmelCase__ : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=1_00 )
def A ( UpperCamelCase_ : int ) -> set[int]:
'''simple docstring'''
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
lowerCAmelCase__ = set()
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def A ( UpperCamelCase_ : int = 50_00 ) -> int | None:
'''simple docstring'''
for number_to_partition in range(1 , UpperCamelCase_ ):
if len(partition(UpperCamelCase_ ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(F"{solution() = }")
| 48 | 1 |
'''simple docstring'''
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 48 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : List[Any] = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"}
UpperCAmelCase__ : Optional[Any] = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = VOCAB_FILES_NAMES
snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(
unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding="utf-8" ) as vocab_handle:
lowerCAmelCase__ = json.load(__magic_name__ )
lowerCAmelCase__ = {v: k for k, v in self.vocab.items()}
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return len(self.vocab )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = []
for s in text:
char_tokens.extend(__magic_name__ )
return char_tokens
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ):
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ):
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" )
return (vocab_file,)
| 48 | 1 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def A ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : int ) -> float:
'''simple docstring'''
lowerCAmelCase__ = x
lowerCAmelCase__ = y
for step in range(UpperCamelCase_ ): # noqa: B007
lowerCAmelCase__ = a * a - b * b + x
lowerCAmelCase__ = 2 * a * b + y
lowerCAmelCase__ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def A ( UpperCamelCase_ : float ) -> tuple:
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (2_55, 2_55, 2_55)
def A ( UpperCamelCase_ : float ) -> tuple:
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(UpperCamelCase_ , 1 , 1 ) )
def A ( UpperCamelCase_ : int = 8_00 , UpperCamelCase_ : int = 6_00 , UpperCamelCase_ : float = -0.6 , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 3.2 , UpperCamelCase_ : int = 50 , UpperCamelCase_ : bool = True , ) -> Image.Image:
'''simple docstring'''
lowerCAmelCase__ = Image.new("RGB" , (image_width, image_height) )
lowerCAmelCase__ = img.load()
# loop through the image-coordinates
for image_x in range(UpperCamelCase_ ):
for image_y in range(UpperCamelCase_ ):
# determine the figure-coordinates based on the image-coordinates
lowerCAmelCase__ = figure_width / image_width * image_height
lowerCAmelCase__ = figure_center_x + (image_x / image_width - 0.5) * figure_width
lowerCAmelCase__ = figure_center_y + (image_y / image_height - 0.5) * figure_height
lowerCAmelCase__ = get_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
lowerCAmelCase__ = get_color_coded_rgb(UpperCamelCase_ )
else:
lowerCAmelCase__ = get_black_and_white_rgb(UpperCamelCase_ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
UpperCAmelCase__ : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 48 |
'''simple docstring'''
from math import sqrt
def A ( UpperCamelCase_ : int ) -> int:
'''simple docstring'''
lowerCAmelCase__ = 0
for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ):
if n % i == 0 and i != sqrt(UpperCamelCase_ ):
total += i + n // i
elif i == sqrt(UpperCamelCase_ ):
total += i
return total - n
def A ( UpperCamelCase_ : int = 1_00_00 ) -> int:
'''simple docstring'''
lowerCAmelCase__ = sum(
i
for i in range(1 , UpperCamelCase_ )
if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 48 | 1 |
'''simple docstring'''
from manim import *
class A ( SCREAMING_SNAKE_CASE__ ):
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = Rectangle(height=0.5 , width=0.5 )
lowerCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
lowerCAmelCase__ = [mem.copy() for i in range(6 )]
lowerCAmelCase__ = [mem.copy() for i in range(6 )]
lowerCAmelCase__ = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = VGroup(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = Text("CPU" , font_size=24 )
lowerCAmelCase__ = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__magic_name__ )
lowerCAmelCase__ = [mem.copy() for i in range(4 )]
lowerCAmelCase__ = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = Text("GPU" , font_size=24 )
lowerCAmelCase__ = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ )
gpu.move_to([-1, -1, 0] )
self.add(__magic_name__ )
lowerCAmelCase__ = [mem.copy() for i in range(6 )]
lowerCAmelCase__ = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = Text("Model" , font_size=24 )
lowerCAmelCase__ = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ )
model.move_to([3, -1.0, 0] )
self.add(__magic_name__ )
lowerCAmelCase__ = []
for i, rect in enumerate(__magic_name__ ):
rect.set_stroke(__magic_name__ )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
lowerCAmelCase__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__magic_name__ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__magic_name__ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__magic_name__ , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__magic_name__ , buff=0.0 )
self.add(__magic_name__ )
cpu_targs.append(__magic_name__ )
lowerCAmelCase__ = [mem.copy() for i in range(6 )]
lowerCAmelCase__ = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 )
lowerCAmelCase__ = Text("Loaded Checkpoint" , font_size=24 )
lowerCAmelCase__ = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , aligned_edge=__magic_name__ , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
lowerCAmelCase__ = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCAmelCase__ = MarkupText(
f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = MarkupText(
f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(__magic_name__ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
lowerCAmelCase__ = MarkupText(
f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__magic_name__ ) , Write(__magic_name__ ) )
self.play(Write(__magic_name__ , run_time=1 ) , Create(__magic_name__ , run_time=1 ) )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for i, rect in enumerate(__magic_name__ ):
lowerCAmelCase__ = fill.copy().set_fill(__magic_name__ , opacity=0.7 )
target.move_to(__magic_name__ )
first_animations.append(GrowFromCenter(__magic_name__ , run_time=1 ) )
lowerCAmelCase__ = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__magic_name__ , run_time=1.5 ) )
self.play(*__magic_name__ )
self.play(*__magic_name__ )
self.wait()
| 48 |
'''simple docstring'''
import logging
import numpy as np
import pytest
from scipy.linalg import eigh
logging.basicConfig(level=logging.INFO, format="%(message)s")
def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return input_array.reshape((input_array.size, 1) )
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.mean(1 )
# Centralize the data of class i
lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ )
if i > 0:
# If covariance_sum is not None
covariance_sum += np.dot(UpperCamelCase_ , centered_data.T )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = features.mean(1 )
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.shape[1]
lowerCAmelCase__ = data.mean(1 )
if i > 0:
# If covariance_sum is not None
covariance_sum += device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
if features.any():
lowerCAmelCase__ = features.mean(1 )
# Center the dataset
lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) )
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1]
lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ )
# Take all the columns in the reverse order (-1), and then takes only the first
lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions]
# Project the database on the new space
lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ )
logging.info("Principal Component Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
assert classes > dimensions
# Check if features have been already loaded
if features.any:
lowerCAmelCase__ ,lowerCAmelCase__ = eigh(
covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , )
lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions]
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ )
lowerCAmelCase__ = svd_matrix[:, 0:dimensions]
lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ )
logging.info("Linear Discriminant Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] )
lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = 2
# Assert that the function raises an AssertionError if dimensions > classes
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = linear_discriminant_analysis(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if isinstance(UpperCamelCase_ , np.ndarray ):
raise AssertionError(
"Did not raise AssertionError for dimensions > classes" )
assert error_info.type is AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] )
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ )
if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ):
raise AssertionError
assert error_info.type is AssertionError
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 | 1 |
'''simple docstring'''
import heapq
import sys
import numpy as np
UpperCAmelCase__ : Union[str, Any] = tuple[int, int]
class A :
def __init__( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = set()
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
if not self.empty():
return self.elements[0][0]
else:
return float("inf" )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return len(self.elements ) == 0
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : List[str] ):
"""simple docstring"""
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(__magic_name__ )
else:
# update
# print("update", item)
lowerCAmelCase__ = []
((lowerCAmelCase__) ,(lowerCAmelCase__)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((lowerCAmelCase__) ,(lowerCAmelCase__)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Dict ):
"""simple docstring"""
if item in self.set:
self.set.remove(__magic_name__ )
lowerCAmelCase__ = []
((lowerCAmelCase__) ,(lowerCAmelCase__)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((lowerCAmelCase__) ,(lowerCAmelCase__)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return self.elements[0][1]
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
((lowerCAmelCase__) ,(lowerCAmelCase__)) = heapq.heappop(self.elements )
self.set.remove(__magic_name__ )
return (priority, item)
def A ( UpperCamelCase_ : TPos , UpperCamelCase_ : TPos ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = np.array(UpperCamelCase_ )
lowerCAmelCase__ = np.array(UpperCamelCase_ )
return np.linalg.norm(a - b )
def A ( UpperCamelCase_ : TPos , UpperCamelCase_ : TPos ) -> str:
'''simple docstring'''
return consistent_heuristic(UpperCamelCase_ , UpperCamelCase_ ) // t
def A ( UpperCamelCase_ : TPos , UpperCamelCase_ : TPos ) -> List[Any]:
'''simple docstring'''
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def A ( UpperCamelCase_ : TPos , UpperCamelCase_ : int , UpperCamelCase_ : TPos , UpperCamelCase_ : dict[TPos, float] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = g_function[start] + Wa * heuristics[i](UpperCamelCase_ , UpperCamelCase_ )
return ans
def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = np.chararray((n, n) )
for i in range(UpperCamelCase_ ):
for j in range(UpperCamelCase_ ):
lowerCAmelCase__ = "*"
for i in range(UpperCamelCase_ ):
for j in range(UpperCamelCase_ ):
if (j, (n - 1) - i) in blocks:
lowerCAmelCase__ = "#"
lowerCAmelCase__ = "-"
lowerCAmelCase__ = back_pointer[goal]
while x != start:
((lowerCAmelCase__) ,(lowerCAmelCase__)) = x
# print(x)
lowerCAmelCase__ = "-"
lowerCAmelCase__ = back_pointer[x]
lowerCAmelCase__ = "-"
for i in range(UpperCamelCase_ ):
for j in range(UpperCamelCase_ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=" " )
print("<-- End position" , end=" " )
else:
print(grid[i][j] , end=" " )
print()
print("^" )
print("Start position" )
print()
print("# is an obstacle" )
print("- is the path taken by algorithm" )
print("PATH TAKEN BY THE ALGORITHM IS:-" )
lowerCAmelCase__ = back_pointer[goal]
while x != start:
print(UpperCamelCase_ , end=" " )
lowerCAmelCase__ = back_pointer[x]
print(UpperCamelCase_ )
sys.exit()
def A ( UpperCamelCase_ : TPos ) -> Union[str, Any]:
'''simple docstring'''
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def A ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , ) -> int:
'''simple docstring'''
for itera in range(UpperCamelCase_ ):
open_list[itera].remove_element(UpperCamelCase_ )
# print("s", s)
# print("j", j)
((lowerCAmelCase__) ,(lowerCAmelCase__)) = s
lowerCAmelCase__ = (x - 1, y)
lowerCAmelCase__ = (x + 1, y)
lowerCAmelCase__ = (x, y + 1)
lowerCAmelCase__ = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(UpperCamelCase_ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(UpperCamelCase_ )
lowerCAmelCase__ = -1
lowerCAmelCase__ = float("inf" )
if valid(UpperCamelCase_ ) and g_function[neighbours] > g_function[s] + 1:
lowerCAmelCase__ = g_function[s] + 1
lowerCAmelCase__ = s
if neighbours not in close_list_anchor:
open_list[0].put(UpperCamelCase_ , key(UpperCamelCase_ , 0 , UpperCamelCase_ , UpperCamelCase_ ) )
if neighbours not in close_list_inad:
for var in range(1 , UpperCamelCase_ ):
if key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) <= Wa * key(
UpperCamelCase_ , 0 , UpperCamelCase_ , UpperCamelCase_ ):
open_list[j].put(
UpperCamelCase_ , key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) )
def A ( ) -> str:
'''simple docstring'''
lowerCAmelCase__ = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
UpperCAmelCase__ : Union[str, Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
UpperCAmelCase__ : str = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
UpperCAmelCase__ : List[Any] = make_common_ground()
UpperCAmelCase__ : Optional[int] = blocks_blk
# hyper parameters
UpperCAmelCase__ : Tuple = 1
UpperCAmelCase__ : Tuple = 1
UpperCAmelCase__ : Optional[int] = 20
UpperCAmelCase__ : List[Any] = 3 # one consistent and two other inconsistent
# start and end destination
UpperCAmelCase__ : Optional[int] = (0, 0)
UpperCAmelCase__ : Union[str, Any] = (n - 1, n - 1)
UpperCAmelCase__ : Dict = 1
def A ( UpperCamelCase_ : TPos , UpperCamelCase_ : TPos , UpperCamelCase_ : int ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = {start: 0, goal: float("inf" )}
lowerCAmelCase__ = {start: -1, goal: -1}
lowerCAmelCase__ = []
lowerCAmelCase__ = set()
for i in range(UpperCamelCase_ ):
open_list.append(PriorityQueue() )
open_list[i].put(UpperCamelCase_ , key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
while open_list[0].minkey() < float("inf" ):
for i in range(1 , UpperCamelCase_ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float("inf" ):
do_something(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
else:
lowerCAmelCase__ ,lowerCAmelCase__ = open_list[i].top_show()
visited.add(UpperCamelCase_ )
expand_state(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , )
close_list_inad.append(UpperCamelCase_ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float("inf" ):
do_something(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
else:
lowerCAmelCase__ = open_list[0].top_show()
visited.add(UpperCamelCase_ )
expand_state(
UpperCamelCase_ , 0 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , )
close_list_anchor.append(UpperCamelCase_ )
print("No path found to goal" )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(UpperCamelCase_ ):
if (j, i) in blocks:
print("#" , end=" " )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print("*" , end=" " )
else:
print("-" , end=" " )
else:
print("*" , end=" " )
if (j, i) == (n - 1, n - 1):
print("<-- End position" , end=" " )
print()
print("^" )
print("Start position" )
print()
print("# is an obstacle" )
print("- is the path taken by algorithm" )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 48 |
'''simple docstring'''
def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list:
'''simple docstring'''
lowerCAmelCase__ = word.split()
def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str:
lowerCAmelCase__ = max_width - width
lowerCAmelCase__ = len(UpperCamelCase_ )
if len(UpperCamelCase_ ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
lowerCAmelCase__ = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
lowerCAmelCase__ = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
lowerCAmelCase__ = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(UpperCamelCase_ ):
num_spaces_between_words_list[i] += 1
lowerCAmelCase__ = []
for i in range(UpperCamelCase_ ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * " " )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
for word in words:
if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(UpperCamelCase_ )
width += len(UpperCamelCase_ )
else:
# justify the line and add it to result
answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) )
# reset new line and new width
lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ )
lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ )
answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 48 | 1 |
'''simple docstring'''
def A ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> bool:
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 |
'''simple docstring'''
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
UpperCAmelCase__ : str = sys.version_info >= (3, 10)
def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=UpperCamelCase_ )
@dataclass
class A :
snake_case__ :int
snake_case__ :float
snake_case__ :str
snake_case__ :bool
@dataclass
class A :
snake_case__ :int = 42
snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} )
@dataclass
class A :
snake_case__ :bool = False
snake_case__ :bool = True
snake_case__ :Optional[bool] = None
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = 'titi'
snake_case__ :Optional[int] = 'toto'
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'titi'
snake_case__ :str = 'toto'
snake_case__ :int = 42
@dataclass
class A :
snake_case__ :BasicEnum = "toto"
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = BasicEnum(self.foo )
@dataclass
class A :
snake_case__ :MixedTypeEnum = "toto"
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = MixedTypeEnum(self.foo )
@dataclass
class A :
snake_case__ :Optional[int] = None
snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} )
snake_case__ :Optional[str] = None
snake_case__ :Optional[List[str]] = list_field(default=[] )
snake_case__ :Optional[List[int]] = list_field(default=[] )
@dataclass
class A :
snake_case__ :List[int] = list_field(default=[] )
snake_case__ :List[int] = list_field(default=[1, 2, 3] )
snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class A :
snake_case__ :List[int] = field()
snake_case__ :str = field()
snake_case__ :BasicEnum = field()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = BasicEnum(self.required_enum )
@dataclass
class A :
snake_case__ :int
snake_case__ :"BasicEnum" = field()
snake_case__ :"Optional[bool]" = None
snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} )
snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
if is_python_no_less_than_3_10:
@dataclass
class A :
snake_case__ :bool = False
snake_case__ :bool = True
snake_case__ :bool | None = None
@dataclass
class A :
snake_case__ :int | None = None
snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} )
snake_case__ :str | None = None
snake_case__ :list[str] | None = list_field(default=[] )
snake_case__ :list[int] | None = list_field(default=[] )
class A ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ):
"""simple docstring"""
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"}
lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) )
del xx["type"], yy["type"]
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"]
((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ )
self.assertFalse(example.flag )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=42 , type=__magic_name__ )
expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" )
expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ )
lowerCAmelCase__ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
lowerCAmelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
@dataclass
class A :
snake_case__ :Literal["titi", "toto", 42] = "toto"
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
lowerCAmelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ )
expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ )
expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(
__magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , )
lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() )
self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" )
expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ )
expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ )
lowerCAmelCase__ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) )
lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() )
self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , )
expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ )
expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
"extra": 42,
}
self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" )
os.mkdir(__magic_name__ )
with open(temp_local_path + ".json" , "w+" ) as f:
json.dump(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" )
os.mkdir(__magic_name__ )
with open(temp_local_path + ".yaml" , "w+" ) as f:
yaml.dump(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
| 48 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase__ : Optional[int] = {
"configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"]
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = ["RemBertTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : str = ["RemBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = [
"REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RemBertForCausalLM",
"RemBertForMaskedLM",
"RemBertForMultipleChoice",
"RemBertForQuestionAnswering",
"RemBertForSequenceClassification",
"RemBertForTokenClassification",
"RemBertLayer",
"RemBertModel",
"RemBertPreTrainedModel",
"load_tf_weights_in_rembert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = [
"TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRemBertForCausalLM",
"TFRemBertForMaskedLM",
"TFRemBertForMultipleChoice",
"TFRemBertForQuestionAnswering",
"TFRemBertForSequenceClassification",
"TFRemBertForTokenClassification",
"TFRemBertLayer",
"TFRemBertModel",
"TFRemBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 |
'''simple docstring'''
import sys
from collections import defaultdict
class A :
def __init__( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = []
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ):
"""simple docstring"""
return self.node_position[vertex]
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = pos
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ):
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
lowerCAmelCase__ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
lowerCAmelCase__ = 2 * start + 1
else:
lowerCAmelCase__ = 2 * start + 2
if heap[smallest_child] < heap[start]:
lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child]
lowerCAmelCase__ ,lowerCAmelCase__ = (
heap[start],
positions[start],
)
lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa
lowerCAmelCase__ = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , __magic_name__ )
self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = position[index]
while index != 0:
lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
lowerCAmelCase__ = heap[parent]
lowerCAmelCase__ = position[parent]
self.set_position(position[parent] , __magic_name__ )
else:
lowerCAmelCase__ = val
lowerCAmelCase__ = temp
self.set_position(__magic_name__ , __magic_name__ )
break
lowerCAmelCase__ = parent
else:
lowerCAmelCase__ = val
lowerCAmelCase__ = temp
self.set_position(__magic_name__ , 0 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ):
"""simple docstring"""
lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1
for i in range(__magic_name__ , -1 , -1 ):
self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = positions[0]
lowerCAmelCase__ = sys.maxsize
self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ )
return temp
def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = Heap()
lowerCAmelCase__ = [0] * len(UpperCamelCase_ )
lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex
lowerCAmelCase__ = []
for vertex in range(len(UpperCamelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase_ )
heap.node_position.append(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = 1
lowerCAmelCase__ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
lowerCAmelCase__ = 0
lowerCAmelCase__ = distance
heap.heapify(UpperCamelCase_ , UpperCamelCase_ )
for _ in range(1 , len(UpperCamelCase_ ) ):
lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
lowerCAmelCase__ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase_ )]
):
lowerCAmelCase__ = distance
heap.bottom_to_top(
UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip())
UpperCAmelCase__ : str = defaultdict(list)
for _ in range(edges_number):
UpperCAmelCase__ : int = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 48 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def A ( UpperCamelCase_ : int ) -> list[int]:
'''simple docstring'''
if num <= 0:
lowerCAmelCase__ = F"""{num}: Invalid input, please enter a positive integer."""
raise ValueError(UpperCamelCase_ )
lowerCAmelCase__ = [True] * (num + 1)
lowerCAmelCase__ = []
lowerCAmelCase__ = 2
lowerCAmelCase__ = int(math.sqrt(UpperCamelCase_ ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(UpperCamelCase_ )
# Set multiples of start be False
for i in range(start * start , num + 1 , UpperCamelCase_ ):
if sieve[i] is True:
lowerCAmelCase__ = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(UpperCamelCase_ )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input("Enter a positive integer: ").strip())))
| 48 |
'''simple docstring'''
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model")
if is_sentencepiece_available():
import sentencepiece as sp
UpperCAmelCase__ : Tuple = 5
UpperCAmelCase__ : List[Any] = 10
@require_sentencepiece
@require_tokenizers
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Tuple = SpeechaTextTokenizer
snake_case__ :Dict = False
snake_case__ :Optional[int] = True
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
super().setUp()
lowerCAmelCase__ = sp.SentencePieceProcessor()
spm_model.Load(__magic_name__ )
lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"]
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )]
lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
lowerCAmelCase__ = Path(self.tmpdirname )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] )
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = "<pad>"
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(__magic_name__ ) , 1001 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1001 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = tokenizer.tokenize("This is a test" )
self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , )
lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , )
@require_sentencepiece
class A ( unittest.TestCase ):
snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium'
snake_case__ :Tuple = 'C\'est trop cool'
snake_case__ :List[str] = 'Esto es genial'
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 10000 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self.assertIn(__magic_name__ , self.tokenizer.all_special_ids )
lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2]
lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
self.assertNotIn(self.tokenizer.eos_token , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = "fr"
lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , __magic_name__ )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = "fr"
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
lowerCAmelCase__ = "es"
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 48 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE__ )
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} )
snake_case__ :ClassVar[Features] = Features({'audio': Audio()} )
snake_case__ :ClassVar[Features] = Features({'transcription': Value('string' )} )
snake_case__ :str = "audio"
snake_case__ :str = "transcription"
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(f"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , __magic_name__ ):
raise ValueError(f"""Column {self.audio_column} is not an Audio type.""" )
lowerCAmelCase__ = copy.deepcopy(self )
lowerCAmelCase__ = self.input_schema.copy()
lowerCAmelCase__ = features[self.audio_column]
lowerCAmelCase__ = input_schema
return task_template
@property
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 48 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
# General docstring
UpperCAmelCase__ : int = "RegNetConfig"
# Base docstring
UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7]
# Image classification docstring
UpperCAmelCase__ : Tuple = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat"
UpperCAmelCase__ : int = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A ( tf.keras.layers.Layer ):
def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
lowerCAmelCase__ = tf.keras.layers.ConvaD(
filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , )
lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) )
lowerCAmelCase__ = self.normalization(__magic_name__ )
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = config.num_channels
lowerCAmelCase__ = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = shape_list(__magic_name__ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) )
lowerCAmelCase__ = self.embedder(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = tf.keras.layers.ConvaD(
filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" )
lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ):
"""simple docstring"""
return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ )
class A ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" )
lowerCAmelCase__ = [
tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ),
tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ),
]
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.pooler(__magic_name__ )
for layer_module in self.attention:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = hidden_state * pooled
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = in_channels != out_channels or stride != 1
lowerCAmelCase__ = max(1 , out_channels // config.groups_width )
lowerCAmelCase__ = (
TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
lowerCAmelCase__ = [
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
__magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ),
]
lowerCAmelCase__ = ACTaFN[config.hidden_act]
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = hidden_state
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = self.shortcut(__magic_name__ )
hidden_state += residual
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = in_channels != out_channels or stride != 1
lowerCAmelCase__ = max(1 , out_channels // config.groups_width )
lowerCAmelCase__ = (
TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
lowerCAmelCase__ = [
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
__magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ),
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ),
]
lowerCAmelCase__ = ACTaFN[config.hidden_act]
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = hidden_state
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = self.shortcut(__magic_name__ )
hidden_state += residual
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
lowerCAmelCase__ = [
# downsampling is done in the first layer with stride of 2
layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ),
*[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ):
"""simple docstring"""
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) )
lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ):
"""simple docstring"""
lowerCAmelCase__ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowerCAmelCase__ = hidden_states + (hidden_state,)
lowerCAmelCase__ = stage_module(__magic_name__ )
if output_hidden_states:
lowerCAmelCase__ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ )
@keras_serializable
class A ( tf.keras.layers.Layer ):
snake_case__ :List[Any] = RegNetConfig
def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = config
lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" )
lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" )
lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" )
@unpack_inputs
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = self.encoder(
__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = encoder_outputs[0]
lowerCAmelCase__ = self.pooler(__magic_name__ )
# Change to NCHW output format have uniformity in the modules
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) )
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :str = RegNetConfig
snake_case__ :Optional[Any] = 'regnet'
snake_case__ :Tuple = 'pixel_values'
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , )
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.regnet(
pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , )
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ):
"""simple docstring"""
super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = config.num_labels
lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" )
# classification head
lowerCAmelCase__ = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.regnet(
__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1]
lowerCAmelCase__ = self.classifier[0](__magic_name__ )
lowerCAmelCase__ = self.classifier[1](__magic_name__ )
lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ )
if not return_dict:
lowerCAmelCase__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
| 48 | 1 |
'''simple docstring'''
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 48 |
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def A ( UpperCamelCase_ : Tuple ) -> int:
'''simple docstring'''
for param in module.parameters():
lowerCAmelCase__ = False
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
lowerCAmelCase__ = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = plt.imshow(UpperCamelCase_ )
fig.axes.get_xaxis().set_visible(UpperCamelCase_ )
fig.axes.get_yaxis().set_visible(UpperCamelCase_ )
plt.show()
def A ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = datetime.now()
lowerCAmelCase__ = current_time.strftime("%H:%M:%S" )
return timestamp
| 48 | 1 |
'''simple docstring'''
# Imports
import numpy as np
class A :
def __init__( self : Optional[int] , __magic_name__ : List[str]=None , __magic_name__ : List[Any]=None , __magic_name__ : Any=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : List[Any]=None ):
"""simple docstring"""
self.set_matricies(red=__magic_name__ , green=__magic_name__ , blue=__magic_name__ , red_edge=__magic_name__ , nir=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Dict=None , __magic_name__ : Dict=None ):
"""simple docstring"""
if red is not None:
lowerCAmelCase__ = red
if green is not None:
lowerCAmelCase__ = green
if blue is not None:
lowerCAmelCase__ = blue
if red_edge is not None:
lowerCAmelCase__ = red_edge
if nir is not None:
lowerCAmelCase__ = nir
return True
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[Any]="" , __magic_name__ : Any=None , __magic_name__ : List[Any]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=None ):
"""simple docstring"""
self.set_matricies(red=__magic_name__ , green=__magic_name__ , blue=__magic_name__ , red_edge=__magic_name__ , nir=__magic_name__ )
lowerCAmelCase__ = {
"ARVI2": self.arvaa,
"CCCI": self.ccci,
"CVI": self.cvi,
"GLI": self.gli,
"NDVI": self.ndvi,
"BNDVI": self.bndvi,
"redEdgeNDVI": self.red_edge_ndvi,
"GNDVI": self.gndvi,
"GBNDVI": self.gbndvi,
"GRNDVI": self.grndvi,
"RBNDVI": self.rbndvi,
"PNDVI": self.pndvi,
"ATSAVI": self.atsavi,
"BWDRVI": self.bwdrvi,
"CIgreen": self.ci_green,
"CIrededge": self.ci_rededge,
"CI": self.ci,
"CTVI": self.ctvi,
"GDVI": self.gdvi,
"EVI": self.evi,
"GEMI": self.gemi,
"GOSAVI": self.gosavi,
"GSAVI": self.gsavi,
"Hue": self.hue,
"IVI": self.ivi,
"IPVI": self.ipvi,
"I": self.i,
"RVI": self.rvi,
"MRVI": self.mrvi,
"MSAVI": self.m_savi,
"NormG": self.norm_g,
"NormNIR": self.norm_nir,
"NormR": self.norm_r,
"NGRDI": self.ngrdi,
"RI": self.ri,
"S": self.s,
"IF": self._if,
"DVI": self.dvi,
"TVI": self.tvi,
"NDRE": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("Index not in the list!" )
return False
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return self.nir * (self.red / (self.green**2))
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return (self.nir - self.red) / (self.nir + self.red)
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return (self.nir - self.blue) / (self.nir + self.blue)
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : int=0.08 , __magic_name__ : Optional[Any]=1.22 , __magic_name__ : Union[str, Any]=0.03 ):
"""simple docstring"""
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return (self.nir / self.green) - 1
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return (self.nir / self.redEdge) - 1
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return (self.red - self.blue) / self.red
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return self.nir - self.green
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red)
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Any=0.16 ):
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green + y)
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Any=0.5 ):
"""simple docstring"""
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple=None , __magic_name__ : Union[str, Any]=None ):
"""simple docstring"""
return (self.nir - b) / (a * self.red)
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return (self.red + self.green + self.blue) / 30.5
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return self.nir / self.red
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return (self.rvi() - 1) / (self.rvi() + 1)
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return self.green / (self.nir + self.red + self.green)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
return self.nir / (self.nir + self.red + self.green)
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return self.red / (self.nir + self.red + self.green)
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return (self.green - self.red) / (self.green + self.red)
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return (self.red - self.green) / (self.red + self.green)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
lowerCAmelCase__ = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
return self.nir / self.red
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return (self.ndvi() + 0.5) ** (1 / 2)
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 48 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 | 1 |
'''simple docstring'''
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def A ( UpperCamelCase_ : Dict ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = fname.split(os.path.sep )[-1]
return re.search(r"^(.*)_\d+\.jpg$" , UpperCamelCase_ ).groups()[0]
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : List[Any] , __magic_name__ : Dict , __magic_name__ : Any=None , __magic_name__ : List[Any]=None ):
"""simple docstring"""
lowerCAmelCase__ = file_names
lowerCAmelCase__ = image_transform
lowerCAmelCase__ = label_to_id
def __len__( self : Any ):
"""simple docstring"""
return len(self.file_names )
def __getitem__( self : List[Any] , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.file_names[idx]
lowerCAmelCase__ = PIL.Image.open(__magic_name__ )
lowerCAmelCase__ = raw_image.convert("RGB" )
if self.image_transform is not None:
lowerCAmelCase__ = self.image_transform(__magic_name__ )
lowerCAmelCase__ = extract_label(__magic_name__ )
if self.label_to_id is not None:
lowerCAmelCase__ = self.label_to_id[label]
return {"image": image, "label": label}
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] ) -> List[str]:
'''simple docstring'''
if args.with_tracking:
lowerCAmelCase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase__ = config["lr"]
lowerCAmelCase__ = int(config["num_epochs"] )
lowerCAmelCase__ = int(config["seed"] )
lowerCAmelCase__ = int(config["batch_size"] )
lowerCAmelCase__ = config["image_size"]
if not isinstance(UpperCamelCase_ , (list, tuple) ):
lowerCAmelCase__ = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , "isdigit" ):
if args.checkpointing_steps == "epoch":
lowerCAmelCase__ = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
lowerCAmelCase__ = int(args.checkpointing_steps )
else:
raise ValueError(
F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" )
else:
lowerCAmelCase__ = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
lowerCAmelCase__ = os.path.split(UpperCamelCase_ )[-1].split("." )[0]
accelerator.init_trackers(UpperCamelCase_ , UpperCamelCase_ )
# Grab all the image filenames
lowerCAmelCase__ = [os.path.join(args.data_dir , UpperCamelCase_ ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )]
# Build the label correspondences
lowerCAmelCase__ = [extract_label(UpperCamelCase_ ) for fname in file_names]
lowerCAmelCase__ = list(set(UpperCamelCase_ ) )
id_to_label.sort()
lowerCAmelCase__ = {lbl: i for i, lbl in enumerate(UpperCamelCase_ )}
# Set the seed before splitting the data.
np.random.seed(UpperCamelCase_ )
torch.manual_seed(UpperCamelCase_ )
torch.cuda.manual_seed_all(UpperCamelCase_ )
# Split our filenames between train and validation
lowerCAmelCase__ = np.random.permutation(len(UpperCamelCase_ ) )
lowerCAmelCase__ = int(0.8 * len(UpperCamelCase_ ) )
lowerCAmelCase__ = random_perm[:cut]
lowerCAmelCase__ = random_perm[cut:]
# For training we use a simple RandomResizedCrop
lowerCAmelCase__ = Compose([RandomResizedCrop(UpperCamelCase_ , scale=(0.5, 1.0) ), ToTensor()] )
lowerCAmelCase__ = PetsDataset(
[file_names[i] for i in train_split] , image_transform=UpperCamelCase_ , label_to_id=UpperCamelCase_ )
# For evaluation, we use a deterministic Resize
lowerCAmelCase__ = Compose([Resize(UpperCamelCase_ ), ToTensor()] )
lowerCAmelCase__ = PetsDataset([file_names[i] for i in eval_split] , image_transform=UpperCamelCase_ , label_to_id=UpperCamelCase_ )
# Instantiate dataloaders.
lowerCAmelCase__ = DataLoader(UpperCamelCase_ , shuffle=UpperCamelCase_ , batch_size=UpperCamelCase_ , num_workers=4 )
lowerCAmelCase__ = DataLoader(UpperCamelCase_ , shuffle=UpperCamelCase_ , batch_size=UpperCamelCase_ , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase__ = create_model("resnet50d" , pretrained=UpperCamelCase_ , num_classes=len(UpperCamelCase_ ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCAmelCase__ = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
lowerCAmelCase__ = False
for param in model.get_classifier().parameters():
lowerCAmelCase__ = True
# We normalize the batches of images to be a bit faster.
lowerCAmelCase__ = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device )
lowerCAmelCase__ = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
lowerCAmelCase__ = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
lowerCAmelCase__ = OneCycleLR(optimizer=UpperCamelCase_ , max_lr=UpperCamelCase_ , epochs=UpperCamelCase_ , steps_per_epoch=len(UpperCamelCase_ ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = accelerator.prepare(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# We need to keep track of how many total steps we have iterated over
lowerCAmelCase__ = 0
# We also need to keep track of the starting epoch so files are named properly
lowerCAmelCase__ = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" )
accelerator.load_state(args.resume_from_checkpoint )
lowerCAmelCase__ = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
lowerCAmelCase__ = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
lowerCAmelCase__ = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
lowerCAmelCase__ = os.path.splitext(UpperCamelCase_ )[0]
if "epoch" in training_difference:
lowerCAmelCase__ = int(training_difference.replace("epoch_" , "" ) ) + 1
lowerCAmelCase__ = None
else:
lowerCAmelCase__ = int(training_difference.replace("step_" , "" ) )
lowerCAmelCase__ = resume_step // len(UpperCamelCase_ )
resume_step -= starting_epoch * len(UpperCamelCase_ )
# Now we train the model
for epoch in range(UpperCamelCase_ , UpperCamelCase_ ):
model.train()
if args.with_tracking:
lowerCAmelCase__ = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
lowerCAmelCase__ = accelerator.skip_first_batches(UpperCamelCase_ , UpperCamelCase_ )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
lowerCAmelCase__ = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
lowerCAmelCase__ = {k: v.to(accelerator.device ) for k, v in batch.items()}
lowerCAmelCase__ = (batch["image"] - mean) / std
lowerCAmelCase__ = model(UpperCamelCase_ )
lowerCAmelCase__ = torch.nn.functional.cross_entropy(UpperCamelCase_ , batch["label"] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(UpperCamelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase__ = F"""step_{overall_step}"""
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
lowerCAmelCase__ = os.path.join(args.output_dir , UpperCamelCase_ )
accelerator.save_state(UpperCamelCase_ )
model.eval()
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
for step, batch in enumerate(UpperCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
lowerCAmelCase__ = {k: v.to(accelerator.device ) for k, v in batch.items()}
lowerCAmelCase__ = (batch["image"] - mean) / std
with torch.no_grad():
lowerCAmelCase__ = model(UpperCamelCase_ )
lowerCAmelCase__ = outputs.argmax(dim=-1 )
lowerCAmelCase__ ,lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["label"]) )
lowerCAmelCase__ = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
lowerCAmelCase__ = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}: {1_00 * eval_metric:.2f}""" )
if args.with_tracking:
accelerator.log(
{
"accuracy": 1_00 * eval_metric,
"train_loss": total_loss.item() / len(UpperCamelCase_ ),
"epoch": epoch,
} , step=UpperCamelCase_ , )
if checkpointing_steps == "epoch":
lowerCAmelCase__ = F"""epoch_{epoch}"""
if args.output_dir is not None:
lowerCAmelCase__ = os.path.join(args.output_dir , UpperCamelCase_ )
accelerator.save_state(UpperCamelCase_ )
if args.with_tracking:
accelerator.end_training()
def A ( ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument("--data_dir" , required=UpperCamelCase_ , help="The data folder on disk." )
parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." )
parser.add_argument(
"--mixed_precision" , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--checkpointing_steps" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , )
parser.add_argument(
"--output_dir" , type=UpperCamelCase_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--resume_from_checkpoint" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="If the training should continue from a checkpoint folder." , )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=UpperCamelCase_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 2_24}
training_function(UpperCamelCase_ , UpperCamelCase_ )
if __name__ == "__main__":
main()
| 48 |
'''simple docstring'''
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ )
print(F"""Building PyTorch model from configuration: {config}""" )
if is_trivia_qa:
lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ )
else:
lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--big_bird_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
)
UpperCAmelCase__ : int = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 48 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A ( unittest.TestCase ):
def __init__( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int=7 , __magic_name__ : List[str]=3 , __magic_name__ : Optional[Any]=18 , __magic_name__ : Optional[Any]=30 , __magic_name__ : Any=400 , __magic_name__ : List[Any]=True , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=True , ):
"""simple docstring"""
lowerCAmelCase__ = size if size is not None else {"height": 18, "width": 18}
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = image_size
lowerCAmelCase__ = min_resolution
lowerCAmelCase__ = max_resolution
lowerCAmelCase__ = do_resize
lowerCAmelCase__ = size
lowerCAmelCase__ = apply_ocr
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = LayoutLMvaImageProcessingTester(self )
@property
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__magic_name__ , "do_resize" ) )
self.assertTrue(hasattr(__magic_name__ , "size" ) )
self.assertTrue(hasattr(__magic_name__ , "apply_ocr" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 18, "width": 18} )
lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
pass
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , Image.Image )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
self.assertIsInstance(encoding.words , __magic_name__ )
self.assertIsInstance(encoding.boxes , __magic_name__ )
# Test batched
lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , np.ndarray )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , torch.Tensor )
# Test not batched input
lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = LayoutLMvaImageProcessor()
from datasets import load_dataset
lowerCAmelCase__ = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" )
lowerCAmelCase__ = Image.open(ds[0]["file"] ).convert("RGB" )
lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
lowerCAmelCase__ = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231
lowerCAmelCase__ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , __magic_name__ )
self.assertListEqual(encoding.boxes , __magic_name__ )
# with apply_OCR = False
lowerCAmelCase__ = LayoutLMvaImageProcessor(apply_ocr=__magic_name__ )
lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
| 48 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class A :
def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ):
"""simple docstring"""
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_input_mask
lowerCAmelCase__ = use_token_type_ids
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = block_sizes
lowerCAmelCase__ = num_decoder_layers
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_head
lowerCAmelCase__ = d_head
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = 2
lowerCAmelCase__ = num_labels
lowerCAmelCase__ = num_choices
lowerCAmelCase__ = scope
lowerCAmelCase__ = initializer_std
# Used in the tests to check the size of the first attention layer
lowerCAmelCase__ = n_head
# Used in the tests to check the size of the first hidden state
lowerCAmelCase__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowerCAmelCase__ = self.num_hidden_layers + 2
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = None
if self.use_input_mask:
lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase__ = None
if self.use_token_type_ids:
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase__ = None
lowerCAmelCase__ = None
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = [input_ids, input_mask]
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = [input_ids, input_mask]
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_choices
lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.prepare_config_and_inputs()
(
(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,
) = config_and_inputs
lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :int = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
snake_case__ :Any = (
{
'feature-extraction': (TFFunnelBaseModel, TFFunnelModel),
'fill-mask': TFFunnelForMaskedLM,
'question-answering': TFFunnelForQuestionAnswering,
'text-classification': TFFunnelForSequenceClassification,
'token-classification': TFFunnelForTokenClassification,
'zero-shot': TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ :str = False
snake_case__ :Any = False
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Any = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
snake_case__ :int = False
snake_case__ :List[Any] = False
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
| 48 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
UpperCAmelCase__ : Optional[int] = None
UpperCAmelCase__ : int = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ : List[Any] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ : List[str] = {
"facebook/nllb-large-en-ro": 10_24,
"facebook/nllb-200-distilled-600M": 10_24,
}
# fmt: off
UpperCAmelCase__ : Union[str, Any] = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = VOCAB_FILES_NAMES
snake_case__ :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ :List[Any] = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Tuple = ['input_ids', 'attention_mask']
snake_case__ :str = NllbTokenizer
snake_case__ :List[int] = []
snake_case__ :List[int] = []
def __init__( self : str , __magic_name__ : Dict=None , __magic_name__ : List[str]=None , __magic_name__ : List[Any]="<s>" , __magic_name__ : Any="</s>" , __magic_name__ : Tuple="</s>" , __magic_name__ : str="<s>" , __magic_name__ : Optional[int]="<unk>" , __magic_name__ : str="<pad>" , __magic_name__ : int="<mask>" , __magic_name__ : List[Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=False , **__magic_name__ : Union[str, Any] , ):
"""simple docstring"""
lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
lowerCAmelCase__ = legacy_behaviour
super().__init__(
vocab_file=__magic_name__ , tokenizer_file=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ , additional_special_tokens=__magic_name__ , legacy_behaviour=__magic_name__ , **__magic_name__ , )
lowerCAmelCase__ = vocab_file
lowerCAmelCase__ = False if not self.vocab_file else True
lowerCAmelCase__ = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} )
lowerCAmelCase__ = {
lang_code: self.convert_tokens_to_ids(__magic_name__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
lowerCAmelCase__ = src_lang if src_lang is not None else "eng_Latn"
lowerCAmelCase__ = self.convert_tokens_to_ids(self._src_lang )
lowerCAmelCase__ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : int ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ )
lowerCAmelCase__ = tgt_lang_id
return inputs
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str = "eng_Latn" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "fra_Latn" , **__magic_name__ : int , ):
"""simple docstring"""
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = tgt_lang
return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ )
if self.legacy_behaviour:
lowerCAmelCase__ = []
lowerCAmelCase__ = [self.eos_token_id, self.cur_lang_code]
else:
lowerCAmelCase__ = [self.cur_lang_code]
lowerCAmelCase__ = [self.eos_token_id]
lowerCAmelCase__ = self.convert_ids_to_tokens(self.prefix_tokens )
lowerCAmelCase__ = self.convert_ids_to_tokens(self.suffix_tokens )
lowerCAmelCase__ = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ )
if self.legacy_behaviour:
lowerCAmelCase__ = []
lowerCAmelCase__ = [self.eos_token_id, self.cur_lang_code]
else:
lowerCAmelCase__ = [self.cur_lang_code]
lowerCAmelCase__ = [self.eos_token_id]
lowerCAmelCase__ = self.convert_ids_to_tokens(self.prefix_tokens )
lowerCAmelCase__ = self.convert_ids_to_tokens(self.suffix_tokens )
lowerCAmelCase__ = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(__magic_name__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ):
copyfile(self.vocab_file , __magic_name__ )
return (out_vocab_file,)
| 48 |
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'umt5'
snake_case__ :Any = ['past_key_values']
def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ):
"""simple docstring"""
super().__init__(
is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = d_kv
lowerCAmelCase__ = d_ff
lowerCAmelCase__ = num_layers
lowerCAmelCase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowerCAmelCase__ = num_heads
lowerCAmelCase__ = relative_attention_num_buckets
lowerCAmelCase__ = relative_attention_max_distance
lowerCAmelCase__ = dropout_rate
lowerCAmelCase__ = layer_norm_epsilon
lowerCAmelCase__ = initializer_factor
lowerCAmelCase__ = feed_forward_proj
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = self.feed_forward_proj.split("-" )
lowerCAmelCase__ = act_info[-1]
lowerCAmelCase__ = act_info[0] == "gated"
if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'" )
if feed_forward_proj == "gated-gelu":
lowerCAmelCase__ = "gelu_new"
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return self.d_model
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return self.num_heads
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.num_layers
class A ( SCREAMING_SNAKE_CASE__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
lowerCAmelCase__ = "past_encoder_sequence + sequence"
lowerCAmelCase__ = {0: "batch"}
lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="inputs" )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 13
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 5E-4
| 48 | 1 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCAmelCase__ : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
UpperCAmelCase__ : List[str] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n"
class A ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) )
lowerCAmelCase__ = self.transformer_dir
shutil.copy(
os.path.join(__magic_name__ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , )
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = "src/transformers"
shutil.rmtree(self.transformer_dir )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Tuple=None ):
"""simple docstring"""
lowerCAmelCase__ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
lowerCAmelCase__ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
lowerCAmelCase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
lowerCAmelCase__ = black.format_str(__magic_name__ , mode=__magic_name__ )
lowerCAmelCase__ = os.path.join(self.transformer_dir , "new_code.py" )
with open(__magic_name__ , "w" , newline="\n" ) as f:
f.write(__magic_name__ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__magic_name__ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__magic_name__ )
with open(__magic_name__ , "r" ) as f:
self.assertTrue(f.read() , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
self.check_copy_consistency(
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , __magic_name__ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , __magic_name__ ) , )
# Copy consistency with a really long name
lowerCAmelCase__ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("Bert" , __magic_name__ , __magic_name__ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , __magic_name__ , overwrite_result=re.sub("Bert" , "TestModel" , __magic_name__ ) , )
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = check_copies.LOCALIZED_READMES["README_zh-hans.md"]
lowerCAmelCase__ = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1."
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),"
" released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"
" lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same"
" method has been applied to compress GPT2 into"
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"
" Multilingual BERT into"
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**"
" (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders"
" as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang"
" Luong, Quoc V. Le, Christopher D. Manning."
)
lowerCAmelCase__ = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
)
lowerCAmelCase__ = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1."
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文"
" [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"
" lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same"
" method has been applied to compress GPT2 into"
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"
" Multilingual BERT into"
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自"
" Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather"
" than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,"
" Christopher D. Manning 发布。\n"
)
lowerCAmelCase__ ,lowerCAmelCase__ = check_copies.convert_to_localized_md(
__magic_name__ , __magic_name__ , localized_readme["format_model_list"] )
self.assertFalse(__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ ,lowerCAmelCase__ = check_copies.convert_to_localized_md(
__magic_name__ , __magic_name__ , localized_readme["format_model_list"] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(__magic_name__ )
lowerCAmelCase__ = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut."
)
lowerCAmelCase__ = (
"1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and"
" the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
)
lowerCAmelCase__ = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
)
lowerCAmelCase__ ,lowerCAmelCase__ = check_copies.convert_to_localized_md(
__magic_name__ , __magic_name__ , localized_readme["format_model_list"] )
# Check if the model link is synchronized.
self.assertEqual(__magic_name__ , __magic_name__ )
| 48 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class A :
def __init__( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ):
"""simple docstring"""
if nodea not in self.connections:
self.add_node(__magic_name__ )
if nodea not in self.connections:
self.add_node(__magic_name__ )
lowerCAmelCase__ = probability
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
return list(self.connections )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]:
'''simple docstring'''
lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = Counter(graph.get_nodes() )
lowerCAmelCase__ = start
for _ in range(UpperCamelCase_ ):
lowerCAmelCase__ = graph.transition(UpperCamelCase_ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
flip_channel_order,
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__)
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = ['pixel_values']
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 255 , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , **__magic_name__ : Union[str, Any] , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = size if size is not None else {"shortest_edge": 224}
lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 256, "width": 256}
lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" )
lowerCAmelCase__ = do_resize
lowerCAmelCase__ = size
lowerCAmelCase__ = resample
lowerCAmelCase__ = do_rescale
lowerCAmelCase__ = rescale_factor
lowerCAmelCase__ = do_center_crop
lowerCAmelCase__ = crop_size
lowerCAmelCase__ = do_flip_channel_order
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PIL.Image.BILINEAR , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" )
lowerCAmelCase__ = get_resize_output_image_size(__magic_name__ , size=size["shortest_edge"] , default_to_square=__magic_name__ )
return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ):
"""simple docstring"""
lowerCAmelCase__ = get_size_dict(__magic_name__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(__magic_name__ , size=(size["height"], size["width"]) , data_format=__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ):
"""simple docstring"""
return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Optional[Union[str, ChannelDimension]] = None ):
"""simple docstring"""
return flip_channel_order(__magic_name__ , data_format=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase__ = resample if resample is not None else self.resample
lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCAmelCase__ = (
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
lowerCAmelCase__ = size if size is not None else self.size
lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size
lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" )
lowerCAmelCase__ = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
# All transformations expect numpy arrays.
lowerCAmelCase__ = [to_numpy_array(__magic_name__ ) for image in images]
if do_resize:
lowerCAmelCase__ = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_center_crop:
lowerCAmelCase__ = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images]
if do_rescale:
lowerCAmelCase__ = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
lowerCAmelCase__ = [self.flip_channel_order(image=__magic_name__ ) for image in images]
lowerCAmelCase__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
lowerCAmelCase__ = {"pixel_values": images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Tuple] = None ):
"""simple docstring"""
lowerCAmelCase__ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__magic_name__ ) != len(__magic_name__ ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(__magic_name__ ):
lowerCAmelCase__ = target_sizes.numpy()
lowerCAmelCase__ = []
for idx in range(len(__magic_name__ ) ):
lowerCAmelCase__ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__magic_name__ )
lowerCAmelCase__ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__magic_name__ )
else:
lowerCAmelCase__ = logits.argmax(dim=1 )
lowerCAmelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 48 |
'''simple docstring'''
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
UpperCAmelCase__ : Optional[Any] = pytest.mark.integration
UpperCAmelCase__ : str = {"comet"}
UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None
UpperCAmelCase__ : Optional[int] = {"code_eval"}
UpperCAmelCase__ : List[Any] = os.name == "nt"
UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"}
UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None
def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( UpperCamelCase_ : List[Any] ) -> str:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[int] , UpperCamelCase_ : int ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( UpperCamelCase_ : Any ) -> int:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@local
class A ( parameterized.TestCase ):
snake_case__ :Union[str, Any] = {}
snake_case__ :Optional[Any] = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = "[...]"
lowerCAmelCase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path )
lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ )
# check parameters
lowerCAmelCase__ = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ):
with self.use_local_metrics():
try:
lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = "[...]"
lowerCAmelCase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path )
# run doctest
with self.use_local_metrics():
lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ):
yield
else:
yield
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ):
return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ )
with patch("datasets.load_metric" ) as mock_load_metric:
lowerCAmelCase__ = load_local_metric
yield
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ):
"""simple docstring"""
def wrapper(__magic_name__ : Dict ):
lowerCAmelCase__ = contextmanager(__magic_name__ )
lowerCAmelCase__ = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt" )
def A ( UpperCamelCase_ : str ) -> Any:
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags
class A ( SCREAMING_SNAKE_CASE__ ):
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ):
"""simple docstring"""
assert len(input_dict["input_ids"] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor" ) as mock_create_predictor:
lowerCAmelCase__ = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore" )
def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
import torch
def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model" ), patch(
"bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf:
lowerCAmelCase__ = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet" )
def A ( UpperCamelCase_ : Optional[int] ) -> Any:
'''simple docstring'''
def load_from_checkpoint(UpperCamelCase_ : Tuple ):
class A :
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ):
"""simple docstring"""
assert len(__magic_name__ ) == 2
lowerCAmelCase__ = [0.19, 0.92]
return scores, sum(__magic_name__ ) / len(__magic_name__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model" ) as mock_download_model:
lowerCAmelCase__ = None
with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint:
lowerCAmelCase__ = load_from_checkpoint
yield
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) )
lowerCAmelCase__ = "ERROR"
lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"""
with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ):
metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
| 48 | 1 |
'''simple docstring'''
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :List[Any] = CpmAntTokenizer
snake_case__ :str = False
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
super().setUp()
lowerCAmelCase__ = [
"<d>",
"</d>",
"<s>",
"</s>",
"</_>",
"<unk>",
"<pad>",
"</n>",
"我",
"是",
"C",
"P",
"M",
"A",
"n",
"t",
]
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
@tooslow
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" )
lowerCAmelCase__ = "今天天气真好!"
lowerCAmelCase__ = ["今天", "天气", "真", "好", "!"]
lowerCAmelCase__ = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = "今天天气真好!"
lowerCAmelCase__ = [tokenizer.bos_token] + tokens
lowerCAmelCase__ = [6, 9802, 14962, 2082, 831, 244]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
lowerCAmelCase__ = tokenizer.decode(__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
| 48 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
UpperCAmelCase__ : int = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M'
snake_case__ :Optional[Any] = (
'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '
'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '
'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '
'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'
)
snake_case__ :List[Any] = 'translator'
snake_case__ :List[Any] = AutoTokenizer
snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM
snake_case__ :List[str] = LANGUAGE_CODES
snake_case__ :List[Any] = ['text', 'text', 'text']
snake_case__ :List[Any] = ['text']
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ):
"""simple docstring"""
if src_lang not in self.lang_to_code:
raise ValueError(f"""{src_lang} is not a supported language.""" )
if tgt_lang not in self.lang_to_code:
raise ValueError(f"""{tgt_lang} is not a supported language.""" )
lowerCAmelCase__ = self.lang_to_code[src_lang]
lowerCAmelCase__ = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
__magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ):
"""simple docstring"""
return self.model.generate(**__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
| 48 | 1 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :List[Any] = ['image_processor', 'feature_extractor']
snake_case__ :Tuple = 'TvltImageProcessor'
snake_case__ :List[str] = 'TvltFeatureExtractor'
def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
super().__init__(image_processor=__magic_name__ , feature_extractor=__magic_name__ )
lowerCAmelCase__ = image_processor
lowerCAmelCase__ = feature_extractor
def __call__( self : Optional[Any] , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Any=None , __magic_name__ : List[Any]=False , __magic_name__ : Union[str, Any]=False , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[Any] , ):
"""simple docstring"""
if images is None and audio is None:
raise ValueError("You need to specify either an `images` or `audio` input to process." )
lowerCAmelCase__ = None
if images is not None:
lowerCAmelCase__ = self.image_processor(__magic_name__ , mask_pixel=__magic_name__ , *__magic_name__ , **__magic_name__ )
if images_mixed is not None:
lowerCAmelCase__ = self.image_processor(__magic_name__ , is_mixed=__magic_name__ , *__magic_name__ , **__magic_name__ )
if audio is not None:
lowerCAmelCase__ = self.feature_extractor(
__magic_name__ , *__magic_name__ , sampling_rate=__magic_name__ , mask_audio=__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = {}
if audio is not None:
output_dict.update(__magic_name__ )
if images is not None:
output_dict.update(__magic_name__ )
if images_mixed_dict is not None:
output_dict.update(__magic_name__ )
return output_dict
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.image_processor.model_input_names
lowerCAmelCase__ = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 48 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : int = logging.get_logger(__name__)
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = 'timm_backbone'
def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = backbone
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = features_only
lowerCAmelCase__ = use_pretrained_backbone
lowerCAmelCase__ = True
lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
| 48 | 1 |
'''simple docstring'''
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def A ( UpperCamelCase_ : Optional[int] ) -> Any:
'''simple docstring'''
return EnvironmentCommand()
def A ( UpperCamelCase_ : Any ) -> Dict:
'''simple docstring'''
return EnvironmentCommand(args.accelerate_config_file )
class A ( SCREAMING_SNAKE_CASE__ ):
@staticmethod
def __SCREAMING_SNAKE_CASE ( __magic_name__ : ArgumentParser ):
"""simple docstring"""
lowerCAmelCase__ = parser.add_parser("env" )
download_parser.set_defaults(func=__magic_name__ )
download_parser.add_argument(
"--accelerate-config_file" , default=__magic_name__ , help="The accelerate config file to use for the default values in the launching script." , )
download_parser.set_defaults(func=__magic_name__ )
def __init__( self : List[Any] , __magic_name__ : Union[str, Any] , *__magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = accelerate_config_file
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = "not installed"
if is_safetensors_available():
import safetensors
lowerCAmelCase__ = safetensors.__version__
elif importlib.util.find_spec("safetensors" ) is not None:
import safetensors
lowerCAmelCase__ = f"""{safetensors.__version__} but is ignored because of PyTorch version too old."""
lowerCAmelCase__ = "not installed"
lowerCAmelCase__ = lowerCAmelCase__ = "not found"
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
lowerCAmelCase__ = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(__magic_name__ ):
lowerCAmelCase__ = load_config_from_file(self._accelerate_config_file ).to_dict()
lowerCAmelCase__ = (
"\n".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] )
if isinstance(__magic_name__ , __magic_name__ )
else f"""\t{accelerate_config}"""
)
lowerCAmelCase__ = "not installed"
lowerCAmelCase__ = "NA"
if is_torch_available():
import torch
lowerCAmelCase__ = torch.__version__
lowerCAmelCase__ = torch.cuda.is_available()
lowerCAmelCase__ = "not installed"
lowerCAmelCase__ = "NA"
if is_tf_available():
import tensorflow as tf
lowerCAmelCase__ = tf.__version__
try:
# deprecated in v2.1
lowerCAmelCase__ = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
lowerCAmelCase__ = bool(tf.config.list_physical_devices("GPU" ) )
lowerCAmelCase__ = "not installed"
lowerCAmelCase__ = "not installed"
lowerCAmelCase__ = "not installed"
lowerCAmelCase__ = "NA"
if is_flax_available():
import flax
import jax
import jaxlib
lowerCAmelCase__ = flax.__version__
lowerCAmelCase__ = jax.__version__
lowerCAmelCase__ = jaxlib.__version__
lowerCAmelCase__ = jax.lib.xla_bridge.get_backend().platform
lowerCAmelCase__ = {
"`transformers` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Huggingface_hub version": huggingface_hub.__version__,
"Safetensors version": f"""{safetensors_version}""",
"Accelerate version": f"""{accelerate_version}""",
"Accelerate config": f"""{accelerate_config_str}""",
"PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""",
"Tensorflow version (GPU?)": f"""{tf_version} ({tf_cuda_available})""",
"Flax version (CPU?/GPU?/TPU?)": f"""{flax_version} ({jax_backend})""",
"Jax version": f"""{jax_version}""",
"JaxLib version": f"""{jaxlib_version}""",
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" )
print(self.format_dict(__magic_name__ ) )
return info
@staticmethod
def __SCREAMING_SNAKE_CASE ( __magic_name__ : List[Any] ):
"""simple docstring"""
return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
| 48 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base'
snake_case__ :List[Any] = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
snake_case__ :List[Any] = 'image_captioner'
snake_case__ :Optional[int] = AutoModelForVisionaSeq
snake_case__ :Optional[int] = ['image']
snake_case__ :Any = ['text']
def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ):
"""simple docstring"""
requires_backends(self , ["vision"] )
super().__init__(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ):
"""simple docstring"""
return self.pre_processor(images=__magic_name__ , return_tensors="pt" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
return self.model.generate(**__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ):
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
| 48 | 1 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class A :
def __init__( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int=13 , __magic_name__ : List[Any]=7 , __magic_name__ : Any=True , __magic_name__ : Optional[int]=True , __magic_name__ : Tuple=False , __magic_name__ : List[Any]=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=32 , __magic_name__ : str=5 , __magic_name__ : int=4 , __magic_name__ : Dict=37 , __magic_name__ : Tuple="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Dict=16 , __magic_name__ : Any=2 , __magic_name__ : Any=0.02 , __magic_name__ : Tuple=3 , __magic_name__ : List[str]=4 , __magic_name__ : Union[str, Any]=None , ):
"""simple docstring"""
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_input_mask
lowerCAmelCase__ = use_token_type_ids
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = type_sequence_label_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = num_labels
lowerCAmelCase__ = num_choices
lowerCAmelCase__ = scope
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = None
if self.use_input_mask:
lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase__ = None
if self.use_token_type_ids:
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase__ = None
lowerCAmelCase__ = None
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , use_stable_embedding=__magic_name__ , )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = OpenLlamaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , ):
"""simple docstring"""
lowerCAmelCase__ = True
lowerCAmelCase__ = OpenLlamaModel(__magic_name__ )
model.to(__magic_name__ )
model.eval()
lowerCAmelCase__ = model(
__magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , )
lowerCAmelCase__ = model(
__magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , )
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , ):
"""simple docstring"""
lowerCAmelCase__ = OpenLlamaForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Any , ):
"""simple docstring"""
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = OpenLlamaForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# first forward pass
lowerCAmelCase__ = model(
__magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , use_cache=__magic_name__ , )
lowerCAmelCase__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
lowerCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase__ = torch.cat([input_mask, next_mask] , dim=-1 )
lowerCAmelCase__ = model(
__magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , output_hidden_states=__magic_name__ , )["hidden_states"][0]
lowerCAmelCase__ = model(
__magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , output_hidden_states=__magic_name__ , )["hidden_states"][0]
# select random slice
lowerCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCAmelCase__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.prepare_config_and_inputs()
(
(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,
) = config_and_inputs
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Dict = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
snake_case__ :Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else ()
snake_case__ :List[str] = (
{
'feature-extraction': OpenLlamaModel,
'text-classification': OpenLlamaForSequenceClassification,
'text-generation': OpenLlamaForCausalLM,
'zero-shot': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case__ :List[str] = False
snake_case__ :Any = False
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = OpenLlamaModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase__ = type
self.model_tester.create_and_check_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ = 3
lowerCAmelCase__ = input_dict["input_ids"]
lowerCAmelCase__ = input_ids.ne(1 ).to(__magic_name__ )
lowerCAmelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase__ = OpenLlamaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ = 3
lowerCAmelCase__ = "single_label_classification"
lowerCAmelCase__ = input_dict["input_ids"]
lowerCAmelCase__ = input_ids.ne(1 ).to(__magic_name__ )
lowerCAmelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase__ = OpenLlamaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ = 3
lowerCAmelCase__ = "multi_label_classification"
lowerCAmelCase__ = input_dict["input_ids"]
lowerCAmelCase__ = input_ids.ne(1 ).to(__magic_name__ )
lowerCAmelCase__ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
lowerCAmelCase__ = OpenLlamaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
pass
@parameterized.expand([("linear",), ("dynamic",)] )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ = ids_tensor([1, 10] , config.vocab_size )
lowerCAmelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase__ = OpenLlamaModel(__magic_name__ )
original_model.to(__magic_name__ )
original_model.eval()
lowerCAmelCase__ = original_model(__magic_name__ ).last_hidden_state
lowerCAmelCase__ = original_model(__magic_name__ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCAmelCase__ = {"type": scaling_type, "factor": 10.0}
lowerCAmelCase__ = OpenLlamaModel(__magic_name__ )
scaled_model.to(__magic_name__ )
scaled_model.eval()
lowerCAmelCase__ = scaled_model(__magic_name__ ).last_hidden_state
lowerCAmelCase__ = scaled_model(__magic_name__ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) )
| 48 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : Union[str, Any] = "▁"
UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"}
UpperCAmelCase__ : Union[str, Any] = {
"vocab_file": {
"facebook/mbart-large-50-one-to-many-mmt": (
"https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model"
),
}
}
UpperCAmelCase__ : Optional[Any] = {
"facebook/mbart-large-50-one-to-many-mmt": 10_24,
}
# fmt: off
UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"]
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Optional[int] = VOCAB_FILES_NAMES
snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Tuple = ['input_ids', 'attention_mask']
snake_case__ :List[int] = []
snake_case__ :List[int] = []
def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ):
"""simple docstring"""
lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] )
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__magic_name__ ) )
lowerCAmelCase__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowerCAmelCase__ = 1
lowerCAmelCase__ = len(self.sp_model )
lowerCAmelCase__ = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ )
}
lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()}
lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX"
lowerCAmelCase__ = self.lang_code_to_id[self._src_lang]
lowerCAmelCase__ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.__dict__.copy()
lowerCAmelCase__ = None
return state
def __setstate__( self : List[Any] , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCAmelCase__ = {}
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ):
"""simple docstring"""
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = ""
lowerCAmelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
lowerCAmelCase__ = True
lowerCAmelCase__ = []
else:
current_sub_tokens.append(__magic_name__ )
lowerCAmelCase__ = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string.strip()
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , "wb" ) as fi:
lowerCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
lowerCAmelCase__ = [1] * len(self.prefix_tokens )
lowerCAmelCase__ = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones
return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ )
lowerCAmelCase__ = tgt_lang_id
return inputs
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ):
"""simple docstring"""
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = tgt_lang
return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.lang_code_to_id[src_lang]
lowerCAmelCase__ = [self.cur_lang_code_id]
lowerCAmelCase__ = [self.eos_token_id]
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.lang_code_to_id[tgt_lang]
lowerCAmelCase__ = [self.cur_lang_code_id]
lowerCAmelCase__ = [self.eos_token_id]
| 48 | 1 |
'''simple docstring'''
from copy import deepcopy
class A :
def __init__( self : List[str] , __magic_name__ : list[int] | None = None , __magic_name__ : int | None = None ):
"""simple docstring"""
if arr is None and size is not None:
lowerCAmelCase__ = size
lowerCAmelCase__ = [0] * size
elif arr is not None:
self.init(__magic_name__ )
else:
raise ValueError("Either arr or size must be specified" )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : list[int] ):
"""simple docstring"""
lowerCAmelCase__ = len(__magic_name__ )
lowerCAmelCase__ = deepcopy(__magic_name__ )
for i in range(1 , self.size ):
lowerCAmelCase__ = self.next_(__magic_name__ )
if j < self.size:
self.tree[j] += self.tree[i]
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
lowerCAmelCase__ = self.next_(__magic_name__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def __SCREAMING_SNAKE_CASE ( __magic_name__ : int ):
"""simple docstring"""
return index + (index & (-index))
@staticmethod
def __SCREAMING_SNAKE_CASE ( __magic_name__ : int ):
"""simple docstring"""
return index - (index & (-index))
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : int , __magic_name__ : int ):
"""simple docstring"""
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
lowerCAmelCase__ = self.next_(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ):
"""simple docstring"""
self.add(__magic_name__ , value - self.get(__magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : int ):
"""simple docstring"""
if right == 0:
return 0
lowerCAmelCase__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
lowerCAmelCase__ = self.prev(__magic_name__ )
return result
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : int , __magic_name__ : int ):
"""simple docstring"""
return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int ):
"""simple docstring"""
return self.query(__magic_name__ , index + 1 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : int ):
"""simple docstring"""
value -= self.tree[0]
if value < 0:
return -1
lowerCAmelCase__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
lowerCAmelCase__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
if start < end:
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 )
count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ )
return count
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ = start - 1
for index in range(UpperCamelCase_ , UpperCamelCase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowerCAmelCase__ = new_pivot_index + 1
lowerCAmelCase__ = a[new_pivot_index]
lowerCAmelCase__ = a[index]
lowerCAmelCase__ = temp
lowerCAmelCase__ = a[new_pivot_index + 1]
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = temp
return new_pivot_index + 1, count
UpperCAmelCase__ : Tuple = TemporaryFile()
UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted
UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation
UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase__ : Optional[Any] = np.load(outfile)
UpperCAmelCase__ : Any = len(M) - 1
UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 48 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class A :
snake_case__ :str = BlenderbotSmallConfig
snake_case__ :Dict = {}
snake_case__ :Union[str, Any] = 'gelu'
def __init__( self : Any , __magic_name__ : int , __magic_name__ : int=13 , __magic_name__ : int=7 , __magic_name__ : Any=True , __magic_name__ : Tuple=False , __magic_name__ : Union[str, Any]=99 , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Tuple=2 , __magic_name__ : List[str]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Union[str, Any]=20 , __magic_name__ : Tuple=2 , __magic_name__ : List[str]=1 , __magic_name__ : Union[str, Any]=0 , ):
"""simple docstring"""
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = eos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = bos_token_id
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCAmelCase__ = prepare_blenderbot_small_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ )
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = TFBlenderbotSmallModel(config=__magic_name__ ).get_decoder()
lowerCAmelCase__ = inputs_dict["input_ids"]
lowerCAmelCase__ = input_ids[:1, :]
lowerCAmelCase__ = inputs_dict["attention_mask"][:1, :]
lowerCAmelCase__ = inputs_dict["head_mask"]
lowerCAmelCase__ = 1
# first forward pass
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ )
lowerCAmelCase__ ,lowerCAmelCase__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ )[0]
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-3 )
def A ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : List[str]=None , ) -> List[Any]:
'''simple docstring'''
if attention_mask is None:
lowerCAmelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
lowerCAmelCase__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
lowerCAmelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :List[Any] = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
snake_case__ :Dict = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
snake_case__ :int = (
{
'conversational': TFBlenderbotSmallForConditionalGeneration,
'feature-extraction': TFBlenderbotSmallModel,
'summarization': TFBlenderbotSmallForConditionalGeneration,
'text2text-generation': TFBlenderbotSmallForConditionalGeneration,
'translation': TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
snake_case__ :Optional[Any] = True
snake_case__ :Any = False
snake_case__ :int = False
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = TFBlenderbotSmallModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ )
@require_tokenizers
@require_tf
class A ( unittest.TestCase ):
snake_case__ :Any = [
'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like '
' i\'m going to throw up.\nand why is that?'
]
snake_case__ :Dict = 'facebook/blenderbot_small-90M'
@cached_property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" )
@cached_property
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer(self.src_text , return_tensors="tf" )
lowerCAmelCase__ = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__magic_name__ , )
lowerCAmelCase__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__magic_name__ )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 48 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def A ( UpperCamelCase_ : List[Any] ) -> Tuple:
'''simple docstring'''
if "img_encoder.pos_embed" in name:
lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" )
if "img_encoder.patch_embed.proj" in name:
lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" )
if "img_encoder.patch_embed.norm" in name:
lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" )
if "img_encoder.layers" in name:
lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" )
if "blocks" in name and "res" not in name:
lowerCAmelCase__ = name.replace("blocks" , "layers" )
if "attn" in name and "pre_assign" not in name:
lowerCAmelCase__ = name.replace("attn" , "self_attn" )
if "proj" in name and "self_attn" in name and "text" not in name:
lowerCAmelCase__ = name.replace("proj" , "out_proj" )
if "pre_assign_attn.attn.proj" in name:
lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" )
if "norm1" in name:
lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" )
if "norm2" in name and "pre_assign" not in name:
lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" )
if "img_encoder.norm" in name:
lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" )
# text encoder
if "text_encoder.token_embedding" in name:
lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" )
if "text_encoder.positional_embedding" in name:
lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" )
if "text_encoder.transformer.resblocks." in name:
lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." )
if "ln_1" in name:
lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" )
if "ln_2" in name:
lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" )
if "c_fc" in name:
lowerCAmelCase__ = name.replace("c_fc" , "fc1" )
if "c_proj" in name:
lowerCAmelCase__ = name.replace("c_proj" , "fc2" )
if "text_encoder" in name:
lowerCAmelCase__ = name.replace("text_encoder" , "text_model" )
if "ln_final" in name:
lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" )
# projection layers
if "img_projector.linear_hidden." in name:
lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." )
if "img_projector.linear_out." in name:
lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." )
if "text_projector.linear_hidden" in name:
lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" )
if "text_projector.linear_out" in name:
lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" )
return name
def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase__ = key.split("." )
lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] )
lowerCAmelCase__ = config.vision_config.hidden_size
if "weight" in key:
lowerCAmelCase__ = val[:dim, :]
lowerCAmelCase__ = val[dim : dim * 2, :]
lowerCAmelCase__ = val[-dim:, :]
else:
lowerCAmelCase__ = val[:dim]
lowerCAmelCase__ = val[dim : dim * 2]
lowerCAmelCase__ = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase__ = key.split("." )
lowerCAmelCase__ = int(key_split[3] )
lowerCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase__ = val[:dim, :]
lowerCAmelCase__ = val[
dim : dim * 2, :
]
lowerCAmelCase__ = val[-dim:, :]
else:
lowerCAmelCase__ = val[:dim]
lowerCAmelCase__ = val[dim : dim * 2]
lowerCAmelCase__ = val[-dim:]
else:
lowerCAmelCase__ = rename_key(UpperCamelCase_ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowerCAmelCase__ = val.squeeze_()
else:
lowerCAmelCase__ = val
return orig_state_dict
def A ( ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = GroupViTConfig()
lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval()
lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"]
lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0)
# verify result
lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" )
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" )
with torch.no_grad():
lowerCAmelCase__ = model(**UpperCamelCase_ )
if model_name == "groupvit-gcc-yfcc":
lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] )
elif model_name == "groupvit-gcc-redcaps":
lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] )
else:
raise ValueError(F"""Model name {model_name} not supported.""" )
assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 )
processor.save_pretrained(UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
print("Successfully saved processor and model to" , UpperCamelCase_ )
if push_to_hub:
print("Pushing to the hub..." )
processor.push_to_hub(UpperCamelCase_ , organization="nielsr" )
model.push_to_hub(UpperCamelCase_ , organization="nielsr" )
if __name__ == "__main__":
UpperCAmelCase__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model."
)
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint")
parser.add_argument(
"--model_name",
default="groupvit-gccy-fcc",
type=str,
help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.",
)
UpperCAmelCase__ : Any = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 48 | 1 |
'''simple docstring'''
def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list:
'''simple docstring'''
lowerCAmelCase__ = word.split()
def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str:
lowerCAmelCase__ = max_width - width
lowerCAmelCase__ = len(UpperCamelCase_ )
if len(UpperCamelCase_ ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
lowerCAmelCase__ = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
lowerCAmelCase__ = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
lowerCAmelCase__ = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(UpperCamelCase_ ):
num_spaces_between_words_list[i] += 1
lowerCAmelCase__ = []
for i in range(UpperCamelCase_ ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * " " )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
for word in words:
if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(UpperCamelCase_ )
width += len(UpperCamelCase_ )
else:
# justify the line and add it to result
answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) )
# reset new line and new width
lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ )
lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ )
answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 48 |
'''simple docstring'''
from __future__ import annotations
from functools import lru_cache
from math import ceil
UpperCAmelCase__ : Optional[Any] = 1_00
UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2))
primes.add(2)
UpperCAmelCase__ : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=1_00 )
def A ( UpperCamelCase_ : int ) -> set[int]:
'''simple docstring'''
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
lowerCAmelCase__ = set()
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def A ( UpperCamelCase_ : int = 50_00 ) -> int | None:
'''simple docstring'''
for number_to_partition in range(1 , UpperCamelCase_ ):
if len(partition(UpperCamelCase_ ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(F"{solution() = }")
| 48 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ : List[Any] = {
"vocab_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"
),
},
"merges_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"
),
},
"tokenizer_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json",
"roberta-base-openai-detector": (
"https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"
),
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ : Tuple = {
"roberta-base": 5_12,
"roberta-large": 5_12,
"roberta-large-mnli": 5_12,
"distilroberta-base": 5_12,
"roberta-base-openai-detector": 5_12,
"roberta-large-openai-detector": 5_12,
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Dict = VOCAB_FILES_NAMES
snake_case__ :str = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ :Optional[Any] = ['input_ids', 'attention_mask']
snake_case__ :Optional[int] = RobertaTokenizer
def __init__( self : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Tuple=None , __magic_name__ : int="replace" , __magic_name__ : Optional[int]="<s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : Tuple="</s>" , __magic_name__ : int="<s>" , __magic_name__ : Optional[int]="<unk>" , __magic_name__ : Tuple="<pad>" , __magic_name__ : List[str]="<mask>" , __magic_name__ : Dict=False , __magic_name__ : Union[str, Any]=True , **__magic_name__ : int , ):
"""simple docstring"""
super().__init__(
__magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , __magic_name__ ) != add_prefix_space:
lowerCAmelCase__ = getattr(__magic_name__ , pre_tok_state.pop("type" ) )
lowerCAmelCase__ = add_prefix_space
lowerCAmelCase__ = pre_tok_class(**__magic_name__ )
lowerCAmelCase__ = add_prefix_space
lowerCAmelCase__ = "post_processor"
lowerCAmelCase__ = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
if tokenizer_component_instance:
lowerCAmelCase__ = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowerCAmelCase__ = tuple(state["sep"] )
if "cls" in state:
lowerCAmelCase__ = tuple(state["cls"] )
lowerCAmelCase__ = False
if state.get("add_prefix_space" , __magic_name__ ) != add_prefix_space:
lowerCAmelCase__ = add_prefix_space
lowerCAmelCase__ = True
if state.get("trim_offsets" , __magic_name__ ) != trim_offsets:
lowerCAmelCase__ = trim_offsets
lowerCAmelCase__ = True
if changes_to_apply:
lowerCAmelCase__ = getattr(__magic_name__ , state.pop("type" ) )
lowerCAmelCase__ = component_class(**__magic_name__ )
setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ )
@property
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value
lowerCAmelCase__ = value
def __SCREAMING_SNAKE_CASE ( self : int , *__magic_name__ : Union[str, Any] , **__magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = kwargs.get("is_split_into_words" , __magic_name__ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any , *__magic_name__ : Any , **__magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = kwargs.get("is_split_into_words" , __magic_name__ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
lowerCAmelCase__ = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ )
return tuple(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]=None ):
"""simple docstring"""
lowerCAmelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 48 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : List[Any] = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"}
UpperCAmelCase__ : Optional[Any] = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = VOCAB_FILES_NAMES
snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(
unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding="utf-8" ) as vocab_handle:
lowerCAmelCase__ = json.load(__magic_name__ )
lowerCAmelCase__ = {v: k for k, v in self.vocab.items()}
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return len(self.vocab )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = []
for s in text:
char_tokens.extend(__magic_name__ )
return char_tokens
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ):
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ):
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" )
return (vocab_file,)
| 48 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class A :
snake_case__ :Dict = PegasusConfig
snake_case__ :str = {}
snake_case__ :Tuple = 'gelu'
def __init__( self : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=13 , __magic_name__ : str=7 , __magic_name__ : int=True , __magic_name__ : int=False , __magic_name__ : str=99 , __magic_name__ : Dict=32 , __magic_name__ : Tuple=2 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=40 , __magic_name__ : Tuple=2 , __magic_name__ : Any=1 , __magic_name__ : str=0 , ):
"""simple docstring"""
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = eos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = bos_token_id
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCAmelCase__ = prepare_pegasus_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ )
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : int ):
"""simple docstring"""
lowerCAmelCase__ = TFPegasusModel(config=__magic_name__ ).get_decoder()
lowerCAmelCase__ = inputs_dict["input_ids"]
lowerCAmelCase__ = input_ids[:1, :]
lowerCAmelCase__ = inputs_dict["attention_mask"][:1, :]
lowerCAmelCase__ = inputs_dict["head_mask"]
lowerCAmelCase__ = 1
# first forward pass
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ )
lowerCAmelCase__ ,lowerCAmelCase__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ )[0]
lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-3 )
def A ( UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : int=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[str]=None , ) -> Any:
'''simple docstring'''
if attention_mask is None:
lowerCAmelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
lowerCAmelCase__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
lowerCAmelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Dict = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
snake_case__ :Optional[Any] = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
snake_case__ :List[str] = (
{
'conversational': TFPegasusForConditionalGeneration,
'feature-extraction': TFPegasusModel,
'summarization': TFPegasusForConditionalGeneration,
'text2text-generation': TFPegasusForConditionalGeneration,
'translation': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
snake_case__ :Tuple = True
snake_case__ :Any = False
snake_case__ :Union[str, Any] = False
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = TFPegasusModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ )
@require_sentencepiece
@require_tokenizers
@require_tf
class A ( unittest.TestCase ):
snake_case__ :Any = [
' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.',
' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ',
]
snake_case__ :str = [
'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'
' reduce the risk of wildfires.',
'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
snake_case__ :Optional[int] = 'google/pegasus-xsum'
@cached_property
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __SCREAMING_SNAKE_CASE ( self : int , **__magic_name__ : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = self.translate_src_text(**__magic_name__ )
assert self.expected_text == generated_words
def __SCREAMING_SNAKE_CASE ( self : List[Any] , **__magic_name__ : int ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer(self.src_text , **__magic_name__ , padding=__magic_name__ , return_tensors="tf" )
lowerCAmelCase__ = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__magic_name__ , )
lowerCAmelCase__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__magic_name__ )
return generated_words
@slow
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 48 |
'''simple docstring'''
from math import sqrt
def A ( UpperCamelCase_ : int ) -> int:
'''simple docstring'''
lowerCAmelCase__ = 0
for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ):
if n % i == 0 and i != sqrt(UpperCamelCase_ ):
total += i + n // i
elif i == sqrt(UpperCamelCase_ ):
total += i
return total - n
def A ( UpperCamelCase_ : int = 1_00_00 ) -> int:
'''simple docstring'''
lowerCAmelCase__ = sum(
i
for i in range(1 , UpperCamelCase_ )
if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 48 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class A ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = "laion/clap-htsat-unfused"
lowerCAmelCase__ = tempfile.mkdtemp()
def __SCREAMING_SNAKE_CASE ( self : List[str] , **__magic_name__ : Any ):
"""simple docstring"""
return RobertaTokenizer.from_pretrained(self.checkpoint , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any , **__magic_name__ : Any ):
"""simple docstring"""
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = self.get_feature_extractor()
lowerCAmelCase__ = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = ClapProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCAmelCase__ = self.get_feature_extractor(do_normalize=__magic_name__ , padding_value=1.0 )
lowerCAmelCase__ = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.get_feature_extractor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
lowerCAmelCase__ = floats_list((3, 1000) )
lowerCAmelCase__ = feature_extractor(__magic_name__ , return_tensors="np" )
lowerCAmelCase__ = processor(audios=__magic_name__ , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = self.get_feature_extractor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
lowerCAmelCase__ = "This is a test string"
lowerCAmelCase__ = processor(text=__magic_name__ )
lowerCAmelCase__ = tokenizer(__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.get_feature_extractor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ = processor.batch_decode(__magic_name__ )
lowerCAmelCase__ = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.get_feature_extractor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = ClapProcessor(tokenizer=__magic_name__ , feature_extractor=__magic_name__ )
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
| 48 |
'''simple docstring'''
import logging
import numpy as np
import pytest
from scipy.linalg import eigh
logging.basicConfig(level=logging.INFO, format="%(message)s")
def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return input_array.reshape((input_array.size, 1) )
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.mean(1 )
# Centralize the data of class i
lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ )
if i > 0:
# If covariance_sum is not None
covariance_sum += np.dot(UpperCamelCase_ , centered_data.T )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = features.mean(1 )
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.shape[1]
lowerCAmelCase__ = data.mean(1 )
if i > 0:
# If covariance_sum is not None
covariance_sum += device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
if features.any():
lowerCAmelCase__ = features.mean(1 )
# Center the dataset
lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) )
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1]
lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ )
# Take all the columns in the reverse order (-1), and then takes only the first
lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions]
# Project the database on the new space
lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ )
logging.info("Principal Component Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
assert classes > dimensions
# Check if features have been already loaded
if features.any:
lowerCAmelCase__ ,lowerCAmelCase__ = eigh(
covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , )
lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions]
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ )
lowerCAmelCase__ = svd_matrix[:, 0:dimensions]
lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ )
logging.info("Linear Discriminant Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] )
lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = 2
# Assert that the function raises an AssertionError if dimensions > classes
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = linear_discriminant_analysis(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if isinstance(UpperCamelCase_ , np.ndarray ):
raise AssertionError(
"Did not raise AssertionError for dimensions > classes" )
assert error_info.type is AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] )
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ )
if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ):
raise AssertionError
assert error_info.type is AssertionError
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 | 1 |
'''simple docstring'''
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
UpperCAmelCase__ : Optional[int] = 6_3_7_8_1_3_7.0
UpperCAmelCase__ : Any = 6_3_5_6_7_5_2.3_1_4_2_4_5
UpperCAmelCase__ : List[str] = 6_37_81_37
def A ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> float:
'''simple docstring'''
lowerCAmelCase__ = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
lowerCAmelCase__ = atan((1 - flattening) * tan(radians(UpperCamelCase_ ) ) )
lowerCAmelCase__ = atan((1 - flattening) * tan(radians(UpperCamelCase_ ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
lowerCAmelCase__ = haversine_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
lowerCAmelCase__ = (b_lata + b_lata) / 2
lowerCAmelCase__ = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
lowerCAmelCase__ = (sin(UpperCamelCase_ ) ** 2) * (cos(UpperCamelCase_ ) ** 2)
lowerCAmelCase__ = cos(sigma / 2 ) ** 2
lowerCAmelCase__ = (sigma - sin(UpperCamelCase_ )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
lowerCAmelCase__ = (cos(UpperCamelCase_ ) ** 2) * (sin(UpperCamelCase_ ) ** 2)
lowerCAmelCase__ = sin(sigma / 2 ) ** 2
lowerCAmelCase__ = (sigma + sin(UpperCamelCase_ )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 |
'''simple docstring'''
def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list:
'''simple docstring'''
lowerCAmelCase__ = word.split()
def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str:
lowerCAmelCase__ = max_width - width
lowerCAmelCase__ = len(UpperCamelCase_ )
if len(UpperCamelCase_ ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
lowerCAmelCase__ = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
lowerCAmelCase__ = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
lowerCAmelCase__ = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(UpperCamelCase_ ):
num_spaces_between_words_list[i] += 1
lowerCAmelCase__ = []
for i in range(UpperCamelCase_ ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * " " )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
for word in words:
if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(UpperCamelCase_ )
width += len(UpperCamelCase_ )
else:
# justify the line and add it to result
answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) )
# reset new line and new width
lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ )
lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ )
answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 48 | 1 |
'''simple docstring'''
from __future__ import annotations
def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[str] | None = None ) -> list[list[str]]:
'''simple docstring'''
lowerCAmelCase__ = word_bank or []
# create a table
lowerCAmelCase__ = len(UpperCamelCase_ ) + 1
lowerCAmelCase__ = []
for _ in range(UpperCamelCase_ ):
table.append([] )
# seed value
lowerCAmelCase__ = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(UpperCamelCase_ ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(UpperCamelCase_ )] == word:
lowerCAmelCase__ = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(UpperCamelCase_ )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(UpperCamelCase_ )]:
combination.reverse()
return table[len(UpperCamelCase_ )]
if __name__ == "__main__":
print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"]))
print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"]))
print(
all_construct(
"hexagonosaurus",
["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"],
)
)
| 48 |
'''simple docstring'''
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
UpperCAmelCase__ : str = sys.version_info >= (3, 10)
def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=UpperCamelCase_ )
@dataclass
class A :
snake_case__ :int
snake_case__ :float
snake_case__ :str
snake_case__ :bool
@dataclass
class A :
snake_case__ :int = 42
snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} )
@dataclass
class A :
snake_case__ :bool = False
snake_case__ :bool = True
snake_case__ :Optional[bool] = None
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = 'titi'
snake_case__ :Optional[int] = 'toto'
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'titi'
snake_case__ :str = 'toto'
snake_case__ :int = 42
@dataclass
class A :
snake_case__ :BasicEnum = "toto"
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = BasicEnum(self.foo )
@dataclass
class A :
snake_case__ :MixedTypeEnum = "toto"
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = MixedTypeEnum(self.foo )
@dataclass
class A :
snake_case__ :Optional[int] = None
snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} )
snake_case__ :Optional[str] = None
snake_case__ :Optional[List[str]] = list_field(default=[] )
snake_case__ :Optional[List[int]] = list_field(default=[] )
@dataclass
class A :
snake_case__ :List[int] = list_field(default=[] )
snake_case__ :List[int] = list_field(default=[1, 2, 3] )
snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class A :
snake_case__ :List[int] = field()
snake_case__ :str = field()
snake_case__ :BasicEnum = field()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = BasicEnum(self.required_enum )
@dataclass
class A :
snake_case__ :int
snake_case__ :"BasicEnum" = field()
snake_case__ :"Optional[bool]" = None
snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} )
snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
if is_python_no_less_than_3_10:
@dataclass
class A :
snake_case__ :bool = False
snake_case__ :bool = True
snake_case__ :bool | None = None
@dataclass
class A :
snake_case__ :int | None = None
snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} )
snake_case__ :str | None = None
snake_case__ :list[str] | None = list_field(default=[] )
snake_case__ :list[int] | None = list_field(default=[] )
class A ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ):
"""simple docstring"""
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"}
lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) )
del xx["type"], yy["type"]
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"]
((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ )
self.assertFalse(example.flag )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=42 , type=__magic_name__ )
expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" )
expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ )
lowerCAmelCase__ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
lowerCAmelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
@dataclass
class A :
snake_case__ :Literal["titi", "toto", 42] = "toto"
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
lowerCAmelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ )
expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ )
expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(
__magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , )
lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() )
self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" )
expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ )
expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ )
lowerCAmelCase__ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) )
lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() )
self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , )
expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ )
expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
"extra": 42,
}
self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" )
os.mkdir(__magic_name__ )
with open(temp_local_path + ".json" , "w+" ) as f:
json.dump(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" )
os.mkdir(__magic_name__ )
with open(temp_local_path + ".yaml" , "w+" ) as f:
yaml.dump(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
| 48 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE__ )
class A ( SCREAMING_SNAKE_CASE__ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
snake_case__ :str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} )
snake_case__ :ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} )
snake_case__ :ClassVar[Features] = Features(
{
'answers': Sequence(
{
'text': Value('string' ),
'answer_start': Value('int32' ),
} )
} )
snake_case__ :str = "question"
snake_case__ :str = "context"
snake_case__ :str = "answers"
@property
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 48 |
'''simple docstring'''
import sys
from collections import defaultdict
class A :
def __init__( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = []
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ):
"""simple docstring"""
return self.node_position[vertex]
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = pos
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ):
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
lowerCAmelCase__ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
lowerCAmelCase__ = 2 * start + 1
else:
lowerCAmelCase__ = 2 * start + 2
if heap[smallest_child] < heap[start]:
lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child]
lowerCAmelCase__ ,lowerCAmelCase__ = (
heap[start],
positions[start],
)
lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa
lowerCAmelCase__ = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , __magic_name__ )
self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = position[index]
while index != 0:
lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
lowerCAmelCase__ = heap[parent]
lowerCAmelCase__ = position[parent]
self.set_position(position[parent] , __magic_name__ )
else:
lowerCAmelCase__ = val
lowerCAmelCase__ = temp
self.set_position(__magic_name__ , __magic_name__ )
break
lowerCAmelCase__ = parent
else:
lowerCAmelCase__ = val
lowerCAmelCase__ = temp
self.set_position(__magic_name__ , 0 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ):
"""simple docstring"""
lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1
for i in range(__magic_name__ , -1 , -1 ):
self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = positions[0]
lowerCAmelCase__ = sys.maxsize
self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ )
return temp
def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = Heap()
lowerCAmelCase__ = [0] * len(UpperCamelCase_ )
lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex
lowerCAmelCase__ = []
for vertex in range(len(UpperCamelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase_ )
heap.node_position.append(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = 1
lowerCAmelCase__ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
lowerCAmelCase__ = 0
lowerCAmelCase__ = distance
heap.heapify(UpperCamelCase_ , UpperCamelCase_ )
for _ in range(1 , len(UpperCamelCase_ ) ):
lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
lowerCAmelCase__ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase_ )]
):
lowerCAmelCase__ = distance
heap.bottom_to_top(
UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip())
UpperCAmelCase__ : str = defaultdict(list)
for _ in range(edges_number):
UpperCAmelCase__ : int = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 48 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase__ : str = logging.get_logger(__name__)
UpperCAmelCase__ : Optional[Any] = {
"facebook/data2vec-vision-base-ft": (
"https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"
),
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Optional[int] = 'data2vec-vision'
def __init__( self : Optional[Any] , __magic_name__ : Optional[int]=768 , __magic_name__ : Any=12 , __magic_name__ : int=12 , __magic_name__ : str=3072 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.02 , __magic_name__ : Any=1E-12 , __magic_name__ : Dict=224 , __magic_name__ : Dict=16 , __magic_name__ : List[Any]=3 , __magic_name__ : Tuple=False , __magic_name__ : Optional[int]=False , __magic_name__ : Any=False , __magic_name__ : Optional[Any]=False , __magic_name__ : List[Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Tuple=True , __magic_name__ : Dict=[3, 5, 7, 11] , __magic_name__ : int=[1, 2, 3, 6] , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=0.4 , __magic_name__ : int=256 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : Union[str, Any]=False , __magic_name__ : Optional[int]=255 , **__magic_name__ : int , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = image_size
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = use_mask_token
lowerCAmelCase__ = use_absolute_position_embeddings
lowerCAmelCase__ = use_relative_position_bias
lowerCAmelCase__ = use_shared_relative_position_bias
lowerCAmelCase__ = layer_scale_init_value
lowerCAmelCase__ = drop_path_rate
lowerCAmelCase__ = use_mean_pooling
# decode head attributes (semantic segmentation)
lowerCAmelCase__ = out_indices
lowerCAmelCase__ = pool_scales
# auxiliary head attributes (semantic segmentation)
lowerCAmelCase__ = use_auxiliary_head
lowerCAmelCase__ = auxiliary_loss_weight
lowerCAmelCase__ = auxiliary_channels
lowerCAmelCase__ = auxiliary_num_convs
lowerCAmelCase__ = auxiliary_concat_input
lowerCAmelCase__ = semantic_loss_ignore_index
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = version.parse('1.11' )
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
return 1E-4
| 48 |
'''simple docstring'''
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model")
if is_sentencepiece_available():
import sentencepiece as sp
UpperCAmelCase__ : Tuple = 5
UpperCAmelCase__ : List[Any] = 10
@require_sentencepiece
@require_tokenizers
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Tuple = SpeechaTextTokenizer
snake_case__ :Dict = False
snake_case__ :Optional[int] = True
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
super().setUp()
lowerCAmelCase__ = sp.SentencePieceProcessor()
spm_model.Load(__magic_name__ )
lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"]
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )]
lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
lowerCAmelCase__ = Path(self.tmpdirname )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] )
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = "<pad>"
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(__magic_name__ ) , 1001 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1001 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = tokenizer.tokenize("This is a test" )
self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , )
lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , )
@require_sentencepiece
class A ( unittest.TestCase ):
snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium'
snake_case__ :Tuple = 'C\'est trop cool'
snake_case__ :List[str] = 'Esto es genial'
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 10000 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self.assertIn(__magic_name__ , self.tokenizer.all_special_ids )
lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2]
lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
self.assertNotIn(self.tokenizer.eos_token , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = "fr"
lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , __magic_name__ )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = "fr"
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
lowerCAmelCase__ = "es"
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 48 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__)
def A ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : List[Any]=False ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = "backbone." if is_semantic else ""
lowerCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""{prefix}blocks.{i}.norm1.weight""", F"""beit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""{prefix}blocks.{i}.norm1.bias""", F"""beit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""{prefix}blocks.{i}.attn.proj.weight""", F"""beit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""{prefix}blocks.{i}.attn.proj.bias""", F"""beit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""{prefix}blocks.{i}.norm2.weight""", F"""beit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""{prefix}blocks.{i}.norm2.bias""", F"""beit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.weight""", F"""beit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.bias""", F"""beit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.weight""", F"""beit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.bias""", F"""beit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
(F"""{prefix}cls_token""", "beit.embeddings.cls_token"),
(F"""{prefix}patch_embed.proj.weight""", "beit.embeddings.patch_embeddings.projection.weight"),
(F"""{prefix}patch_embed.proj.bias""", "beit.embeddings.patch_embeddings.projection.bias"),
(F"""{prefix}pos_embed""", "beit.embeddings.position_embeddings"),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
("mask_token", "beit.embeddings.mask_token"),
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
("fc_norm.weight", "beit.pooler.layernorm.weight"),
("fc_norm.bias", "beit.pooler.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any=False , UpperCamelCase_ : Any=False ) -> int:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
lowerCAmelCase__ = "backbone." if is_semantic else ""
# queries, keys and values
lowerCAmelCase__ = state_dict.pop(F"""{prefix}blocks.{i}.attn.qkv.weight""" )
lowerCAmelCase__ = state_dict.pop(F"""{prefix}blocks.{i}.attn.q_bias""" )
lowerCAmelCase__ = state_dict.pop(F"""{prefix}blocks.{i}.attn.v_bias""" )
lowerCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase__ = q_bias
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
lowerCAmelCase__ = state_dict.pop(F"""{prefix}blocks.{i}.gamma_1""" )
lowerCAmelCase__ = state_dict.pop(F"""{prefix}blocks.{i}.gamma_2""" )
lowerCAmelCase__ = gamma_a
lowerCAmelCase__ = gamma_a
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase__ = dct.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def A ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def A ( UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : int=False ) -> int:
'''simple docstring'''
lowerCAmelCase__ = False if "rvlcdip" in checkpoint_url else True
lowerCAmelCase__ = BeitConfig(use_absolute_position_embeddings=UpperCamelCase_ , use_mask_token=UpperCamelCase_ )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
lowerCAmelCase__ = 10_24
lowerCAmelCase__ = 40_96
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
# labels
if "rvlcdip" in checkpoint_url:
lowerCAmelCase__ = 16
lowerCAmelCase__ = "huggingface/label-files"
lowerCAmelCase__ = "rvlcdip-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["model"]
lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , has_lm_head=UpperCamelCase_ )
for src, dest in rename_keys:
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , has_lm_head=UpperCamelCase_ )
# load HuggingFace model
lowerCAmelCase__ = BeitForMaskedImageModeling(UpperCamelCase_ ) if has_lm_head else BeitForImageClassification(UpperCamelCase_ )
model.eval()
model.load_state_dict(UpperCamelCase_ )
# Check outputs on an image
lowerCAmelCase__ = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase_ )
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" )
lowerCAmelCase__ = encoding["pixel_values"]
lowerCAmelCase__ = model(UpperCamelCase_ )
lowerCAmelCase__ = outputs.logits
# verify logits
lowerCAmelCase__ = [1, 16] if "rvlcdip" in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(UpperCamelCase_ ), "Shape of logits not as expected"
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(UpperCamelCase_ )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(UpperCamelCase_ )
if push_to_hub:
if has_lm_head:
lowerCAmelCase__ = "dit-base" if "base" in checkpoint_url else "dit-large"
else:
lowerCAmelCase__ = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip"
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCamelCase_ , UpperCamelCase_ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=UpperCamelCase_ , )
model.push_to_hub(
repo_path_or_name=Path(UpperCamelCase_ , UpperCamelCase_ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=UpperCamelCase_ , )
if __name__ == "__main__":
UpperCAmelCase__ : Any = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
UpperCAmelCase__ : List[Any] = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 48 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
# General docstring
UpperCAmelCase__ : int = "RegNetConfig"
# Base docstring
UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7]
# Image classification docstring
UpperCAmelCase__ : Tuple = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat"
UpperCAmelCase__ : int = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A ( tf.keras.layers.Layer ):
def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
lowerCAmelCase__ = tf.keras.layers.ConvaD(
filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , )
lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) )
lowerCAmelCase__ = self.normalization(__magic_name__ )
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = config.num_channels
lowerCAmelCase__ = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = shape_list(__magic_name__ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) )
lowerCAmelCase__ = self.embedder(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = tf.keras.layers.ConvaD(
filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" )
lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ):
"""simple docstring"""
return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ )
class A ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" )
lowerCAmelCase__ = [
tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ),
tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ),
]
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.pooler(__magic_name__ )
for layer_module in self.attention:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = hidden_state * pooled
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = in_channels != out_channels or stride != 1
lowerCAmelCase__ = max(1 , out_channels // config.groups_width )
lowerCAmelCase__ = (
TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
lowerCAmelCase__ = [
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
__magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ),
]
lowerCAmelCase__ = ACTaFN[config.hidden_act]
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = hidden_state
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = self.shortcut(__magic_name__ )
hidden_state += residual
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = in_channels != out_channels or stride != 1
lowerCAmelCase__ = max(1 , out_channels // config.groups_width )
lowerCAmelCase__ = (
TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
lowerCAmelCase__ = [
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
__magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ),
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ),
]
lowerCAmelCase__ = ACTaFN[config.hidden_act]
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = hidden_state
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = self.shortcut(__magic_name__ )
hidden_state += residual
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
lowerCAmelCase__ = [
# downsampling is done in the first layer with stride of 2
layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ),
*[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ):
"""simple docstring"""
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) )
lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ):
"""simple docstring"""
lowerCAmelCase__ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowerCAmelCase__ = hidden_states + (hidden_state,)
lowerCAmelCase__ = stage_module(__magic_name__ )
if output_hidden_states:
lowerCAmelCase__ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ )
@keras_serializable
class A ( tf.keras.layers.Layer ):
snake_case__ :List[Any] = RegNetConfig
def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = config
lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" )
lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" )
lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" )
@unpack_inputs
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = self.encoder(
__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = encoder_outputs[0]
lowerCAmelCase__ = self.pooler(__magic_name__ )
# Change to NCHW output format have uniformity in the modules
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) )
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :str = RegNetConfig
snake_case__ :Optional[Any] = 'regnet'
snake_case__ :Tuple = 'pixel_values'
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , )
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.regnet(
pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , )
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ):
"""simple docstring"""
super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = config.num_labels
lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" )
# classification head
lowerCAmelCase__ = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.regnet(
__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1]
lowerCAmelCase__ = self.classifier[0](__magic_name__ )
lowerCAmelCase__ = self.classifier[1](__magic_name__ )
lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ )
if not return_dict:
lowerCAmelCase__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
| 48 | 1 |
'''simple docstring'''
from __future__ import annotations
def A ( UpperCamelCase_ : list[int | str] ) -> None:
'''simple docstring'''
create_state_space_tree(UpperCamelCase_ , [] , 0 , [0 for i in range(len(UpperCamelCase_ ) )] )
def A ( UpperCamelCase_ : list[int | str] , UpperCamelCase_ : list[int | str] , UpperCamelCase_ : int , UpperCamelCase_ : list[int] , ) -> None:
'''simple docstring'''
if index == len(UpperCamelCase_ ):
print(UpperCamelCase_ )
return
for i in range(len(UpperCamelCase_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
lowerCAmelCase__ = True
create_state_space_tree(UpperCamelCase_ , UpperCamelCase_ , index + 1 , UpperCamelCase_ )
current_sequence.pop()
lowerCAmelCase__ = False
UpperCAmelCase__ : list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
UpperCAmelCase__ : list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 48 |
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def A ( UpperCamelCase_ : Tuple ) -> int:
'''simple docstring'''
for param in module.parameters():
lowerCAmelCase__ = False
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
lowerCAmelCase__ = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = plt.imshow(UpperCamelCase_ )
fig.axes.get_xaxis().set_visible(UpperCamelCase_ )
fig.axes.get_yaxis().set_visible(UpperCamelCase_ )
plt.show()
def A ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = datetime.now()
lowerCAmelCase__ = current_time.strftime("%H:%M:%S" )
return timestamp
| 48 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class A :
def __init__( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ):
"""simple docstring"""
if nodea not in self.connections:
self.add_node(__magic_name__ )
if nodea not in self.connections:
self.add_node(__magic_name__ )
lowerCAmelCase__ = probability
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
return list(self.connections )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]:
'''simple docstring'''
lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = Counter(graph.get_nodes() )
lowerCAmelCase__ = start
for _ in range(UpperCamelCase_ ):
lowerCAmelCase__ = graph.transition(UpperCamelCase_ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__)
def A ( UpperCamelCase_ : str ) -> int:
'''simple docstring'''
if "resnet-50" in model_name:
lowerCAmelCase__ = ResNetConfig.from_pretrained("microsoft/resnet-50" )
elif "resnet-101" in model_name:
lowerCAmelCase__ = ResNetConfig.from_pretrained("microsoft/resnet-101" )
else:
raise ValueError("Model name should include either resnet50 or resnet101" )
lowerCAmelCase__ = DetrConfig(use_timm_backbone=UpperCamelCase_ , backbone_config=UpperCamelCase_ )
# set label attributes
lowerCAmelCase__ = "panoptic" in model_name
if is_panoptic:
lowerCAmelCase__ = 2_50
else:
lowerCAmelCase__ = 91
lowerCAmelCase__ = "huggingface/label-files"
lowerCAmelCase__ = "coco-detection-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
return config, is_panoptic
def A ( UpperCamelCase_ : Tuple ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = []
# stem
# fmt: off
rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") )
rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") )
rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") )
rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") )
rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") )
# stages
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
# shortcut
if layer_idx == 0:
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""",
) )
# 3 convs
for i in range(3 ):
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""",
) )
# fmt: on
for i in range(config.encoder_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(
F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""",
F"""encoder.layers.{i}.self_attn.out_proj.weight""",
) )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") )
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""",
F"""decoder.layers.{i}.self_attn.out_proj.weight""",
) )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") )
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""",
F"""decoder.layers.{i}.encoder_attn.out_proj.weight""",
) )
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""",
F"""decoder.layers.{i}.encoder_attn.out_proj.bias""",
) )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") )
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
("input_proj.weight", "input_projection.weight"),
("input_proj.bias", "input_projection.bias"),
("query_embed.weight", "query_position_embeddings.weight"),
("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
("class_embed.weight", "class_labels_classifier.weight"),
("class_embed.bias", "class_labels_classifier.bias"),
("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
] )
return rename_keys
def A ( UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ) -> str:
'''simple docstring'''
lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def A ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Any=False ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = ""
if is_panoptic:
lowerCAmelCase__ = "detr."
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[:2_56, :]
lowerCAmelCase__ = in_proj_bias[:2_56]
lowerCAmelCase__ = in_proj_weight[2_56:5_12, :]
lowerCAmelCase__ = in_proj_bias[2_56:5_12]
lowerCAmelCase__ = in_proj_weight[-2_56:, :]
lowerCAmelCase__ = in_proj_bias[-2_56:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" )
lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[:2_56, :]
lowerCAmelCase__ = in_proj_bias[:2_56]
lowerCAmelCase__ = in_proj_weight[2_56:5_12, :]
lowerCAmelCase__ = in_proj_bias[2_56:5_12]
lowerCAmelCase__ = in_proj_weight[-2_56:, :]
lowerCAmelCase__ = in_proj_bias[-2_56:]
# read in weights + bias of input projection layer of cross-attention
lowerCAmelCase__ = state_dict.pop(
F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" )
lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
lowerCAmelCase__ = in_proj_weight_cross_attn[:2_56, :]
lowerCAmelCase__ = in_proj_bias_cross_attn[:2_56]
lowerCAmelCase__ = in_proj_weight_cross_attn[2_56:5_12, :]
lowerCAmelCase__ = in_proj_bias_cross_attn[2_56:5_12]
lowerCAmelCase__ = in_proj_weight_cross_attn[-2_56:, :]
lowerCAmelCase__ = in_proj_bias_cross_attn[-2_56:]
def A ( ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Union[str, Any]=False ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ ,lowerCAmelCase__ = get_detr_config(UpperCamelCase_ )
# load original model from torch hub
lowerCAmelCase__ = {
"detr-resnet-50": "detr_resnet50",
"detr-resnet-101": "detr_resnet101",
}
logger.info(F"""Converting model {model_name}...""" )
lowerCAmelCase__ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCamelCase_ ).eval()
lowerCAmelCase__ = detr.state_dict()
# rename keys
for src, dest in create_rename_keys(UpperCamelCase_ ):
if is_panoptic:
lowerCAmelCase__ = "detr." + src
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# query, key and value matrices need special treatment
read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
lowerCAmelCase__ = "detr.model." if is_panoptic else "model."
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("detr" )
and not key.startswith("class_labels_classifier" )
and not key.startswith("bbox_predictor" )
):
lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ):
continue
else:
lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
else:
if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ):
lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
# finally, create HuggingFace model and load state dict
lowerCAmelCase__ = DetrForSegmentation(UpperCamelCase_ ) if is_panoptic else DetrForObjectDetection(UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
# verify our conversion on an image
lowerCAmelCase__ = "coco_panoptic" if is_panoptic else "coco_detection"
lowerCAmelCase__ = DetrImageProcessor(format=UpperCamelCase_ )
lowerCAmelCase__ = processor(images=prepare_img() , return_tensors="pt" )
lowerCAmelCase__ = encoding["pixel_values"]
lowerCAmelCase__ = detr(UpperCamelCase_ )
lowerCAmelCase__ = model(UpperCamelCase_ )
assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 )
assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
processor.save_pretrained(UpperCamelCase_ )
if push_to_hub:
# Upload model and image processor to the hub
logger.info("Uploading PyTorch model and image processor to the hub..." )
model.push_to_hub(F"""nielsr/{model_name}""" )
processor.push_to_hub(F"""nielsr/{model_name}""" )
if __name__ == "__main__":
UpperCAmelCase__ : str = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="detr-resnet-50",
type=str,
choices=["detr-resnet-50", "detr-resnet-101"],
help="Name of the DETR model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.")
UpperCAmelCase__ : Tuple = parser.parse_args()
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 48 |
'''simple docstring'''
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ )
print(F"""Building PyTorch model from configuration: {config}""" )
if is_trivia_qa:
lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ )
else:
lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--big_bird_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
)
UpperCAmelCase__ : int = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 48 | 1 |
'''simple docstring'''
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase__ : str = logging.get_logger(__name__)
def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = RobertaPreLayerNormConfig.from_pretrained(
UpperCamelCase_ , architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
lowerCAmelCase__ = torch.load(hf_hub_download(repo_id=UpperCamelCase_ , filename="pytorch_model.bin" ) )
lowerCAmelCase__ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
lowerCAmelCase__ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
lowerCAmelCase__ = tensor_value
lowerCAmelCase__ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=UpperCamelCase_ , config=UpperCamelCase_ , state_dict=UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
# convert tokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ )
tokenizer.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
UpperCAmelCase__ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint-repo",
default=None,
type=str,
required=True,
help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase__ : Tuple = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 48 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class A :
def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ):
"""simple docstring"""
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_input_mask
lowerCAmelCase__ = use_token_type_ids
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = block_sizes
lowerCAmelCase__ = num_decoder_layers
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_head
lowerCAmelCase__ = d_head
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = 2
lowerCAmelCase__ = num_labels
lowerCAmelCase__ = num_choices
lowerCAmelCase__ = scope
lowerCAmelCase__ = initializer_std
# Used in the tests to check the size of the first attention layer
lowerCAmelCase__ = n_head
# Used in the tests to check the size of the first hidden state
lowerCAmelCase__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowerCAmelCase__ = self.num_hidden_layers + 2
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = None
if self.use_input_mask:
lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase__ = None
if self.use_token_type_ids:
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase__ = None
lowerCAmelCase__ = None
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = [input_ids, input_mask]
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = [input_ids, input_mask]
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_choices
lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.prepare_config_and_inputs()
(
(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,
) = config_and_inputs
lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :int = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
snake_case__ :Any = (
{
'feature-extraction': (TFFunnelBaseModel, TFFunnelModel),
'fill-mask': TFFunnelForMaskedLM,
'question-answering': TFFunnelForQuestionAnswering,
'text-classification': TFFunnelForSequenceClassification,
'token-classification': TFFunnelForTokenClassification,
'zero-shot': TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ :str = False
snake_case__ :Any = False
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Any = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
snake_case__ :int = False
snake_case__ :List[Any] = False
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
| 48 | 1 |
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'umt5'
snake_case__ :Any = ['past_key_values']
def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ):
"""simple docstring"""
super().__init__(
is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = d_kv
lowerCAmelCase__ = d_ff
lowerCAmelCase__ = num_layers
lowerCAmelCase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowerCAmelCase__ = num_heads
lowerCAmelCase__ = relative_attention_num_buckets
lowerCAmelCase__ = relative_attention_max_distance
lowerCAmelCase__ = dropout_rate
lowerCAmelCase__ = layer_norm_epsilon
lowerCAmelCase__ = initializer_factor
lowerCAmelCase__ = feed_forward_proj
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = self.feed_forward_proj.split("-" )
lowerCAmelCase__ = act_info[-1]
lowerCAmelCase__ = act_info[0] == "gated"
if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'" )
if feed_forward_proj == "gated-gelu":
lowerCAmelCase__ = "gelu_new"
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return self.d_model
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return self.num_heads
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.num_layers
class A ( SCREAMING_SNAKE_CASE__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
lowerCAmelCase__ = "past_encoder_sequence + sequence"
lowerCAmelCase__ = {0: "batch"}
lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="inputs" )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 13
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 5E-4
| 48 |
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'umt5'
snake_case__ :Any = ['past_key_values']
def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ):
"""simple docstring"""
super().__init__(
is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = d_kv
lowerCAmelCase__ = d_ff
lowerCAmelCase__ = num_layers
lowerCAmelCase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowerCAmelCase__ = num_heads
lowerCAmelCase__ = relative_attention_num_buckets
lowerCAmelCase__ = relative_attention_max_distance
lowerCAmelCase__ = dropout_rate
lowerCAmelCase__ = layer_norm_epsilon
lowerCAmelCase__ = initializer_factor
lowerCAmelCase__ = feed_forward_proj
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = self.feed_forward_proj.split("-" )
lowerCAmelCase__ = act_info[-1]
lowerCAmelCase__ = act_info[0] == "gated"
if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'" )
if feed_forward_proj == "gated-gelu":
lowerCAmelCase__ = "gelu_new"
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return self.d_model
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return self.num_heads
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.num_layers
class A ( SCREAMING_SNAKE_CASE__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
lowerCAmelCase__ = "past_encoder_sequence + sequence"
lowerCAmelCase__ = {0: "batch"}
lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="inputs" )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 13
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 5E-4
| 48 | 1 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCAmelCase__ : str = abspath(join(dirname(__file__), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def A ( UpperCamelCase_ : Any ) -> List[str]:
'''simple docstring'''
config.addinivalue_line(
"markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" )
config.addinivalue_line(
"markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" )
config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" )
config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" )
config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" )
config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" )
def A ( UpperCamelCase_ : List[str] ) -> Any:
'''simple docstring'''
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(UpperCamelCase_ )
def A ( UpperCamelCase_ : int ) -> Union[str, Any]:
'''simple docstring'''
from transformers.testing_utils import pytest_terminal_summary_main
lowerCAmelCase__ = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(UpperCamelCase_ , id=UpperCamelCase_ )
def A ( UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> Optional[int]:
'''simple docstring'''
if exitstatus == 5:
lowerCAmelCase__ = 0
# Doctest custom flag to ignore output.
UpperCAmelCase__ : List[str] = doctest.register_optionflag("IGNORE_RESULT")
UpperCAmelCase__ : Optional[Any] = doctest.OutputChecker
class A ( SCREAMING_SNAKE_CASE__ ):
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Tuple ):
"""simple docstring"""
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , __magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase__ : Any = CustomOutputChecker
UpperCAmelCase__ : str = HfDoctestModule
UpperCAmelCase__ : Optional[int] = HfDocTestParser
| 48 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class A :
def __init__( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = {}
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ):
"""simple docstring"""
if nodea not in self.connections:
self.add_node(__magic_name__ )
if nodea not in self.connections:
self.add_node(__magic_name__ )
lowerCAmelCase__ = probability
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
return list(self.connections )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]:
'''simple docstring'''
lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = Counter(graph.get_nodes() )
lowerCAmelCase__ = start
for _ in range(UpperCamelCase_ ):
lowerCAmelCase__ = graph.transition(UpperCamelCase_ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 | 1 |
'''simple docstring'''
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json"
),
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :int = 'xlm-prophetnet'
snake_case__ :int = ['past_key_values']
snake_case__ :Tuple = {
'num_attention_heads': 'num_encoder_attention_heads',
}
def __init__( self : Tuple , __magic_name__ : Optional[float] = 0.1 , __magic_name__ : Optional[Union[str, Callable]] = "gelu" , __magic_name__ : Optional[int] = 30522 , __magic_name__ : Optional[int] = 1024 , __magic_name__ : Optional[int] = 4096 , __magic_name__ : Optional[int] = 12 , __magic_name__ : Optional[int] = 16 , __magic_name__ : Optional[int] = 4096 , __magic_name__ : Optional[int] = 12 , __magic_name__ : Optional[int] = 16 , __magic_name__ : Optional[float] = 0.1 , __magic_name__ : Optional[float] = 0.1 , __magic_name__ : Optional[int] = 512 , __magic_name__ : Optional[float] = 0.02 , __magic_name__ : Optional[bool] = True , __magic_name__ : Optional[bool] = True , __magic_name__ : Optional[int] = 0 , __magic_name__ : Optional[int] = 2 , __magic_name__ : Optional[int] = 32 , __magic_name__ : Optional[int] = 128 , __magic_name__ : Optional[bool] = False , __magic_name__ : Optional[float] = 0.0 , __magic_name__ : Optional[bool] = True , __magic_name__ : Optional[int] = 0 , __magic_name__ : Optional[int] = 1 , __magic_name__ : Optional[int] = 2 , **__magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = encoder_ffn_dim
lowerCAmelCase__ = num_encoder_layers
lowerCAmelCase__ = num_encoder_attention_heads
lowerCAmelCase__ = decoder_ffn_dim
lowerCAmelCase__ = num_decoder_layers
lowerCAmelCase__ = num_decoder_attention_heads
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = init_std # Normal(0, this parameter)
lowerCAmelCase__ = activation_function
# parameters for xlmprophetnet
lowerCAmelCase__ = ngram
lowerCAmelCase__ = num_buckets
lowerCAmelCase__ = relative_max_distance
lowerCAmelCase__ = disable_ngram_loss
lowerCAmelCase__ = eps
# 3 Types of Dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = dropout
lowerCAmelCase__ = use_cache
super().__init__(
pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
@property
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ):
"""simple docstring"""
raise NotImplementedError(
"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
" `num_decoder_layers`." )
| 48 |
'''simple docstring'''
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
UpperCAmelCase__ : Optional[Any] = pytest.mark.integration
UpperCAmelCase__ : str = {"comet"}
UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None
UpperCAmelCase__ : Optional[int] = {"code_eval"}
UpperCAmelCase__ : List[Any] = os.name == "nt"
UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"}
UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None
def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( UpperCamelCase_ : List[Any] ) -> str:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[int] , UpperCamelCase_ : int ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( UpperCamelCase_ : Any ) -> int:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@local
class A ( parameterized.TestCase ):
snake_case__ :Union[str, Any] = {}
snake_case__ :Optional[Any] = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = "[...]"
lowerCAmelCase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path )
lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ )
# check parameters
lowerCAmelCase__ = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ):
with self.use_local_metrics():
try:
lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = "[...]"
lowerCAmelCase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path )
# run doctest
with self.use_local_metrics():
lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ):
yield
else:
yield
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ):
return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ )
with patch("datasets.load_metric" ) as mock_load_metric:
lowerCAmelCase__ = load_local_metric
yield
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ):
"""simple docstring"""
def wrapper(__magic_name__ : Dict ):
lowerCAmelCase__ = contextmanager(__magic_name__ )
lowerCAmelCase__ = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt" )
def A ( UpperCamelCase_ : str ) -> Any:
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags
class A ( SCREAMING_SNAKE_CASE__ ):
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ):
"""simple docstring"""
assert len(input_dict["input_ids"] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor" ) as mock_create_predictor:
lowerCAmelCase__ = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore" )
def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
import torch
def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model" ), patch(
"bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf:
lowerCAmelCase__ = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet" )
def A ( UpperCamelCase_ : Optional[int] ) -> Any:
'''simple docstring'''
def load_from_checkpoint(UpperCamelCase_ : Tuple ):
class A :
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ):
"""simple docstring"""
assert len(__magic_name__ ) == 2
lowerCAmelCase__ = [0.19, 0.92]
return scores, sum(__magic_name__ ) / len(__magic_name__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model" ) as mock_download_model:
lowerCAmelCase__ = None
with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint:
lowerCAmelCase__ = load_from_checkpoint
yield
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) )
lowerCAmelCase__ = "ERROR"
lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"""
with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ):
metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
| 48 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
UpperCAmelCase__ : Optional[Any] = {
"configuration_audio_spectrogram_transformer": [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ASTConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ASTForAudioClassification",
"ASTModel",
"ASTPreTrainedModel",
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Any = ["ASTFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
UpperCAmelCase__ : int = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M'
snake_case__ :Optional[Any] = (
'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '
'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '
'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '
'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'
)
snake_case__ :List[Any] = 'translator'
snake_case__ :List[Any] = AutoTokenizer
snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM
snake_case__ :List[str] = LANGUAGE_CODES
snake_case__ :List[Any] = ['text', 'text', 'text']
snake_case__ :List[Any] = ['text']
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ):
"""simple docstring"""
if src_lang not in self.lang_to_code:
raise ValueError(f"""{src_lang} is not a supported language.""" )
if tgt_lang not in self.lang_to_code:
raise ValueError(f"""{tgt_lang} is not a supported language.""" )
lowerCAmelCase__ = self.lang_to_code[src_lang]
lowerCAmelCase__ = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
__magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ):
"""simple docstring"""
return self.model.generate(**__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
| 48 | 1 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :str = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Optional[int]=0 ):
"""simple docstring"""
lowerCAmelCase__ = np.random.RandomState(__magic_name__ )
lowerCAmelCase__ = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = self.get_dummy_inputs()
lowerCAmelCase__ = pipe(**__magic_name__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowerCAmelCase__ = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
lowerCAmelCase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = self.get_dummy_inputs()
lowerCAmelCase__ = pipe(**__magic_name__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowerCAmelCase__ = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
lowerCAmelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = self.get_dummy_inputs()
lowerCAmelCase__ = pipe(**__magic_name__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowerCAmelCase__ = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
lowerCAmelCase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = self.get_dummy_inputs()
lowerCAmelCase__ = pipe(**__magic_name__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowerCAmelCase__ = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
lowerCAmelCase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = self.get_dummy_inputs()
lowerCAmelCase__ = pipe(**__magic_name__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowerCAmelCase__ = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = self.get_dummy_inputs()
lowerCAmelCase__ = pipe(**__magic_name__ ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowerCAmelCase__ = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = self.get_dummy_inputs()
lowerCAmelCase__ = 3 * [inputs["prompt"]]
# forward
lowerCAmelCase__ = pipe(**__magic_name__ )
lowerCAmelCase__ = output.images[0, -3:, -3:, -1]
lowerCAmelCase__ = self.get_dummy_inputs()
lowerCAmelCase__ = 3 * [inputs.pop("prompt" )]
lowerCAmelCase__ = pipe.tokenizer(
__magic_name__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors="np" , )
lowerCAmelCase__ = text_inputs["input_ids"]
lowerCAmelCase__ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0]
lowerCAmelCase__ = prompt_embeds
# forward
lowerCAmelCase__ = pipe(**__magic_name__ )
lowerCAmelCase__ = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = self.get_dummy_inputs()
lowerCAmelCase__ = 3 * ["this is a negative prompt"]
lowerCAmelCase__ = negative_prompt
lowerCAmelCase__ = 3 * [inputs["prompt"]]
# forward
lowerCAmelCase__ = pipe(**__magic_name__ )
lowerCAmelCase__ = output.images[0, -3:, -3:, -1]
lowerCAmelCase__ = self.get_dummy_inputs()
lowerCAmelCase__ = 3 * [inputs.pop("prompt" )]
lowerCAmelCase__ = []
for p in [prompt, negative_prompt]:
lowerCAmelCase__ = pipe.tokenizer(
__magic_name__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors="np" , )
lowerCAmelCase__ = text_inputs["input_ids"]
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] )
lowerCAmelCase__ ,lowerCAmelCase__ = embeds
# forward
lowerCAmelCase__ = pipe(**__magic_name__ )
lowerCAmelCase__ = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@nightly
@require_onnxruntime
@require_torch_gpu
class A ( unittest.TestCase ):
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = ort.SessionOptions()
lowerCAmelCase__ = False
return options
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = "A painting of a squirrel eating a burger"
np.random.seed(0 )
lowerCAmelCase__ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" )
lowerCAmelCase__ = output.images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCAmelCase__ = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = DDIMScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" )
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = "open neural network exchange"
lowerCAmelCase__ = np.random.RandomState(0 )
lowerCAmelCase__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__magic_name__ , output_type="np" )
lowerCAmelCase__ = output.images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCAmelCase__ = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" )
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = "open neural network exchange"
lowerCAmelCase__ = np.random.RandomState(0 )
lowerCAmelCase__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__magic_name__ , output_type="np" )
lowerCAmelCase__ = output.images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCAmelCase__ = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = 0
def test_callback_fn(__magic_name__ : int , __magic_name__ : int , __magic_name__ : np.ndarray ) -> None:
lowerCAmelCase__ = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
lowerCAmelCase__ = latents[0, -3:, -3:, -1]
lowerCAmelCase__ = np.array(
[-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
lowerCAmelCase__ = latents[0, -3:, -3:, -1]
lowerCAmelCase__ = np.array(
[-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3
lowerCAmelCase__ = False
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__magic_name__ )
lowerCAmelCase__ = "Andromeda galaxy in a bottle"
lowerCAmelCase__ = np.random.RandomState(0 )
pipe(
prompt=__magic_name__ , num_inference_steps=5 , guidance_scale=7.5 , generator=__magic_name__ , callback=__magic_name__ , callback_steps=1 , )
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
assert isinstance(__magic_name__ , __magic_name__ )
assert pipe.safety_checker is None
lowerCAmelCase__ = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
lowerCAmelCase__ = OnnxStableDiffusionPipeline.from_pretrained(__magic_name__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowerCAmelCase__ = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
| 48 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : int = logging.get_logger(__name__)
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = 'timm_backbone'
def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = backbone
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = features_only
lowerCAmelCase__ = use_pretrained_backbone
lowerCAmelCase__ = True
lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
| 48 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : List[Any] = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"}
UpperCAmelCase__ : Optional[Any] = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = VOCAB_FILES_NAMES
snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(
unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding="utf-8" ) as vocab_handle:
lowerCAmelCase__ = json.load(__magic_name__ )
lowerCAmelCase__ = {v: k for k, v in self.vocab.items()}
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return len(self.vocab )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = []
for s in text:
char_tokens.extend(__magic_name__ )
return char_tokens
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ):
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ):
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" )
return (vocab_file,)
| 48 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base'
snake_case__ :List[Any] = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
snake_case__ :List[Any] = 'image_captioner'
snake_case__ :Optional[int] = AutoModelForVisionaSeq
snake_case__ :Optional[int] = ['image']
snake_case__ :Any = ['text']
def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ):
"""simple docstring"""
requires_backends(self , ["vision"] )
super().__init__(*__magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ):
"""simple docstring"""
return self.pre_processor(images=__magic_name__ , return_tensors="pt" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
return self.model.generate(**__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ):
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
| 48 | 1 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
UpperCAmelCase__ : Optional[int] = {"LayoutLMv2Config", "LayoutLMv3Config"}
@is_pipeline_test
class A ( unittest.TestCase ):
snake_case__ :Union[str, Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
snake_case__ :Optional[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
snake_case__ :List[str] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
snake_case__ :Dict = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = pipeline(
task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" )
lowerCAmelCase__ = text_classifier("This is great !" )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}] )
lowerCAmelCase__ = text_classifier("This is great !" , top_k=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] )
lowerCAmelCase__ = text_classifier(["This is great !", "This is bad"] , top_k=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
] , )
lowerCAmelCase__ = text_classifier("This is great !" , top_k=1 )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}] )
# Legacy behavior
lowerCAmelCase__ = text_classifier("This is great !" , return_all_scores=__magic_name__ )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}] )
lowerCAmelCase__ = text_classifier("This is great !" , return_all_scores=__magic_name__ )
self.assertEqual(
nested_simplify(__magic_name__ ) , [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] )
lowerCAmelCase__ = text_classifier(["This is great !", "Something else"] , return_all_scores=__magic_name__ )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
] , )
lowerCAmelCase__ = text_classifier(["This is great !", "Something else"] , return_all_scores=__magic_name__ )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
{"label": "LABEL_0", "score": 0.504},
{"label": "LABEL_0", "score": 0.504},
] , )
@require_torch
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
import torch
lowerCAmelCase__ = pipeline(
task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , )
lowerCAmelCase__ = text_classifier("This is great !" )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}] )
@require_tf
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = pipeline(
task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" )
lowerCAmelCase__ = text_classifier("This is great !" )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}] )
@slow
@require_torch
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = pipeline("text-classification" )
lowerCAmelCase__ = text_classifier("This is great !" )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "POSITIVE", "score": 1.0}] )
lowerCAmelCase__ = text_classifier("This is bad !" )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "NEGATIVE", "score": 1.0}] )
lowerCAmelCase__ = text_classifier("Birds are a type of animal" )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "POSITIVE", "score": 0.988}] )
@slow
@require_tf
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = pipeline("text-classification" , framework="tf" )
lowerCAmelCase__ = text_classifier("This is great !" )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "POSITIVE", "score": 1.0}] )
lowerCAmelCase__ = text_classifier("This is bad !" )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "NEGATIVE", "score": 1.0}] )
lowerCAmelCase__ = text_classifier("Birds are a type of animal" )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "POSITIVE", "score": 0.988}] )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = TextClassificationPipeline(model=__magic_name__ , tokenizer=__magic_name__ )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
lowerCAmelCase__ = "HuggingFace is in"
lowerCAmelCase__ = text_classifier(__magic_name__ )
self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}] )
self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
lowerCAmelCase__ = ["HuggingFace is in ", "Paris is in France"]
lowerCAmelCase__ = text_classifier(__magic_name__ )
self.assertEqual(
nested_simplify(__magic_name__ ) , [{"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}, {"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}] , )
self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
lowerCAmelCase__ = text_classifier(__magic_name__ , top_k=__magic_name__ )
lowerCAmelCase__ = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__magic_name__ ) , [[{"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}] * N, [{"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}] * N] , )
lowerCAmelCase__ = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"}
lowerCAmelCase__ = text_classifier(__magic_name__ )
self.assertEqual(
nested_simplify(__magic_name__ ) , {"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )} , )
self.assertTrue(outputs["label"] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
lowerCAmelCase__ = [["HuggingFace is in ", "Paris is in France"]]
with self.assertRaises(__magic_name__ ):
text_classifier(__magic_name__ )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
lowerCAmelCase__ = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [{"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}] , )
self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
| 48 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : Union[str, Any] = "▁"
UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"}
UpperCAmelCase__ : Union[str, Any] = {
"vocab_file": {
"facebook/mbart-large-50-one-to-many-mmt": (
"https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model"
),
}
}
UpperCAmelCase__ : Optional[Any] = {
"facebook/mbart-large-50-one-to-many-mmt": 10_24,
}
# fmt: off
UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"]
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Optional[int] = VOCAB_FILES_NAMES
snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Tuple = ['input_ids', 'attention_mask']
snake_case__ :List[int] = []
snake_case__ :List[int] = []
def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ):
"""simple docstring"""
lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] )
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__magic_name__ ) )
lowerCAmelCase__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowerCAmelCase__ = 1
lowerCAmelCase__ = len(self.sp_model )
lowerCAmelCase__ = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ )
}
lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()}
lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX"
lowerCAmelCase__ = self.lang_code_to_id[self._src_lang]
lowerCAmelCase__ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.__dict__.copy()
lowerCAmelCase__ = None
return state
def __setstate__( self : List[Any] , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCAmelCase__ = {}
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ):
"""simple docstring"""
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = ""
lowerCAmelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
lowerCAmelCase__ = True
lowerCAmelCase__ = []
else:
current_sub_tokens.append(__magic_name__ )
lowerCAmelCase__ = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string.strip()
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , "wb" ) as fi:
lowerCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
lowerCAmelCase__ = [1] * len(self.prefix_tokens )
lowerCAmelCase__ = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones
return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ )
lowerCAmelCase__ = tgt_lang_id
return inputs
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ):
"""simple docstring"""
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = tgt_lang
return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.lang_code_to_id[src_lang]
lowerCAmelCase__ = [self.cur_lang_code_id]
lowerCAmelCase__ = [self.eos_token_id]
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.lang_code_to_id[tgt_lang]
lowerCAmelCase__ = [self.cur_lang_code_id]
lowerCAmelCase__ = [self.eos_token_id]
| 48 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ : List[Any] = {
"configuration_jukebox": [
"JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP",
"JukeboxConfig",
"JukeboxPriorConfig",
"JukeboxVQVAEConfig",
],
"tokenization_jukebox": ["JukeboxTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[str] = [
"JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST",
"JukeboxModel",
"JukeboxPreTrainedModel",
"JukeboxVQVAE",
"JukeboxPrior",
]
if TYPE_CHECKING:
from .configuration_jukebox import (
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
JukeboxConfig,
JukeboxPriorConfig,
JukeboxVQVAEConfig,
)
from .tokenization_jukebox import JukeboxTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_jukebox import (
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
JukeboxModel,
JukeboxPreTrainedModel,
JukeboxPrior,
JukeboxVQVAE,
)
else:
import sys
UpperCAmelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
if start < end:
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 )
count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ )
return count
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ = start - 1
for index in range(UpperCamelCase_ , UpperCamelCase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowerCAmelCase__ = new_pivot_index + 1
lowerCAmelCase__ = a[new_pivot_index]
lowerCAmelCase__ = a[index]
lowerCAmelCase__ = temp
lowerCAmelCase__ = a[new_pivot_index + 1]
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = temp
return new_pivot_index + 1, count
UpperCAmelCase__ : Tuple = TemporaryFile()
UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted
UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation
UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase__ : Optional[Any] = np.load(outfile)
UpperCAmelCase__ : Any = len(M) - 1
UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 48 | 1 |
'''simple docstring'''
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
UpperCAmelCase__ : Optional[int] = logging.getLogger(__name__)
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser(
description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)"
)
parser.add_argument(
"--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset."
)
parser.add_argument(
"--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file."
)
parser.add_argument("--vocab_size", default=3_05_22, type=int)
UpperCAmelCase__ : Union[str, Any] = parser.parse_args()
logger.info(F"Loading data from {args.data_file}")
with open(args.data_file, "rb") as fp:
UpperCAmelCase__ : Optional[int] = pickle.load(fp)
logger.info("Counting occurrences for MLM.")
UpperCAmelCase__ : Optional[int] = Counter()
for tk_ids in data:
counter.update(tk_ids)
UpperCAmelCase__ : str = [0] * args.vocab_size
for k, v in counter.items():
UpperCAmelCase__ : Dict = v
logger.info(F"Dump to {args.token_counts_dump}")
with open(args.token_counts_dump, "wb") as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
| 48 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def A ( UpperCamelCase_ : List[Any] ) -> Tuple:
'''simple docstring'''
if "img_encoder.pos_embed" in name:
lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" )
if "img_encoder.patch_embed.proj" in name:
lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" )
if "img_encoder.patch_embed.norm" in name:
lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" )
if "img_encoder.layers" in name:
lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" )
if "blocks" in name and "res" not in name:
lowerCAmelCase__ = name.replace("blocks" , "layers" )
if "attn" in name and "pre_assign" not in name:
lowerCAmelCase__ = name.replace("attn" , "self_attn" )
if "proj" in name and "self_attn" in name and "text" not in name:
lowerCAmelCase__ = name.replace("proj" , "out_proj" )
if "pre_assign_attn.attn.proj" in name:
lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" )
if "norm1" in name:
lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" )
if "norm2" in name and "pre_assign" not in name:
lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" )
if "img_encoder.norm" in name:
lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" )
# text encoder
if "text_encoder.token_embedding" in name:
lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" )
if "text_encoder.positional_embedding" in name:
lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" )
if "text_encoder.transformer.resblocks." in name:
lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." )
if "ln_1" in name:
lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" )
if "ln_2" in name:
lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" )
if "c_fc" in name:
lowerCAmelCase__ = name.replace("c_fc" , "fc1" )
if "c_proj" in name:
lowerCAmelCase__ = name.replace("c_proj" , "fc2" )
if "text_encoder" in name:
lowerCAmelCase__ = name.replace("text_encoder" , "text_model" )
if "ln_final" in name:
lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" )
# projection layers
if "img_projector.linear_hidden." in name:
lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." )
if "img_projector.linear_out." in name:
lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." )
if "text_projector.linear_hidden" in name:
lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" )
if "text_projector.linear_out" in name:
lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" )
return name
def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase__ = key.split("." )
lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] )
lowerCAmelCase__ = config.vision_config.hidden_size
if "weight" in key:
lowerCAmelCase__ = val[:dim, :]
lowerCAmelCase__ = val[dim : dim * 2, :]
lowerCAmelCase__ = val[-dim:, :]
else:
lowerCAmelCase__ = val[:dim]
lowerCAmelCase__ = val[dim : dim * 2]
lowerCAmelCase__ = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase__ = key.split("." )
lowerCAmelCase__ = int(key_split[3] )
lowerCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase__ = val[:dim, :]
lowerCAmelCase__ = val[
dim : dim * 2, :
]
lowerCAmelCase__ = val[-dim:, :]
else:
lowerCAmelCase__ = val[:dim]
lowerCAmelCase__ = val[dim : dim * 2]
lowerCAmelCase__ = val[-dim:]
else:
lowerCAmelCase__ = rename_key(UpperCamelCase_ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowerCAmelCase__ = val.squeeze_()
else:
lowerCAmelCase__ = val
return orig_state_dict
def A ( ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = GroupViTConfig()
lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval()
lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"]
lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0)
# verify result
lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" )
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" )
with torch.no_grad():
lowerCAmelCase__ = model(**UpperCamelCase_ )
if model_name == "groupvit-gcc-yfcc":
lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] )
elif model_name == "groupvit-gcc-redcaps":
lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] )
else:
raise ValueError(F"""Model name {model_name} not supported.""" )
assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 )
processor.save_pretrained(UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
print("Successfully saved processor and model to" , UpperCamelCase_ )
if push_to_hub:
print("Pushing to the hub..." )
processor.push_to_hub(UpperCamelCase_ , organization="nielsr" )
model.push_to_hub(UpperCamelCase_ , organization="nielsr" )
if __name__ == "__main__":
UpperCAmelCase__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model."
)
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint")
parser.add_argument(
"--model_name",
default="groupvit-gccy-fcc",
type=str,
help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.",
)
UpperCAmelCase__ : Any = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 48 | 1 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
UpperCAmelCase__ : Optional[Any] = logging.getLogger(__name__)
def A ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> int:
'''simple docstring'''
return (preds == labels).mean()
@dataclass
class A :
snake_case__ :str = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
snake_case__ :Optional[str] = field(
default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
snake_case__ :Optional[str] = field(
default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
snake_case__ :Optional[str] = field(
default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
@dataclass
class A :
snake_case__ :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} )
snake_case__ :str = field(metadata={'help': 'Should contain the data files for the task.'} )
snake_case__ :int = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
snake_case__ :bool = field(
default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
def A ( ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , UpperCamelCase_ )
# Set seed
set_seed(training_args.seed )
try:
lowerCAmelCase__ = processors[data_args.task_name]()
lowerCAmelCase__ = processor.get_labels()
lowerCAmelCase__ = len(UpperCamelCase_ )
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCAmelCase__ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
lowerCAmelCase__ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowerCAmelCase__ = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , )
# Get datasets
lowerCAmelCase__ = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=UpperCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowerCAmelCase__ = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=UpperCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(UpperCamelCase_ : EvalPrediction ) -> Dict:
lowerCAmelCase__ = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(UpperCamelCase_ , p.label_ids )}
# Data collator
lowerCAmelCase__ = DataCollatorWithPadding(UpperCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowerCAmelCase__ = Trainer(
model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , compute_metrics=UpperCamelCase_ , data_collator=UpperCamelCase_ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowerCAmelCase__ = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
lowerCAmelCase__ = trainer.evaluate()
lowerCAmelCase__ = os.path.join(training_args.output_dir , "eval_results.txt" )
if trainer.is_world_master():
with open(UpperCamelCase_ , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(" %s = %s" , UpperCamelCase_ , UpperCamelCase_ )
writer.write("%s = %s\n" % (key, value) )
results.update(UpperCamelCase_ )
return results
def A ( UpperCamelCase_ : int ) -> str:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 48 |
'''simple docstring'''
from __future__ import annotations
from functools import lru_cache
from math import ceil
UpperCAmelCase__ : Optional[Any] = 1_00
UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2))
primes.add(2)
UpperCAmelCase__ : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=1_00 )
def A ( UpperCamelCase_ : int ) -> set[int]:
'''simple docstring'''
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
lowerCAmelCase__ = set()
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def A ( UpperCamelCase_ : int = 50_00 ) -> int | None:
'''simple docstring'''
for number_to_partition in range(1 , UpperCamelCase_ ):
if len(partition(UpperCamelCase_ ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(F"{solution() = }")
| 48 | 1 |
'''simple docstring'''
UpperCAmelCase__ : Tuple = 6_55_21
def A ( UpperCamelCase_ : str ) -> int:
'''simple docstring'''
lowerCAmelCase__ = 1
lowerCAmelCase__ = 0
for plain_chr in plain_text:
lowerCAmelCase__ = (a + ord(UpperCamelCase_ )) % MOD_ADLER
lowerCAmelCase__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 48 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : List[Any] = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"}
UpperCAmelCase__ : Optional[Any] = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = VOCAB_FILES_NAMES
snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(
unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , )
with open(__magic_name__ , encoding="utf-8" ) as vocab_handle:
lowerCAmelCase__ = json.load(__magic_name__ )
lowerCAmelCase__ = {v: k for k, v in self.vocab.items()}
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return len(self.vocab )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = []
for s in text:
char_tokens.extend(__magic_name__ )
return char_tokens
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ):
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ):
"""simple docstring"""
return self.decoder.get(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" )
return (vocab_file,)
| 48 | 1 |
'''simple docstring'''
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
UpperCAmelCase__ : Optional[Any] = pytest.mark.integration
UpperCAmelCase__ : str = {"comet"}
UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None
UpperCAmelCase__ : Optional[int] = {"code_eval"}
UpperCAmelCase__ : List[Any] = os.name == "nt"
UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"}
UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None
def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( UpperCamelCase_ : List[Any] ) -> str:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[int] , UpperCamelCase_ : int ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( UpperCamelCase_ : Any ) -> int:
'''simple docstring'''
@wraps(UpperCamelCase_ )
def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"" )
else:
test_case(self , UpperCamelCase_ )
return wrapper
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@local
class A ( parameterized.TestCase ):
snake_case__ :Union[str, Any] = {}
snake_case__ :Optional[Any] = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = "[...]"
lowerCAmelCase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path )
lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ )
# check parameters
lowerCAmelCase__ = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ):
with self.use_local_metrics():
try:
lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = "[...]"
lowerCAmelCase__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path )
# run doctest
with self.use_local_metrics():
lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ):
yield
else:
yield
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ):
return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ )
with patch("datasets.load_metric" ) as mock_load_metric:
lowerCAmelCase__ = load_local_metric
yield
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ):
"""simple docstring"""
def wrapper(__magic_name__ : Dict ):
lowerCAmelCase__ = contextmanager(__magic_name__ )
lowerCAmelCase__ = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt" )
def A ( UpperCamelCase_ : str ) -> Any:
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags
class A ( SCREAMING_SNAKE_CASE__ ):
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ):
"""simple docstring"""
assert len(input_dict["input_ids"] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor" ) as mock_create_predictor:
lowerCAmelCase__ = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore" )
def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
import torch
def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model" ), patch(
"bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf:
lowerCAmelCase__ = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet" )
def A ( UpperCamelCase_ : Optional[int] ) -> Any:
'''simple docstring'''
def load_from_checkpoint(UpperCamelCase_ : Tuple ):
class A :
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ):
"""simple docstring"""
assert len(__magic_name__ ) == 2
lowerCAmelCase__ = [0.19, 0.92]
return scores, sum(__magic_name__ ) / len(__magic_name__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model" ) as mock_download_model:
lowerCAmelCase__ = None
with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint:
lowerCAmelCase__ = load_from_checkpoint
yield
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) )
lowerCAmelCase__ = "ERROR"
lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"""
with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ):
metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
| 48 |
'''simple docstring'''
from math import sqrt
def A ( UpperCamelCase_ : int ) -> int:
'''simple docstring'''
lowerCAmelCase__ = 0
for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ):
if n % i == 0 and i != sqrt(UpperCamelCase_ ):
total += i + n // i
elif i == sqrt(UpperCamelCase_ ):
total += i
return total - n
def A ( UpperCamelCase_ : int = 1_00_00 ) -> int:
'''simple docstring'''
lowerCAmelCase__ = sum(
i
for i in range(1 , UpperCamelCase_ )
if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 48 | 1 |
'''simple docstring'''
from __future__ import annotations
def A ( UpperCamelCase_ : int ) -> list[int]:
'''simple docstring'''
lowerCAmelCase__ = 2
lowerCAmelCase__ = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(UpperCamelCase_ )
if n > 1:
factors.append(UpperCamelCase_ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 |
'''simple docstring'''
import logging
import numpy as np
import pytest
from scipy.linalg import eigh
logging.basicConfig(level=logging.INFO, format="%(message)s")
def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return input_array.reshape((input_array.size, 1) )
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.mean(1 )
# Centralize the data of class i
lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ )
if i > 0:
# If covariance_sum is not None
covariance_sum += np.dot(UpperCamelCase_ , centered_data.T )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
lowerCAmelCase__ = features.mean(1 )
lowerCAmelCase__ = np.nan
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = features[:, labels == i]
lowerCAmelCase__ = data.shape[1]
lowerCAmelCase__ = data.mean(1 )
if i > 0:
# If covariance_sum is not None
covariance_sum += device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCAmelCase__ = device_data * np.dot(
column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , )
return covariance_sum / features.shape[1]
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
if features.any():
lowerCAmelCase__ = features.mean(1 )
# Center the dataset
lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) )
lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1]
lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ )
# Take all the columns in the reverse order (-1), and then takes only the first
lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions]
# Project the database on the new space
lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ )
logging.info("Principal Component Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray:
'''simple docstring'''
assert classes > dimensions
# Check if features have been already loaded
if features.any:
lowerCAmelCase__ ,lowerCAmelCase__ = eigh(
covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , )
lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions]
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ )
lowerCAmelCase__ = svd_matrix[:, 0:dimensions]
lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ )
logging.info("Linear Discriminant Analysis computed" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ )
logging.error("Dataset empty" )
raise AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] )
lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = 2
# Assert that the function raises an AssertionError if dimensions > classes
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = linear_discriminant_analysis(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if isinstance(UpperCamelCase_ , np.ndarray ):
raise AssertionError(
"Did not raise AssertionError for dimensions > classes" )
assert error_info.type is AssertionError
def A ( ) -> None:
'''simple docstring'''
lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] )
with pytest.raises(UpperCamelCase_ ) as error_info:
lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ )
if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ):
raise AssertionError
assert error_info.type is AssertionError
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48 | 1 |
'''simple docstring'''
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase__ : int = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase__ : Any = 10
UpperCAmelCase__ : Union[str, Any] = 2_56
def A ( UpperCamelCase_ : List[str] ) -> Optional[MinHash]:
'''simple docstring'''
if len(UpperCamelCase_ ) < MIN_NUM_TOKENS:
return None
lowerCAmelCase__ = MinHash(num_perm=UpperCamelCase_ )
for token in set(UpperCamelCase_ ):
min_hash.update(token.encode() )
return min_hash
def A ( UpperCamelCase_ : str ) -> Set[str]:
'''simple docstring'''
return {t for t in NON_ALPHA.split(UpperCamelCase_ ) if len(t.strip() ) > 0}
class A :
def __init__( self : Tuple , *,
__magic_name__ : float = 0.85 , ):
"""simple docstring"""
lowerCAmelCase__ = duplication_jaccard_threshold
lowerCAmelCase__ = NUM_PERM
lowerCAmelCase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
lowerCAmelCase__ = defaultdict(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Tuple , __magic_name__ : MinHash ):
"""simple docstring"""
lowerCAmelCase__ = self._index.query(__magic_name__ )
if code_key in self._index.keys:
print(f"""Duplicate key {code_key}""" )
return
self._index.insert(__magic_name__ , __magic_name__ )
if len(__magic_name__ ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(__magic_name__ )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = []
for base, duplicates in self._duplicate_clusters.items():
lowerCAmelCase__ = [base] + list(__magic_name__ )
# reformat the cluster to be a list of dict
lowerCAmelCase__ = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster]
duplicate_clusters.append(__magic_name__ )
return duplicate_clusters
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.get_duplicate_clusters()
with open(__magic_name__ , "w" ) as f:
json.dump(__magic_name__ , __magic_name__ )
def A ( UpperCamelCase_ : Optional[int] ) -> str:
'''simple docstring'''
lowerCAmelCase__ ,lowerCAmelCase__ = element
lowerCAmelCase__ = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def A ( UpperCamelCase_ : Type[Dataset] ) -> Dict:
'''simple docstring'''
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(UpperCamelCase_ , max_queue_size=1_00_00 ) , chunksize=1_00 , ):
if data is not None:
yield data
def A ( UpperCamelCase_ : Type[Dataset] , UpperCamelCase_ : float ) -> str:
'''simple docstring'''
lowerCAmelCase__ = DuplicationIndex(duplication_jaccard_threshold=UpperCamelCase_ )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(UpperCamelCase_ ) ) , max_queue_size=1_00 ) ):
di.add(UpperCamelCase_ , UpperCamelCase_ )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> float:
'''simple docstring'''
lowerCAmelCase__ = get_tokens(UpperCamelCase_ )
lowerCAmelCase__ = get_tokens(UpperCamelCase_ )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase__ : str = None
def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = []
for elementa in cluster:
lowerCAmelCase__ = _shared_dataset[elementa["base_index"]]["content"]
for elementa in extremes:
lowerCAmelCase__ = _shared_dataset[elementa["base_index"]]["content"]
if jaccard_similarity(UpperCamelCase_ , UpperCamelCase_ ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
lowerCAmelCase__ = 1
extremes.append(UpperCamelCase_ )
return extremes
def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> str:
'''simple docstring'''
global _shared_dataset
lowerCAmelCase__ = dataset
lowerCAmelCase__ = []
lowerCAmelCase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=UpperCamelCase_ )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
UpperCamelCase_ , UpperCamelCase_ , ) , total=len(UpperCamelCase_ ) , ):
extremes_list.append(UpperCamelCase_ )
return extremes_list
def A ( UpperCamelCase_ : Type[Dataset] , UpperCamelCase_ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
'''simple docstring'''
lowerCAmelCase__ = make_duplicate_clusters(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = {x["base_index"] for cluster in duplicate_clusters for x in cluster}
lowerCAmelCase__ = {}
lowerCAmelCase__ = find_extremes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
for extremes in extremes_clusters:
for element in extremes:
lowerCAmelCase__ = element
lowerCAmelCase__ = duplicate_indices - set(extreme_dict.keys() )
lowerCAmelCase__ = dataset.filter(lambda UpperCamelCase_ , UpperCamelCase_ : idx not in remove_indices , with_indices=UpperCamelCase_ )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
lowerCAmelCase__ = element["base_index"] in extreme_dict
if element["is_extreme"]:
lowerCAmelCase__ = extreme_dict[element["base_index"]]["copies"]
print(F"""Original dataset size: {len(UpperCamelCase_ )}""" )
print(F"""Number of duplicate clusters: {len(UpperCamelCase_ )}""" )
print(F"""Files in duplicate cluster: {len(UpperCamelCase_ )}""" )
print(F"""Unique files in duplicate cluster: {len(UpperCamelCase_ )}""" )
print(F"""Filtered dataset size: {len(UpperCamelCase_ )}""" )
return ds_filter, duplicate_clusters
| 48 |
'''simple docstring'''
def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list:
'''simple docstring'''
lowerCAmelCase__ = word.split()
def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str:
lowerCAmelCase__ = max_width - width
lowerCAmelCase__ = len(UpperCamelCase_ )
if len(UpperCamelCase_ ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
lowerCAmelCase__ = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
lowerCAmelCase__ = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
lowerCAmelCase__ = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(UpperCamelCase_ ):
num_spaces_between_words_list[i] += 1
lowerCAmelCase__ = []
for i in range(UpperCamelCase_ ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * " " )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
for word in words:
if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(UpperCamelCase_ )
width += len(UpperCamelCase_ )
else:
# justify the line and add it to result
answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) )
# reset new line and new width
lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ )
lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ )
answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 48 | 1 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
UpperCAmelCase__ : Union[str, Any] = True
except (ImportError, ModuleNotFoundError):
UpperCAmelCase__ : Tuple = False
if NLTK_AVAILABLE:
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
def A ( UpperCamelCase_ : str ) -> str:
'''simple docstring'''
re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
| 48 |
'''simple docstring'''
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
UpperCAmelCase__ : str = sys.version_info >= (3, 10)
def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=UpperCamelCase_ )
@dataclass
class A :
snake_case__ :int
snake_case__ :float
snake_case__ :str
snake_case__ :bool
@dataclass
class A :
snake_case__ :int = 42
snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} )
@dataclass
class A :
snake_case__ :bool = False
snake_case__ :bool = True
snake_case__ :Optional[bool] = None
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = 'titi'
snake_case__ :Optional[int] = 'toto'
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'titi'
snake_case__ :str = 'toto'
snake_case__ :int = 42
@dataclass
class A :
snake_case__ :BasicEnum = "toto"
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = BasicEnum(self.foo )
@dataclass
class A :
snake_case__ :MixedTypeEnum = "toto"
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = MixedTypeEnum(self.foo )
@dataclass
class A :
snake_case__ :Optional[int] = None
snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} )
snake_case__ :Optional[str] = None
snake_case__ :Optional[List[str]] = list_field(default=[] )
snake_case__ :Optional[List[int]] = list_field(default=[] )
@dataclass
class A :
snake_case__ :List[int] = list_field(default=[] )
snake_case__ :List[int] = list_field(default=[1, 2, 3] )
snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class A :
snake_case__ :List[int] = field()
snake_case__ :str = field()
snake_case__ :BasicEnum = field()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = BasicEnum(self.required_enum )
@dataclass
class A :
snake_case__ :int
snake_case__ :"BasicEnum" = field()
snake_case__ :"Optional[bool]" = None
snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} )
snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
if is_python_no_less_than_3_10:
@dataclass
class A :
snake_case__ :bool = False
snake_case__ :bool = True
snake_case__ :bool | None = None
@dataclass
class A :
snake_case__ :int | None = None
snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} )
snake_case__ :str | None = None
snake_case__ :list[str] | None = list_field(default=[] )
snake_case__ :list[int] | None = list_field(default=[] )
class A ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ):
"""simple docstring"""
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"}
lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) )
del xx["type"], yy["type"]
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"]
((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ )
self.assertFalse(example.flag )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=42 , type=__magic_name__ )
expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" )
expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ )
lowerCAmelCase__ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
lowerCAmelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
@dataclass
class A :
snake_case__ :Literal["titi", "toto", 42] = "toto"
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
lowerCAmelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ )
expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ )
expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(
__magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , )
lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() )
self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" )
expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ )
expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ )
expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ )
lowerCAmelCase__ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__magic_name__ )
for dataclass_type in dataclass_types:
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_args([] )
self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) )
lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() )
self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , )
expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ )
expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ )
self.argparsersEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
"extra": 42,
}
self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" )
os.mkdir(__magic_name__ )
with open(temp_local_path + ".json" , "w+" ) as f:
json.dump(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
lowerCAmelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" )
os.mkdir(__magic_name__ )
with open(temp_local_path + ".yaml" , "w+" ) as f:
yaml.dump(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0]
lowerCAmelCase__ = BasicExample(**__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
| 48 | 1 |
'''simple docstring'''
import re
import string
import numpy as np
import datasets
UpperCAmelCase__ : Tuple = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n"
UpperCAmelCase__ : int = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n"
UpperCAmelCase__ : str = "\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , reference_urls=[] , )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Optional[Any]=None , __magic_name__ : Dict=False , __magic_name__ : Any=False , __magic_name__ : List[Any]=False , ):
"""simple docstring"""
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
lowerCAmelCase__ = np.array([re.sub(__magic_name__ , "" , __magic_name__ ) for x in predictions] )
lowerCAmelCase__ = np.array([re.sub(__magic_name__ , "" , __magic_name__ ) for x in references] )
else:
lowerCAmelCase__ = np.asarray(__magic_name__ )
lowerCAmelCase__ = np.asarray(__magic_name__ )
if ignore_case:
lowerCAmelCase__ = np.char.lower(__magic_name__ )
lowerCAmelCase__ = np.char.lower(__magic_name__ )
if ignore_punctuation:
lowerCAmelCase__ = string.punctuation.maketrans("" , "" , string.punctuation )
lowerCAmelCase__ = np.char.translate(__magic_name__ , table=__magic_name__ )
lowerCAmelCase__ = np.char.translate(__magic_name__ , table=__magic_name__ )
if ignore_numbers:
lowerCAmelCase__ = string.digits.maketrans("" , "" , string.digits )
lowerCAmelCase__ = np.char.translate(__magic_name__ , table=__magic_name__ )
lowerCAmelCase__ = np.char.translate(__magic_name__ , table=__magic_name__ )
lowerCAmelCase__ = predictions == references
return {"exact_match": np.mean(__magic_name__ ) * 100}
| 48 |
'''simple docstring'''
import sys
from collections import defaultdict
class A :
def __init__( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = []
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ):
"""simple docstring"""
return self.node_position[vertex]
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = pos
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ):
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
lowerCAmelCase__ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
lowerCAmelCase__ = 2 * start + 1
else:
lowerCAmelCase__ = 2 * start + 2
if heap[smallest_child] < heap[start]:
lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child]
lowerCAmelCase__ ,lowerCAmelCase__ = (
heap[start],
positions[start],
)
lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa
lowerCAmelCase__ = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , __magic_name__ )
self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = position[index]
while index != 0:
lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
lowerCAmelCase__ = heap[parent]
lowerCAmelCase__ = position[parent]
self.set_position(position[parent] , __magic_name__ )
else:
lowerCAmelCase__ = val
lowerCAmelCase__ = temp
self.set_position(__magic_name__ , __magic_name__ )
break
lowerCAmelCase__ = parent
else:
lowerCAmelCase__ = val
lowerCAmelCase__ = temp
self.set_position(__magic_name__ , 0 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ):
"""simple docstring"""
lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1
for i in range(__magic_name__ , -1 , -1 ):
self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = positions[0]
lowerCAmelCase__ = sys.maxsize
self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ )
return temp
def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = Heap()
lowerCAmelCase__ = [0] * len(UpperCamelCase_ )
lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex
lowerCAmelCase__ = []
for vertex in range(len(UpperCamelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase_ )
heap.node_position.append(UpperCamelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = 1
lowerCAmelCase__ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
lowerCAmelCase__ = 0
lowerCAmelCase__ = distance
heap.heapify(UpperCamelCase_ , UpperCamelCase_ )
for _ in range(1 , len(UpperCamelCase_ ) ):
lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
lowerCAmelCase__ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase_ )]
):
lowerCAmelCase__ = distance
heap.bottom_to_top(
UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip())
UpperCAmelCase__ : str = defaultdict(list)
for _ in range(edges_number):
UpperCAmelCase__ : int = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 48 | 1 |
'''simple docstring'''
from __future__ import annotations
def A ( UpperCamelCase_ : int | float | str , UpperCamelCase_ : int | float | str ) -> list[str]:
'''simple docstring'''
if nth_term == "":
return [""]
lowerCAmelCase__ = int(UpperCamelCase_ )
lowerCAmelCase__ = int(UpperCamelCase_ )
lowerCAmelCase__ = []
for temp in range(int(UpperCamelCase_ ) ):
series.append(F"""1 / {pow(temp + 1 , int(UpperCamelCase_ ) )}""" if series else "1" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase__ : str = int(input("Enter the last number (nth term) of the P-Series"))
UpperCAmelCase__ : List[Any] = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))
| 48 |
'''simple docstring'''
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model")
if is_sentencepiece_available():
import sentencepiece as sp
UpperCAmelCase__ : Tuple = 5
UpperCAmelCase__ : List[Any] = 10
@require_sentencepiece
@require_tokenizers
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Tuple = SpeechaTextTokenizer
snake_case__ :Dict = False
snake_case__ :Optional[int] = True
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
super().setUp()
lowerCAmelCase__ = sp.SentencePieceProcessor()
spm_model.Load(__magic_name__ )
lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"]
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )]
lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
lowerCAmelCase__ = Path(self.tmpdirname )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] )
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = "<pad>"
lowerCAmelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(__magic_name__ ) , 1001 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1001 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
lowerCAmelCase__ = tokenizer.tokenize("This is a test" )
self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , )
lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , )
@require_sentencepiece
class A ( unittest.TestCase ):
snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium'
snake_case__ :Tuple = 'C\'est trop cool'
snake_case__ :List[str] = 'Esto es genial'
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 )
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 10000 )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
self.assertIn(__magic_name__ , self.tokenizer.all_special_ids )
lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2]
lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
self.assertNotIn(self.tokenizer.eos_token , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = "fr"
lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , __magic_name__ )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = "fr"
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
lowerCAmelCase__ = "es"
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 48 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ : Optional[Any] = {"configuration_timm_backbone": ["TimmBackboneConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[str] = ["TimmBackbone"]
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
UpperCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
# General docstring
UpperCAmelCase__ : int = "RegNetConfig"
# Base docstring
UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7]
# Image classification docstring
UpperCAmelCase__ : Tuple = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat"
UpperCAmelCase__ : int = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A ( tf.keras.layers.Layer ):
def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
lowerCAmelCase__ = tf.keras.layers.ConvaD(
filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , )
lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) )
lowerCAmelCase__ = self.normalization(__magic_name__ )
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = config.num_channels
lowerCAmelCase__ = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , )
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = shape_list(__magic_name__ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) )
lowerCAmelCase__ = self.embedder(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = tf.keras.layers.ConvaD(
filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" )
lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ):
"""simple docstring"""
return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ )
class A ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" )
lowerCAmelCase__ = [
tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ),
tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ),
]
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.pooler(__magic_name__ )
for layer_module in self.attention:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = hidden_state * pooled
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = in_channels != out_channels or stride != 1
lowerCAmelCase__ = max(1 , out_channels // config.groups_width )
lowerCAmelCase__ = (
TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
lowerCAmelCase__ = [
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
__magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ),
]
lowerCAmelCase__ = ACTaFN[config.hidden_act]
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = hidden_state
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = self.shortcut(__magic_name__ )
hidden_state += residual
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = in_channels != out_channels or stride != 1
lowerCAmelCase__ = max(1 , out_channels // config.groups_width )
lowerCAmelCase__ = (
TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
lowerCAmelCase__ = [
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
__magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ),
TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ),
]
lowerCAmelCase__ = ACTaFN[config.hidden_act]
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = hidden_state
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
lowerCAmelCase__ = self.shortcut(__magic_name__ )
hidden_state += residual
lowerCAmelCase__ = self.activation(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
lowerCAmelCase__ = [
# downsampling is done in the first layer with stride of 2
layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ),
*[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ):
"""simple docstring"""
for layer_module in self.layers:
lowerCAmelCase__ = layer_module(__magic_name__ )
return hidden_state
class A ( tf.keras.layers.Layer ):
def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) )
lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ):
"""simple docstring"""
lowerCAmelCase__ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowerCAmelCase__ = hidden_states + (hidden_state,)
lowerCAmelCase__ = stage_module(__magic_name__ )
if output_hidden_states:
lowerCAmelCase__ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ )
@keras_serializable
class A ( tf.keras.layers.Layer ):
snake_case__ :List[Any] = RegNetConfig
def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = config
lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" )
lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" )
lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" )
@unpack_inputs
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = self.encoder(
__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = encoder_outputs[0]
lowerCAmelCase__ = self.pooler(__magic_name__ )
# Change to NCHW output format have uniformity in the modules
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) )
lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :str = RegNetConfig
snake_case__ :Optional[Any] = 'regnet'
snake_case__ :Tuple = 'pixel_values'
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , )
class A ( SCREAMING_SNAKE_CASE__ ):
def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.regnet(
pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , )
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ):
"""simple docstring"""
super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = config.num_labels
lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" )
# classification head
lowerCAmelCase__ = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__magic_name__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ):
"""simple docstring"""
lowerCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase__ = self.regnet(
__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ )
lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1]
lowerCAmelCase__ = self.classifier[0](__magic_name__ )
lowerCAmelCase__ = self.classifier[1](__magic_name__ )
lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ )
if not return_dict:
lowerCAmelCase__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
| 48 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : Union[str, Any] = "▁"
UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"}
UpperCAmelCase__ : Union[str, Any] = {
"vocab_file": {
"facebook/mbart-large-50-one-to-many-mmt": (
"https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model"
),
}
}
UpperCAmelCase__ : Optional[Any] = {
"facebook/mbart-large-50-one-to-many-mmt": 10_24,
}
# fmt: off
UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"]
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Optional[int] = VOCAB_FILES_NAMES
snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :Tuple = ['input_ids', 'attention_mask']
snake_case__ :List[int] = []
snake_case__ :List[int] = []
def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ):
"""simple docstring"""
lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token
lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] )
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__magic_name__ ) )
lowerCAmelCase__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowerCAmelCase__ = 1
lowerCAmelCase__ = len(self.sp_model )
lowerCAmelCase__ = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ )
}
lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()}
lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX"
lowerCAmelCase__ = self.lang_code_to_id[self._src_lang]
lowerCAmelCase__ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.__dict__.copy()
lowerCAmelCase__ = None
return state
def __setstate__( self : List[Any] , __magic_name__ : Dict ):
"""simple docstring"""
lowerCAmelCase__ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCAmelCase__ = {}
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ):
"""simple docstring"""
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = ""
lowerCAmelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
lowerCAmelCase__ = True
lowerCAmelCase__ = []
else:
current_sub_tokens.append(__magic_name__ )
lowerCAmelCase__ = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string.strip()
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , "wb" ) as fi:
lowerCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
lowerCAmelCase__ = [1] * len(self.prefix_tokens )
lowerCAmelCase__ = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones
return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ )
lowerCAmelCase__ = tgt_lang_id
return inputs
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ):
"""simple docstring"""
lowerCAmelCase__ = src_lang
lowerCAmelCase__ = tgt_lang
return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.lang_code_to_id[src_lang]
lowerCAmelCase__ = [self.cur_lang_code_id]
lowerCAmelCase__ = [self.eos_token_id]
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = self.lang_code_to_id[tgt_lang]
lowerCAmelCase__ = [self.cur_lang_code_id]
lowerCAmelCase__ = [self.eos_token_id]
| 48 |
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def A ( UpperCamelCase_ : Tuple ) -> int:
'''simple docstring'''
for param in module.parameters():
lowerCAmelCase__ = False
def A ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
lowerCAmelCase__ = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = plt.imshow(UpperCamelCase_ )
fig.axes.get_xaxis().set_visible(UpperCamelCase_ )
fig.axes.get_yaxis().set_visible(UpperCamelCase_ )
plt.show()
def A ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = datetime.now()
lowerCAmelCase__ = current_time.strftime("%H:%M:%S" )
return timestamp
| 48 | 1 |
'''simple docstring'''
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def A ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("CUDA out of memory." )
class A ( nn.Module ):
def __init__( self : Dict ):
"""simple docstring"""
super().__init__()
lowerCAmelCase__ = nn.Linear(3 , 4 )
lowerCAmelCase__ = nn.BatchNormad(4 )
lowerCAmelCase__ = nn.Linear(4 , 5 )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : int ):
"""simple docstring"""
return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) )
class A ( unittest.TestCase ):
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(__magic_name__ : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(__magic_name__ )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(__magic_name__ , [128, 64, 32, 16, 8] )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(__magic_name__ : Tuple , __magic_name__ : Tuple ):
nonlocal batch_sizes
batch_sizes.append(__magic_name__ )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowerCAmelCase__ ,lowerCAmelCase__ = mock_training_loop_function("hello" )
self.assertListEqual(__magic_name__ , [128, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, "hello"] )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(__magic_name__ : Optional[int] ):
pass
with self.assertRaises(__magic_name__ ) as cm:
mock_training_loop_function()
self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(__magic_name__ : Optional[Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(__magic_name__ ) as cm:
mock_training_loop_function()
self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] )
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(__magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(__magic_name__ ) as cm:
mock_training_loop_function(128 , "hello" , "world" )
self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] )
self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(__magic_name__ : Optional[Any] ):
raise ValueError("Oops, we had an error!" )
with self.assertRaises(__magic_name__ ) as cm:
mock_training_loop_function()
self.assertIn("Oops, we had an error!" , cm.exception.args[0] )
@require_cuda
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = torch.cuda.memory_allocated()
lowerCAmelCase__ = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , __magic_name__ )
lowerCAmelCase__ = release_memory(__magic_name__ )
self.assertEqual(torch.cuda.memory_allocated() , __magic_name__ )
| 48 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__)
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :List[Any] = 'upernet'
def __init__( self : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : str=512 , __magic_name__ : List[Any]=0.02 , __magic_name__ : int=[1, 2, 3, 6] , __magic_name__ : Dict=True , __magic_name__ : str=0.4 , __magic_name__ : Optional[Any]=384 , __magic_name__ : Optional[Any]=256 , __magic_name__ : str=1 , __magic_name__ : str=False , __magic_name__ : str=255 , **__magic_name__ : str , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
lowerCAmelCase__ = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] )
elif isinstance(__magic_name__ , __magic_name__ ):
lowerCAmelCase__ = backbone_config.get("model_type" )
lowerCAmelCase__ = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase__ = config_class.from_dict(__magic_name__ )
lowerCAmelCase__ = backbone_config
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = pool_scales
lowerCAmelCase__ = use_auxiliary_head
lowerCAmelCase__ = auxiliary_loss_weight
lowerCAmelCase__ = auxiliary_in_channels
lowerCAmelCase__ = auxiliary_channels
lowerCAmelCase__ = auxiliary_num_convs
lowerCAmelCase__ = auxiliary_concat_input
lowerCAmelCase__ = loss_ignore_index
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = copy.deepcopy(self.__dict__ )
lowerCAmelCase__ = self.backbone_config.to_dict()
lowerCAmelCase__ = self.__class__.model_type
return output
| 48 |
'''simple docstring'''
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ )
print(F"""Building PyTorch model from configuration: {config}""" )
if is_trivia_qa:
lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ )
else:
lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--big_bird_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
)
UpperCAmelCase__ : int = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 48 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :int = CLIPTokenizer
snake_case__ :Optional[Any] = CLIPTokenizerFast
snake_case__ :Optional[Any] = True
snake_case__ :Dict = {}
snake_case__ :List[Any] = False
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
super().setUp()
# fmt: off
lowerCAmelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"]
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__magic_name__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__magic_name__ : int ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple , **__magic_name__ : List[Any] ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = "lower newer"
return input_text, output_text
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"]
lowerCAmelCase__ = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [10, 2, 16, 9, 3, 2, 16, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
@require_ftfy
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ )
lowerCAmelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d."
lowerCAmelCase__ = tokenizer_s.tokenize(__magic_name__ )
lowerCAmelCase__ = tokenizer_r.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
# Test that the tokenization is identical on an example containing a character (Latin Small Letter A
# with Tilde) encoded in 2 different ways
lowerCAmelCase__ = "xa\u0303y" + " " + "x\xe3y"
lowerCAmelCase__ = tokenizer_s.tokenize(__magic_name__ )
lowerCAmelCase__ = tokenizer_r.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
# Test that the tokenization is identical on unicode of space type
lowerCAmelCase__ = [
"\u0009", # (horizontal tab, '\t')
"\u000B", # (vertical tab)
"\u000C", # (form feed)
"\u0020", # (space, ' ')
"\u200E", # (left-to-right mark):w
"\u200F", # (right-to-left mark)
]
for unicode_seq in spaces_unicodes:
lowerCAmelCase__ = tokenizer_s.tokenize(__magic_name__ )
lowerCAmelCase__ = tokenizer_r.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
# Test that the tokenization is identical on unicode of line break type
lowerCAmelCase__ = [
"\u000A", # (line feed, '\n')
"\r\n", # (carriage return and line feed, '\r\n')
"\u000D", # (carriage return, '\r')
"\r", # (carriage return, '\r')
"\u000D", # (carriage return, '\r')
"\u2028", # (line separator)
"\u2029", # (paragraph separator)
# "\u0085", # (next line)
]
# The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms
# it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a
# space (and thus into an empty list).
for unicode_seq in line_break_unicodes:
lowerCAmelCase__ = tokenizer_s.tokenize(__magic_name__ )
lowerCAmelCase__ = tokenizer_r.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCAmelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
lowerCAmelCase__ = f"""{text_of_1_token} {text_of_1_token}"""
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(
__magic_name__ , use_fast=__magic_name__ , )
lowerCAmelCase__ = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__magic_name__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__magic_name__ ) + 1, len(__magic_name__ ) + 1 + len(__magic_name__ )) , )
lowerCAmelCase__ = f""" {text}"""
lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(
__magic_name__ , use_fast=__magic_name__ , )
lowerCAmelCase__ = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__magic_name__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__magic_name__ ) + 1, 1 + len(__magic_name__ ) + 1 + len(__magic_name__ )) , )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
with self.assertRaises(__magic_name__ ) as context:
self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" )
self.assertTrue(
context.exception.args[0].startswith(
"The `backend_tokenizer` provided does not match the expected format." ) )
@require_ftfy
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
super().test_tokenization_python_rust_equals()
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
pass
| 48 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class A :
def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ):
"""simple docstring"""
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_input_mask
lowerCAmelCase__ = use_token_type_ids
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = block_sizes
lowerCAmelCase__ = num_decoder_layers
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_head
lowerCAmelCase__ = d_head
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = 2
lowerCAmelCase__ = num_labels
lowerCAmelCase__ = num_choices
lowerCAmelCase__ = scope
lowerCAmelCase__ = initializer_std
# Used in the tests to check the size of the first attention layer
lowerCAmelCase__ = n_head
# Used in the tests to check the size of the first hidden state
lowerCAmelCase__ = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowerCAmelCase__ = self.num_hidden_layers + 2
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = None
if self.use_input_mask:
lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase__ = None
if self.use_token_type_ids:
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase__ = None
lowerCAmelCase__ = None
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase__ = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = [input_ids, input_mask]
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = [input_ids, input_mask]
lowerCAmelCase__ = model(__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
lowerCAmelCase__ = False
lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ )
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_choices
lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase__ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ):
"""simple docstring"""
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ )
lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowerCAmelCase__ = model(__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.prepare_config_and_inputs()
(
(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,
) = config_and_inputs
lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :int = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
snake_case__ :Any = (
{
'feature-extraction': (TFFunnelBaseModel, TFFunnelModel),
'fill-mask': TFFunnelForMaskedLM,
'question-answering': TFFunnelForQuestionAnswering,
'text-classification': TFFunnelForSequenceClassification,
'token-classification': TFFunnelForTokenClassification,
'zero-shot': TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ :str = False
snake_case__ :Any = False
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@require_tf
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Any = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
snake_case__ :int = False
snake_case__ :List[Any] = False
def __SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ )
lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
| 48 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
snake_case__ :Optional[Any] = DebertaTokenizer
snake_case__ :int = True
snake_case__ :Dict = DebertaTokenizerFast
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCAmelCase__ = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"[UNK]",
]
lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
lowerCAmelCase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
lowerCAmelCase__ = {"unk_token": "[UNK]"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__magic_name__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__magic_name__ ) )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__magic_name__ : Optional[Any] ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : str ):
"""simple docstring"""
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = "lower newer"
return input_text, output_text
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
lowerCAmelCase__ = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = tokenizer("Hello" , "World" )
lowerCAmelCase__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd["token_type_ids"] , __magic_name__ )
@slow
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" )
lowerCAmelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=__magic_name__ )
lowerCAmelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=__magic_name__ )
lowerCAmelCase__ = tokenizer.encode(
"sequence builders" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
lowerCAmelCase__ = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__magic_name__ )
lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
lowerCAmelCase__ = tokenizer_class.from_pretrained("microsoft/deberta-base" )
lowerCAmelCase__ = [
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations",
"ALBERT incorporates two parameter reduction techniques",
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary"
" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"
" vocabulary embedding.",
]
lowerCAmelCase__ = tokenizer(__magic_name__ , padding=__magic_name__ )
lowerCAmelCase__ = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["input_ids"]]
# fmt: off
lowerCAmelCase__ = {
"input_ids": [
[1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2]
],
"token_type_ids": [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
lowerCAmelCase__ = [
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations",
"ALBERT incorporates two parameter reduction techniques",
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary"
" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"
" vocabulary embedding.",
]
self.assertDictEqual(encoding.data , __magic_name__ )
for expected, decoded in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(__magic_name__ , __magic_name__ )
| 48 |
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase__ : Tuple = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Union[str, Any] = 'umt5'
snake_case__ :Any = ['past_key_values']
def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ):
"""simple docstring"""
super().__init__(
is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = d_kv
lowerCAmelCase__ = d_ff
lowerCAmelCase__ = num_layers
lowerCAmelCase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowerCAmelCase__ = num_heads
lowerCAmelCase__ = relative_attention_num_buckets
lowerCAmelCase__ = relative_attention_max_distance
lowerCAmelCase__ = dropout_rate
lowerCAmelCase__ = layer_norm_epsilon
lowerCAmelCase__ = initializer_factor
lowerCAmelCase__ = feed_forward_proj
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = self.feed_forward_proj.split("-" )
lowerCAmelCase__ = act_info[-1]
lowerCAmelCase__ = act_info[0] == "gated"
if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'" )
if feed_forward_proj == "gated-gelu":
lowerCAmelCase__ = "gelu_new"
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
return self.d_model
@property
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
return self.num_heads
@property
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.num_layers
class A ( SCREAMING_SNAKE_CASE__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def __SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
lowerCAmelCase__ = "past_encoder_sequence + sequence"
lowerCAmelCase__ = {0: "batch"}
lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__magic_name__ , direction="inputs" )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 13
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return 5E-4
| 48 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.