code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : str = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } snake_case__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: for attribute in key.split("." ): _UpperCAmelCase =getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: _UpperCAmelCase =getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: _UpperCAmelCase =hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase =value elif weight_type == "weight_g": _UpperCAmelCase =value elif weight_type == "weight_v": _UpperCAmelCase =value elif weight_type == "bias": _UpperCAmelCase =value else: _UpperCAmelCase =value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->Dict: _UpperCAmelCase =[] _UpperCAmelCase =fairseq_model.state_dict() _UpperCAmelCase =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _UpperCAmelCase =None for name, value in fairseq_dict.items(): _UpperCAmelCase =False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == "group" , ) _UpperCAmelCase =True elif name.split("." )[0] == "proj": _UpperCAmelCase =fairseq_model.proj _UpperCAmelCase =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCAmelCase =True if "*" in mapped_key: _UpperCAmelCase =name.split(UpperCamelCase_ )[0].split("." )[-2] _UpperCAmelCase =mapped_key.replace("*" , UpperCamelCase_ ) if "weight_g" in name: _UpperCAmelCase ="weight_g" elif "weight_v" in name: _UpperCAmelCase ="weight_v" elif "bias" in name: _UpperCAmelCase ="bias" elif "weight" in name: _UpperCAmelCase ="weight" else: _UpperCAmelCase =None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) return proj_weight def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: _UpperCAmelCase =full_name.split("conv_layers." )[-1] _UpperCAmelCase =name.split("." ) _UpperCAmelCase =int(items[0] ) _UpperCAmelCase =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _UpperCAmelCase =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase_ ) def lowerCamelCase__ ( _lowerCamelCase ) ->Tuple: _UpperCAmelCase , _UpperCAmelCase =emb.weight.shape _UpperCAmelCase =nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) _UpperCAmelCase =emb.weight.data return lin_layer def lowerCamelCase__ ( _lowerCamelCase ) ->Dict: with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: _UpperCAmelCase =f.readlines() _UpperCAmelCase =[line.split(" " )[0] for line in lines] _UpperCAmelCase =len(UpperCamelCase_ ) _UpperCAmelCase ={ "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(UpperCamelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->str: _UpperCAmelCase =WavaVecaConfig.from_pretrained(UpperCamelCase_ ) _UpperCAmelCase =SpeechaTextaConfig.from_pretrained( UpperCamelCase_ , vocab_size=UpperCamelCase_ , decoder_layers=UpperCamelCase_ , do_stable_layer_norm=UpperCamelCase_ ) _UpperCAmelCase =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) _UpperCAmelCase =model[0].eval() # set weights for wav2vec2 encoder _UpperCAmelCase =WavaVecaModel(UpperCamelCase_ ) _UpperCAmelCase =recursively_load_weights_wavaveca(model.encoder , UpperCamelCase_ ) _UpperCAmelCase =SpeechaTextaForCausalLM(UpperCamelCase_ ) _UpperCAmelCase , _UpperCAmelCase =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase_ ) # set output linear layer unexpected_keys.remove("embed_out" ) _UpperCAmelCase =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) _UpperCAmelCase =SpeechEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) _UpperCAmelCase =False # add projection layer _UpperCAmelCase =nn.Parameter(projection_layer.weight ) _UpperCAmelCase =nn.Parameter(projection_layer.bias ) _UpperCAmelCase =create_vocab_dict(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , "vocab.json" ) , "w" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) _UpperCAmelCase =SpeechaTextaTokenizer(os.path.join(UpperCamelCase_ , "vocab.json" ) ) tokenizer.save_pretrained(UpperCamelCase_ ) _UpperCAmelCase =hf_wavavec.config.to_dict() _UpperCAmelCase =tokenizer.pad_token_id _UpperCAmelCase =tokenizer.bos_token_id _UpperCAmelCase =tokenizer.eos_token_id _UpperCAmelCase ="speech_to_text_2" _UpperCAmelCase ="wav2vec2" _UpperCAmelCase =SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) feature_extractor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') snake_case__ : str = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
408
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase__ : int = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M' snake_case__ :Optional[Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case__ :List[Any] = 'translator' snake_case__ :List[Any] = AutoTokenizer snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM snake_case__ :List[str] = LANGUAGE_CODES snake_case__ :List[Any] = ['text', 'text', 'text'] snake_case__ :List[Any] = ['text'] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) lowerCAmelCase__ = self.lang_to_code[src_lang] lowerCAmelCase__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
48
0
from __future__ import annotations from collections import Counter from random import random class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] ) -> List[str]: lowerCamelCase_ : Optional[Any] = {} def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ) -> Union[str, Any]: lowerCamelCase_ : Optional[int] = {} def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ) -> Dict: if nodea not in self.connections: self.add_node(__magic_name__ ) if nodea not in self.connections: self.add_node(__magic_name__ ) lowerCamelCase_ : Optional[Any] = probability def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: return list(self.connections ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ) -> Optional[int]: lowerCamelCase_ : Tuple = 0 lowerCamelCase_ : Dict = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __a ( __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str, float]] , __UpperCAmelCase : int ) -> dict[str, int]: """simple docstring""" lowerCamelCase_ : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : Any = Counter(graph.get_nodes() ) lowerCamelCase_ : List[str] = start for _ in range(UpperCamelCase_ ): lowerCamelCase_ : Optional[int] = graph.transition(UpperCamelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
488
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'timm_backbone' def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = backbone lowerCAmelCase__ = num_channels lowerCAmelCase__ = features_only lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = True lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
48
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : int = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowercase__ = 'trocr' lowercase__ = ['past_key_values'] lowercase__ = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Optional[Any] ,lowercase_ : Dict=5_0_2_6_5 ,lowercase_ : Union[str, Any]=1_0_2_4 ,lowercase_ : Optional[Any]=1_2 ,lowercase_ : int=1_6 ,lowercase_ : Optional[Any]=4_0_9_6 ,lowercase_ : Union[str, Any]="gelu" ,lowercase_ : Dict=5_1_2 ,lowercase_ : Union[str, Any]=0.1 ,lowercase_ : Union[str, Any]=0.0 ,lowercase_ : str=0.0 ,lowercase_ : Optional[Any]=2 ,lowercase_ : Optional[Any]=0.02 ,lowercase_ : Tuple=0.0 ,lowercase_ : Optional[int]=True ,lowercase_ : Dict=False ,lowercase_ : str=True ,lowercase_ : Any=True ,lowercase_ : Union[str, Any]=1 ,lowercase_ : Dict=0 ,lowercase_ : Optional[int]=2 ,**lowercase_ : int ,): lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : Tuple = d_model lowerCAmelCase__ : Tuple = decoder_layers lowerCAmelCase__ : Tuple = decoder_attention_heads lowerCAmelCase__ : List[str] = decoder_ffn_dim lowerCAmelCase__ : Optional[int] = activation_function lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : Any = activation_dropout lowerCAmelCase__ : Optional[Any] = init_std lowerCAmelCase__ : Any = decoder_layerdrop lowerCAmelCase__ : int = use_cache lowerCAmelCase__ : Tuple = scale_embedding lowerCAmelCase__ : Optional[int] = use_learned_position_embeddings lowerCAmelCase__ : Tuple = layernorm_embedding super().__init__( pad_token_id=lowercase_ ,bos_token_id=lowercase_ ,eos_token_id=lowercase_ ,decoder_start_token_id=lowercase_ ,**lowercase_ ,)
450
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base' snake_case__ :List[Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case__ :List[Any] = 'image_captioner' snake_case__ :Optional[int] = AutoModelForVisionaSeq snake_case__ :Optional[int] = ['image'] snake_case__ :Any = ['text'] def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ): """simple docstring""" return self.pre_processor(images=__magic_name__ , return_tensors="pt" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
48
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE = "RegNetConfig" # Base docstring _SCREAMING_SNAKE_CASE = "facebook/regnet-y-040" _SCREAMING_SNAKE_CASE = [1, 1_088, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE = "facebook/regnet-y-040" _SCREAMING_SNAKE_CASE = "tabby, tabby cat" _SCREAMING_SNAKE_CASE = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" , **lowerCAmelCase_ , ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _A = tf.keras.layers.ConvaD( filters=lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , strides=lowerCAmelCase_ , padding="""VALID""" , groups=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name="""convolution""" , ) _A = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) _A = ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Any: _A = self.convolution(self.padding(lowerCAmelCase_ ) ) _A = self.normalization(lowerCAmelCase_ ) _A = self.activation(lowerCAmelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Dict: super().__init__(**lowerCAmelCase_ ) _A = config.num_channels _A = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _A = shape_list(lowerCAmelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _A = tf.transpose(lowerCAmelCase_ , perm=(0, 2, 3, 1) ) _A = self.embedder(lowerCAmelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 2 , **lowerCAmelCase_ ) -> Dict: super().__init__(**lowerCAmelCase_ ) _A = tf.keras.layers.ConvaD( filters=lowerCAmelCase_ , kernel_size=1 , strides=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name="""convolution""" ) _A = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ) -> Optional[int]: return self.normalization(self.convolution(lowerCAmelCase_ ) , training=lowerCAmelCase_ ) class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Tuple: super().__init__(**lowerCAmelCase_ ) _A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name="""pooler""" ) _A = [ tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _A = self.pooler(lowerCAmelCase_ ) for layer_module in self.attention: _A = layer_module(lowerCAmelCase_ ) _A = hidden_state * pooled return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , **lowerCAmelCase_ ) -> str: super().__init__(**lowerCAmelCase_ ) _A = in_channels != out_channels or stride != 1 _A = max(1 , out_channels // config.groups_width ) _A = ( TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _A = [ TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name="""layer.2""" ), ] _A = ACTaFN[config.hidden_act] def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _A = hidden_state for layer_module in self.layers: _A = layer_module(lowerCAmelCase_ ) _A = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _A = self.activation(lowerCAmelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , **lowerCAmelCase_ ) -> List[Any]: super().__init__(**lowerCAmelCase_ ) _A = in_channels != out_channels or stride != 1 _A = max(1 , out_channels // config.groups_width ) _A = ( TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) _A = [ TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(lowerCAmelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name="""layer.3""" ), ] _A = ACTaFN[config.hidden_act] def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _A = hidden_state for layer_module in self.layers: _A = layer_module(lowerCAmelCase_ ) _A = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _A = self.activation(lowerCAmelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , **lowerCAmelCase_ ) -> List[str]: super().__init__(**lowerCAmelCase_ ) _A = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer _A = [ # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , name="""layers.0""" ), *[layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int: for layer_module in self.layers: _A = layer_module(lowerCAmelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: super().__init__(**lowerCAmelCase_ ) _A = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) _A = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCAmelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ , name=F'''stages.{i+1}''' ) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ) -> Dict: _A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _A = hidden_states + (hidden_state,) _A = stage_module(lowerCAmelCase_ ) if output_hidden_states: _A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ ) @keras_serializable class a ( tf.keras.layers.Layer ): """simple docstring""" lowerCamelCase :List[Any] = RegNetConfig def __init__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) _A = config _A = TFRegNetEmbeddings(lowerCAmelCase_ , name="""embedder""" ) _A = TFRegNetEncoder(lowerCAmelCase_ , name="""encoder""" ) _A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name="""pooler""" ) @unpack_inputs def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , ) -> Tuple: _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.embedder(lowerCAmelCase_ , training=lowerCAmelCase_ ) _A = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ ) _A = encoder_outputs[0] _A = self.pooler(lowerCAmelCase_ ) # Change to NCHW output format have uniformity in the modules _A = tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) _A = tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _A = tuple([tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase :str = RegNetConfig lowerCamelCase :Optional[Any] = 'regnet' lowerCamelCase :Tuple = 'pixel_values' @property def UpperCAmelCase ( self ) -> Tuple: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} _SCREAMING_SNAKE_CASE = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" _SCREAMING_SNAKE_CASE = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , SCREAMING_SNAKE_CASE__ , ) class a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) _A = TFRegNetMainLayer(lowerCAmelCase_ , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , ) -> str: _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.regnet( pixel_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '''\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , SCREAMING_SNAKE_CASE__ , ) class a ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Dict: super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) _A = config.num_labels _A = TFRegNetMainLayer(lowerCAmelCase_ , name="""regnet""" ) # classification head _A = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , ) -> Dict: _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.regnet( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ ) _A = outputs.pooler_output if return_dict else outputs[1] _A = self.classifier[0](lowerCAmelCase_ ) _A = self.classifier[1](lowerCAmelCase_ ) _A = None if labels is None else self.hf_compute_loss(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) if not return_dict: _A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states )
401
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = "▁" UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ : Optional[Any] = { "facebook/mbart-large-50-one-to-many-mmt": 10_24, } # fmt: off UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = VOCAB_FILES_NAMES snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Tuple = ['input_ids', 'attention_mask'] snake_case__ :List[int] = [] snake_case__ :List[int] = [] def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ): """simple docstring""" lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX" lowerCAmelCase__ = self.lang_code_to_id[self._src_lang] lowerCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : List[Any] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = "" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(__magic_name__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) lowerCAmelCase__ = [1] * len(self.prefix_tokens ) lowerCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase__ = src_lang lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ ) lowerCAmelCase__ = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[src_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[tgt_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id]
48
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" A_ = 'bloom' A_ = ['past_key_values'] A_ = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : Any , lowercase_ : List[str]=250_880 , lowercase_ : Dict=64 , lowercase_ : List[str]=2 , lowercase_ : Optional[int]=8 , lowercase_ : Any=1e-5 , lowercase_ : Optional[Any]=0.0_2 , lowercase_ : int=True , lowercase_ : Optional[Any]=1 , lowercase_ : List[str]=2 , lowercase_ : str=False , lowercase_ : int=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : Optional[int]=1 , lowercase_ : Dict=False , **lowercase_ : Dict , ): '''simple docstring''' lowercase_ = vocab_size # Backward compatibility with n_embed kwarg lowercase_ = kwargs.pop("""n_embed""" , lowercase_ ) lowercase_ = hidden_size if n_embed is None else n_embed lowercase_ = n_layer lowercase_ = n_head lowercase_ = layer_norm_epsilon lowercase_ = initializer_range lowercase_ = use_cache lowercase_ = pretraining_tp lowercase_ = apply_residual_connection_post_layernorm lowercase_ = hidden_dropout lowercase_ = attention_dropout lowercase_ = bos_token_id lowercase_ = eos_token_id lowercase_ = slow_but_exact super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" A_ = version.parse('''1.12''' ) def __init__( self : Dict , lowercase_ : PretrainedConfig , lowercase_ : str = "default" , lowercase_ : List[PatchingSpec] = None , lowercase_ : bool = False , ): '''simple docstring''' super().__init__(lowercase_ , task=lowercase_ , patching_specs=lowercase_ , use_past=lowercase_ ) if not getattr(self._config , """pad_token_id""" , lowercase_ ): # TODO: how to do that better? lowercase_ = 0 @property def lowerCamelCase__ ( self : str ): '''simple docstring''' lowercase_ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase_ , direction="""inputs""" , inverted_values_shape=lowercase_ ) lowercase_ = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self._config.n_head @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return 1e-3 def lowerCamelCase__ ( self : Any , lowercase_ : "PreTrainedTokenizer" , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , ): '''simple docstring''' lowercase_ = super(lowercase_ , self ).generate_dummy_inputs( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) # We need to order the input in the way they appears in the forward() lowercase_ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase_ , lowercase_ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase_ = seqlen + 2 lowercase_ = self._config.hidden_size // self.num_attention_heads lowercase_ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase_ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase_ = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(self.num_layers ) ] lowercase_ = common_inputs["""attention_mask"""] if self.use_past: lowercase_ = ordered_inputs["""attention_mask"""].dtype lowercase_ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return 13
451
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 if start < end: lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 ) count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ ) return count def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ = start - 1 for index in range(UpperCamelCase_ , UpperCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ = new_pivot_index + 1 lowerCAmelCase__ = a[new_pivot_index] lowerCAmelCase__ = a[index] lowerCAmelCase__ = temp lowerCAmelCase__ = a[new_pivot_index + 1] lowerCAmelCase__ = a[end] lowerCAmelCase__ = temp return new_pivot_index + 1, count UpperCAmelCase__ : Tuple = TemporaryFile() UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase__ : Optional[Any] = np.load(outfile) UpperCAmelCase__ : Any = len(M) - 1 UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
48
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> List[str]: '''simple docstring''' A__ , A__ = [], [] while len(UpperCamelCase_ ) > 1: A__ , A__ = min(UpperCamelCase_ ), max(UpperCamelCase_ ) start.append(UpperCamelCase_ ) end.append(UpperCamelCase_ ) collection.remove(UpperCamelCase_ ) collection.remove(UpperCamelCase_ ) end.reverse() return start + collection + end if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
514
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A ( UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase__ = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase__ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase__ = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase__ = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase__ = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] else: lowerCAmelCase__ = rename_key(UpperCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ = val.squeeze_() else: lowerCAmelCase__ = val return orig_state_dict def A ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any: '''simple docstring''' lowerCAmelCase__ = GroupViTConfig() lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval() lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0) # verify result lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase_ ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 ) processor.save_pretrained(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) print("Successfully saved processor and model to" , UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(UpperCamelCase_ , organization="nielsr" ) model.push_to_hub(UpperCamelCase_ , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) UpperCAmelCase__ : Any = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
48
0
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCAmelCase__ = "src/diffusers" # Matches is_xxx_available() UpperCAmelCase__ = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla UpperCAmelCase__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') UpperCAmelCase__ = "\n{0} = None\n" UpperCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" UpperCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" __A= _re_backend.findall(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 0: return None return "_and_".join(UpperCamelCase_ ) def UpperCAmelCase__( ): """simple docstring""" with open(os.path.join(UpperCamelCase_,'__init__.py' ),'r',encoding='utf-8',newline='\n' ) as f: __A= f.readlines() # Get to the point we do the actual imports for type checking __A= 0 __A= {} # Go through the end of the file while line_index < len(UpperCamelCase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __A= find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 __A= [] # Until we unindent, add backend objects to the list while line_index < len(UpperCamelCase_ ) and len(lines[line_index] ) > 1: __A= lines[line_index] __A= _re_single_line_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCamelCase_ ) > 0: __A= objects else: line_index += 1 return backend_specific_objects def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Tuple,_SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(UpperCamelCase_ ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCamelCase_,UpperCamelCase_ ) else: return DUMMY_CLASS.format(UpperCamelCase_,UpperCamelCase_ ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Optional[Any]=None ): """simple docstring""" if backend_specific_objects is None: __A= read_init() # For special correspondence backend to module name as used in the function requires_modulename __A= {} for backend, objects in backend_specific_objects.items(): __A= '[' + ', '.join(f"""\"{b}\"""" for b in backend.split('_and_' ) ) + ']' __A= '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCamelCase_,UpperCamelCase_ ) for o in objects] ) __A= dummy_file return dummy_files def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Dict=False ): """simple docstring""" __A= create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __A= {'torch': 'pt'} # Locate actual dummy modules and read their content. __A= os.path.join(UpperCamelCase_,'utils' ) __A= { backend: os.path.join(UpperCamelCase_,f"""dummy_{short_names.get(UpperCamelCase_,UpperCamelCase_ )}_objects.py""" ) for backend in dummy_files.keys() } __A= {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCamelCase_ ): with open(UpperCamelCase_,'r',encoding='utf-8',newline='\n' ) as f: __A= f.read() else: __A= '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(UpperCamelCase_,UpperCamelCase_ )}_objects.py as the main """ '__init__ has new objects.' ) with open(dummy_file_paths[backend],'w',encoding='utf-8',newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f"""diffusers.utils.dummy_{short_names.get(UpperCamelCase_,UpperCamelCase_ )}_objects.py. Run `make fix-copies` """ 'to fix this.' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
186
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ : Optional[Any] = 1_00 UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def A ( UpperCamelCase_ : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase__ = set() lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( UpperCamelCase_ : int = 50_00 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , UpperCamelCase_ ): if len(partition(UpperCamelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
48
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :Optional[int] = {} class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE : int = 'llama' __SCREAMING_SNAKE_CASE : Any = ['past_key_values'] def __init__(self , lowercase=32000 , lowercase=4096 , lowercase=11008 , lowercase=32 , lowercase=32 , lowercase=None , lowercase="silu" , lowercase=2048 , lowercase=0.02 , lowercase=1E-6 , lowercase=True , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=1 , lowercase=False , lowercase=None , **lowercase , ): A_ : int = vocab_size A_ : Optional[Any] = max_position_embeddings A_ : Optional[int] = hidden_size A_ : Tuple = intermediate_size A_ : List[str] = num_hidden_layers A_ : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: A_ : Dict = num_attention_heads A_ : List[Any] = num_key_value_heads A_ : Tuple = hidden_act A_ : Dict = initializer_range A_ : Union[str, Any] = rms_norm_eps A_ : Union[str, Any] = pretraining_tp A_ : Any = use_cache A_ : List[str] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase , ) def _a (self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'got {self.rope_scaling}' ) A_ : Any = self.rope_scaling.get("""type""" , lowercase ) A_ : Union[str, Any] = self.rope_scaling.get("""factor""" , lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowercase , lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
667
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"} UpperCAmelCase__ : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27} class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ): """simple docstring""" return self.decoder.get(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" ) return (vocab_file,)
48
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) class __lowercase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" UpperCAmelCase_ : Any = 'timm_backbone' def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[str]: super().__init__(**__UpperCAmelCase ) A : List[str] = backbone A : List[Any] = num_channels A : Dict = features_only A : List[Any] = use_pretrained_backbone A : Optional[int] = True A : Any = out_indices if out_indices is not None else (-1,)
542
'''simple docstring''' from math import sqrt def A ( UpperCamelCase_ : int ) -> int: '''simple docstring''' lowerCAmelCase__ = 0 for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase_ ): total += i + n // i elif i == sqrt(UpperCamelCase_ ): total += i return total - n def A ( UpperCamelCase_ : int = 1_00_00 ) -> int: '''simple docstring''' lowerCAmelCase__ = sum( i for i in range(1 , UpperCamelCase_ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
48
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _UpperCAmelCase : int = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _UpperCAmelCase : Any = 10 _UpperCAmelCase : Union[str, Any] = 2_56 def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): if len(UpperCamelCase_ ) < MIN_NUM_TOKENS: return None _A = MinHash(num_perm=UpperCamelCase_ ) for token in set(UpperCamelCase_ ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE ( __snake_case : str ): return {t for t in NON_ALPHA.split(UpperCamelCase_ ) if len(t.strip() ) > 0} class lowercase_ : """simple docstring""" def __init__( self : Tuple, *, UpperCamelCase__ : float = 0.85, ) -> Union[str, Any]: _A = duplication_jaccard_threshold _A = NUM_PERM _A = MinHashLSH(threshold=self._duplication_jaccard_threshold, num_perm=self._num_perm ) _A = defaultdict(UpperCamelCase__ ) def __UpperCAmelCase ( self : str, UpperCamelCase__ : Tuple, UpperCamelCase__ : MinHash ) -> Any: _A = self._index.query(UpperCamelCase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(UpperCamelCase__, UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(UpperCamelCase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(UpperCamelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> int: _A = [] for base, duplicates in self._duplicate_clusters.items(): _A = [base] + list(UpperCamelCase__ ) # reformat the cluster to be a list of dict _A = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(UpperCamelCase__ ) return duplicate_clusters def __UpperCAmelCase ( self : str, UpperCamelCase__ : Any ) -> int: _A = self.get_duplicate_clusters() with open(UpperCamelCase__, 'w' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ): _A , _A = element _A = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE ( __snake_case : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(UpperCamelCase_ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE ( __snake_case : Type[Dataset] , __snake_case : float ): _A = DuplicationIndex(duplication_jaccard_threshold=UpperCamelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(UpperCamelCase_ ) ) , max_queue_size=1_0_0 ) ): di.add(UpperCamelCase_ , UpperCamelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : str ): _A = get_tokens(UpperCamelCase_ ) _A = get_tokens(UpperCamelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _UpperCAmelCase : str = None def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : Any ): _A = [] for elementa in cluster: _A = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: _A = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(UpperCamelCase_ , UpperCamelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: _A = 1 extremes.append(UpperCamelCase_ ) return extremes def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : List[Any] , __snake_case : str ): global _shared_dataset _A = dataset _A = [] _A = partial(_find_cluster_extremes_shared , jaccard_threshold=UpperCamelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( UpperCamelCase_ , UpperCamelCase_ , ) , total=len(UpperCamelCase_ ) , ): extremes_list.append(UpperCamelCase_ ) return extremes_list def _SCREAMING_SNAKE_CASE ( __snake_case : Type[Dataset] , __snake_case : float = 0.85 ): _A = make_duplicate_clusters(UpperCamelCase_ , UpperCamelCase_ ) _A = {x['base_index'] for cluster in duplicate_clusters for x in cluster} _A = {} _A = find_extremes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for extremes in extremes_clusters: for element in extremes: _A = element _A = duplicate_indices - set(extreme_dict.keys() ) _A = dataset.filter(lambda __snake_case , __snake_case : idx not in remove_indices , with_indices=UpperCamelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _A = element['base_index'] in extreme_dict if element["is_extreme"]: _A = extreme_dict[element['base_index']]['copies'] print(F'Original dataset size: {len(UpperCamelCase_ )}' ) print(F'Number of duplicate clusters: {len(UpperCamelCase_ )}' ) print(F'Files in duplicate cluster: {len(UpperCamelCase_ )}' ) print(F'Unique files in duplicate cluster: {len(UpperCamelCase_ )}' ) print(F'Filtered dataset size: {len(UpperCamelCase_ )}' ) return ds_filter, duplicate_clusters
107
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.mean(1 ) # Centralize the data of class i lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase_ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = features.mean(1 ) lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.shape[1] lowerCAmelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' if features.any(): lowerCAmelCase__ = features.mean(1 ) # Center the dataset lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) ) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1] lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: lowerCAmelCase__ ,lowerCAmelCase__ = eigh( covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , ) lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions] lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ ) lowerCAmelCase__ = svd_matrix[:, 0:dimensions] lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = linear_discriminant_analysis( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if isinstance(UpperCamelCase_ , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ ) if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
48
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _A : str = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Dict , *A : Optional[int] , A : Dict=None , A : Union[str, Any]=None , A : Any=None , **A : Union[str, Any] ) ->Any: super().__init__(*A , **A ) lowerCamelCase__ : Optional[int] = eval_examples lowerCamelCase__ : List[str] = post_process_function lowerCamelCase__ : Tuple = quant_trainer_args lowerCamelCase__ : List[Any] = 1_2_8 # default number of calibration samples def __lowerCamelCase ( self : Any , A : int=None ) ->str: if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) lowerCamelCase__ : str = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCamelCase__ : Optional[int] = self._remove_unused_columns(A , description='''Calibration''' ) return DataLoader( A , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A , ) def __lowerCamelCase ( self : Optional[int] , A : List[Any]=None ) ->str: lowerCamelCase__ : Union[str, Any] = self.train_dataset if calib_dataset is None else calib_dataset lowerCamelCase__ : Dict = self.get_calib_dataloader(A ) lowerCamelCase__ : Optional[Any] = self.model quant_trainer.configure_model(A , self.quant_trainer_args , calib=A ) model.eval() quant_trainer.enable_calibration(A ) logger.info('''***** Running calibration *****''' ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(A ): # Prediction step lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.prediction_step(A , A , prediction_loss_only=A ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A , self.quant_trainer_args ) lowerCamelCase__ : List[str] = model def __lowerCamelCase ( self : Union[str, Any] , A : Optional[Any]=None , A : Optional[int]=None , A : Dict=None , A : str = "eval" ) ->Any: lowerCamelCase__ : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase__ : str = self.get_eval_dataloader(A ) lowerCamelCase__ : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase__ : Optional[Any] = self.compute_metrics lowerCamelCase__ : List[str] = None lowerCamelCase__ : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase__ : List[str] = eval_loop( A , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , ) finally: lowerCamelCase__ : Union[str, Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCamelCase__ : Optional[int] = self.post_process_function(A , A , output.predictions ) lowerCamelCase__ : str = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): lowerCamelCase__ : Dict = metrics.pop(A ) self.log(A ) else: lowerCamelCase__ : str = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase__ : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , A ) return metrics def __lowerCamelCase ( self : Dict , A : Tuple , A : Dict , A : Any=None , A : str = "test" ) ->int: lowerCamelCase__ : Optional[Any] = self.get_test_dataloader(A ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase__ : Optional[int] = self.compute_metrics lowerCamelCase__ : Dict = None lowerCamelCase__ : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase__ : Tuple = eval_loop( A , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , ) finally: lowerCamelCase__ : Any = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase__ : Optional[int] = self.post_process_function(A , A , output.predictions , '''predict''' ) lowerCamelCase__ : Any = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): lowerCamelCase__ : Optional[int] = metrics.pop(A ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A ) def __lowerCamelCase ( self : Tuple , A : Optional[Any]="./" ) ->List[str]: lowerCamelCase__ : Union[str, Any] = self.eval_dataset lowerCamelCase__ : Optional[Any] = self.get_eval_dataloader(A ) lowerCamelCase__ : List[Any] = next(iter(A ) ) # saving device - to make it consistent lowerCamelCase__ : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple lowerCamelCase__ : Union[str, Any] = tuple(v.to(A ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = self.model.to(A ) model.eval() model.float() lowerCamelCase__ : Optional[int] = model.module if hasattr(A , '''module''' ) else model quant_trainer.configure_model(A , self.quant_trainer_args ) lowerCamelCase__ : Optional[Any] = os.path.join(A , '''model.onnx''' ) logger.info(F"exporting model to {output_model_file}" ) lowerCamelCase__ : int = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( A , A , A , export_params=A , opset_version=1_3 , do_constant_folding=A , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=A , ) logger.info('''onnx export finished''' )
315
'''simple docstring''' def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list: '''simple docstring''' lowerCAmelCase__ = word.split() def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str: lowerCAmelCase__ = max_width - width lowerCAmelCase__ = len(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase_ ): num_spaces_between_words_list[i] += 1 lowerCAmelCase__ = [] for i in range(UpperCamelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 for word in words: if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase_ ) width += len(UpperCamelCase_ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) # reset new line and new width lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ ) lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ ) answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
48
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ : str = sys.version_info >= (3, 1_0) def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ) ->Optional[int]: return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class _a : """simple docstring""" snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class _a : """simple docstring""" snake_case =4_2 snake_case =field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _a : """simple docstring""" snake_case =False snake_case =True snake_case =None class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case ='titi' snake_case ='toto' class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case ='titi' snake_case ='toto' snake_case =4_2 @dataclass class _a : """simple docstring""" snake_case ="toto" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BasicEnum(self.foo ) @dataclass class _a : """simple docstring""" snake_case ="toto" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =MixedTypeEnum(self.foo ) @dataclass class _a : """simple docstring""" snake_case =None snake_case =field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """help message"""} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class _a : """simple docstring""" snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _a : """simple docstring""" snake_case =field() snake_case =field() snake_case =field() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BasicEnum(self.required_enum ) @dataclass class _a : """simple docstring""" snake_case =42 snake_case =field() snake_case =None snake_case =field(default="""toto""" , metadata={"""help""": """help message"""} ) snake_case =list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _a : """simple docstring""" snake_case =False snake_case =True snake_case =None @dataclass class _a : """simple docstring""" snake_case =None snake_case =field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """help message"""} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _UpperCAmelCase ={k: v for k, v in vars(_snake_case ).items() if k != "container"} _UpperCAmelCase ={k: v for k, v in vars(_snake_case ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , _snake_case ) and yy.get("choices" , _snake_case ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](_snake_case ) , yy["type"](_snake_case ) ) del xx["type"], yy["type"] self.assertEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase =argparse.ArgumentParser() expected.add_argument("--foo" , type=_snake_case , required=_snake_case ) expected.add_argument("--bar" , type=_snake_case , required=_snake_case ) expected.add_argument("--baz" , type=_snake_case , required=_snake_case ) expected.add_argument("--flag" , type=_snake_case , default=_snake_case , const=_snake_case , nargs="?" ) self.argparsersEqual(_snake_case , _snake_case ) _UpperCAmelCase =["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((_UpperCAmelCase) , ) =parser.parse_args_into_dataclasses(_snake_case , look_for_args_file=_snake_case ) self.assertFalse(example.flag ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase =argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=_snake_case ) expected.add_argument("--baz" , default="toto" , type=_snake_case , help="help message" ) self.argparsersEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =argparse.ArgumentParser() expected.add_argument("--foo" , type=_snake_case , default=_snake_case , const=_snake_case , nargs="?" ) expected.add_argument("--baz" , type=_snake_case , default=_snake_case , const=_snake_case , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=_snake_case , dest="baz" ) expected.add_argument("--opt" , type=_snake_case , default=_snake_case ) _UpperCAmelCase =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_snake_case ) for dataclass_type in dataclass_types: _UpperCAmelCase =HfArgumentParser(_snake_case ) self.argparsersEqual(_snake_case , _snake_case ) _UpperCAmelCase =parser.parse_args([] ) self.assertEqual(_snake_case , Namespace(foo=_snake_case , baz=_snake_case , opt=_snake_case ) ) _UpperCAmelCase =parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(_snake_case , Namespace(foo=_snake_case , baz=_snake_case , opt=_snake_case ) ) _UpperCAmelCase =parser.parse_args(["--foo", "--baz"] ) self.assertEqual(_snake_case , Namespace(foo=_snake_case , baz=_snake_case , opt=_snake_case ) ) _UpperCAmelCase =parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(_snake_case , Namespace(foo=_snake_case , baz=_snake_case , opt=_snake_case ) ) _UpperCAmelCase =parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(_snake_case , Namespace(foo=_snake_case , baz=_snake_case , opt=_snake_case ) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase =argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(_snake_case , _snake_case ) _UpperCAmelCase =parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) _UpperCAmelCase =parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _UpperCAmelCase =parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) _UpperCAmelCase =parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _UpperCAmelCase =parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) _UpperCAmelCase =parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def SCREAMING_SNAKE_CASE ( self ): @dataclass class _a : """simple docstring""" snake_case ="toto" _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase =argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(_snake_case , _snake_case ) _UpperCAmelCase =parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) _UpperCAmelCase =parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) _UpperCAmelCase =parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase =argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=_snake_case ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=_snake_case ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=_snake_case ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=_snake_case ) self.argparsersEqual(_snake_case , _snake_case ) _UpperCAmelCase =parser.parse_args([] ) self.assertEqual( _snake_case , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) _UpperCAmelCase =parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(_snake_case , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =argparse.ArgumentParser() expected.add_argument("--foo" , default=_snake_case , type=_snake_case ) expected.add_argument("--bar" , default=_snake_case , type=_snake_case , help="help message" ) expected.add_argument("--baz" , default=_snake_case , type=_snake_case ) expected.add_argument("--ces" , nargs="+" , default=[] , type=_snake_case ) expected.add_argument("--des" , nargs="+" , default=[] , type=_snake_case ) _UpperCAmelCase =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_snake_case ) for dataclass_type in dataclass_types: _UpperCAmelCase =HfArgumentParser(_snake_case ) self.argparsersEqual(_snake_case , _snake_case ) _UpperCAmelCase =parser.parse_args([] ) self.assertEqual(_snake_case , Namespace(foo=_snake_case , bar=_snake_case , baz=_snake_case , ces=[] , des=[] ) ) _UpperCAmelCase =parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(_snake_case , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase =argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=_snake_case , required=_snake_case ) expected.add_argument("--required_str" , type=_snake_case , required=_snake_case ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=_snake_case , ) self.argparsersEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase =argparse.ArgumentParser() expected.add_argument("--foo" , type=_snake_case , required=_snake_case ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=_snake_case , ) expected.add_argument("--opt" , type=_snake_case , default=_snake_case ) expected.add_argument("--baz" , default="toto" , type=_snake_case , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=_snake_case ) self.argparsersEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } _UpperCAmelCase =parser.parse_dict(_snake_case )[0] _UpperCAmelCase =BasicExample(**_snake_case ) self.assertEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(_snake_case , parser.parse_dict , _snake_case , allow_extra_keys=_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase =os.path.join(_snake_case , "temp_json" ) os.mkdir(_snake_case ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(_snake_case , _snake_case ) _UpperCAmelCase =parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] _UpperCAmelCase =BasicExample(**_snake_case ) self.assertEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) _UpperCAmelCase ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase =os.path.join(_snake_case , "temp_yaml" ) os.mkdir(_snake_case ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(_snake_case , _snake_case ) _UpperCAmelCase =parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] _UpperCAmelCase =BasicExample(**_snake_case ) self.assertEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =HfArgumentParser(_snake_case ) self.assertIsNotNone(_snake_case )
408
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase__ : str = sys.version_info >= (3, 10) def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class A : snake_case__ :int snake_case__ :float snake_case__ :str snake_case__ :bool @dataclass class A : snake_case__ :int = 42 snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :Optional[bool] = None class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'titi' snake_case__ :Optional[int] = 'toto' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'titi' snake_case__ :str = 'toto' snake_case__ :int = 42 @dataclass class A : snake_case__ :BasicEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.foo ) @dataclass class A : snake_case__ :MixedTypeEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = MixedTypeEnum(self.foo ) @dataclass class A : snake_case__ :Optional[int] = None snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :Optional[str] = None snake_case__ :Optional[List[str]] = list_field(default=[] ) snake_case__ :Optional[List[int]] = list_field(default=[] ) @dataclass class A : snake_case__ :List[int] = list_field(default=[] ) snake_case__ :List[int] = list_field(default=[1, 2, 3] ) snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : snake_case__ :List[int] = field() snake_case__ :str = field() snake_case__ :BasicEnum = field() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.required_enum ) @dataclass class A : snake_case__ :int snake_case__ :"BasicEnum" = field() snake_case__ :"Optional[bool]" = None snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} ) snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :bool | None = None @dataclass class A : snake_case__ :int | None = None snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :str | None = None snake_case__ :list[str] | None = list_field(default=[] ) snake_case__ :list[int] | None = list_field(default=[] ) class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) lowerCAmelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" @dataclass class A : snake_case__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) lowerCAmelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
48
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : Any = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
'''simple docstring''' import sys from collections import defaultdict class A : def __init__( self : Any ): """simple docstring""" lowerCAmelCase__ = [] def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ): """simple docstring""" return self.node_position[vertex] def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = pos def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase__ = 2 * start + 1 else: lowerCAmelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child] lowerCAmelCase__ ,lowerCAmelCase__ = ( heap[start], positions[start], ) lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa lowerCAmelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __magic_name__ ) self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = position[index] while index != 0: lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase__ = heap[parent] lowerCAmelCase__ = position[parent] self.set_position(position[parent] , __magic_name__ ) else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , __magic_name__ ) break lowerCAmelCase__ = parent else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , 0 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1 for i in range(__magic_name__ , -1 , -1 ): self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = positions[0] lowerCAmelCase__ = sys.maxsize self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ ) return temp def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = Heap() lowerCAmelCase__ = [0] * len(UpperCamelCase_ ) lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase__ = [] for vertex in range(len(UpperCamelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase_ ) heap.node_position.append(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = 1 lowerCAmelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase__ = 0 lowerCAmelCase__ = distance heap.heapify(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(1 , len(UpperCamelCase_ ) ): lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase_ )] ): lowerCAmelCase__ = distance heap.bottom_to_top( UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ : str = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ : int = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
48
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __UpperCamelCase : Union[str, Any] = False try: __UpperCamelCase : int = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str ,lowercase_ : str = None ,lowercase_ : list = [] ): lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : str = choices lowerCAmelCase__ : int = prompt if sys.platform == "win32": lowerCAmelCase__ : str = '''*''' else: lowerCAmelCase__ : Tuple = '''➔ ''' def __lowerCAmelCase ( self : Any ,lowercase_ : int ,lowercase_ : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] ,3_2 ,lowercase_ ) else: forceWrite(self.choices[index] ,lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : int ): if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(lowercase_ ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def __lowerCAmelCase ( self : List[str] ,lowercase_ : Direction ,lowercase_ : int = 1 ): lowerCAmelCase__ : int = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(lowercase_ ) move_cursor(lowercase_ ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def __lowerCAmelCase ( self : int ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def __lowerCAmelCase ( self : str ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def __lowerCAmelCase ( self : List[str] ): move_cursor(len(self.choices ) - self.position ,'''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def __lowerCAmelCase ( self : Union[str, Any] ): move_cursor(len(self.choices ) - self.position ,'''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(lowercase_ )] for number in range(1_0 )] ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : List[Any] = int(chr(self.current_selection ) ) lowerCAmelCase__ : List[str] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,lowercase_ ) else: return else: return def __lowerCAmelCase ( self : Any ,lowercase_ : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt ,'''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' ,'''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' ,'''\n''' ) lowerCAmelCase__ : int = default_choice for i in range(len(self.choices ) ): self.print_choice(lowercase_ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position ,'''UP''' ) with cursor.hide(): while True: if in_colab: try: lowerCAmelCase__ : Optional[Any] = int(builtins.input() ) except ValueError: lowerCAmelCase__ : int = default_choice else: lowerCAmelCase__ : Tuple = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,'''UP''' ) clear_line() self.write_choice(lowercase_ ,'''\n''' ) return choice
450
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase__ : Tuple = 5 UpperCAmelCase__ : List[Any] = 10 @require_sentencepiece @require_tokenizers class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Tuple = SpeechaTextTokenizer snake_case__ :Dict = False snake_case__ :Optional[int] = True def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() lowerCAmelCase__ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = "<pad>" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class A ( unittest.TestCase ): snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium' snake_case__ :Tuple = 'C\'est trop cool' snake_case__ :List[str] = 'Esto es genial' @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = "fr" lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase__ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
48
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _SCREAMING_SNAKE_CASE = CLIPImageProcessor() _SCREAMING_SNAKE_CASE = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') _SCREAMING_SNAKE_CASE = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
401
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ : Tuple = logging.get_logger(__name__) # General docstring UpperCAmelCase__ : int = "RegNetConfig" # Base docstring UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase__ : Tuple = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat" UpperCAmelCase__ : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) ) lowerCAmelCase__ = self.normalization(__magic_name__ ) lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config.num_channels lowerCAmelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = shape_list(__magic_name__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) ) lowerCAmelCase__ = self.embedder(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ): """simple docstring""" return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ ) class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) lowerCAmelCase__ = [ tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.pooler(__magic_name__ ) for layer_module in self.attention: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ), *[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ): """simple docstring""" for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ): """simple docstring""" lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(__magic_name__ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ ) @keras_serializable class A ( tf.keras.layers.Layer ): snake_case__ :List[Any] = RegNetConfig def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" ) lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) @unpack_inputs def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = self.encoder( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(__magic_name__ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = RegNetConfig snake_case__ :Optional[Any] = 'regnet' snake_case__ :Tuple = 'pixel_values' @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) # classification head lowerCAmelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier[0](__magic_name__ ) lowerCAmelCase__ = self.classifier[1](__magic_name__ ) lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
48
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name __snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" A_ = 42 class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : PriorTransformer , lowercase_ : CLIPVisionModel , lowercase_ : CLIPImageProcessor , lowercase_ : HeunDiscreteScheduler , lowercase_ : ShapERenderer , ): '''simple docstring''' super().__init__() self.register_modules( prior=lowercase_ , image_encoder=lowercase_ , image_processor=lowercase_ , scheduler=lowercase_ , renderer=lowercase_ , ) def lowerCamelCase__ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Optional[Any] ): '''simple docstring''' if latents is None: lowercase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowercase_ = latents.to(lowercase_ ) lowercase_ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase__ ( self : Tuple , lowercase_ : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowercase_ = torch.device(F"""cuda:{gpu_id}""" ) lowercase_ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) @property def lowerCamelCase__ ( self : str ): '''simple docstring''' if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase__ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Any , ): '''simple docstring''' if isinstance(lowercase_ , lowercase_ ) and isinstance(image[0] , torch.Tensor ): lowercase_ = torch.cat(lowercase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase_ , axis=0 ) if not isinstance(lowercase_ , torch.Tensor ): lowercase_ = self.image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) lowercase_ = image.to(dtype=self.image_encoder.dtype , device=lowercase_ ) lowercase_ = self.image_encoder(lowercase_ )["""last_hidden_state"""] lowercase_ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase_ = image_embeds.repeat_interleave(lowercase_ , dim=0 ) if do_classifier_free_guidance: lowercase_ = torch.zeros_like(lowercase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self : str , lowercase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , lowercase_ : int = 1 , lowercase_ : int = 25 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : float = 4.0 , lowercase_ : int = 64 , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ): '''simple docstring''' if isinstance(lowercase_ , PIL.Image.Image ): lowercase_ = 1 elif isinstance(lowercase_ , torch.Tensor ): lowercase_ = image.shape[0] elif isinstance(lowercase_ , lowercase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase_ = len(lowercase_ ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase_ )}""" ) lowercase_ = self._execution_device lowercase_ = batch_size * num_images_per_prompt lowercase_ = guidance_scale > 1.0 lowercase_ = self._encode_image(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # prior self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) lowercase_ = self.scheduler.timesteps lowercase_ = self.prior.config.num_embeddings lowercase_ = self.prior.config.embedding_dim lowercase_ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase_ = latents.reshape(latents.shape[0] , lowercase_ , lowercase_ ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance lowercase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) lowercase_ = self.prior( lowercase_ , timestep=lowercase_ , proj_embedding=lowercase_ , ).predicted_image_embedding # remove the variance lowercase_ , lowercase_ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase_ , lowercase_ = noise_pred.chunk(2 ) lowercase_ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase_ = self.scheduler.step( lowercase_ , timestep=lowercase_ , sample=lowercase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase_ ) lowercase_ = [] for i, latent in enumerate(lowercase_ ): print() lowercase_ = self.renderer.decode( latent[None, :] , lowercase_ , size=lowercase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowercase_ ) lowercase_ = torch.stack(lowercase_ ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) lowercase_ = images.cpu().numpy() if output_type == "pil": lowercase_ = [self.numpy_to_pil(lowercase_ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase_ )
451
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def A ( UpperCamelCase_ : Tuple ) -> int: '''simple docstring''' for param in module.parameters(): lowerCAmelCase__ = False def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def A ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = datetime.now() lowerCAmelCase__ = current_time.strftime("%H:%M:%S" ) return timestamp
48
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ) -> Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , use_stable_embedding=lowercase , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = OpenLlamaModel(config=lowercase ) model.to(lowercase ) model.eval() A__ = model(lowercase , attention_mask=lowercase ) A__ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Optional[Any]: '''simple docstring''' A__ = True A__ = OpenLlamaModel(lowercase ) model.to(lowercase ) model.eval() A__ = model( lowercase , attention_mask=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , ) A__ = model( lowercase , attention_mask=lowercase , encoder_hidden_states=lowercase , ) A__ = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[Any]: '''simple docstring''' A__ = OpenLlamaForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() A__ = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: '''simple docstring''' A__ = True A__ = True A__ = OpenLlamaForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() # first forward pass A__ = model( lowercase , attention_mask=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , use_cache=lowercase , ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ = torch.cat([input_mask, next_mask] , dim=-1 ) A__ = model( lowercase , attention_mask=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , output_hidden_states=lowercase , )["hidden_states"][0] A__ = model( lowercase , attention_mask=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , past_key_values=lowercase , output_hidden_states=lowercase , )["hidden_states"][0] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-3 ) ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = OpenLlamaModelTester(self ) A__ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = input_dict["input_ids"] A__ = input_ids.ne(1 ).to(lowercase ) A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ = OpenLlamaForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A__ = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = "single_label_classification" A__ = input_dict["input_ids"] A__ = input_ids.ne(1 ).to(lowercase ) A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ = OpenLlamaForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A__ = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = "multi_label_classification" A__ = input_dict["input_ids"] A__ = input_ids.ne(1 ).to(lowercase ) A__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ = OpenLlamaForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A__ = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCamelCase ( self , lowercase ) -> Any: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ids_tensor([1, 10] , config.vocab_size ) A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ = OpenLlamaModel(lowercase ) original_model.to(lowercase ) original_model.eval() A__ = original_model(lowercase ).last_hidden_state A__ = original_model(lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ = {"type": scaling_type, "factor": 10.0} A__ = OpenLlamaModel(lowercase ) scaled_model.to(lowercase ) scaled_model.eval() A__ = scaled_model(lowercase ).last_hidden_state A__ = scaled_model(lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowercase , lowercase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase , lowercase , atol=1e-5 ) )
514
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase__ = get_tests_dir('''fixtures''') class a__ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> str: __A= mock.Mock() __A= 500 __A= {} __A= HTTPError __A= {} # Download this model to make sure it's in the cache. __A= WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCAmelCase_ ) as mock_head: __A= WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Optional[int] ) -> int: __A= WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class a__ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase ( cls : Any ) -> List[str]: __A= TOKEN HfFolder.save_token(lowerCAmelCase_ ) @classmethod def lowerCAmelCase ( cls : str ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def lowerCAmelCase ( self : Dict ) -> Optional[int]: __A= WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_ ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) __A= WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase_ , repo_id='test-feature-extractor' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) __A= WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) def lowerCAmelCase ( self : Any ) -> str: __A= WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) __A= WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase_ , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) __A= WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) def lowerCAmelCase ( self : Any ) -> Optional[int]: CustomFeatureExtractor.register_for_auto_class() __A= CustomFeatureExtractor.from_pretrained(lowerCAmelCase_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) __A= AutoFeatureExtractor.from_pretrained( F"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=lowerCAmelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
186
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any: '''simple docstring''' lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ ) else: lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCAmelCase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
48
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : int = torch.load(UpperCamelCase_ , map_location="""cpu""" ) A_ : List[Any] = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository A_ : List[str] = {} for k, v in state_dict.items(): if "pred_layer" in k: A_ : Dict = v else: A_ : Any = v A_ : Any = chkpt["""params"""] A_ : int = {n: v for n, v in config.items() if not isinstance(UpperCamelCase_ , (torch.FloatTensor, numpy.ndarray) )} A_ : List[str] = chkpt["""dico_word2id"""] A_ : Dict = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model A_ : List[Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A_ : Optional[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME A_ : Dict = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase_ , indent=2 ) + """\n""" ) print(f'Save vocab file to {pytorch_config_dump_path}' ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase_ , indent=2 ) + """\n""" ) if __name__ == "__main__": lowerCamelCase :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase :Any = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
667
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class A : def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = block_sizes lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = d_model lowerCAmelCase__ = n_head lowerCAmelCase__ = d_head lowerCAmelCase__ = d_inner lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = 2 lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase__ = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase__ = self.num_hidden_layers + 2 def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case__ :Any = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case__ :str = False snake_case__ :Any = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @require_tf class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case__ :int = False snake_case__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
48
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase : List[str] = logging.get_logger(__name__) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None ): A : List[str] = tesseract_config if tesseract_config is not None else '''''' # apply OCR A : str = to_pil_image(UpperCamelCase_ ) A , A : str = pil_image.size A : str = pytesseract.image_to_data(UpperCamelCase_ , lang=UpperCamelCase_ , output_type='''dict''' , config=UpperCamelCase_ ) A , A , A , A , A : Optional[Any] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates A : List[Any] = [idx for idx, word in enumerate(UpperCamelCase_ ) if not word.strip()] A : str = [word for idx, word in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] A : Optional[int] = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] A : List[str] = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] A : Tuple = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] A : List[Any] = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format A : Any = [] for x, y, w, h in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): A : Optional[int] = [x, y, x + w, y + h] actual_boxes.append(UpperCamelCase_ ) # finally, normalize the bounding boxes A : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowercase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" UpperCAmelCase_ : int = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = "" , **__UpperCAmelCase , ) -> Optional[int]: super().__init__(**__UpperCAmelCase ) A : List[str] = size if size is not None else {'''height''': 2_24, '''width''': 2_24} A : Union[str, Any] = get_size_dict(__UpperCAmelCase ) A : str = do_resize A : Tuple = size A : str = resample A : str = apply_ocr A : Optional[Any] = ocr_lang A : List[Any] = tesseract_config def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]: A : List[Any] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) A : str = (size['''height'''], size['''width''']) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> Optional[Any]: A : List[str] = do_resize if do_resize is not None else self.do_resize A : Dict = size if size is not None else self.size A : Tuple = get_size_dict(__UpperCAmelCase ) A : Any = resample if resample is not None else self.resample A : Optional[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr A : Union[str, Any] = ocr_lang if ocr_lang is not None else self.ocr_lang A : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config A : int = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. A : Dict = [to_numpy_array(__UpperCAmelCase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) A : Any = [] A : int = [] for image in images: A , A : str = apply_tesseract(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) words_batch.append(__UpperCAmelCase ) boxes_batch.append(__UpperCAmelCase ) if do_resize: A : List[str] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) A : Optional[int] = [flip_channel_order(__UpperCAmelCase ) for image in images] A : List[Any] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] A : List[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=__UpperCAmelCase ) if apply_ocr: A : int = words_batch A : str = boxes_batch return data
542
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'umt5' snake_case__ :Any = ['past_key_values'] def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ): """simple docstring""" super().__init__( is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = d_kv lowerCAmelCase__ = d_ff lowerCAmelCase__ = num_layers lowerCAmelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase__ = num_heads lowerCAmelCase__ = relative_attention_num_buckets lowerCAmelCase__ = relative_attention_max_distance lowerCAmelCase__ = dropout_rate lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_factor lowerCAmelCase__ = feed_forward_proj lowerCAmelCase__ = use_cache lowerCAmelCase__ = self.feed_forward_proj.split("-" ) lowerCAmelCase__ = act_info[-1] lowerCAmelCase__ = act_info[0] == "gated" if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": lowerCAmelCase__ = "gelu_new" @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return self.d_model @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.num_heads @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.num_layers class A ( SCREAMING_SNAKE_CASE__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: lowerCAmelCase__ = "past_encoder_sequence + sequence" lowerCAmelCase__ = {0: "batch"} lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 13 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 5E-4
48
0
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _UpperCAmelCase : str = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple , __snake_case : Any , __snake_case : Optional[int]=None ): if rng is None: _A = random.Random() _A = 1 for dim in shape: total_dims *= dim _A = [] for _ in range(UpperCamelCase_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) _A = np.array(UpperCamelCase_ , dtype=jnp.intaa ).reshape(UpperCamelCase_ ) return output def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple , __snake_case : List[str]=None ): _A = ids_tensor(UpperCamelCase_ , vocab_size=2 , rng=UpperCamelCase_ ) # make sure that at least one token is attended to for each batch _A = 1 return attn_mask @require_flax class lowercase_ : """simple docstring""" __lowerCAmelCase = None __lowerCAmelCase = () def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _A = 2 _A = inputs['input_ids'].shape[-1] // 2 _A = inputs['input_ids'][:max_batch_size, :sequence_length] _A = jnp.ones_like(UpperCamelCase__ ) _A = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _A = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _A = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __UpperCAmelCase ( self : Optional[Any] ) -> str: _A , _A , _A , _A = self._get_input_ids_and_config() _A = False _A = max_length _A = 0 for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model_class.__name__[4:] # Skip the "Flax" at the beginning _A = getattr(UpperCamelCase__, UpperCamelCase__ ) _A = pt_model_class(UpperCamelCase__ ).eval() _A = load_flax_weights_in_pytorch_model(UpperCamelCase__, flax_model.params ) _A = flax_model.generate(UpperCamelCase__ ).sequences _A = pt_model.generate(torch.tensor(UpperCamelCase__, dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _A = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist(), flax_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[int] ) -> str: _A , _A , _A , _A = self._get_input_ids_and_config() _A = False _A = max_length for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model.generate(UpperCamelCase__ ).sequences self.assertEqual(generation_outputs.shape[-1], UpperCamelCase__ ) _A = jit(model.generate ) _A = jit_generate(UpperCamelCase__ ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : List[str] ) -> Any: _A , _A , _A , _A = self._get_input_ids_and_config() _A = True _A = max_length for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model.generate(UpperCamelCase__ ).sequences self.assertEqual(generation_outputs.shape[-1], UpperCamelCase__ ) _A = jit(model.generate ) _A = jit_generate(UpperCamelCase__ ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Tuple ) -> Dict: _A , _A , _A , _A = self._get_input_ids_and_config() _A = False _A = max_length _A = 2 for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model.generate(UpperCamelCase__ ).sequences self.assertEqual(generation_outputs.shape[-1], UpperCamelCase__ ) _A = jit(model.generate ) _A = jit_generate(UpperCamelCase__ ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[int] ) -> str: _A , _A , _A , _A = self._get_input_ids_and_config() _A = False _A = max_length _A = 2 _A = 2 for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model.generate(UpperCamelCase__ ).sequences self.assertEqual(generation_outputs.shape[0], input_ids.shape[0] * config.num_return_sequences ) def __UpperCAmelCase ( self : str ) -> int: _A , _A , _A , _A = self._get_input_ids_and_config() _A = True _A = max_length _A = 0.8 _A = 10 _A = 0.3 _A = 1 _A = 8 _A = 9 for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model.generate(UpperCamelCase__ ).sequences self.assertEqual(generation_outputs.shape[-1], UpperCamelCase__ ) _A = jit(model.generate ) _A = jit_generate(UpperCamelCase__ ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: _A , _A , _A , _A = self._get_input_ids_and_config() _A = max_length _A = 1 _A = 8 _A = 9 for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model.generate(UpperCamelCase__ ).sequences self.assertEqual(generation_outputs.shape[-1], UpperCamelCase__ ) _A = jit(model.generate ) _A = jit_generate(UpperCamelCase__ ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : int ) -> List[str]: _A , _A , _A , _A = self._get_input_ids_and_config() _A = max_length _A = 2 _A = 1 _A = 8 _A = 9 for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model.generate(UpperCamelCase__ ).sequences self.assertEqual(generation_outputs.shape[-1], UpperCamelCase__ ) _A = jit(model.generate ) _A = jit_generate(UpperCamelCase__ ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: _A , _A , _A , _A = self._get_input_ids_and_config() # pad attention mask on the left _A = attention_mask.at[(0, 0)].set(0 ) _A = False _A = max_length for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model.generate(UpperCamelCase__, attention_mask=UpperCamelCase__ ).sequences self.assertEqual(generation_outputs.shape[-1], UpperCamelCase__ ) _A = jit(model.generate ) _A = jit_generate(UpperCamelCase__, attention_mask=UpperCamelCase__ ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: _A , _A , _A , _A = self._get_input_ids_and_config() # pad attention mask on the left _A = attention_mask.at[(0, 0)].set(0 ) _A = True _A = max_length for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model.generate(UpperCamelCase__, attention_mask=UpperCamelCase__ ).sequences self.assertEqual(generation_outputs.shape[-1], UpperCamelCase__ ) _A = jit(model.generate ) _A = jit_generate(UpperCamelCase__, attention_mask=UpperCamelCase__ ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : str ) -> Any: _A , _A , _A , _A = self._get_input_ids_and_config() # pad attention mask on the left _A = attention_mask.at[(0, 0)].set(0 ) _A = 2 _A = max_length for model_class in self.all_generative_model_classes: _A = model_class(UpperCamelCase__ ) _A = model.generate(UpperCamelCase__, attention_mask=UpperCamelCase__ ).sequences self.assertEqual(generation_outputs.shape[-1], UpperCamelCase__ ) _A = jit(model.generate ) _A = jit_generate(UpperCamelCase__, attention_mask=UpperCamelCase__ ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) @require_flax class lowercase_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: _A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) _A = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _A = 'Hello world' _A = tokenizer(UpperCamelCase__, return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(UpperCamelCase__, 'do_samples' ): model.generate(UpperCamelCase__, do_samples=UpperCamelCase__ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(UpperCamelCase__, 'foo' ): _A = {'foo': 'bar'} model.generate(UpperCamelCase__, **UpperCamelCase__ )
107
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class A : def __init__( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ): """simple docstring""" if nodea not in self.connections: self.add_node(__magic_name__ ) if nodea not in self.connections: self.add_node(__magic_name__ ) lowerCAmelCase__ = probability def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return list(self.connections ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]: '''simple docstring''' lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = Counter(graph.get_nodes() ) lowerCAmelCase__ = start for _ in range(UpperCamelCase_ ): lowerCAmelCase__ = graph.transition(UpperCamelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
48
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A : List[Any] = logging.get_logger(__name__) _A : List[str] = "▁" _A : Dict = {"vocab_file": "sentencepiece.bpe.model"} _A : int = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } _A : Dict = { "facebook/xglm-564M": 20_48, } class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] def __init__( self : int , A : str , A : Optional[int]="<s>" , A : int="</s>" , A : Optional[Any]="</s>" , A : List[Any]="<s>" , A : List[str]="<unk>" , A : Optional[int]="<pad>" , A : Optional[Dict[str, Any]] = None , **A : Optional[Any] , ) ->Optional[int]: lowerCamelCase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCamelCase__ : str = 7 lowerCamelCase__ : Optional[int] = [F"<madeupword{i}>" for i in range(self.num_madeup_words )] lowerCamelCase__ : List[Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowerCamelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) lowerCamelCase__ : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase__ : List[str] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase__ : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowerCamelCase__ : List[str] = len(self.sp_model ) lowerCamelCase__ : List[Any] = {F"<madeupword{i}>": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(A ) lowerCamelCase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ) ->int: lowerCamelCase__ : Optional[int] = self.__dict__.copy() lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , A : List[str] ) ->List[Any]: lowerCamelCase__ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase__ : Any = {} lowerCamelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCamelCase ( self : Optional[Any] , A : List[int] , A : Optional[List[int]] = None ) ->Dict: if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCamelCase__ : Union[str, Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __lowerCamelCase ( self : List[str] , A : List[int] , A : Optional[List[int]] = None , A : bool = False ) ->List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) def __lowerCamelCase ( self : int , A : List[int] , A : Optional[List[int]] = None ) ->Tuple: lowerCamelCase__ : Dict = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __lowerCamelCase ( self : List[Any] ) ->Optional[int]: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __lowerCamelCase ( self : List[str] ) ->int: lowerCamelCase__ : List[str] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self : str , A : str ) ->List[Any]: return self.sp_model.encode(A , out_type=A ) def __lowerCamelCase ( self : Optional[Any] , A : Dict ) ->int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__ : List[Any] = self.sp_model.PieceToId(A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCamelCase ( self : Any , A : Tuple ) ->Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCamelCase ( self : Any , A : List[str] ) ->Tuple: lowerCamelCase__ : Optional[Any] = ''''''.join(A ).replace(A , ''' ''' ).strip() return out_string def __lowerCamelCase ( self : Dict , A : str , A : Optional[str] = None ) ->Union[str, Any]: if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : List[Any] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: lowerCamelCase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
315
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase__ : Optional[Any] = pytest.mark.integration UpperCAmelCase__ : str = {"comet"} UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None UpperCAmelCase__ : Optional[int] = {"code_eval"} UpperCAmelCase__ : List[Any] = os.name == "nt" UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"} UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : int ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : Any ) -> int: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class A ( parameterized.TestCase ): snake_case__ :Union[str, Any] = {} snake_case__ :Optional[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ ) # check parameters lowerCAmelCase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ): yield else: yield @contextmanager def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ): return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ ) with patch("datasets.load_metric" ) as mock_load_metric: lowerCAmelCase__ = load_local_metric yield @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ): """simple docstring""" def wrapper(__magic_name__ : Dict ): lowerCAmelCase__ = contextmanager(__magic_name__ ) lowerCAmelCase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowerCAmelCase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' import torch def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowerCAmelCase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def A ( UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' def load_from_checkpoint(UpperCamelCase_ : Tuple ): class A : def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ): """simple docstring""" assert len(__magic_name__ ) == 2 lowerCAmelCase__ = [0.19, 0.92] return scores, sum(__magic_name__ ) / len(__magic_name__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowerCAmelCase__ = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowerCAmelCase__ = load_from_checkpoint yield def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) ) lowerCAmelCase__ = "ERROR" lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
48
0
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase__ ( ) ->str: _UpperCAmelCase =ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) _UpperCAmelCase =parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(UpperCamelCase_ ) DownloadCommand.register_subcommand(UpperCamelCase_ ) EnvironmentCommand.register_subcommand(UpperCamelCase_ ) RunCommand.register_subcommand(UpperCamelCase_ ) ServeCommand.register_subcommand(UpperCamelCase_ ) UserCommands.register_subcommand(UpperCamelCase_ ) AddNewModelCommand.register_subcommand(UpperCamelCase_ ) AddNewModelLikeCommand.register_subcommand(UpperCamelCase_ ) LfsCommands.register_subcommand(UpperCamelCase_ ) PTtoTFCommand.register_subcommand(UpperCamelCase_ ) # Let's go _UpperCAmelCase =parser.parse_args() if not hasattr(UpperCamelCase_ , "func" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase =args.func(UpperCamelCase_ ) service.run() if __name__ == "__main__": main()
408
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase__ : int = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M' snake_case__ :Optional[Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case__ :List[Any] = 'translator' snake_case__ :List[Any] = AutoTokenizer snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM snake_case__ :List[str] = LANGUAGE_CODES snake_case__ :List[Any] = ['text', 'text', 'text'] snake_case__ :List[Any] = ['text'] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) lowerCAmelCase__ = self.lang_to_code[src_lang] lowerCAmelCase__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
48
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. snake_case_ : Optional[int] = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class snake_case_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: lowerCamelCase_ : int = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) lowerCamelCase_ : Dict = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}] ) lowerCamelCase_ : str = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) lowerCamelCase_ : Any = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) lowerCamelCase_ : Dict = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior lowerCamelCase_ : Union[str, Any] = text_classifier("This is great !" , return_all_scores=__magic_name__ ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}] ) lowerCamelCase_ : List[str] = text_classifier("This is great !" , return_all_scores=__magic_name__ ) self.assertEqual( nested_simplify(__magic_name__ ) , [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) lowerCamelCase_ : Tuple = text_classifier(["This is great !", "Something else"] , return_all_scores=__magic_name__ ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) lowerCamelCase_ : Tuple = text_classifier(["This is great !", "Something else"] , return_all_scores=__magic_name__ ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ] , ) @require_torch def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: import torch lowerCamelCase_ : Dict = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) lowerCamelCase_ : str = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: lowerCamelCase_ : Optional[int] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) lowerCamelCase_ : List[str] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: lowerCamelCase_ : str = pipeline("text-classification" ) lowerCamelCase_ : List[Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "POSITIVE", "score": 1.0}] ) lowerCamelCase_ : Any = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) lowerCamelCase_ : str = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: lowerCamelCase_ : List[str] = pipeline("text-classification" , framework="tf" ) lowerCamelCase_ : Any = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "POSITIVE", "score": 1.0}] ) lowerCamelCase_ : List[Any] = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) lowerCamelCase_ : Optional[Any] = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": "POSITIVE", "score": 0.988}] ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] ) -> Dict: lowerCamelCase_ : str = TextClassificationPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] ) -> Dict: lowerCamelCase_ : Optional[int] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCamelCase_ : List[str] = "HuggingFace is in" lowerCamelCase_ : Any = text_classifier(__magic_name__ ) self.assertEqual(nested_simplify(__magic_name__ ) , [{"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) lowerCamelCase_ : Dict = ["HuggingFace is in ", "Paris is in France"] lowerCamelCase_ : Tuple = text_classifier(__magic_name__ ) self.assertEqual( nested_simplify(__magic_name__ ) , [{"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}, {"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCamelCase_ : str = text_classifier(__magic_name__ , top_k=__magic_name__ ) lowerCamelCase_ : Optional[int] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__magic_name__ ) , [[{"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}] * N, [{"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}] * N] , ) lowerCamelCase_ : Optional[int] = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} lowerCamelCase_ : Optional[int] = text_classifier(__magic_name__ ) self.assertEqual( nested_simplify(__magic_name__ ) , {"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCamelCase_ : str = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(__magic_name__ ): text_classifier(__magic_name__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCamelCase_ : Union[str, Any] = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(__magic_name__ ) , [{"label": ANY(__magic_name__ ), "score": ANY(__magic_name__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
488
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'timm_backbone' def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = backbone lowerCAmelCase__ = num_channels lowerCAmelCase__ = features_only lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = True lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
48
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase : Optional[int] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase : int = { "facebook/bart-base": 1_0_2_4, "facebook/bart-large": 1_0_2_4, "facebook/bart-large-mnli": 1_0_2_4, "facebook/bart-large-cnn": 1_0_2_4, "facebook/bart-large-xsum": 1_0_2_4, "yjernite/bart_eli5": 1_0_2_4, } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['input_ids', 'attention_mask'] lowercase__ = BartTokenizer def __init__( self : List[str] ,lowercase_ : Dict=None ,lowercase_ : Optional[int]=None ,lowercase_ : Tuple=None ,lowercase_ : List[Any]="replace" ,lowercase_ : Union[str, Any]="<s>" ,lowercase_ : Optional[int]="</s>" ,lowercase_ : Dict="</s>" ,lowercase_ : Union[str, Any]="<s>" ,lowercase_ : Optional[int]="<unk>" ,lowercase_ : str="<pad>" ,lowercase_ : Dict="<mask>" ,lowercase_ : Optional[int]=False ,lowercase_ : str=True ,**lowercase_ : Optional[Any] ,): super().__init__( lowercase_ ,lowercase_ ,tokenizer_file=lowercase_ ,errors=lowercase_ ,bos_token=lowercase_ ,eos_token=lowercase_ ,sep_token=lowercase_ ,cls_token=lowercase_ ,unk_token=lowercase_ ,pad_token=lowercase_ ,mask_token=lowercase_ ,add_prefix_space=lowercase_ ,trim_offsets=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,lowercase_ ) != add_prefix_space: lowerCAmelCase__ : Optional[int] = getattr(lowercase_ ,pre_tok_state.pop('''type''' ) ) lowerCAmelCase__ : List[str] = add_prefix_space lowerCAmelCase__ : Tuple = pre_tok_class(**lowercase_ ) lowerCAmelCase__ : int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase__ : Tuple = '''post_processor''' lowerCAmelCase__ : Tuple = getattr(self.backend_tokenizer ,lowercase_ ,lowercase_ ) if tokenizer_component_instance: lowerCAmelCase__ : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase__ : Dict = tuple(state['''sep'''] ) if "cls" in state: lowerCAmelCase__ : Optional[Any] = tuple(state['''cls'''] ) lowerCAmelCase__ : Dict = False if state.get('''add_prefix_space''' ,lowercase_ ) != add_prefix_space: lowerCAmelCase__ : int = add_prefix_space lowerCAmelCase__ : int = True if state.get('''trim_offsets''' ,lowercase_ ) != trim_offsets: lowerCAmelCase__ : Tuple = trim_offsets lowerCAmelCase__ : Optional[int] = True if changes_to_apply: lowerCAmelCase__ : Tuple = getattr(lowercase_ ,state.pop('''type''' ) ) lowerCAmelCase__ : Union[str, Any] = component_class(**lowercase_ ) setattr(self.backend_tokenizer ,lowercase_ ,lowercase_ ) @property def __lowerCAmelCase ( self : List[str] ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self : Tuple ,lowercase_ : List[Any] ): lowerCAmelCase__ : List[str] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else value lowerCAmelCase__ : Any = value def __lowerCAmelCase ( self : str ,*lowercase_ : List[Any] ,**lowercase_ : Any ): lowerCAmelCase__ : Optional[int] = kwargs.get('''is_split_into_words''' ,lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : str ,*lowercase_ : Any ,**lowercase_ : str ): lowerCAmelCase__ : Optional[int] = kwargs.get('''is_split_into_words''' ,lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : int ,lowercase_ : str ,lowercase_ : Optional[str] = None ): lowerCAmelCase__ : Optional[int] = self._tokenizer.model.save(lowercase_ ,name=lowercase_ ) return tuple(lowercase_ ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : Any ,lowercase_ : int=None ): lowerCAmelCase__ : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self : int ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
450
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base' snake_case__ :List[Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case__ :List[Any] = 'image_captioner' snake_case__ :Optional[int] = AutoModelForVisionaSeq snake_case__ :Optional[int] = ['image'] snake_case__ :Any = ['text'] def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ): """simple docstring""" return self.pre_processor(images=__magic_name__ , return_tensors="pt" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
48
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase :int = StableUnCLIPPipeline lowerCamelCase :int = TEXT_TO_IMAGE_PARAMS lowerCamelCase :str = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase :Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase :str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCamelCase :Tuple = False def UpperCAmelCase ( self ) -> List[str]: _A = 32 _A = embedder_hidden_size # prior components torch.manual_seed(0 ) _A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _A = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase_ , projection_dim=lowerCAmelCase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) _A = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowerCAmelCase_ , num_layers=1 , ) torch.manual_seed(0 ) _A = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=10_00 , clip_sample=lowerCAmelCase_ , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) _A = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase_ ) _A = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _A = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) _A = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase_ , layers_per_block=1 , upcast_attention=lowerCAmelCase_ , use_linear_projection=lowerCAmelCase_ , ) torch.manual_seed(0 ) _A = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) _A = AutoencoderKL() _A = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> Optional[int]: if str(lowerCAmelCase_ ).startswith("""mps""" ): _A = torch.manual_seed(lowerCAmelCase_ ) else: _A = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ) -> int: _A = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> str: _A = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase_ ) @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> List[Any]: _A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) _A = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _A = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A = pipe("""anime turle""" , generator=lowerCAmelCase_ , output_type="""np""" ) _A = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> str: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) _A = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _A = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) _A = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
401
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = "▁" UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ : Optional[Any] = { "facebook/mbart-large-50-one-to-many-mmt": 10_24, } # fmt: off UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = VOCAB_FILES_NAMES snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Tuple = ['input_ids', 'attention_mask'] snake_case__ :List[int] = [] snake_case__ :List[int] = [] def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ): """simple docstring""" lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX" lowerCAmelCase__ = self.lang_code_to_id[self._src_lang] lowerCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : List[Any] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = "" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(__magic_name__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) lowerCAmelCase__ = [1] * len(self.prefix_tokens ) lowerCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase__ = src_lang lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ ) lowerCAmelCase__ = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[src_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[tgt_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id]
48
0
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __snake_case = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __snake_case = direct_transformers_import(PATH_TO_TRANSFORMERS) __snake_case = transformers.models.auto.configuration_auto.CONFIG_MAPPING __snake_case = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]: lowercase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): lowercase_ = True # Deal with multi-line cases elif ( re.search( rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , UpperCamelCase_ , ) is not None ): lowercase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase_ = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] lowercase_ = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed lowercase_ = True if not attribute_used: lowercase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase_ = True elif attribute.endswith("""_token_id""" ): lowercase_ = True # configuration class specific cases if not case_allowed: lowercase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A_ ( SCREAMING_SNAKE_CASE_ ) ->Dict: lowercase_ = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase_ = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] lowercase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase_ = {} if len(config_class.attribute_map ) > 0: lowercase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase_ = inspect.getsourcefile(UpperCamelCase_ ) lowercase_ = os.path.dirname(UpperCamelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase_ = [os.path.join(UpperCamelCase_ , UpperCamelCase_ ) for fn in os.listdir(UpperCamelCase_ ) if fn.startswith("""modeling_""" )] # Get the source code strings lowercase_ = [] for path in modeling_paths: if os.path.isfile(UpperCamelCase_ ): with open(UpperCamelCase_ ) as fp: modeling_sources.append(fp.read() ) lowercase_ = [] for config_param, default_value in zip(UpperCamelCase_ , UpperCamelCase_ ): # `attributes` here is all the variant names for `config_param` lowercase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): unused_attributes.append(attributes[0] ) return sorted(UpperCamelCase_ ) def A_ ( ) ->Optional[Any]: lowercase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda SCREAMING_SNAKE_CASE_ : inspect.isclass(UpperCamelCase_ ) and issubclass(UpperCamelCase_ , UpperCamelCase_ ) and inspect.getmodule(UpperCamelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase_ = check_config_attributes_being_used(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowercase_ = unused_attributes if len(UpperCamelCase_ ) > 0: lowercase_ = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(UpperCamelCase_ ) if __name__ == "__main__": check_config_attributes()
451
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 if start < end: lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 ) count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ ) return count def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ = start - 1 for index in range(UpperCamelCase_ , UpperCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ = new_pivot_index + 1 lowerCAmelCase__ = a[new_pivot_index] lowerCAmelCase__ = a[index] lowerCAmelCase__ = temp lowerCAmelCase__ = a[new_pivot_index + 1] lowerCAmelCase__ = a[end] lowerCAmelCase__ = temp return new_pivot_index + 1, count UpperCAmelCase__ : Tuple = TemporaryFile() UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase__ : Optional[Any] = np.load(outfile) UpperCAmelCase__ : Any = len(M) - 1 UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
48
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class a__ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = 'wavlm' def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1e-5 , lowercase="group" , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=128 , lowercase=16 , lowercase=320 , lowercase=800 , lowercase=False , lowercase=True , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=320 , lowercase=2 , lowercase=0.1 , lowercase=100 , lowercase=256 , lowercase=256 , lowercase=0.1 , lowercase="mean" , lowercase=False , lowercase=False , lowercase=256 , lowercase=(512, 512, 512, 512, 1500) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=512 , lowercase=80 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ) -> List[str]: '''simple docstring''' super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) A__ = hidden_size A__ = feat_extract_norm A__ = feat_extract_activation A__ = list(lowercase ) A__ = list(lowercase ) A__ = list(lowercase ) A__ = conv_bias A__ = num_buckets A__ = max_bucket_distance A__ = num_conv_pos_embeddings A__ = num_conv_pos_embedding_groups A__ = len(self.conv_dim ) A__ = num_hidden_layers A__ = intermediate_size A__ = hidden_act A__ = num_attention_heads A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = feat_proj_dropout A__ = final_dropout A__ = layerdrop A__ = layer_norm_eps A__ = initializer_range A__ = num_ctc_classes A__ = vocab_size A__ = do_stable_layer_norm A__ = use_weighted_layer_sum A__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ = apply_spec_augment A__ = mask_time_prob A__ = mask_time_length A__ = mask_time_min_masks A__ = mask_feature_prob A__ = mask_feature_length # parameters for pretraining with codevector quantized representations A__ = num_codevectors_per_group A__ = num_codevector_groups A__ = contrastive_logits_temperature A__ = num_negatives A__ = codevector_dim A__ = proj_codevector_dim A__ = diversity_loss_weight # ctc loss A__ = ctc_loss_reduction A__ = ctc_zero_infinity # adapter A__ = add_adapter A__ = adapter_kernel_size A__ = adapter_stride A__ = num_adapter_layers A__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A__ = list(lowercase ) A__ = list(lowercase ) A__ = list(lowercase ) A__ = xvector_output_dim @property def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
514
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A ( UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase__ = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase__ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase__ = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase__ = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase__ = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] else: lowerCAmelCase__ = rename_key(UpperCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ = val.squeeze_() else: lowerCAmelCase__ = val return orig_state_dict def A ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any: '''simple docstring''' lowerCAmelCase__ = GroupViTConfig() lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval() lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0) # verify result lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase_ ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 ) processor.save_pretrained(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) print("Successfully saved processor and model to" , UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(UpperCamelCase_ , organization="nielsr" ) model.push_to_hub(UpperCamelCase_ , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) UpperCAmelCase__ : Any = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
48
0
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger UpperCAmelCase__ = get_logger(__name__) UpperCAmelCase__ = Path(__file__).parent / "model_card_template.md" UpperCAmelCase__ = uuida().hex UpperCAmelCase__ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES UpperCAmelCase__ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES UpperCAmelCase__ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Union[Dict, str, None] = None ): """simple docstring""" __A= f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI','' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(UpperCamelCase_,UpperCamelCase_ ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(UpperCamelCase_,UpperCamelCase_ ): ua += "; " + user_agent return ua def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : str,_SCREAMING_SNAKE_CASE : Optional[str] = None,_SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" if token is None: __A= HfFolder.get_token() if organization is None: __A= whoami(UpperCamelCase_ )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Any,_SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(UpperCamelCase_,'local_rank' ) and args.local_rank not in [-1, 0]: return __A= args.hub_token if hasattr(UpperCamelCase_,'hub_token' ) else None __A= get_full_repo_name(UpperCamelCase_,token=UpperCamelCase_ ) __A= ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en',license='apache-2.0',library_name='diffusers',tags=[],datasets=args.dataset_name,metrics=[],),template_path=UpperCamelCase_,model_name=UpperCamelCase_,repo_name=UpperCamelCase_,dataset_name=args.dataset_name if hasattr(UpperCamelCase_,'dataset_name' ) else None,learning_rate=args.learning_rate,train_batch_size=args.train_batch_size,eval_batch_size=args.eval_batch_size,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(UpperCamelCase_,'gradient_accumulation_steps' ) else None ),adam_betaa=args.adam_betaa if hasattr(UpperCamelCase_,'adam_beta1' ) else None,adam_betaa=args.adam_betaa if hasattr(UpperCamelCase_,'adam_beta2' ) else None,adam_weight_decay=args.adam_weight_decay if hasattr(UpperCamelCase_,'adam_weight_decay' ) else None,adam_epsilon=args.adam_epsilon if hasattr(UpperCamelCase_,'adam_epsilon' ) else None,lr_scheduler=args.lr_scheduler if hasattr(UpperCamelCase_,'lr_scheduler' ) else None,lr_warmup_steps=args.lr_warmup_steps if hasattr(UpperCamelCase_,'lr_warmup_steps' ) else None,ema_inv_gamma=args.ema_inv_gamma if hasattr(UpperCamelCase_,'ema_inv_gamma' ) else None,ema_power=args.ema_power if hasattr(UpperCamelCase_,'ema_power' ) else None,ema_max_decay=args.ema_max_decay if hasattr(UpperCamelCase_,'ema_max_decay' ) else None,mixed_precision=args.mixed_precision,) __A= os.path.join(args.output_dir,'README.md' ) model_card.save(UpperCamelCase_ ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Optional[str],_SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash __A= str(Path(UpperCamelCase_ ).as_posix() ) __A= re.search(r'snapshots/([^/]+)/',UpperCamelCase_ ) if search is None: return None __A= search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(UpperCamelCase_ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. UpperCAmelCase__ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) UpperCAmelCase__ = os.path.join(hf_cache_home, '''diffusers''') def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Optional[str] = None,_SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: __A= DIFFUSERS_CACHE if old_cache_dir is None: __A= old_diffusers_cache __A= Path(UpperCamelCase_ ).expanduser() __A= Path(UpperCamelCase_ ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __A= new_cache_dir / old_blob_path.relative_to(UpperCamelCase_ ) new_blob_path.parent.mkdir(parents=UpperCamelCase_,exist_ok=UpperCamelCase_ ) os.replace(UpperCamelCase_,UpperCamelCase_ ) try: os.symlink(UpperCamelCase_,UpperCamelCase_ ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). UpperCAmelCase__ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): UpperCAmelCase__ = 0 else: with open(cache_version_file) as f: try: UpperCAmelCase__ = int(f.read()) except ValueError: UpperCAmelCase__ = 0 if cache_version < 1: UpperCAmelCase__ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: UpperCAmelCase__ = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : str,_SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" if variant is not None: __A= weights_name.split('.' ) __A= splits[:-1] + [variant] + splits[-1:] __A= '.'.join(UpperCamelCase_ ) return weights_name def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Tuple,*, _SCREAMING_SNAKE_CASE : Optional[int],_SCREAMING_SNAKE_CASE : Any,_SCREAMING_SNAKE_CASE : Tuple,_SCREAMING_SNAKE_CASE : Optional[Any],_SCREAMING_SNAKE_CASE : Optional[int],_SCREAMING_SNAKE_CASE : Dict,_SCREAMING_SNAKE_CASE : str,_SCREAMING_SNAKE_CASE : Tuple,_SCREAMING_SNAKE_CASE : Tuple,_SCREAMING_SNAKE_CASE : Dict,_SCREAMING_SNAKE_CASE : Dict=None,): """simple docstring""" __A= str(UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): return pretrained_model_name_or_path elif os.path.isdir(UpperCamelCase_ ): if os.path.isfile(os.path.join(UpperCamelCase_,UpperCamelCase_ ) ): # Load from a PyTorch checkpoint __A= os.path.join(UpperCamelCase_,UpperCamelCase_ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ ) ): __A= os.path.join(UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(UpperCamelCase_ ).base_version ) >= version.parse('0.20.0' ) ): try: __A= hf_hub_download( UpperCamelCase_,filename=_add_variant(UpperCamelCase_,UpperCamelCase_ ),cache_dir=UpperCamelCase_,force_download=UpperCamelCase_,proxies=UpperCamelCase_,resume_download=UpperCamelCase_,local_files_only=UpperCamelCase_,use_auth_token=UpperCamelCase_,user_agent=UpperCamelCase_,subfolder=UpperCamelCase_,revision=revision or commit_hash,) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""",UpperCamelCase_,) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(UpperCamelCase_,UpperCamelCase_ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(UpperCamelCase_,UpperCamelCase_ )}' so that the correct variant file can be added.""",UpperCamelCase_,) try: # 2. Load model file as usual __A= hf_hub_download( UpperCamelCase_,filename=UpperCamelCase_,cache_dir=UpperCamelCase_,force_download=UpperCamelCase_,proxies=UpperCamelCase_,resume_download=UpperCamelCase_,local_files_only=UpperCamelCase_,use_auth_token=UpperCamelCase_,user_agent=UpperCamelCase_,subfolder=UpperCamelCase_,revision=revision or commit_hash,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
186
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ : Optional[Any] = 1_00 UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def A ( UpperCamelCase_ : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase__ = set() lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( UpperCamelCase_ : int = 50_00 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , UpperCamelCase_ ): if len(partition(UpperCamelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
48
0
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if nth_term == "": return [""] A_ : List[str] = int(UpperCamelCase_ ) A_ : Union[str, Any] = int(UpperCamelCase_ ) A_ : Any = [] for temp in range(int(UpperCamelCase_ ) ): series.append(f'1 / {pow(temp + 1 , int(UpperCamelCase_ ) )}' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase :str = int(input('''Enter the last number (nth term) of the P-Series''')) lowerCamelCase :List[Any] = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
667
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"} UpperCAmelCase__ : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27} class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ): """simple docstring""" return self.decoder.get(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" ) return (vocab_file,)
48
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Optional[Any] = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
542
'''simple docstring''' from math import sqrt def A ( UpperCamelCase_ : int ) -> int: '''simple docstring''' lowerCAmelCase__ = 0 for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase_ ): total += i + n // i elif i == sqrt(UpperCamelCase_ ): total += i return total - n def A ( UpperCamelCase_ : int = 1_00_00 ) -> int: '''simple docstring''' lowerCAmelCase__ = sum( i for i in range(1 , UpperCamelCase_ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
48
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( __snake_case : Union[tf.Tensor, np.ndarray] ): if isinstance(UpperCamelCase_ , np.ndarray ): return list(tensor.shape ) _A = tf.shape(UpperCamelCase_ ) if tensor.shape == tf.TensorShape(UpperCamelCase_ ): return dynamic _A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCamelCase_ )] def _SCREAMING_SNAKE_CASE ( __snake_case : tf.Tensor , __snake_case : Optional[int] = None , __snake_case : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCamelCase_ , name=UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : str=1e-5 , __snake_case : Dict=-1 ): if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized _A , _A = tf.nn.moments(UpperCamelCase_ , axes=[axis] , keepdims=UpperCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _A = [1] * inputs.shape.rank _A = shape_list(UpperCamelCase_ )[axis] _A = tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) _A = tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) # Compute layer normalization using the batch_normalization # function. _A = tf.nn.batch_normalization( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , offset=UpperCamelCase_ , scale=UpperCamelCase_ , variance_epsilon=UpperCamelCase_ , ) return outputs def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : List[str]=0 , __snake_case : str=-1 ): if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _A = tf.shape(UpperCamelCase_ ) _A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( __snake_case : tf.Tensor ): if not isinstance(UpperCamelCase_ , tf.Tensor ): _A = tf.convert_to_tensor(UpperCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _SCREAMING_SNAKE_CASE ( __snake_case : tf.Tensor , __snake_case : int , __snake_case : str = "input_ids" ): tf.debugging.assert_less( UpperCamelCase_ , tf.cast(UpperCamelCase_ , dtype=tensor.dtype ) , message=( F'The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCamelCase_ )}) must be smaller than the embedding ' F'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) , ) def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : List[Any] , __snake_case : List[Any] ): _A = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _A = [x for x in data if len(UpperCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' F'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' F'bytes: {bad_attributes}' ) _A = np.asarray(UpperCamelCase_ ) _A = 1 _A = np.array_split(UpperCamelCase_ , UpperCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _A = np.array_split(UpperCamelCase_ , UpperCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCamelCase_ ): _A = chunk_data else: _A = data def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : int ): if name in group.attrs: _A = [n.decode('utf8' ) if hasattr(UpperCamelCase_ , 'decode' ) else n for n in group.attrs[name]] else: _A = [] _A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(UpperCamelCase_ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def _SCREAMING_SNAKE_CASE ( __snake_case : Dict ): def _expand_single_ad_tensor(__snake_case : Optional[Any] ): if isinstance(UpperCamelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCamelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCamelCase_ )
107
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.mean(1 ) # Centralize the data of class i lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase_ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = features.mean(1 ) lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.shape[1] lowerCAmelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' if features.any(): lowerCAmelCase__ = features.mean(1 ) # Center the dataset lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) ) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1] lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: lowerCAmelCase__ ,lowerCAmelCase__ = eigh( covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , ) lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions] lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ ) lowerCAmelCase__ = svd_matrix[:, 0:dimensions] lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = linear_discriminant_analysis( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if isinstance(UpperCamelCase_ , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ ) if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
48
0
def _a ( UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : Dict = [] lowerCamelCase__ : int = set({'''(''', '''[''', '''{'''} ) lowerCamelCase__ : List[str] = set({''')''', ''']''', '''}'''} ) lowerCamelCase__ : Optional[int] = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(UpperCamelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCamelCase_ ) == 0 or (len(UpperCamelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCamelCase_ ) == 0 def _a ( ) -> List[str]: """simple docstring""" lowerCamelCase__ : int = input('''Enter sequence of brackets: ''' ) if is_balanced(UpperCamelCase_ ): print(UpperCamelCase_ , '''is balanced''' ) else: print(UpperCamelCase_ , '''is not balanced''' ) if __name__ == "__main__": main()
315
'''simple docstring''' def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list: '''simple docstring''' lowerCAmelCase__ = word.split() def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str: lowerCAmelCase__ = max_width - width lowerCAmelCase__ = len(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase_ ): num_spaces_between_words_list[i] += 1 lowerCAmelCase__ = [] for i in range(UpperCamelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 for word in words: if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase_ ) width += len(UpperCamelCase_ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) # reset new line and new width lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ ) lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ ) answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
48
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: _UpperCAmelCase =RemBertConfig.from_json_file(UpperCamelCase_ ) print("Building PyTorch model from configuration: {}".format(str(UpperCamelCase_ ) ) ) _UpperCAmelCase =RemBertModel(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print("Save PyTorch model to {}".format(UpperCamelCase_ ) ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case__ : Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
408
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase__ : str = sys.version_info >= (3, 10) def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class A : snake_case__ :int snake_case__ :float snake_case__ :str snake_case__ :bool @dataclass class A : snake_case__ :int = 42 snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :Optional[bool] = None class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'titi' snake_case__ :Optional[int] = 'toto' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'titi' snake_case__ :str = 'toto' snake_case__ :int = 42 @dataclass class A : snake_case__ :BasicEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.foo ) @dataclass class A : snake_case__ :MixedTypeEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = MixedTypeEnum(self.foo ) @dataclass class A : snake_case__ :Optional[int] = None snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :Optional[str] = None snake_case__ :Optional[List[str]] = list_field(default=[] ) snake_case__ :Optional[List[int]] = list_field(default=[] ) @dataclass class A : snake_case__ :List[int] = list_field(default=[] ) snake_case__ :List[int] = list_field(default=[1, 2, 3] ) snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : snake_case__ :List[int] = field() snake_case__ :str = field() snake_case__ :BasicEnum = field() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.required_enum ) @dataclass class A : snake_case__ :int snake_case__ :"BasicEnum" = field() snake_case__ :"Optional[bool]" = None snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} ) snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :bool | None = None @dataclass class A : snake_case__ :int | None = None snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :str | None = None snake_case__ :list[str] | None = list_field(default=[] ) snake_case__ :list[int] | None = list_field(default=[] ) class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) lowerCAmelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" @dataclass class A : snake_case__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) lowerCAmelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
48
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
488
'''simple docstring''' import sys from collections import defaultdict class A : def __init__( self : Any ): """simple docstring""" lowerCAmelCase__ = [] def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ): """simple docstring""" return self.node_position[vertex] def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = pos def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase__ = 2 * start + 1 else: lowerCAmelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child] lowerCAmelCase__ ,lowerCAmelCase__ = ( heap[start], positions[start], ) lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa lowerCAmelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __magic_name__ ) self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = position[index] while index != 0: lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase__ = heap[parent] lowerCAmelCase__ = position[parent] self.set_position(position[parent] , __magic_name__ ) else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , __magic_name__ ) break lowerCAmelCase__ = parent else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , 0 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1 for i in range(__magic_name__ , -1 , -1 ): self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = positions[0] lowerCAmelCase__ = sys.maxsize self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ ) return temp def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = Heap() lowerCAmelCase__ = [0] * len(UpperCamelCase_ ) lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase__ = [] for vertex in range(len(UpperCamelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase_ ) heap.node_position.append(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = 1 lowerCAmelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase__ = 0 lowerCAmelCase__ = distance heap.heapify(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(1 , len(UpperCamelCase_ ) ): lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase_ )] ): lowerCAmelCase__ = distance heap.bottom_to_top( UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ : str = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ : int = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
48
0
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : str = 0 if start < end: lowerCAmelCase__ : Any = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ : Any = a[end] lowerCAmelCase__ : List[str] = a[pivot] lowerCAmelCase__ : Optional[int] = temp lowerCAmelCase__ ,lowerCAmelCase__ : str = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 ) count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ ) return count def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : List[Any] = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ : Tuple = a[end] lowerCAmelCase__ : int = a[pivot] lowerCAmelCase__ : Any = temp lowerCAmelCase__ : str = start - 1 for index in range(UpperCamelCase_ , UpperCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ : Optional[int] = new_pivot_index + 1 lowerCAmelCase__ : Dict = a[new_pivot_index] lowerCAmelCase__ : Tuple = a[index] lowerCAmelCase__ : List[str] = temp lowerCAmelCase__ : str = a[new_pivot_index + 1] lowerCAmelCase__ : str = a[end] lowerCAmelCase__ : List[str] = temp return new_pivot_index + 1, count __UpperCamelCase : Tuple = TemporaryFile() __UpperCamelCase : List[str] = 1_0_0 # 1000 elements are to be sorted __UpperCamelCase : Dict = 0, 1 # mean and standard deviation __UpperCamelCase : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array __UpperCamelCase : Optional[Any] = np.load(outfile) __UpperCamelCase : Any = len(M) - 1 __UpperCamelCase : Tuple = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
450
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase__ : Tuple = 5 UpperCAmelCase__ : List[Any] = 10 @require_sentencepiece @require_tokenizers class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Tuple = SpeechaTextTokenizer snake_case__ :Dict = False snake_case__ :Optional[int] = True def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() lowerCAmelCase__ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = "<pad>" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class A ( unittest.TestCase ): snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium' snake_case__ :Tuple = 'C\'est trop cool' snake_case__ :List[str] = 'Esto es genial' @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = "fr" lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase__ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
48
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } _SCREAMING_SNAKE_CASE = {"mobilebert-uncased": 512} _SCREAMING_SNAKE_CASE = {} class a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase :str = VOCAB_FILES_NAMES lowerCamelCase :List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase :Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase :Union[str, Any] = MobileBertTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="[UNK]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[PAD]" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase_ ) != tokenize_chinese_chars ): _A = getattr(lowerCAmelCase_ , normalizer_state.pop("""type""" ) ) _A = do_lower_case _A = strip_accents _A = tokenize_chinese_chars _A = normalizer_class(**lowerCAmelCase_ ) _A = do_lower_case def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Optional[Any]: _A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Union[str, Any]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Any: _A = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
401
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ : Tuple = logging.get_logger(__name__) # General docstring UpperCAmelCase__ : int = "RegNetConfig" # Base docstring UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase__ : Tuple = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat" UpperCAmelCase__ : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) ) lowerCAmelCase__ = self.normalization(__magic_name__ ) lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config.num_channels lowerCAmelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = shape_list(__magic_name__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) ) lowerCAmelCase__ = self.embedder(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ): """simple docstring""" return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ ) class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) lowerCAmelCase__ = [ tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.pooler(__magic_name__ ) for layer_module in self.attention: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ), *[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ): """simple docstring""" for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ): """simple docstring""" lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(__magic_name__ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ ) @keras_serializable class A ( tf.keras.layers.Layer ): snake_case__ :List[Any] = RegNetConfig def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" ) lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) @unpack_inputs def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = self.encoder( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(__magic_name__ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = RegNetConfig snake_case__ :Optional[Any] = 'regnet' snake_case__ :Tuple = 'pixel_values' @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) # classification head lowerCAmelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier[0](__magic_name__ ) lowerCAmelCase__ = self.classifier[1](__magic_name__ ) lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
48
0
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _a : """simple docstring""" def __init__( self : int , lowercase_ : Optional[int] ): '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowercase_ = deepcopy(lowercase_ ) elif os.path.exists(lowercase_ ): with io.open(lowercase_ , """r""" , encoding="""utf-8""" ) as f: lowercase_ = json.load(lowercase_ ) else: try: lowercase_ = baseaa.urlsafe_baadecode(lowercase_ ).decode("""utf-8""" ) lowercase_ = json.loads(lowercase_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowercase_ = config self.set_stage_and_offload() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowercase_ = False if self.is_zeroa() or self.is_zeroa(): lowercase_ = set(["""cpu""", """nvme"""] ) lowercase_ = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowercase_ = True def lowerCamelCase__ ( self : str , lowercase_ : Any ): '''simple docstring''' lowercase_ = self.config # find the config node of interest if it exists lowercase_ = ds_key_long.split(""".""" ) lowercase_ = nodes.pop() for node in nodes: lowercase_ = config.get(lowercase_ ) if config is None: return None, ds_key return config, ds_key def lowerCamelCase__ ( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None ): '''simple docstring''' lowercase_ , lowercase_ = self.find_config_node(lowercase_ ) if config is None: return default return config.get(lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : Any , lowercase_ : Dict , lowercase_ : Union[str, Any]=False ): '''simple docstring''' lowercase_ = self.config # find the config node of interest if it exists lowercase_ = ds_key_long.split(""".""" ) for node in nodes: lowercase_ = config lowercase_ = config.get(lowercase_ ) if config is None: if must_exist: raise ValueError(F"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowercase_ ) def lowerCamelCase__ ( self : List[str] , lowercase_ : Dict ): '''simple docstring''' lowercase_ = self.get_value(lowercase_ ) return False if value is None else bool(lowercase_ ) def lowerCamelCase__ ( self : List[Any] , lowercase_ : Any ): '''simple docstring''' lowercase_ = self.get_value(lowercase_ ) return False if value is None else not bool(lowercase_ ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return self._stage == 2 def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self._stage == 3 def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return self._offload class _a : """simple docstring""" def __init__( self : Union[str, Any] , lowercase_ : List[Any] ): '''simple docstring''' lowercase_ = engine def lowerCamelCase__ ( self : Optional[int] , lowercase_ : int , **lowercase_ : int ): '''simple docstring''' self.engine.backward(lowercase_ , **lowercase_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Any , lowercase_ : Optional[Any] ): '''simple docstring''' super().__init__(lowercase_ , device_placement=lowercase_ , scaler=lowercase_ ) lowercase_ = hasattr(self.optimizer , """overflow""" ) def lowerCamelCase__ ( self : str , lowercase_ : List[Any]=None ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : str , lowercase_ : List[str] , lowercase_ : Tuple ): '''simple docstring''' super().__init__(lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : str ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _a : """simple docstring""" def __init__( self : List[Any] , lowercase_ : Any , lowercase_ : List[Any]=0.0_0_1 , lowercase_ : Any=0 , **lowercase_ : Any ): '''simple docstring''' lowercase_ = params lowercase_ = lr lowercase_ = weight_decay lowercase_ = kwargs class _a : """simple docstring""" def __init__( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , lowercase_ : Tuple=0 , **lowercase_ : Optional[Any] ): '''simple docstring''' lowercase_ = optimizer lowercase_ = total_num_steps lowercase_ = warmup_num_steps lowercase_ = kwargs
451
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def A ( UpperCamelCase_ : Tuple ) -> int: '''simple docstring''' for param in module.parameters(): lowerCAmelCase__ = False def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def A ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = datetime.now() lowerCAmelCase__ = current_time.strftime("%H:%M:%S" ) return timestamp
48
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Dict=None ) -> int: '''simple docstring''' require_version(deps[pkg] , UpperCamelCase_ )
514
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : List[Any] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase__ = logging.get_logger(__name__) class a__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = ['pixel_values'] def __init__( self : Union[str, Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : int = 0.9 , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Union[int, float] = 1 / 255 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : List[Any] , ) -> Union[str, Any]: super().__init__(**lowerCAmelCase_ ) __A= size if size is not None else {'shortest_edge': 224} __A= get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __A= crop_size if crop_size is not None else {'height': 224, 'width': 224} __A= get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __A= do_resize __A= size __A= crop_pct __A= resample __A= do_center_crop __A= crop_size __A= do_rescale __A= rescale_factor __A= do_normalize __A= image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __A= image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCAmelCase ( self : Any , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> List[Any]: __A= get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __A= int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __A= int(size['height'] / crop_pct ) else: __A= (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(lowerCAmelCase_ ) ) __A= get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) else: if "shortest_edge" in size: __A= get_resize_output_image_size(lowerCAmelCase_ , size=size['shortest_edge'] , default_to_square=lowerCAmelCase_ ) elif "height" in size and "width" in size: __A= (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(lowerCAmelCase_ ) ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self : Any , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> List[Any]: __A= get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> List[Any]: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> str: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : Any , ) -> List[Any]: __A= do_resize if do_resize is not None else self.do_resize __A= crop_pct if crop_pct is not None else self.crop_pct __A= resample if resample is not None else self.resample __A= do_center_crop if do_center_crop is not None else self.do_center_crop __A= do_rescale if do_rescale is not None else self.do_rescale __A= rescale_factor if rescale_factor is not None else self.rescale_factor __A= do_normalize if do_normalize is not None else self.do_normalize __A= image_mean if image_mean is not None else self.image_mean __A= image_std if image_std is not None else self.image_std __A= size if size is not None else self.size __A= get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __A= crop_size if crop_size is not None else self.crop_size __A= get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __A= make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __A= [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __A= [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , crop_pct=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: __A= [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: __A= [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: __A= [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] __A= [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __A= {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
186
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any: '''simple docstring''' lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ ) else: lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCAmelCase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
48
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE : List[Any] = ['image_processor', 'feature_extractor'] __SCREAMING_SNAKE_CASE : Tuple = 'TvltImageProcessor' __SCREAMING_SNAKE_CASE : List[str] = 'TvltFeatureExtractor' def __init__(self , lowercase , lowercase ): super().__init__(image_processor=lowercase , feature_extractor=lowercase ) A_ : str = image_processor A_ : Union[str, Any] = feature_extractor def __call__(self , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=False , lowercase=False , *lowercase , **lowercase , ): if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) A_ : str = None if images is not None: A_ : Optional[Any] = self.image_processor(lowercase , mask_pixel=lowercase , *lowercase , **lowercase ) if images_mixed is not None: A_ : str = self.image_processor(lowercase , is_mixed=lowercase , *lowercase , **lowercase ) if audio is not None: A_ : int = self.feature_extractor( lowercase , *lowercase , sampling_rate=lowercase , mask_audio=lowercase , **lowercase ) A_ : Tuple = {} if audio is not None: output_dict.update(lowercase ) if images is not None: output_dict.update(lowercase ) if images_mixed_dict is not None: output_dict.update(lowercase ) return output_dict @property def _a (self ): A_ : List[str] = self.image_processor.model_input_names A_ : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
667
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class A : def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=13 , __magic_name__ : List[str]=7 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=True , __magic_name__ : str=True , __magic_name__ : int=True , __magic_name__ : int=99 , __magic_name__ : List[str]=[1, 1, 2] , __magic_name__ : Dict=1 , __magic_name__ : Tuple=32 , __magic_name__ : Any=4 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[Any]=37 , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : int=512 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Any=None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = block_sizes lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = d_model lowerCAmelCase__ = n_head lowerCAmelCase__ = d_head lowerCAmelCase__ = d_inner lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = 2 lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase__ = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase__ = self.num_hidden_layers + 2 def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForPreTraining(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForMaskedLM(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForSequenceClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFFunnelForMultipleChoice(config=__magic_name__ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForTokenClassification(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , ): """simple docstring""" lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case__ :Any = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case__ :str = False snake_case__ :Any = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @require_tf class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case__ :int = False snake_case__ :List[Any] = False def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = TFFunnelModelTester(self , base=__magic_name__ ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
48
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") lowercase : List[Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowercase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : """simple docstring""" UpperCAmelCase_ : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) UpperCAmelCase_ : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase_ : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase_ : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase_ : int = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) UpperCAmelCase_ : float = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) UpperCAmelCase_ : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase_ : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def snake_case ( self ) -> str: A : List[str] = {} if self.train_dir is not None: A : Optional[int] = self.train_dir if self.validation_dir is not None: A : int = self.validation_dir A : Union[str, Any] = data_files if data_files else None @dataclass class __lowercase : """simple docstring""" UpperCAmelCase_ : str = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE__ )} , ) UpperCAmelCase_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) UpperCAmelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase_ : str = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase_ : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase_ : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) UpperCAmelCase_ : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) UpperCAmelCase_ : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class __lowercase : """simple docstring""" def __init__( self , __UpperCAmelCase=1_92 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=0.6 ) -> Union[str, Any]: A : int = input_size A : Any = mask_patch_size A : Dict = model_patch_size A : Tuple = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) A : str = self.input_size // self.mask_patch_size A : Optional[int] = self.mask_patch_size // self.model_patch_size A : List[str] = self.rand_size**2 A : Union[str, Any] = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> str: A : Dict = np.random.permutation(self.token_count )[: self.mask_count] A : str = np.zeros(self.token_count , dtype=__UpperCAmelCase ) A : List[Any] = 1 A : Optional[Any] = mask.reshape((self.rand_size, self.rand_size) ) A : Any = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def snake_case__ ( lowerCamelCase_ ): A : List[Any] = torch.stack([example['''pixel_values'''] for example in examples] ) A : Tuple = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def snake_case__ ( ): A : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , UpperCamelCase_ , UpperCamelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A : Optional[int] = training_args.get_process_log_level() logger.setLevel(UpperCamelCase_ ) transformers.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. A : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. A : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. A : List[str] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase_ ) and data_args.train_val_split > 0.0: A : List[Any] = ds['''train'''].train_test_split(data_args.train_val_split ) A : Union[str, Any] = split['''train'''] A : str = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A : Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: A : Any = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCamelCase_ ) elif model_args.model_name_or_path: A : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase_ ) else: A : List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCamelCase_ , '''decoder_type''' ): A : List[str] = '''simmim''' # adapt config A : List[str] = model_args.image_size if model_args.image_size is not None else config.image_size A : Tuple = model_args.patch_size if model_args.patch_size is not None else config.patch_size A : Optional[int] = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: A : int = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase_ ) elif model_args.model_name_or_path: A : Any = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase_ ) else: A : Any = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } A : Dict = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: A : Any = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A : List[Any] = AutoModelForMaskedImageModeling.from_config(UpperCamelCase_ ) if training_args.do_train: A : Any = ds['''train'''].column_names else: A : int = ds['''validation'''].column_names if data_args.image_column_name is not None: A : Optional[int] = data_args.image_column_name elif "image" in column_names: A : Tuple = '''image''' elif "img" in column_names: A : Union[str, Any] = '''img''' else: A : Union[str, Any] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py A : Union[str, Any] = Compose( [ Lambda(lambda lowerCamelCase_ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator A : Optional[Any] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowerCamelCase_ ): A : Tuple = [transforms(UpperCamelCase_ ) for image in examples[image_column_name]] A : Optional[int] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A : List[str] = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCamelCase_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A : Optional[Any] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCamelCase_ ) # Initialize our trainer A : Union[str, Any] = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=UpperCamelCase_ , data_collator=UpperCamelCase_ , ) # Training if training_args.do_train: A : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: A : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: A : int = last_checkpoint A : Tuple = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A : Tuple = trainer.evaluate() trainer.log_metrics('''eval''' , UpperCamelCase_ ) trainer.save_metrics('''eval''' , UpperCamelCase_ ) # Write model card and (optionally) push to hub A : Optional[Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase_ ) else: trainer.create_model_card(**UpperCamelCase_ ) if __name__ == "__main__": main()
542
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'umt5' snake_case__ :Any = ['past_key_values'] def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ): """simple docstring""" super().__init__( is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = d_kv lowerCAmelCase__ = d_ff lowerCAmelCase__ = num_layers lowerCAmelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase__ = num_heads lowerCAmelCase__ = relative_attention_num_buckets lowerCAmelCase__ = relative_attention_max_distance lowerCAmelCase__ = dropout_rate lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_factor lowerCAmelCase__ = feed_forward_proj lowerCAmelCase__ = use_cache lowerCAmelCase__ = self.feed_forward_proj.split("-" ) lowerCAmelCase__ = act_info[-1] lowerCAmelCase__ = act_info[0] == "gated" if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": lowerCAmelCase__ = "gelu_new" @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return self.d_model @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.num_heads @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.num_layers class A ( SCREAMING_SNAKE_CASE__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: lowerCAmelCase__ = "past_encoder_sequence + sequence" lowerCAmelCase__ = {0: "batch"} lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 13 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 5E-4
48
0
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Tuple , __snake_case : List[Any]=1_0_2_4 ): _A , _A = [], [] _A = list(zip(UpperCamelCase_ , UpperCamelCase_ ) ) _A , _A = sorted_examples[0] def is_too_big(__snake_case : Union[str, Any] ): return tok(UpperCamelCase_ , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _A = new_src + ' ' + src _A = new_tgt + ' ' + tgt if is_too_big(UpperCamelCase_ ) or is_too_big(UpperCamelCase_ ): # cant fit, finalize example finished_src.append(UpperCamelCase_ ) finished_tgt.append(UpperCamelCase_ ) _A , _A = src, tgt else: # can fit, keep adding _A , _A = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCamelCase_ ) finished_tgt.append(UpperCamelCase_ ) return finished_src, finished_tgt def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple , __snake_case : Path , __snake_case : Optional[int] , __snake_case : Optional[int] ): _A = Path(UpperCamelCase_ ) save_path.mkdir(exist_ok=UpperCamelCase_ ) for split in ["train"]: _A , _A = data_dir / F'{split}.source', data_dir / F'{split}.target' _A = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()] _A = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()] _A , _A = pack_examples(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print(F'packed {split} split from {len(UpperCamelCase_ )} examples -> {len(UpperCamelCase_ )}.' ) Path(save_path / F'{split}.source' ).open('w' ).write('\n'.join(UpperCamelCase_ ) ) Path(save_path / F'{split}.target' ).open('w' ).write('\n'.join(UpperCamelCase_ ) ) for split in ["val", "test"]: _A , _A = data_dir / F'{split}.source', data_dir / F'{split}.target' shutil.copyfile(UpperCamelCase_ , save_path / F'{split}.source' ) shutil.copyfile(UpperCamelCase_ , save_path / F'{split}.target' ) def _SCREAMING_SNAKE_CASE ( ): _A = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=UpperCamelCase_ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=UpperCamelCase_ , default=1_2_8 ) parser.add_argument('--data_dir' , type=UpperCamelCase_ ) parser.add_argument('--save_path' , type=UpperCamelCase_ ) _A = parser.parse_args() _A = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCamelCase_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
107
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class A : def __init__( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ): """simple docstring""" if nodea not in self.connections: self.add_node(__magic_name__ ) if nodea not in self.connections: self.add_node(__magic_name__ ) lowerCAmelCase__ = probability def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return list(self.connections ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]: '''simple docstring''' lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = Counter(graph.get_nodes() ) lowerCAmelCase__ = start for _ in range(UpperCamelCase_ ): lowerCAmelCase__ = graph.transition(UpperCamelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
48
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , A : str , ) ->Any: lowerCamelCase__ : str = parent lowerCamelCase__ : List[Any] = 1_3 lowerCamelCase__ : Tuple = 7 lowerCamelCase__ : int = True lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Any = True lowerCamelCase__ : Any = 9_9 lowerCamelCase__ : Tuple = 3_2 lowerCamelCase__ : Union[str, Any] = 2 lowerCamelCase__ : str = 4 lowerCamelCase__ : int = 3_7 lowerCamelCase__ : Any = '''gelu''' lowerCamelCase__ : Dict = 0.1 lowerCamelCase__ : Any = 0.1 lowerCamelCase__ : List[str] = 5_1_2 lowerCamelCase__ : Optional[Any] = 1_6 lowerCamelCase__ : Dict = 2 lowerCamelCase__ : Any = 0.02 lowerCamelCase__ : Optional[Any] = 3 lowerCamelCase__ : Dict = 4 lowerCamelCase__ : Any = None def __lowerCamelCase ( self : Optional[int] ) ->List[str]: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Any = None if self.use_input_mask: lowerCamelCase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Dict = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : str = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : int , A : str , A : int , A : List[str] , A : Optional[Any] , A : str , A : int ) ->List[Any]: lowerCamelCase__ : str = TFDistilBertModel(config=A ) lowerCamelCase__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase__ : int = model(A ) lowerCamelCase__ : Tuple = [input_ids, input_mask] lowerCamelCase__ : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self : Tuple , A : Optional[Any] , A : Tuple , A : Optional[int] , A : List[Any] , A : List[Any] , A : Any ) ->int: lowerCamelCase__ : Dict = TFDistilBertForMaskedLM(config=A ) lowerCamelCase__ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase__ : Any = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self : Optional[int] , A : Optional[int] , A : str , A : Tuple , A : Dict , A : str , A : List[Any] ) ->Optional[Any]: lowerCamelCase__ : str = TFDistilBertForQuestionAnswering(config=A ) lowerCamelCase__ : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowerCamelCase__ : Dict = model(A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self : str , A : List[str] , A : List[str] , A : str , A : str , A : Optional[int] , A : Union[str, Any] ) ->int: lowerCamelCase__ : Union[str, Any] = self.num_labels lowerCamelCase__ : List[str] = TFDistilBertForSequenceClassification(A ) lowerCamelCase__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase__ : int = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self : List[Any] , A : Any , A : Optional[int] , A : Optional[Any] , A : List[str] , A : Optional[Any] , A : Tuple ) ->Optional[int]: lowerCamelCase__ : int = self.num_choices lowerCamelCase__ : str = TFDistilBertForMultipleChoice(A ) lowerCamelCase__ : int = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ : List[str] = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ : Optional[int] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowerCamelCase__ : str = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self : Union[str, Any] , A : List[Any] , A : int , A : Dict , A : List[Any] , A : str , A : Dict ) ->Optional[Any]: lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = TFDistilBertForTokenClassification(A ) lowerCamelCase__ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase__ : int = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self : str ) ->Optional[Any]: lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : int = config_and_inputs lowerCamelCase__ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,unittest.TestCase ): _UpperCAmelCase : List[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _UpperCAmelCase : Dict = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase : List[str] = False _UpperCAmelCase : Tuple = False def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[Any]: lowerCamelCase__ : Dict = TFDistilBertModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=A , dim=3_7 ) def __lowerCamelCase ( self : Optional[Any] ) ->Union[str, Any]: self.config_tester.run_common_tests() def __lowerCamelCase ( self : str ) ->List[Any]: lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*A ) def __lowerCamelCase ( self : Optional[Any] ) ->Any: lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*A ) def __lowerCamelCase ( self : Any ) ->Tuple: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*A ) def __lowerCamelCase ( self : str ) ->Dict: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*A ) def __lowerCamelCase ( self : Optional[int] ) ->Tuple: lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*A ) def __lowerCamelCase ( self : Union[str, Any] ) ->Tuple: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*A ) @slow def __lowerCamelCase ( self : List[str] ) ->Union[str, Any]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCamelCase__ : str = TFDistilBertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCamelCase ( self : Optional[Any] ) ->Optional[Any]: lowerCamelCase__ : int = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowerCamelCase__ : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ : List[Any] = model(A )[0] lowerCamelCase__ : str = [1, 6, 7_6_8] self.assertEqual(output.shape , A ) lowerCamelCase__ : Optional[Any] = tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A , atol=1e-4 )
315
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase__ : Optional[Any] = pytest.mark.integration UpperCAmelCase__ : str = {"comet"} UpperCAmelCase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None UpperCAmelCase__ : Optional[int] = {"code_eval"} UpperCAmelCase__ : List[Any] = os.name == "nt" UpperCAmelCase__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"} UpperCAmelCase__ : int = importlib.util.find_spec("transformers") is not None def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[Any] , UpperCamelCase_ : List[str] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : int ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( UpperCamelCase_ : Any ) -> int: '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self : Optional[int] , UpperCamelCase_ : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class A ( parameterized.TestCase ): snake_case__ :Union[str, Any] = {} snake_case__ :Optional[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) lowerCAmelCase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__magic_name__ ) # check parameters lowerCAmelCase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__magic_name__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = "[...]" lowerCAmelCase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __magic_name__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCAmelCase__ = doctest.testmod(__magic_name__ , verbose=__magic_name__ , raise_on_error=__magic_name__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__magic_name__ ): yield else: yield @contextmanager def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" def load_local_metric(__magic_name__ : Union[str, Any] , *__magic_name__ : Any , **__magic_name__ : Any ): return load_metric(os.path.join("metrics" , __magic_name__ ) , *__magic_name__ , **__magic_name__ ) with patch("datasets.load_metric" ) as mock_load_metric: lowerCAmelCase__ = load_local_metric yield @classmethod def __SCREAMING_SNAKE_CASE ( cls : Any , __magic_name__ : Optional[int] ): """simple docstring""" def wrapper(__magic_name__ : Dict ): lowerCAmelCase__ = contextmanager(__magic_name__ ) lowerCAmelCase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowerCAmelCase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def A ( UpperCamelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' import torch def bert_cos_score_idf(UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowerCAmelCase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def A ( UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' def load_from_checkpoint(UpperCamelCase_ : Tuple ): class A : def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : int , **__magic_name__ : Dict ): """simple docstring""" assert len(__magic_name__ ) == 2 lowerCAmelCase__ = [0.19, 0.92] return scores, sum(__magic_name__ ) / len(__magic_name__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowerCAmelCase__ = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowerCAmelCase__ = load_from_checkpoint yield def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = load_metric(os.path.join("metrics" , "seqeval" ) ) lowerCAmelCase__ = "ERROR" lowerCAmelCase__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
48
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : """simple docstring""" def __init__( self , _snake_case , _snake_case=13 , _snake_case=32 , _snake_case=2 , _snake_case=3 , _snake_case=16 , _snake_case=[1, 2, 1] , _snake_case=[2, 2, 4] , _snake_case=2 , _snake_case=2.0 , _snake_case=True , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case="gelu" , _snake_case=False , _snake_case=True , _snake_case=0.02 , _snake_case=1E-5 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=10 , _snake_case=8 , ): _UpperCAmelCase =parent _UpperCAmelCase =batch_size _UpperCAmelCase =image_size _UpperCAmelCase =patch_size _UpperCAmelCase =num_channels _UpperCAmelCase =embed_dim _UpperCAmelCase =depths _UpperCAmelCase =num_heads _UpperCAmelCase =window_size _UpperCAmelCase =mlp_ratio _UpperCAmelCase =qkv_bias _UpperCAmelCase =hidden_dropout_prob _UpperCAmelCase =attention_probs_dropout_prob _UpperCAmelCase =drop_path_rate _UpperCAmelCase =hidden_act _UpperCAmelCase =use_absolute_embeddings _UpperCAmelCase =patch_norm _UpperCAmelCase =layer_norm_eps _UpperCAmelCase =initializer_range _UpperCAmelCase =is_training _UpperCAmelCase =scope _UpperCAmelCase =use_labels _UpperCAmelCase =type_sequence_label_size _UpperCAmelCase =encoder_stride def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase =None if self.use_labels: _UpperCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() _UpperCAmelCase =model(_snake_case ) _UpperCAmelCase =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase =int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() _UpperCAmelCase =model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase =1 _UpperCAmelCase =SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() _UpperCAmelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase =model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =self.type_sequence_label_size _UpperCAmelCase =SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() _UpperCAmelCase =model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =config_and_inputs _UpperCAmelCase ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case =( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) snake_case =( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) snake_case =False snake_case =False snake_case =False snake_case =False def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =SwinvaModelTester(self ) _UpperCAmelCase =ConfigTester(self , config_class=_snake_case , embed_dim=37 ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase , _UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase =model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase , _UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase =model_class(_snake_case ) _UpperCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase =[*signature.parameters.keys()] _UpperCAmelCase =["pixel_values"] self.assertListEqual(arg_names[:1] , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase , _UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase =True for model_class in self.all_model_classes: _UpperCAmelCase =True _UpperCAmelCase =False _UpperCAmelCase =True _UpperCAmelCase =model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase =model(**self._prepare_for_class(_snake_case , _snake_case ) ) _UpperCAmelCase =outputs.attentions _UpperCAmelCase =len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) , _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase =True _UpperCAmelCase =config.window_size**2 _UpperCAmelCase =model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase =model(**self._prepare_for_class(_snake_case , _snake_case ) ) _UpperCAmelCase =outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _UpperCAmelCase =len(_snake_case ) # Check attention is always last and order is fine _UpperCAmelCase =True _UpperCAmelCase =True _UpperCAmelCase =model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase =model(**self._prepare_for_class(_snake_case , _snake_case ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): _UpperCAmelCase =self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _UpperCAmelCase =2 self.assertEqual(out_len + added_hidden_states , len(_snake_case ) ) _UpperCAmelCase =outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase =model(**self._prepare_for_class(_snake_case , _snake_case ) ) _UpperCAmelCase =outputs.hidden_states _UpperCAmelCase =getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) , _snake_case ) # Swinv2 has a different seq_length _UpperCAmelCase =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase =outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) , _snake_case ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =reshaped_hidden_states[0].shape _UpperCAmelCase =( reshaped_hidden_states[0].view(_snake_case , _snake_case , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase , _UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase =True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase =True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase , _UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase =3 _UpperCAmelCase =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase =True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase =True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase =SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase , _UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase =_config_zero_init(_snake_case ) for model_class in self.all_model_classes: _UpperCAmelCase =model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class _a ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ): return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( _snake_case ) _UpperCAmelCase =self.default_image_processor _UpperCAmelCase =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase =image_processor(images=_snake_case , return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase =model(**_snake_case ) # verify the logits _UpperCAmelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) _UpperCAmelCase =torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) )
408
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase__ : int = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M' snake_case__ :Optional[Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case__ :List[Any] = 'translator' snake_case__ :List[Any] = AutoTokenizer snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM snake_case__ :List[str] = LANGUAGE_CODES snake_case__ :List[Any] = ['text', 'text', 'text'] snake_case__ :List[Any] = ['text'] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) lowerCAmelCase__ = self.lang_to_code[src_lang] lowerCAmelCase__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
48
0
from __future__ import annotations from functools import lru_cache from math import ceil snake_case_ : Optional[Any] = 100 snake_case_ : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) snake_case_ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def __a ( __UpperCAmelCase : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCamelCase_ : Optional[int] = set() lowerCamelCase_ : Optional[Any] = 42 lowerCamelCase_ : Any = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __a ( __UpperCAmelCase : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , UpperCamelCase_ ): if len(partition(UpperCamelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
488
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'timm_backbone' def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = backbone lowerCAmelCase__ = num_channels lowerCAmelCase__ = features_only lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = True lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
48
0
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[str] ,lowercase_ : Optional[Any] ,lowercase_ : str=9_9 ,lowercase_ : List[str]=1_3 ,lowercase_ : Any=1_6 ,lowercase_ : Any=7 ,lowercase_ : List[str]=True ,lowercase_ : int=True ,lowercase_ : Tuple=True ,lowercase_ : str=False ,lowercase_ : int=True ,lowercase_ : Optional[Any]=2 ,lowercase_ : List[Any]=3_2 ,lowercase_ : int=4 ,lowercase_ : str=4 ,lowercase_ : Optional[int]=3_0 ,lowercase_ : Optional[Any]=0 ,lowercase_ : List[Any]=1 ,lowercase_ : List[str]=2 ,lowercase_ : Optional[Any]=None ,): lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Union[str, Any] = batch_size lowerCAmelCase__ : Optional[Any] = decoder_seq_length # For common tests lowerCAmelCase__ : int = self.decoder_seq_length lowerCAmelCase__ : int = is_training lowerCAmelCase__ : Any = use_attention_mask lowerCAmelCase__ : Tuple = use_labels lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Tuple = d_model lowerCAmelCase__ : Optional[int] = d_model lowerCAmelCase__ : Tuple = decoder_layers lowerCAmelCase__ : List[Any] = decoder_layers lowerCAmelCase__ : Any = decoder_ffn_dim lowerCAmelCase__ : Optional[int] = decoder_attention_heads lowerCAmelCase__ : Optional[int] = decoder_attention_heads lowerCAmelCase__ : List[str] = eos_token_id lowerCAmelCase__ : Optional[int] = bos_token_id lowerCAmelCase__ : Optional[Any] = pad_token_id lowerCAmelCase__ : Tuple = decoder_start_token_id lowerCAmelCase__ : List[Any] = use_cache lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = decoder_seq_length lowerCAmelCase__ : Union[str, Any] = 2 lowerCAmelCase__ : Union[str, Any] = 1 def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) lowerCAmelCase__ : Optional[int] = None if self.use_attention_mask: lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] ,vocab_size=2 ) lowerCAmelCase__ : Tuple = None if self.use_labels: lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) lowerCAmelCase__ : List[str] = TrOCRConfig( vocab_size=self.vocab_size ,d_model=self.d_model ,decoder_layers=self.decoder_layers ,decoder_ffn_dim=self.decoder_ffn_dim ,decoder_attention_heads=self.decoder_attention_heads ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,use_cache=self.use_cache ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,max_position_embeddings=self.max_position_embeddings ,) return (config, input_ids, attention_mask, lm_labels) def __lowerCAmelCase ( self : Any ,lowercase_ : Union[str, Any] ,lowercase_ : Dict ,lowercase_ : Optional[Any] ,lowercase_ : Tuple ,): lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : str = TrOCRDecoder(config=lowercase_ ).to(lowercase_ ).eval() lowerCAmelCase__ : List[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowerCAmelCase__ : List[Any] = model(lowercase_ ,use_cache=lowercase_ ) lowerCAmelCase__ : List[Any] = model(lowercase_ ) lowerCAmelCase__ : List[Any] = model(lowercase_ ,use_cache=lowercase_ ) self.parent.assertTrue(len(lowercase_ ) == len(lowercase_ ) ) self.parent.assertTrue(len(lowercase_ ) == len(lowercase_ ) + 1 ) lowerCAmelCase__ : Optional[Any] = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ : Tuple = ids_tensor((2, 1) ,config.vocab_size - 1 ) + 1 # append to next input_ids and lowerCAmelCase__ : Any = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowerCAmelCase__ : List[Any] = model(lowercase_ )['''last_hidden_state'''] lowerCAmelCase__ : List[str] = model(lowercase_ ,past_key_values=lowercase_ )['''last_hidden_state'''] # select random slice lowerCAmelCase__ : List[Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowerCAmelCase__ : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowercase_ ,lowercase_ ,atol=1E-3 ) def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Any = self.prepare_config_and_inputs() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = config_and_inputs lowerCAmelCase__ : Any = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowercase__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase__ = (TrOCRForCausalLM,) if is_torch_available() else () lowercase__ = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} lowercase__ = True lowercase__ = False def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Any = TrOCRStandaloneDecoderModelTester(self ,is_training=lowercase_ ) lowerCAmelCase__ : List[Any] = ConfigTester(self ,config_class=lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ): pass def __lowerCAmelCase ( self : List[str] ): pass def __lowerCAmelCase ( self : List[str] ): pass def __lowerCAmelCase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def __lowerCAmelCase ( self : str ): pass
450
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base' snake_case__ :List[Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case__ :List[Any] = 'image_captioner' snake_case__ :Optional[int] = AutoModelForVisionaSeq snake_case__ :Optional[int] = ['image'] snake_case__ :Any = ['text'] def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ): """simple docstring""" return self.pre_processor(images=__magic_name__ , return_tensors="pt" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
48
0
import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
401
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = "▁" UpperCAmelCase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ : Optional[Any] = { "facebook/mbart-large-50-one-to-many-mmt": 10_24, } # fmt: off UpperCAmelCase__ : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = VOCAB_FILES_NAMES snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Tuple = ['input_ids', 'attention_mask'] snake_case__ :List[int] = [] snake_case__ :List[int] = [] def __init__( self : int , __magic_name__ : int , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Tuple="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : List[Any]="<mask>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : List[Any] , ): """simple docstring""" lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__magic_name__ , tgt_lang=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } lowerCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase__ = src_lang if src_lang is not None else "en_XX" lowerCAmelCase__ = self.lang_code_to_id[self._src_lang] lowerCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : List[Any] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = "" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(__magic_name__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) lowerCAmelCase__ = [1] * len(self.prefix_tokens ) lowerCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase__ = src_lang lowerCAmelCase__ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = self.convert_tokens_to_ids(__magic_name__ ) lowerCAmelCase__ = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[src_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.lang_code_to_id[tgt_lang] lowerCAmelCase__ = [self.cur_lang_code_id] lowerCAmelCase__ = [self.eos_token_id]
48
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" A_ = 'umt5' A_ = ['past_key_values'] def __init__( self : List[Any] , lowercase_ : Tuple=250_112 , lowercase_ : str=512 , lowercase_ : int=64 , lowercase_ : str=1_024 , lowercase_ : Tuple=8 , lowercase_ : Optional[int]=None , lowercase_ : Optional[Any]=6 , lowercase_ : Dict=32 , lowercase_ : Optional[Any]=128 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : int=1e-6 , lowercase_ : Optional[int]=1.0 , lowercase_ : Dict="gated-gelu" , lowercase_ : List[str]=True , lowercase_ : Tuple=True , lowercase_ : Optional[int]="T5Tokenizer" , lowercase_ : str=True , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : str=0 , **lowercase_ : Any , ): '''simple docstring''' super().__init__( is_encoder_decoder=lowercase_ , tokenizer_class=lowercase_ , tie_word_embeddings=lowercase_ , pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , ) lowercase_ = vocab_size lowercase_ = d_model lowercase_ = d_kv lowercase_ = d_ff lowercase_ = num_layers lowercase_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase_ = num_heads lowercase_ = relative_attention_num_buckets lowercase_ = relative_attention_max_distance lowercase_ = dropout_rate lowercase_ = layer_norm_epsilon lowercase_ = initializer_factor lowercase_ = feed_forward_proj lowercase_ = use_cache lowercase_ = self.feed_forward_proj.split("""-""" ) lowercase_ = act_info[-1] lowercase_ = act_info[0] == """gated""" if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": lowercase_ = """gelu_new""" @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return self.d_model @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.num_heads @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self.num_layers class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: lowercase_ = """past_encoder_sequence + sequence""" lowercase_ = {0: """batch"""} lowercase_ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase_ = {0: """batch""", 1: """decoder_sequence"""} lowercase_ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return 13 @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return 5e-4
451
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 if start < end: lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 ) count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ ) return count def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ = start - 1 for index in range(UpperCamelCase_ , UpperCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ = new_pivot_index + 1 lowerCAmelCase__ = a[new_pivot_index] lowerCAmelCase__ = a[index] lowerCAmelCase__ = temp lowerCAmelCase__ = a[new_pivot_index + 1] lowerCAmelCase__ = a[end] lowerCAmelCase__ = temp return new_pivot_index + 1, count UpperCAmelCase__ : Tuple = TemporaryFile() UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase__ : Optional[Any] = np.load(outfile) UpperCAmelCase__ : Any = len(M) - 1 UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
48
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) class a__ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = ['pixel_values'] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = None , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , **lowercase , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase ) A__ = size if size is not None else {"shortest_edge": 256} A__ = get_size_dict(lowercase , default_to_square=lowercase ) A__ = crop_size if crop_size is not None else {"height": 224, "width": 224} A__ = get_size_dict(lowercase , param_name="crop_size" ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> List[Any]: '''simple docstring''' A__ = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A__ = get_resize_output_image_size(lowercase , size=size["shortest_edge"] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> Tuple: '''simple docstring''' A__ = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase ) -> Optional[Any]: '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> Any: '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> Union[str, Any]: '''simple docstring''' A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(lowercase , default_to_square=lowercase ) A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(lowercase , param_name="crop_size" ) A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. A__ = [to_numpy_array(lowercase ) for image in images] if do_resize: A__ = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: A__ = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: A__ = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: A__ = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] A__ = [to_channel_dimension_format(lowercase , lowercase ) for image in images] A__ = {"pixel_values": images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def UpperCamelCase ( self , lowercase , lowercase = None ) -> Optional[Any]: '''simple docstring''' A__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowercase ): A__ = target_sizes.numpy() A__ = [] for idx in range(len(lowercase ) ): A__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowercase ) A__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: A__ = logits.argmax(dim=1 ) A__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
514
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A ( UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase__ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase__ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase__ = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase__ = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase__ = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase__ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase__ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase__ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase__ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase__ = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase__ = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase__ = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase__ = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase__ = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase__ = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ ,lowerCAmelCase__ = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase__ = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ = key.split("." ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] else: lowerCAmelCase__ = rename_key(UpperCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ = val.squeeze_() else: lowerCAmelCase__ = val return orig_state_dict def A ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple="groupvit-gcc-yfcc" , UpperCamelCase_ : Dict=False ) -> Any: '''simple docstring''' lowerCAmelCase__ = GroupViTConfig() lowerCAmelCase__ = GroupViTModel(UpperCamelCase_ ).eval() lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCamelCase_ ) == 0) # verify result lowerCAmelCase__ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = processor(text=["a photo of a cat", "a photo of a dog"] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase_ ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 ) processor.save_pretrained(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) print("Successfully saved processor and model to" , UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(UpperCamelCase_ , organization="nielsr" ) model.push_to_hub(UpperCamelCase_ , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) UpperCAmelCase__ : Any = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
48
0
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a__ : '''simple docstring''' def __init__( self : Optional[Any] ) -> Optional[int]: __A= '' __A= '' __A= [] __A= 0 __A= 256 __A= 0 __A= 0 __A= 0 __A= 0 def lowerCAmelCase ( self : str , lowerCAmelCase_ : Any ) -> Any: __A= cva.imread(lowerCAmelCase_ , 0 ) __A= copy.deepcopy(self.img ) __A, __A, __A= plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) __A= np.sum(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): __A= x[i] / self.k self.sk += prk __A= (self.L - 1) * self.sk if self.rem != 0: __A= int(last % last ) __A= int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase_ ) __A= int(np.ma.count(self.img ) / self.img[1].size ) __A= self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __A= self.img[j][i] if num != self.last_list[num]: __A= self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowerCAmelCase ( self : int ) -> int: cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCAmelCase__ = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') UpperCAmelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
186
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ : Optional[Any] = 1_00 UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def A ( UpperCamelCase_ : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase__ = set() lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( UpperCamelCase_ : int = 50_00 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , UpperCamelCase_ ): if len(partition(UpperCamelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
48
0
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowerCamelCase :Optional[Any] = pytest.mark.integration lowerCamelCase :str = {"comet"} lowerCamelCase :Optional[Any] = importlib.util.find_spec('''fairseq''') is not None lowerCamelCase :Optional[int] = {"code_eval"} lowerCamelCase :List[Any] = os.name == "nt" lowerCamelCase :Optional[int] = {"bertscore", "frugalscore", "perplexity"} lowerCamelCase :int = importlib.util.find_spec('''transformers''') is not None def a ( lowerCamelCase__ ): '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self , lowerCamelCase__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , UpperCamelCase_ ) return wrapper def a ( lowerCamelCase__ ): '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self , lowerCamelCase__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , UpperCamelCase_ ) return wrapper def a ( lowerCamelCase__ ): '''simple docstring''' @wraps(UpperCamelCase_ ) def wrapper(self , lowerCamelCase__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , UpperCamelCase_ ) return wrapper def a ( ): '''simple docstring''' A_ : int = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class _lowerCAmelCase ( parameterized.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def _a (self , lowercase ): A_ : Optional[int] = """[...]""" A_ : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , lowercase ) ).module_path ) A_ : Optional[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=lowercase ) # check parameters A_ : Tuple = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowercase , metric_module.__name__ ): with self.use_local_metrics(): try: A_ : List[Any] = doctest.testmod(lowercase , verbose=lowercase , raise_on_error=lowercase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _a (self , lowercase ): A_ : int = """[...]""" A_ : Dict = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , lowercase ) ).module_path ) # run doctest with self.use_local_metrics(): A_ : Union[str, Any] = doctest.testmod(lowercase , verbose=lowercase , raise_on_error=lowercase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _a (self , lowercase , lowercase ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowercase ): yield else: yield @contextmanager def _a (self ): def load_local_metric(lowercase , *lowercase , **lowercase ): return load_metric(os.path.join("""metrics""" , lowercase ) , *lowercase , **lowercase ) with patch("""datasets.load_metric""" ) as mock_load_metric: A_ : Optional[Any] = load_local_metric yield @classmethod def _a (cls , lowercase ): def wrapper(lowercase ): A_ : List[str] = contextmanager(lowercase ) A_ : Union[str, Any] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def a ( lowerCamelCase__ ): '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): def _a (self , lowercase ): assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: A_ : str = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def a ( lowerCamelCase__ ): '''simple docstring''' import torch def bert_cos_score_idf(lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: A_ : List[Any] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def a ( lowerCamelCase__ ): '''simple docstring''' def load_from_checkpoint(lowerCamelCase__ ): class _lowerCAmelCase : def _a (self , lowercase , *lowercase , **lowercase ): assert len(lowercase ) == 2 A_ : int = [0.19, 0.92] return scores, sum(lowercase ) / len(lowercase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: A_ : int = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: A_ : Dict = load_from_checkpoint yield def a ( ): '''simple docstring''' A_ : Union[str, Any] = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) A_ : Tuple = """ERROR""" A_ : List[Any] = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
667
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"} UpperCAmelCase__ : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27} class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ): """simple docstring""" return self.decoder.get(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" ) return (vocab_file,)
48
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase : Optional[Any] = None lowercase : Optional[int] = logging.get_logger(__name__) lowercase : List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase : Dict = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase : int = { "facebook/mbart-large-en-ro": 10_24, "facebook/mbart-large-cc25": 10_24, } # fmt: off lowercase : str = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowercase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = ['input_ids', 'attention_mask'] UpperCAmelCase_ : List[str] = MBartTokenizer UpperCAmelCase_ : List[int] = [] UpperCAmelCase_ : List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Tuple: A : Union[str, Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) A : Optional[int] = vocab_file A : Dict = False if not self.vocab_file else True A : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) A : Dict = { lang_code: self.convert_tokens_to_ids(__UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A : Optional[Any] = src_lang if src_lang is not None else '''en_XX''' A : int = self.convert_tokens_to_ids(self._src_lang ) A : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case ( self ) -> int: return self._src_lang @src_lang.setter def snake_case ( self , __UpperCAmelCase ) -> str: A : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Union[str, Any]: A : Union[str, Any] = [self.sep_token_id] A : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A : List[str] = src_lang A : str = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) A : List[str] = self.convert_tokens_to_ids(__UpperCAmelCase ) A : List[str] = tgt_lang_id return inputs def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = "en_XX" , __UpperCAmelCase = None , __UpperCAmelCase = "ro_RO" , **__UpperCAmelCase , ) -> Tuple: A : int = src_lang A : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def snake_case ( self ) -> Optional[int]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case ( self , __UpperCAmelCase ) -> Optional[int]: A : Dict = self.convert_tokens_to_ids(__UpperCAmelCase ) A : List[Any] = [] A : List[Any] = [self.eos_token_id, self.cur_lang_code] A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) A : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) A : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case ( self , __UpperCAmelCase ) -> Union[str, Any]: A : Tuple = self.convert_tokens_to_ids(__UpperCAmelCase ) A : Tuple = [] A : Any = [self.eos_token_id, self.cur_lang_code] A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) A : int = self.convert_ids_to_tokens(self.suffix_tokens ) A : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[int]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return A : List[str] = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
542
'''simple docstring''' from math import sqrt def A ( UpperCamelCase_ : int ) -> int: '''simple docstring''' lowerCAmelCase__ = 0 for i in range(1 , int(sqrt(UpperCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase_ ): total += i + n // i elif i == sqrt(UpperCamelCase_ ): total += i return total - n def A ( UpperCamelCase_ : int = 1_00_00 ) -> int: '''simple docstring''' lowerCAmelCase__ = sum( i for i in range(1 , UpperCamelCase_ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase_ ) ) == i and sum_of_divisors(UpperCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
48
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _UpperCAmelCase : Tuple = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Dict ): for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _A = 'lm_head' _A = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: _A = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Union[str, Any] ): _A = [] _A = fairseq_model.state_dict() _A = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _A = True if "*" in mapped_key: _A = name.split(UpperCamelCase_ )[0].split('.' )[-2] _A = mapped_key.replace('*' , UpperCamelCase_ ) if "weight_g" in name: _A = 'weight_g' elif "weight_v" in name: _A = 'weight_v' elif "bias" in name: _A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _A = 'weight' else: _A = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Dict ): _A = full_name.split('conv_layers.' )[-1] _A = name.split('.' ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _A = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _A = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _A = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _A = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase_ ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : List[Any] , __snake_case : Tuple=None , __snake_case : Optional[Any]=None , __snake_case : int=True ): if config_path is not None: _A = UniSpeechConfig.from_pretrained(UpperCamelCase_ ) else: _A = UniSpeechConfig() if is_finetuned: if dict_path: _A = Dictionary.load_from_json(UpperCamelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(UpperCamelCase_ , 'vocab.json' ) if not os.path.isdir(UpperCamelCase_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCamelCase_ ) ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) _A = target_dict.indices # fairseq has the <pad> and <s> switched _A = 4_2 _A = 4_3 with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCamelCase_ , UpperCamelCase_ ) _A = WavaVecaPhonemeCTCTokenizer( UpperCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCamelCase_ , ) _A = True if config.feat_extract_norm == 'layer' else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) _A = WavaVecaProcessor(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) _A = UniSpeechForCTC(UpperCamelCase_ ) else: _A = UniSpeechForPreTraining(UpperCamelCase_ ) if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _A = model[0].eval() recursively_load_weights(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) hf_unispeech.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _UpperCAmelCase : List[str] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
107
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( UpperCamelCase_ : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.mean(1 ) # Centralize the data of class i lowerCAmelCase__ = data - column_reshape(UpperCamelCase_ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase_ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase__ = features.mean(1 ) lowerCAmelCase__ = np.nan for i in range(UpperCamelCase_ ): lowerCAmelCase__ = features[:, labels == i] lowerCAmelCase__ = data.shape[1] lowerCAmelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ = device_data * np.dot( column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ ) , (column_reshape(UpperCamelCase_ ) - column_reshape(UpperCamelCase_ )).T , ) return covariance_sum / features.shape[1] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' if features.any(): lowerCAmelCase__ = features.mean(1 ) # Center the dataset lowerCAmelCase__ = features - np.reshape(UpperCamelCase_ , (data_mean.size, 1) ) lowerCAmelCase__ = np.dot(UpperCamelCase_ , centered_data.T ) / features.shape[1] lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.eigh(UpperCamelCase_ ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCAmelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCAmelCase__ = np.dot(filtered_eigenvectors.T , UpperCamelCase_ ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: lowerCAmelCase__ ,lowerCAmelCase__ = eigh( covariance_between_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , covariance_within_classes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , ) lowerCAmelCase__ = eigenvectors[:, ::-1][:, :dimensions] lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = np.linalg.svd(UpperCamelCase_ ) lowerCAmelCase__ = svd_matrix[:, 0:dimensions] lowerCAmelCase__ = np.dot(filtered_svd_matrix.T , UpperCamelCase_ ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=UpperCamelCase_ ) logging.error("Dataset empty" ) raise AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCAmelCase__ = np.array([0, 0, 0, 1, 1] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = linear_discriminant_analysis( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if isinstance(UpperCamelCase_ , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase_ ) as error_info: lowerCAmelCase__ = principal_component_analysis(UpperCamelCase_ , UpperCamelCase_ ) if not np.allclose(UpperCamelCase_ , UpperCamelCase_ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
48
0
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _A : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): @register_to_config def __init__( self : str , A : bool , A : Optional[int] = None , A : Optional[int] = None ) ->Optional[Any]: super().__init__() lowerCamelCase__ : Optional[Any] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowerCamelCase__ : Optional[Any] = torch.zeros(A , A ) else: lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Any = torch.nn.Parameter(A ) class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : VQModel _UpperCAmelCase : CLIPTextModel _UpperCAmelCase : CLIPTokenizer _UpperCAmelCase : TransformeraDModel _UpperCAmelCase : LearnedClassifierFreeSamplingEmbeddings _UpperCAmelCase : VQDiffusionScheduler def __init__( self : Union[str, Any] , A : VQModel , A : CLIPTextModel , A : CLIPTokenizer , A : TransformeraDModel , A : VQDiffusionScheduler , A : LearnedClassifierFreeSamplingEmbeddings , ) ->Union[str, Any]: super().__init__() self.register_modules( vqvae=A , transformer=A , text_encoder=A , tokenizer=A , scheduler=A , learned_classifier_free_sampling_embeddings=A , ) def __lowerCamelCase ( self : Any , A : Optional[Any] , A : List[str] , A : str ) ->Any: lowerCamelCase__ : Dict = len(A ) if isinstance(A , A ) else 1 # get prompt text embeddings lowerCamelCase__ : Optional[int] = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) lowerCamelCase__ : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase__ : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCamelCase__ : int = text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase__ : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowerCamelCase__ : List[Any] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A ) # duplicate text embeddings for each generation per prompt lowerCamelCase__ : str = prompt_embeds.repeat_interleave(A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowerCamelCase__ : Dict = self.learned_classifier_free_sampling_embeddings.embeddings lowerCamelCase__ : Optional[Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(A , 1 , 1 ) else: lowerCamelCase__ : Optional[Any] = [''''''] * batch_size lowerCamelCase__ : Optional[int] = text_input_ids.shape[-1] lowerCamelCase__ : Optional[int] = self.tokenizer( A , padding='''max_length''' , max_length=A , truncation=A , return_tensors='''pt''' , ) lowerCamelCase__ : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowerCamelCase__ : Union[str, Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ : Optional[int] = negative_prompt_embeds.shape[1] lowerCamelCase__ : Union[str, Any] = negative_prompt_embeds.repeat(1 , A , 1 ) lowerCamelCase__ : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ : Optional[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Any , A : Union[str, List[str]] , A : int = 1_0_0 , A : float = 5.0 , A : float = 1.0 , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : Optional[torch.FloatTensor] = None , A : Optional[str] = "pil" , A : bool = True , A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , A : int = 1 , ) ->Dict: if isinstance(A , A ): lowerCamelCase__ : Optional[Any] = 1 elif isinstance(A , A ): lowerCamelCase__ : Optional[int] = len(A ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(A )}" ) lowerCamelCase__ : Optional[Any] = batch_size * num_images_per_prompt lowerCamelCase__ : Any = guidance_scale > 1.0 lowerCamelCase__ : Optional[Any] = self._encode_prompt(A , A , A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(A )}." ) # get the initial completely masked latents unless the user supplied it lowerCamelCase__ : Tuple = (batch_size, self.transformer.num_latent_pixels) if latents is None: lowerCamelCase__ : Union[str, Any] = self.transformer.num_vector_embeds - 1 lowerCamelCase__ : Tuple = torch.full(A , A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F" {self.transformer.num_vector_embeds - 1} (inclusive)." ) lowerCamelCase__ : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A , device=self.device ) lowerCamelCase__ : Any = self.scheduler.timesteps.to(self.device ) lowerCamelCase__ : Union[str, Any] = latents for i, t in enumerate(self.progress_bar(A ) ): # expand the sample if we are doing classifier free guidance lowerCamelCase__ : Optional[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowerCamelCase__ : int = self.transformer(A , encoder_hidden_states=A , timestep=A ).sample if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ : Any = model_output.chunk(2 ) lowerCamelCase__ : Union[str, Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A , dim=1 , keepdim=A ) lowerCamelCase__ : int = self.truncate(A , A ) # remove `log(0)`'s (`-inf`s) lowerCamelCase__ : List[str] = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Optional[Any] = self.scheduler.step(A , timestep=A , sample=A , generator=A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) lowerCamelCase__ : str = self.vqvae.config.vq_embed_dim lowerCamelCase__ : int = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowerCamelCase__ : int = self.vqvae.quantize.get_codebook_entry(A , shape=A ) lowerCamelCase__ : List[str] = self.vqvae.decode(A , force_not_quantize=A ).sample lowerCamelCase__ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase__ : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase__ : Dict = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A ) def __lowerCamelCase ( self : int , A : torch.FloatTensor , A : float ) ->Tuple: lowerCamelCase__ , lowerCamelCase__ : List[str] = torch.sort(A , 1 , descending=A ) lowerCamelCase__ : Union[str, Any] = torch.exp(A ) lowerCamelCase__ : str = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowerCamelCase__ : Optional[Any] = torch.full_like(keep_mask[:, 0:1, :] , A ) lowerCamelCase__ : str = torch.cat((all_true, keep_mask) , dim=1 ) lowerCamelCase__ : Optional[int] = keep_mask[:, :-1, :] lowerCamelCase__ : int = keep_mask.gather(1 , indices.argsort(1 ) ) lowerCamelCase__ : int = log_p_x_0.clone() lowerCamelCase__ : Any = -torch.inf # -inf = log(0) return rv
315
'''simple docstring''' def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list: '''simple docstring''' lowerCAmelCase__ = word.split() def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str: lowerCAmelCase__ = max_width - width lowerCAmelCase__ = len(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase_ ): num_spaces_between_words_list[i] += 1 lowerCAmelCase__ = [] for i in range(UpperCamelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 for word in words: if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase_ ) width += len(UpperCamelCase_ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) # reset new line and new width lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ ) lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ ) answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
48
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = True , _snake_case = None , _snake_case = False , _snake_case = None , _snake_case = True , _snake_case = "arrow" , **_snake_case , ): super().__init__( split=_snake_case , features=_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case , streaming=_snake_case , **_snake_case , ) _UpperCAmelCase =load_from_cache_file _UpperCAmelCase =file_format _UpperCAmelCase =Spark( df=_snake_case , features=_snake_case , cache_dir=_snake_case , working_dir=_snake_case , **_snake_case , ) def SCREAMING_SNAKE_CASE ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_snake_case , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
408
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase__ : str = sys.version_info >= (3, 10) def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class A : snake_case__ :int snake_case__ :float snake_case__ :str snake_case__ :bool @dataclass class A : snake_case__ :int = 42 snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :Optional[bool] = None class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'titi' snake_case__ :Optional[int] = 'toto' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'titi' snake_case__ :str = 'toto' snake_case__ :int = 42 @dataclass class A : snake_case__ :BasicEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.foo ) @dataclass class A : snake_case__ :MixedTypeEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = MixedTypeEnum(self.foo ) @dataclass class A : snake_case__ :Optional[int] = None snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :Optional[str] = None snake_case__ :Optional[List[str]] = list_field(default=[] ) snake_case__ :Optional[List[int]] = list_field(default=[] ) @dataclass class A : snake_case__ :List[int] = list_field(default=[] ) snake_case__ :List[int] = list_field(default=[1, 2, 3] ) snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : snake_case__ :List[int] = field() snake_case__ :str = field() snake_case__ :BasicEnum = field() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.required_enum ) @dataclass class A : snake_case__ :int snake_case__ :"BasicEnum" = field() snake_case__ :"Optional[bool]" = None snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} ) snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :bool | None = None @dataclass class A : snake_case__ :int | None = None snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :str | None = None snake_case__ :list[str] | None = list_field(default=[] ) snake_case__ :list[int] | None = list_field(default=[] ) class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) lowerCAmelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" @dataclass class A : snake_case__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) lowerCAmelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
48
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = StableUnCLIPImgaImgPipeline lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCamelCase = frozenset([] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: lowerCamelCase_ : Optional[int] = 32 lowerCamelCase_ : str = embedder_hidden_size # image encoding components lowerCamelCase_ : str = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__magic_name__ , projection_dim=__magic_name__ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase_ : int = StableUnCLIPImageNormalizer(embedding_dim=__magic_name__ ) lowerCamelCase_ : List[str] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCamelCase_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ : List[str] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__magic_name__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ : Dict = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__magic_name__ , layers_per_block=1 , upcast_attention=__magic_name__ , use_linear_projection=__magic_name__ , ) torch.manual_seed(0 ) lowerCamelCase_ : int = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=__magic_name__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase_ : Any = AutoencoderKL() lowerCamelCase_ : Tuple = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=0 , __magic_name__ : int=True ) -> Dict: if str(__magic_name__ ).startswith("mps" ): lowerCamelCase_ : Optional[int] = torch.manual_seed(__magic_name__ ) else: lowerCamelCase_ : Tuple = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) lowerCamelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) if pil_image: lowerCamelCase_ : List[str] = input_image * 0.5 + 0.5 lowerCamelCase_ : Tuple = input_image.clamp(0 , 1 ) lowerCamelCase_ : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCamelCase_ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(__magic_name__ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: lowerCamelCase_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : Tuple = self.get_dummy_components() lowerCamelCase_ : List[Any] = StableUnCLIPImgaImgPipeline(**__magic_name__ ) lowerCamelCase_ : Union[str, Any] = sd_pipe.to(__magic_name__ ) sd_pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCamelCase_ : Tuple = self.get_dummy_inputs(__magic_name__ ) inputs.update({"image_embeds": None} ) lowerCamelCase_ : List[str] = sd_pipe(**__magic_name__ ).images lowerCamelCase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ : int = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: lowerCamelCase_ : List[Any] = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: lowerCamelCase_ : Optional[Any] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__magic_name__ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__magic_name__ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: lowerCamelCase_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowerCamelCase_ : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowerCamelCase_ : Tuple = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ : int = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = pipe(__magic_name__ , "anime turle" , generator=__magic_name__ , output_type="np" ) lowerCamelCase_ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: lowerCamelCase_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowerCamelCase_ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowerCamelCase_ : Optional[int] = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ : Tuple = pipe(__magic_name__ , "anime turle" , generator=__magic_name__ , output_type="np" ) lowerCamelCase_ : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: lowerCamelCase_ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowerCamelCase_ : str = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ : Tuple = pipe( __magic_name__ , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowerCamelCase_ : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
488
'''simple docstring''' import sys from collections import defaultdict class A : def __init__( self : Any ): """simple docstring""" lowerCAmelCase__ = [] def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] ): """simple docstring""" return self.node_position[vertex] def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = pos def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase__ = 2 * start + 1 else: lowerCAmelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase__ ,lowerCAmelCase__ = heap[smallest_child], positions[smallest_child] lowerCAmelCase__ ,lowerCAmelCase__ = ( heap[start], positions[start], ) lowerCAmelCase__ ,lowerCAmelCase__ = temp, tempa lowerCAmelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __magic_name__ ) self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = position[index] while index != 0: lowerCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase__ = heap[parent] lowerCAmelCase__ = position[parent] self.set_position(position[parent] , __magic_name__ ) else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , __magic_name__ ) break lowerCAmelCase__ = parent else: lowerCAmelCase__ = val lowerCAmelCase__ = temp self.set_position(__magic_name__ , 0 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = len(__magic_name__ ) // 2 - 1 for i in range(__magic_name__ , -1 , -1 ): self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = positions[0] lowerCAmelCase__ = sys.maxsize self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ ) return temp def A ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = Heap() lowerCAmelCase__ = [0] * len(UpperCamelCase_ ) lowerCAmelCase__ = [-1] * len(UpperCamelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase__ = [] for vertex in range(len(UpperCamelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase_ ) heap.node_position.append(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = 1 lowerCAmelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase__ = 0 lowerCAmelCase__ = distance heap.heapify(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(1 , len(UpperCamelCase_ ) ): lowerCAmelCase__ = heap.delete_minimum(UpperCamelCase_ , UpperCamelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase_ )] ): lowerCAmelCase__ = distance heap.bottom_to_top( UpperCamelCase_ , heap.get_position(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ : Optional[int] = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ : str = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ : int = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
48
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = BlenderbotConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self : Any ,lowercase_ : List[str] ,lowercase_ : Optional[int]=1_3 ,lowercase_ : Tuple=7 ,lowercase_ : Union[str, Any]=True ,lowercase_ : Optional[int]=False ,lowercase_ : Any=9_9 ,lowercase_ : List[str]=3_2 ,lowercase_ : List[str]=2 ,lowercase_ : Dict=4 ,lowercase_ : List[Any]=3_7 ,lowercase_ : Optional[int]=0.1 ,lowercase_ : Any=0.1 ,lowercase_ : Optional[Any]=2_0 ,lowercase_ : Tuple=2 ,lowercase_ : Any=1 ,lowercase_ : Union[str, Any]=0 ,): lowerCAmelCase__ : Any = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : List[str] = seq_length lowerCAmelCase__ : List[Any] = is_training lowerCAmelCase__ : Dict = use_labels lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : Union[str, Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : List[Any] = intermediate_size lowerCAmelCase__ : Dict = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = max_position_embeddings lowerCAmelCase__ : int = eos_token_id lowerCAmelCase__ : Dict = pad_token_id lowerCAmelCase__ : Optional[Any] = bos_token_id def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowerCAmelCase__ : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowerCAmelCase__ : Union[str, Any] = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowerCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) lowerCAmelCase__ : Optional[int] = prepare_blenderbot_inputs_dict(lowercase_ ,lowercase_ ,lowercase_ ) return config, inputs_dict def __lowerCAmelCase ( self : Dict ,lowercase_ : Union[str, Any] ,lowercase_ : Optional[int] ): lowerCAmelCase__ : int = TFBlenderbotModel(config=lowercase_ ).get_decoder() lowerCAmelCase__ : Optional[int] = inputs_dict['''input_ids'''] lowerCAmelCase__ : List[Any] = input_ids[:1, :] lowerCAmelCase__ : Optional[int] = inputs_dict['''attention_mask'''][:1, :] lowerCAmelCase__ : List[Any] = inputs_dict['''head_mask'''] lowerCAmelCase__ : int = 1 # first forward pass lowerCAmelCase__ : Any = model(lowercase_ ,attention_mask=lowercase_ ,head_mask=lowercase_ ,use_cache=lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowerCAmelCase__ : Any = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and lowerCAmelCase__ : int = tf.concat([input_ids, next_tokens] ,axis=-1 ) lowerCAmelCase__ : List[Any] = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) lowerCAmelCase__ : Dict = model(lowercase_ ,attention_mask=lowercase_ )[0] lowerCAmelCase__ : Any = model(lowercase_ ,attention_mask=lowercase_ ,past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice lowerCAmelCase__ : Optional[Any] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) lowerCAmelCase__ : int = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ ,lowercase_ ,rtol=1E-3 ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_=None , A_=None , A_=None , A_=None , A_=None , ): if attention_mask is None: lowerCAmelCase__ : Dict = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase__ : Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase__ : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase__ : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowercase__ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowercase__ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowercase__ = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : int = TFBlenderbotModelTester(self ) lowerCAmelCase__ : Tuple = ConfigTester(self ,config_class=lowercase_ ) def __lowerCAmelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowercase__ = ['My friends are cool but they eat too many carbs.'] lowercase__ = 'facebook/blenderbot-400M-distill' @cached_property def __lowerCAmelCase ( self : str ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[int] = self.tokenizer(self.src_text ,return_tensors='''tf''' ) lowerCAmelCase__ : Dict = self.model.generate( model_inputs.input_ids ,) lowerCAmelCase__ : int = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=lowercase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
450
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp UpperCAmelCase__ : Tuple = 5 UpperCAmelCase__ : List[Any] = 10 @require_sentencepiece @require_tokenizers class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Tuple = SpeechaTextTokenizer snake_case__ :Dict = False snake_case__ :Optional[int] = True def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() lowerCAmelCase__ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) lowerCAmelCase__ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = "<pad>" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class A ( unittest.TestCase ): snake_case__ :Union[str, Any] = 'valhalla/s2t_mustc_multilinguial_medium' snake_case__ :Tuple = 'C\'est trop cool' snake_case__ :List[str] = 'Esto es genial' @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] ): """simple docstring""" lowerCAmelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) lowerCAmelCase__ = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase__ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = "fr" lowerCAmelCase__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase__ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
48
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class a ( unittest.TestCase ): """simple docstring""" lowerCamelCase :Optional[int] = MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase :str = TF_MODEL_FOR_MASKED_LM_MAPPING def UpperCAmelCase ( self ) -> Optional[int]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def UpperCAmelCase ( self ) -> Optional[Any]: _A = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 3_80_15, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 2_55_06, """token_str""": """ accuser"""}, ] , ) _A = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 3_80_15, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 2_55_06, """token_str""": """ accuser""", }, ] , ) _A = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 1_36_06, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 34_99, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 29_41, """token_str""": """ Te"""}, ] , ) @require_torch def UpperCAmelCase ( self ) -> Union[str, Any]: _A = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 3_56_76, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 1_64_16, """token_str""": """ELS"""}, ] , ) _A = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 3_56_76, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 1_64_16, """token_str""": """ELS"""}, ] , ) _A = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 34_99, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 29_41, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 1_36_06, """token_str""": """ Clara"""}, ] , ) _A = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 3_56_76, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 1_64_16, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 3_56_76, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 1_64_16, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def UpperCAmelCase ( self ) -> Optional[Any]: _A = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow @require_torch def UpperCAmelCase ( self ) -> List[str]: _A = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(lowerCAmelCase_ ) @slow @require_tf def UpperCAmelCase ( self ) -> Optional[Any]: _A = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Any: _A = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 6_10, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 15_73, """token_str""": """ Chris"""}, ] , ) _A = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 22_01, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_27_90, """token_str""": """ Lyon""", }, ] , ) _A = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 34_99, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_36_06, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 29_41, """token_str""": """ Te"""}, ] , ) @require_torch def UpperCAmelCase ( self ) -> int: _A = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A = None _A = None self.run_pipeline_test(lowerCAmelCase_ , [] ) @require_tf def UpperCAmelCase ( self ) -> str: _A = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A = None _A = None self.run_pipeline_test(lowerCAmelCase_ , [] ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A = FillMaskPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) _A = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _A = fill_masker.tokenizer _A = fill_masker.model _A = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( lowerCAmelCase_ , [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ] , ) _A = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( lowerCAmelCase_ , [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ] , ) _A = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( lowerCAmelCase_ , [ [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ], [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ], ] , ) with self.assertRaises(lowerCAmelCase_ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowerCAmelCase_ ): fill_masker("""This is""" ) self.run_test_top_k(lowerCAmelCase_ , lowerCAmelCase_ ) self.run_test_targets(lowerCAmelCase_ , lowerCAmelCase_ ) self.run_test_top_k_targets(lowerCAmelCase_ , lowerCAmelCase_ ) self.fill_mask_with_duplicate_targets_and_top_k(lowerCAmelCase_ , lowerCAmelCase_ ) self.fill_mask_with_multiple_masks(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _A = tokenizer.get_vocab() _A = sorted(vocab.keys() )[:2] # Pipeline argument _A = FillMaskPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , targets=lowerCAmelCase_ ) _A = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCAmelCase_ , [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ] , ) _A = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , lowerCAmelCase_ ) _A = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(lowerCAmelCase_ ) ) # Call argument _A = FillMaskPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) _A = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=lowerCAmelCase_ ) self.assertEqual( lowerCAmelCase_ , [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ] , ) _A = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , lowerCAmelCase_ ) _A = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(lowerCAmelCase_ ) ) # Score equivalence _A = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=lowerCAmelCase_ ) _A = [top_mask["""token_str"""] for top_mask in outputs] _A = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCAmelCase_ ) == set(lowerCAmelCase_ ): _A = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=lowerCAmelCase_ ) _A = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowerCAmelCase_ ) , nested_simplify(lowerCAmelCase_ ) ) # Raises with invalid with self.assertRaises(lowerCAmelCase_ ): _A = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowerCAmelCase_ ): _A = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(lowerCAmelCase_ ): _A = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _A = FillMaskPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , top_k=2 ) _A = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCAmelCase_ , [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ] , ) _A = FillMaskPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) _A = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ] , ) self.assertEqual(nested_simplify(lowerCAmelCase_ ) , nested_simplify(lowerCAmelCase_ ) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _A = tokenizer.get_vocab() _A = FillMaskPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) # top_k=2, ntargets=3 _A = sorted(vocab.keys() )[:3] _A = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=lowerCAmelCase_ ) # If we use the most probably targets, and filter differently, we should still # have the same results _A = [el["""token_str"""] for el in sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x["score"] , reverse=lowerCAmelCase_ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCAmelCase_ ).issubset(lowerCAmelCase_ ): _A = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=lowerCAmelCase_ ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowerCAmelCase_ ) , nested_simplify(lowerCAmelCase_ ) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _A = FillMaskPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) _A = tokenizer.get_vocab() # String duplicates + id duplicates _A = sorted(vocab.keys() )[:3] _A = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=lowerCAmelCase_ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowerCAmelCase_ ) , 3 ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _A = FillMaskPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) _A = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [ [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ], [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ], [ {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, {"""sequence""": ANY(lowerCAmelCase_ ), """score""": ANY(lowerCAmelCase_ ), """token""": ANY(lowerCAmelCase_ ), """token_str""": ANY(lowerCAmelCase_ )}, ], ] , )
401
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ : Tuple = logging.get_logger(__name__) # General docstring UpperCAmelCase__ : int = "RegNetConfig" # Base docstring UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase__ : Tuple = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat" UpperCAmelCase__ : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) ) lowerCAmelCase__ = self.normalization(__magic_name__ ) lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config.num_channels lowerCAmelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = shape_list(__magic_name__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) ) lowerCAmelCase__ = self.embedder(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ): """simple docstring""" return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ ) class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) lowerCAmelCase__ = [ tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.pooler(__magic_name__ ) for layer_module in self.attention: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ), *[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ): """simple docstring""" for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ): """simple docstring""" lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(__magic_name__ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ ) @keras_serializable class A ( tf.keras.layers.Layer ): snake_case__ :List[Any] = RegNetConfig def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" ) lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) @unpack_inputs def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = self.encoder( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(__magic_name__ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = RegNetConfig snake_case__ :Optional[Any] = 'regnet' snake_case__ :Tuple = 'pixel_values' @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) # classification head lowerCAmelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier[0](__magic_name__ ) lowerCAmelCase__ = self.classifier[1](__magic_name__ ) lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
48
0
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any: lowercase_ = BigBirdConfig.from_json_file(UpperCamelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowercase_ = BigBirdForQuestionAnswering(UpperCamelCase_ ) else: lowercase_ = BigBirdForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
451
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def A ( UpperCamelCase_ : Tuple ) -> int: '''simple docstring''' for param in module.parameters(): lowerCAmelCase__ = False def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def A ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = datetime.now() lowerCAmelCase__ = current_time.strftime("%H:%M:%S" ) return timestamp
48
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _UpperCAmelCase : def __init__( self : Optional[Any] , _lowercase : Any , _lowercase : List[str]=13 , _lowercase : List[Any]=7 , _lowercase : Optional[int]=True , _lowercase : Optional[Any]=True , _lowercase : Optional[int]=True , _lowercase : str=True , _lowercase : Dict=99 , _lowercase : Any=32 , _lowercase : Dict=2 , _lowercase : int=4 , _lowercase : str=37 , _lowercase : Optional[int]="gelu" , _lowercase : int=0.1 , _lowercase : List[Any]=0.1 , _lowercase : Tuple=5_12 , _lowercase : str=16 , _lowercase : List[str]=2 , _lowercase : List[str]=0.02 , _lowercase : List[Any]=3 , _lowercase : Tuple=4 , _lowercase : Dict=None , ): __UpperCAmelCase = parent __UpperCAmelCase = 13 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = 99 __UpperCAmelCase = 3_84 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 37 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_12 __UpperCAmelCase = 16 __UpperCAmelCase = 2 __UpperCAmelCase = 0.02 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = 1_28 __UpperCAmelCase = 2 __UpperCAmelCase = 9 __UpperCAmelCase = 1 __UpperCAmelCase = None def a ( self : List[str] ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self : str , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : int , _lowercase : Dict , _lowercase : Any ): __UpperCAmelCase = TFConvBertModel(config=_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : str , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Any , _lowercase : str , _lowercase : Optional[int] , _lowercase : str , _lowercase : Dict ): __UpperCAmelCase = TFConvBertForMaskedLM(config=_lowercase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : Optional[int] , _lowercase : List[str] , _lowercase : Any , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : List[Any] , _lowercase : List[Any] ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFConvBertForSequenceClassification(config=_lowercase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int , _lowercase : List[Any] , _lowercase : int , _lowercase : int , _lowercase : Any , _lowercase : List[str] ): __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFConvBertForMultipleChoice(config=_lowercase ) __UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] , _lowercase : str , _lowercase : Dict , _lowercase : Dict , _lowercase : str ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFConvBertForTokenClassification(config=_lowercase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self : Optional[int] , _lowercase : Any , _lowercase : Any , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Any ): __UpperCAmelCase = TFConvBertForQuestionAnswering(config=_lowercase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self : str ): __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Tuple = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a__ : int = False a__ : List[str] = False a__ : Dict = False def a ( self : Optional[Any] ): __UpperCAmelCase = TFConvBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def a ( self : Union[str, Any] ): self.config_tester.run_common_tests() def a ( self : Any ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def a ( self : Dict ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def a ( self : Any ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def a ( self : Any ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = True __UpperCAmelCase = True if hasattr(_lowercase , '''use_cache''' ): __UpperCAmelCase = True __UpperCAmelCase = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) __UpperCAmelCase = getattr(self.model_tester , '''key_length''' , _lowercase ) for model_class in self.all_model_classes: __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) __UpperCAmelCase = os.path.join(_lowercase , '''saved_model''' , '''1''' ) __UpperCAmelCase = tf.keras.models.load_model(_lowercase ) __UpperCAmelCase = model(_lowercase ) if self.is_encoder_decoder: __UpperCAmelCase = outputs['''encoder_hidden_states'''] __UpperCAmelCase = outputs['''encoder_attentions'''] else: __UpperCAmelCase = outputs['''hidden_states'''] __UpperCAmelCase = outputs['''attentions'''] self.assertEqual(len(_lowercase ) , _lowercase ) __UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a ( self : Tuple ): __UpperCAmelCase = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = True __UpperCAmelCase = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) __UpperCAmelCase = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) __UpperCAmelCase = getattr(self.model_tester , '''key_length''' , _lowercase ) __UpperCAmelCase = getattr(self.model_tester , '''key_length''' , _lowercase ) def check_decoder_attentions_output(_lowercase : Any ): __UpperCAmelCase = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) __UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowercase : Tuple ): __UpperCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) __UpperCAmelCase = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __UpperCAmelCase = True __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : Tuple ): __UpperCAmelCase = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(_lowercase )[0] __UpperCAmelCase = [1, 6, 7_68] self.assertEqual(output.shape , _lowercase ) __UpperCAmelCase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-4 )
49
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Any = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "ibert" def __init__( self : Dict , _lowercase : Union[str, Any]=3_05_22 , _lowercase : Any=7_68 , _lowercase : Dict=12 , _lowercase : Optional[Any]=12 , _lowercase : Optional[Any]=30_72 , _lowercase : List[str]="gelu" , _lowercase : Optional[int]=0.1 , _lowercase : List[str]=0.1 , _lowercase : int=5_12 , _lowercase : Tuple=2 , _lowercase : Any=0.02 , _lowercase : Tuple=1E-12 , _lowercase : int=1 , _lowercase : Optional[int]=0 , _lowercase : Any=2 , _lowercase : Tuple="absolute" , _lowercase : List[str]=False , _lowercase : List[str]="none" , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = quant_mode __UpperCAmelCase = force_dequant class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Union[str, Any] ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=_lowercase , ) assert hasattr(self , '''env''' ) def a ( self : Dict , _lowercase : Optional[Any]=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-single''' , instance_count=_lowercase , instance_type=self.instance_type , debugger_hook_config=_lowercase , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def a ( self : Optional[int] , _lowercase : int ): TrainingJobAnalytics(_lowercase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) def a ( self : Optional[int] ): # create estimator __UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe __UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowercase )
49
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : Union[str, Any] ): __UpperCAmelCase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __UpperCAmelCase = { '''input_ids''': tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''] __UpperCAmelCase = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. __UpperCAmelCase = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
49
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
1
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _lowercase : Optional[int] = float('nan') class _UpperCAmelCase : def __init__( self : Optional[Any] , _lowercase : Optional[int] ): __UpperCAmelCase = sys.stdout __UpperCAmelCase = open(_lowercase , '''a''' ) def __getattr__( self : str , _lowercase : Union[str, Any] ): return getattr(self.stdout , _lowercase ) def a ( self : str , _lowercase : List[Any] ): self.stdout.write(_lowercase ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , _lowercase , 0 , re.M ) ) def lowercase__ ( snake_case_ :Optional[Any]=80 , snake_case_ :Dict=False ): __UpperCAmelCase = [] # deal with critical env vars __UpperCAmelCase = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: __UpperCAmelCase = os.environ.get(snake_case_ , snake_case_ ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __UpperCAmelCase = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(snake_case_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __UpperCAmelCase = [] __UpperCAmelCase = '''''' while len(snake_case_ ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(snake_case_ ) == 0 or len(snake_case_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case_ ) __UpperCAmelCase = '''''' return "\\\n".join(snake_case_ ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Dict ): # unwrap multi-line input __UpperCAmelCase = re.sub(r'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own __UpperCAmelCase = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __UpperCAmelCase = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def lowercase__ ( snake_case_ :Any , snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :Dict , snake_case_ :Tuple , snake_case_ :Any , snake_case_ :int ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) __UpperCAmelCase = subprocess.run(snake_case_ , capture_output=snake_case_ , text=snake_case_ ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams __UpperCAmelCase = variation.replace(''' ''' , '''-''' ) with open(Path(snake_case_ ) / F'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(snake_case_ ) / F'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: __UpperCAmelCase = json.load(snake_case_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :Dict , snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :str , snake_case_ :List[Any] , snake_case_ :Optional[int] , ): __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = F'''{id}: {variation:<{longest_variation_len}}''' __UpperCAmelCase = F'''{preamble}: ''' __UpperCAmelCase = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case_ ) , desc=snake_case_ , leave=snake_case_ ): __UpperCAmelCase = process_run_single( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = single_run_metrics[target_metric_key] if not math.isnan(snake_case_ ): metrics.append(snake_case_ ) results.append(snake_case_ ) outcome += "✓" else: outcome += "✘" __UpperCAmelCase = F'''\33[2K\r{outcome}''' if len(snake_case_ ) > 0: __UpperCAmelCase = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __UpperCAmelCase = round(mean_metrics[target_metric_key] , 2 ) __UpperCAmelCase = F'''{outcome} {mean_target}''' if len(snake_case_ ) > 1: results_str += F''' {tuple(round(snake_case_ , 2 ) for x in results )}''' print(snake_case_ ) __UpperCAmelCase = variation return mean_metrics else: print(snake_case_ ) return {variation_key: variation, target_metric_key: nan} def lowercase__ ( ): __UpperCAmelCase = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def lowercase__ ( snake_case_ :int , snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Optional[Any] , snake_case_ :Optional[int] ): __UpperCAmelCase = pd.DataFrame(snake_case_ ) __UpperCAmelCase = '''variation''' __UpperCAmelCase = '''diff_%''' __UpperCAmelCase = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __UpperCAmelCase = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case_ ): # as a fallback, use the minimal value as the sentinel __UpperCAmelCase = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case_ ): __UpperCAmelCase = df.apply( lambda snake_case_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns __UpperCAmelCase = [variation_key, target_metric_key, diff_key, *report_metric_keys] __UpperCAmelCase = df.reindex(snake_case_ , axis='''columns''' ) # reorder cols # capitalize __UpperCAmelCase = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible __UpperCAmelCase = df.rename(lambda snake_case_ : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) __UpperCAmelCase = df.rename(lambda snake_case_ : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) __UpperCAmelCase = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case_ , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case_ , floatfmt='''.2f''' )] print('''\n\n'''.join(snake_case_ ) ) def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=snake_case_ , type=snake_case_ , nargs='''+''' , required=snake_case_ , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=snake_case_ , type=snake_case_ , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=snake_case_ , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=snake_case_ , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=snake_case_ , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=snake_case_ , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.output_dir Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) __UpperCAmelCase = get_base_command(snake_case_ , snake_case_ ) # split each dimension into its --foo variations __UpperCAmelCase = [list(map(str.strip , re.split(r'''\|''' , snake_case_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __UpperCAmelCase = list(map(str.strip , map(''' '''.join , itertools.product(*snake_case_ ) ) ) ) __UpperCAmelCase = max(len(snake_case_ ) for x in variations ) # split wanted keys __UpperCAmelCase = args.report_metric_keys.split() # capture prints into a log file for convenience __UpperCAmelCase = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __UpperCAmelCase = Tee(snake_case_ ) print(F'''\n*** Running {len(snake_case_ )} benchmarks:''' ) print(F'''Base command: {" ".join(snake_case_ )}''' ) __UpperCAmelCase = '''variation''' __UpperCAmelCase = [] for id, variation in enumerate(tqdm(snake_case_ , desc='''Total completion: ''' , leave=snake_case_ ) ): __UpperCAmelCase = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ , args.target_metric_key , snake_case_ , args.repeat_times , snake_case_ , args.verbose , ) ) process_results(snake_case_ , args.target_metric_key , snake_case_ , args.base_variation , snake_case_ ) if __name__ == "__main__": main()
49
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
1
"""simple docstring""" from __future__ import annotations import math def lowercase__ ( snake_case_ :int ): if num <= 0: __UpperCAmelCase = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(snake_case_ ) __UpperCAmelCase = [True] * (num + 1) __UpperCAmelCase = [] __UpperCAmelCase = 2 __UpperCAmelCase = int(math.sqrt(snake_case_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case_ ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case_ ): if sieve[i] is True: __UpperCAmelCase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
49
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Any = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[int] = "openai-gpt" a__ : Optional[Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , _lowercase : Tuple=4_04_78 , _lowercase : List[str]=5_12 , _lowercase : List[str]=7_68 , _lowercase : Optional[Any]=12 , _lowercase : List[Any]=12 , _lowercase : Tuple="gelu" , _lowercase : Tuple=0.1 , _lowercase : str=0.1 , _lowercase : str=0.1 , _lowercase : Union[str, Any]=1E-5 , _lowercase : str=0.02 , _lowercase : Tuple="cls_index" , _lowercase : int=True , _lowercase : str=None , _lowercase : int=True , _lowercase : Union[str, Any]=0.1 , **_lowercase : str , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = n_positions __UpperCAmelCase = n_embd __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = afn __UpperCAmelCase = resid_pdrop __UpperCAmelCase = embd_pdrop __UpperCAmelCase = attn_pdrop __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = summary_type __UpperCAmelCase = summary_use_proj __UpperCAmelCase = summary_activation __UpperCAmelCase = summary_first_dropout __UpperCAmelCase = summary_proj_to_labels super().__init__(**_lowercase )
49
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
1
"""simple docstring""" def lowercase__ ( snake_case_ :str ): __UpperCAmelCase = 0 for ch in input_str: __UpperCAmelCase = ord(snake_case_ ) __UpperCAmelCase = pow(2 , snake_case_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
49
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
1
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline _lowercase : List[Any] = 'path-to-your-trained-model' _lowercase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') _lowercase : Tuple = 'A photo of sks dog in a bucket' _lowercase : Optional[int] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
49
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowercase : List[str] = logging.get_logger(__name__) def lowercase__ ( snake_case_ :Optional[Any] ): __UpperCAmelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) __UpperCAmelCase = DetaConfig( backbone_config=snake_case_ , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=snake_case_ , with_box_refine=snake_case_ , two_stage=snake_case_ , ) # set labels __UpperCAmelCase = '''huggingface/label-files''' if "o365" in model_name: __UpperCAmelCase = 366 __UpperCAmelCase = '''object365-id2label.json''' else: __UpperCAmelCase = 91 __UpperCAmelCase = '''coco-detection-id2label.json''' __UpperCAmelCase = num_labels __UpperCAmelCase = json.load(open(cached_download(hf_hub_url(snake_case_ , snake_case_ , repo_type='''dataset''' ) ) , '''r''' ) ) __UpperCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} __UpperCAmelCase = idalabel __UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :int , snake_case_ :Optional[Any] ): __UpperCAmelCase = dct.pop(snake_case_ ) __UpperCAmelCase = val def lowercase__ ( snake_case_ :Dict , snake_case_ :Tuple ): __UpperCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __UpperCAmelCase = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[:dim, :] __UpperCAmelCase = in_proj_bias[: dim] __UpperCAmelCase = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase = in_proj_weight[ -dim :, : ] __UpperCAmelCase = in_proj_bias[-dim :] # fmt: on def lowercase__ ( snake_case_ :str , snake_case_ :Tuple ): # transformer decoder self-attention layers __UpperCAmelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __UpperCAmelCase = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[:hidden_size, :] __UpperCAmelCase = in_proj_bias[:hidden_size] __UpperCAmelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase = in_proj_weight[-hidden_size:, :] __UpperCAmelCase = in_proj_bias[-hidden_size:] def lowercase__ ( ): __UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowercase__ ( snake_case_ :Any , snake_case_ :Tuple , snake_case_ :Dict ): __UpperCAmelCase = get_deta_config(snake_case_ ) # load original state dict if model_name == "deta-swin-large": __UpperCAmelCase = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) __UpperCAmelCase = torch.load(snake_case_ , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(snake_case_ , param.shape ) # rename keys __UpperCAmelCase = create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_swin_q_k_v(snake_case_ , config.backbone_config ) read_in_decoder_q_k_v(snake_case_ , snake_case_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCAmelCase = state_dict.pop(snake_case_ ) __UpperCAmelCase = val if "input_proj" in key: __UpperCAmelCase = state_dict.pop(snake_case_ ) __UpperCAmelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCAmelCase = state_dict.pop(snake_case_ ) __UpperCAmelCase = val # finally, create HuggingFace model and load state dict __UpperCAmelCase = DetaForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() __UpperCAmelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(snake_case_ ) # load image processor __UpperCAmelCase = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image __UpperCAmelCase = prepare_img() __UpperCAmelCase = processor(images=snake_case_ , return_tensors='''pt''' ) __UpperCAmelCase = encoding['''pixel_values'''] __UpperCAmelCase = model(pixel_values.to(snake_case_ ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCAmelCase = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __UpperCAmelCase = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __UpperCAmelCase = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(snake_case_ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(snake_case_ ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowercase : str = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
1
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = TypeVar('DatasetType', Dataset, IterableDataset) def lowercase__ ( snake_case_ :List[DatasetType] , snake_case_ :Optional[List[float]] = None , snake_case_ :Optional[int] = None , snake_case_ :Optional[DatasetInfo] = None , snake_case_ :Optional[NamedSplit] = None , snake_case_ :Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ , (Dataset, IterableDataset) ): if isinstance(snake_case_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(snake_case_ )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.''' ) if i == 0: __UpperCAmelCase , __UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(snake_case_ , snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ , snake_case_ ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case_ , snake_case_ , snake_case_ , info=snake_case_ , split=snake_case_ , stopping_strategy=snake_case_ ) else: return _interleave_iterable_datasets( snake_case_ , snake_case_ , snake_case_ , info=snake_case_ , split=snake_case_ , stopping_strategy=snake_case_ ) def lowercase__ ( snake_case_ :List[DatasetType] , snake_case_ :Optional[DatasetInfo] = None , snake_case_ :Optional[NamedSplit] = None , snake_case_ :int = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ , (Dataset, IterableDataset) ): if isinstance(snake_case_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(snake_case_ )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.''' ) if i == 0: __UpperCAmelCase , __UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(snake_case_ , snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ , snake_case_ ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case_ , info=snake_case_ , split=snake_case_ , axis=snake_case_ ) else: return _concatenate_iterable_datasets(snake_case_ , info=snake_case_ , split=snake_case_ , axis=snake_case_ )
49
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
1
"""simple docstring""" def lowercase__ ( snake_case_ :list ): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __UpperCAmelCase = grid[0] for row_n in range(1 , len(snake_case_ ) ): __UpperCAmelCase = grid[row_n] __UpperCAmelCase = fill_row(snake_case_ , snake_case_ ) __UpperCAmelCase = grid[row_n] return grid[-1][-1] def lowercase__ ( snake_case_ :list , snake_case_ :list ): current_row[0] += row_above[0] for cell_n in range(1 , len(snake_case_ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = ["image_processor", "tokenizer"] a__ : Any = "CLIPImageProcessor" a__ : Any = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[Any] , _lowercase : Tuple=None , _lowercase : Any=None , **_lowercase : List[Any] ): __UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowercase , ) __UpperCAmelCase = kwargs.pop('''feature_extractor''' ) __UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowercase , _lowercase ) def __call__( self : List[str] , _lowercase : List[str]=None , _lowercase : List[Any]=None , _lowercase : int=None , **_lowercase : Optional[int] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) if images is not None: __UpperCAmelCase = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase ) if text is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase ) def a ( self : Optional[Any] , *_lowercase : List[Any] , **_lowercase : Any ): return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : Any , **_lowercase : List[Any] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer.model_input_names __UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a ( self : str ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowercase , ) return self.image_processor_class @property def a ( self : int ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowercase , ) return self.image_processor
49
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Tuple ): __UpperCAmelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __UpperCAmelCase = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) __UpperCAmelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __UpperCAmelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , _lowercase ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowercase ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowercase ) + '''\n''' ) # load decoder from hub __UpperCAmelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def a ( self : Any , **_lowercase : Optional[int] ): __UpperCAmelCase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowercase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def a ( self : Optional[Any] , **_lowercase : Any ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowercase ) def a ( self : Optional[Any] , **_lowercase : Optional[Any] ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowercase ) def a ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def a ( self : Tuple ): __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = self.get_decoder() __UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowercase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowercase ) def a ( self : Dict ): __UpperCAmelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ): __UpperCAmelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowercase , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowercase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : Dict ): __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_decoder() __UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __UpperCAmelCase = floats_list((3, 10_00) ) __UpperCAmelCase = feature_extractor(_lowercase , return_tensors='''np''' ) __UpperCAmelCase = processor(_lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a ( self : str ): __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_decoder() __UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __UpperCAmelCase = '''This is a test string''' __UpperCAmelCase = processor(text=_lowercase ) __UpperCAmelCase = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Optional[int] , _lowercase : Any=(2, 10, 16) , _lowercase : str=77 ): np.random.seed(_lowercase ) return np.random.rand(*_lowercase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_decoder() __UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __UpperCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __UpperCAmelCase = processor.decode(_lowercase ) __UpperCAmelCase = decoder.decode_beams(_lowercase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def a ( self : int , _lowercase : Dict ): __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_decoder() __UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __UpperCAmelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __UpperCAmelCase = processor.batch_decode(_lowercase ) else: with get_context(_lowercase ).Pool() as pool: __UpperCAmelCase = processor.batch_decode(_lowercase , _lowercase ) __UpperCAmelCase = list(_lowercase ) with get_context('''fork''' ).Pool() as p: __UpperCAmelCase = decoder.decode_beams_batch(_lowercase , _lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowercase , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_lowercase , decoded_processor.logit_score ) self.assertListEqual(_lowercase , decoded_processor.lm_score ) def a ( self : Dict ): __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_decoder() __UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __UpperCAmelCase = self._get_dummy_logits() __UpperCAmelCase = 15 __UpperCAmelCase = -20.0 __UpperCAmelCase = -4.0 __UpperCAmelCase = processor.batch_decode( _lowercase , beam_width=_lowercase , beam_prune_logp=_lowercase , token_min_logp=_lowercase , ) __UpperCAmelCase = decoded_processor_out.text __UpperCAmelCase = list(_lowercase ) with get_context('''fork''' ).Pool() as pool: __UpperCAmelCase = decoder.decode_beams_batch( _lowercase , _lowercase , beam_width=_lowercase , beam_prune_logp=_lowercase , token_min_logp=_lowercase , ) __UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] __UpperCAmelCase = [d[0][2] for d in decoded_decoder_out] __UpperCAmelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _lowercase ) self.assertTrue(np.array_equal(_lowercase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowercase , atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowercase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , _lowercase , atol=1E-3 ) ) def a ( self : int ): __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_decoder() __UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __UpperCAmelCase = self._get_dummy_logits() __UpperCAmelCase = 2.0 __UpperCAmelCase = 5.0 __UpperCAmelCase = -20.0 __UpperCAmelCase = True __UpperCAmelCase = processor.batch_decode( _lowercase , alpha=_lowercase , beta=_lowercase , unk_score_offset=_lowercase , lm_score_boundary=_lowercase , ) __UpperCAmelCase = decoded_processor_out.text __UpperCAmelCase = list(_lowercase ) decoder.reset_params( alpha=_lowercase , beta=_lowercase , unk_score_offset=_lowercase , lm_score_boundary=_lowercase , ) with get_context('''fork''' ).Pool() as pool: __UpperCAmelCase = decoder.decode_beams_batch( _lowercase , _lowercase , ) __UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _lowercase ) __UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowercase ) def a ( self : Dict ): __UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] __UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __UpperCAmelCase = os.listdir(_lowercase ) __UpperCAmelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowercase , _lowercase ) def a ( self : List[Any] ): __UpperCAmelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(_lowercase ) __UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] __UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __UpperCAmelCase = os.listdir(_lowercase ) __UpperCAmelCase = os.listdir(_lowercase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowercase , _lowercase ) def a ( self : int ): __UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __UpperCAmelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __UpperCAmelCase = floats_list((3, 10_00) ) __UpperCAmelCase = processor_wavaveca(_lowercase , return_tensors='''np''' ) __UpperCAmelCase = processor_auto(_lowercase , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __UpperCAmelCase = self._get_dummy_logits() __UpperCAmelCase = processor_wavaveca.batch_decode(_lowercase ) __UpperCAmelCase = processor_auto.batch_decode(_lowercase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_feature_extractor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_decoder() __UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def a ( _lowercase : List[Any] , _lowercase : Optional[Any] ): __UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def a ( self : Tuple ): __UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __UpperCAmelCase = self._get_dummy_logits()[0] __UpperCAmelCase = processor.decode(_lowercase , output_word_offsets=_lowercase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowercase , _lowercase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def a ( self : str ): __UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __UpperCAmelCase = self._get_dummy_logits() __UpperCAmelCase = processor.batch_decode(_lowercase , output_word_offsets=_lowercase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowercase , _lowercase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Union[str, Any] ): import torch __UpperCAmelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_lowercase ) __UpperCAmelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) __UpperCAmelCase = iter(_lowercase ) __UpperCAmelCase = next(_lowercase ) __UpperCAmelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __UpperCAmelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __UpperCAmelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): __UpperCAmelCase = model(_lowercase ).logits.cpu().numpy() __UpperCAmelCase = processor.decode(logits[0] , output_word_offsets=_lowercase ) __UpperCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __UpperCAmelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __UpperCAmelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) , _lowercase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) , output.text ) # output times __UpperCAmelCase = torch.tensor(self.get_from_offsets(_lowercase , '''start_time''' ) ) __UpperCAmelCase = torch.tensor(self.get_from_offsets(_lowercase , '''end_time''' ) ) # fmt: off __UpperCAmelCase = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) __UpperCAmelCase = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=0.01 ) )
49
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
1
"""simple docstring""" from itertools import product def lowercase__ ( snake_case_ :int , snake_case_ :int ): __UpperCAmelCase = sides_number __UpperCAmelCase = max_face_number * dice_number __UpperCAmelCase = [0] * (max_total + 1) __UpperCAmelCase = 1 __UpperCAmelCase = range(snake_case_ , max_face_number + 1 ) for dice_numbers in product(snake_case_ , repeat=snake_case_ ): __UpperCAmelCase = sum(snake_case_ ) totals_frequencies[total] += 1 return totals_frequencies def lowercase__ ( ): __UpperCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) __UpperCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) __UpperCAmelCase = 0 __UpperCAmelCase = 9 __UpperCAmelCase = 4 * 9 __UpperCAmelCase = 6 for peter_total in range(snake_case_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __UpperCAmelCase = (4**9) * (6**6) __UpperCAmelCase = peter_wins_count / total_games_number __UpperCAmelCase = round(snake_case_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
49
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
1
"""simple docstring""" import unittest import numpy as np def lowercase__ ( snake_case_ :np.ndarray , snake_case_ :np.ndarray , snake_case_ :np.ndarray , snake_case_ :np.ndarray | None = None , ): __UpperCAmelCase = np.shape(snake_case_ ) __UpperCAmelCase = np.shape(snake_case_ ) __UpperCAmelCase = np.shape(snake_case_ ) if shape_a[0] != shape_b[0]: __UpperCAmelCase = ( '''Expected the same number of rows for A and B. ''' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(snake_case_ ) if shape_b[1] != shape_c[1]: __UpperCAmelCase = ( '''Expected the same number of columns for B and C. ''' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(snake_case_ ) __UpperCAmelCase = pseudo_inv if a_inv is None: try: __UpperCAmelCase = np.linalg.inv(snake_case_ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class _UpperCAmelCase ( unittest.TestCase ): def a ( self : int ): __UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCAmelCase = np.array([[2, 1], [6, 3]] ) __UpperCAmelCase = schur_complement(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = np.block([[a, b], [b.T, c]] ) __UpperCAmelCase = np.linalg.det(_lowercase ) __UpperCAmelCase = np.linalg.det(_lowercase ) __UpperCAmelCase = np.linalg.det(_lowercase ) self.assertAlmostEqual(_lowercase , det_a * det_s ) def a ( self : List[Any] ): __UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCAmelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowercase ): schur_complement(_lowercase , _lowercase , _lowercase ) def a ( self : List[str] ): __UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowercase ): schur_complement(_lowercase , _lowercase , _lowercase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
49
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
1
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase__ ( snake_case_ :ndarray ): return np.dot(snake_case_ , snake_case_ ) class _UpperCAmelCase : def __init__( self : List[Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): __UpperCAmelCase = regularization __UpperCAmelCase = gamma if kernel == "linear": __UpperCAmelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __UpperCAmelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase = F'''Unknown kernel: {kernel}''' raise ValueError(_lowercase ) def a ( self : Optional[Any] , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def a ( self : List[Any] , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a ( self : Dict , _lowercase : list[ndarray] , _lowercase : ndarray ): __UpperCAmelCase = observations __UpperCAmelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__UpperCAmelCase) , ) = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: __UpperCAmelCase = 0 ((__UpperCAmelCase) , ) = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) __UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 ) __UpperCAmelCase = Bounds(0 , self.regularization ) __UpperCAmelCase = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x __UpperCAmelCase = l_star # calculating mean offset of separation plane to points __UpperCAmelCase = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase = s / n def a ( self : Optional[int] , _lowercase : ndarray ): __UpperCAmelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
49
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
1
"""simple docstring""" import numpy as np import datasets _lowercase : Tuple = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' _lowercase : Optional[int] = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' _lowercase : Any = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def a ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def a ( self : List[Any] , _lowercase : Dict , _lowercase : int ): # convert to numpy arrays __UpperCAmelCase = np.array(_lowercase ) __UpperCAmelCase = np.array(_lowercase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction __UpperCAmelCase = X - np.mean(_lowercase ) __UpperCAmelCase = np.cov(reference_distribution.T ) try: __UpperCAmelCase = np.linalg.inv(_lowercase ) except np.linalg.LinAlgError: __UpperCAmelCase = np.linalg.pinv(_lowercase ) __UpperCAmelCase = np.dot(_lowercase , _lowercase ) __UpperCAmelCase = np.dot(_lowercase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
49
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
1
"""simple docstring""" def lowercase__ ( snake_case_ :int = 100 ): __UpperCAmelCase = n * (n + 1) * (2 * n + 1) / 6 __UpperCAmelCase = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
49
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : List[Any] = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Any = "funnel" a__ : List[str] = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : Optional[int] , _lowercase : List[Any]=3_05_22 , _lowercase : Dict=[4, 4, 4] , _lowercase : List[str]=None , _lowercase : str=2 , _lowercase : Optional[Any]=7_68 , _lowercase : List[Any]=12 , _lowercase : Optional[int]=64 , _lowercase : Optional[Any]=30_72 , _lowercase : int="gelu_new" , _lowercase : Optional[int]=0.1 , _lowercase : Tuple=0.1 , _lowercase : List[str]=0.0 , _lowercase : Any=0.1 , _lowercase : List[Any]=None , _lowercase : int=1E-9 , _lowercase : List[Any]="mean" , _lowercase : int="relative_shift" , _lowercase : Optional[int]=True , _lowercase : Optional[int]=True , _lowercase : Optional[Any]=True , **_lowercase : Optional[int] , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = block_sizes __UpperCAmelCase = [1] * len(_lowercase ) if block_repeats is None else block_repeats assert len(_lowercase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __UpperCAmelCase = num_decoder_layers __UpperCAmelCase = d_model __UpperCAmelCase = n_head __UpperCAmelCase = d_head __UpperCAmelCase = d_inner __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = initializer_range __UpperCAmelCase = initializer_std __UpperCAmelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __UpperCAmelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __UpperCAmelCase = attention_type __UpperCAmelCase = separate_cls __UpperCAmelCase = truncate_seq __UpperCAmelCase = pool_q_only super().__init__(**_lowercase ) @property def a ( self : List[str] ): return sum(self.block_sizes ) @num_hidden_layers.setter def a ( self : List[Any] , _lowercase : Optional[Any] ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def a ( self : Union[str, Any] ): return len(self.block_sizes ) @num_blocks.setter def a ( self : str , _lowercase : int ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
49
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
1
"""simple docstring""" def lowercase__ ( snake_case_ :int , snake_case_ :int ): return base * power(snake_case_ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') _lowercase : Dict = int(input('Enter the base: ').strip()) _lowercase : Optional[Any] = int(input('Enter the exponent: ').strip()) _lowercase : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _lowercase : List[str] = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
49
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
1
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , _lowercase : Optional[Any] , _lowercase : str=13 , _lowercase : Optional[Any]=7 , _lowercase : Tuple=True , _lowercase : Optional[int]=True , _lowercase : Optional[Any]=True , _lowercase : Optional[Any]=True , _lowercase : List[Any]=99 , _lowercase : Optional[int]=32 , _lowercase : str=5 , _lowercase : Optional[int]=4 , _lowercase : Any=37 , _lowercase : Dict="gelu" , _lowercase : Dict=0.1 , _lowercase : Union[str, Any]=0.1 , _lowercase : Union[str, Any]=5_12 , _lowercase : int=16 , _lowercase : Tuple=2 , _lowercase : Union[str, Any]=0.02 , _lowercase : Any=4 , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_attention_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_choices def a ( self : int ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_attention_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a ( self : Optional[int] ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a ( self : Dict ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = True __UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Optional[Any] = True a__ : List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def a ( self : List[str] ): __UpperCAmelCase = FlaxRobertaModelTester(self ) @slow def a ( self : Tuple ): for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=_lowercase ) __UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase )
49
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[str] = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
1
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = args.pruning_method __UpperCAmelCase = args.threshold __UpperCAmelCase = args.model_name_or_path.rstrip('''/''' ) __UpperCAmelCase = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) __UpperCAmelCase = torch.load(os.path.join(snake_case_ , '''pytorch_model.bin''' ) ) __UpperCAmelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __UpperCAmelCase = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __UpperCAmelCase = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: __UpperCAmelCase = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __UpperCAmelCase = MagnitudeBinarizer.apply(inputs=snake_case_ , threshold=snake_case_ ) __UpperCAmelCase = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __UpperCAmelCase = name[:-6] __UpperCAmelCase = model[F'''{prefix_}mask_scores'''] __UpperCAmelCase = TopKBinarizer.apply(snake_case_ , snake_case_ ) __UpperCAmelCase = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __UpperCAmelCase = name[:-6] __UpperCAmelCase = model[F'''{prefix_}mask_scores'''] __UpperCAmelCase = ThresholdBinarizer.apply(snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __UpperCAmelCase = name[:-6] __UpperCAmelCase = model[F'''{prefix_}mask_scores'''] __UpperCAmelCase , __UpperCAmelCase = -0.1, 1.1 __UpperCAmelCase = torch.sigmoid(snake_case_ ) __UpperCAmelCase = s * (r - l) + l __UpperCAmelCase = s_bar.clamp(min=0.0 , max=1.0 ) __UpperCAmelCase = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: __UpperCAmelCase = os.path.join( os.path.dirname(snake_case_ ) , F'''bertarized_{os.path.basename(snake_case_ )}''' ) if not os.path.isdir(snake_case_ ): shutil.copytree(snake_case_ , snake_case_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(snake_case_ , os.path.join(snake_case_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) _lowercase : str = parser.parse_args() main(args)
49
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
1
"""simple docstring""" def lowercase__ ( ): return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] _lowercase : int = generate_large_matrix() _lowercase : Optional[int] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowercase__ ( snake_case_ :list[list[int]] ): assert all(row == sorted(snake_case_ , reverse=snake_case_ ) for row in grid ) assert all(list(snake_case_ ) == sorted(snake_case_ , reverse=snake_case_ ) for col in zip(*snake_case_ ) ) def lowercase__ ( snake_case_ :list[int] ): __UpperCAmelCase = 0 __UpperCAmelCase = len(snake_case_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case_ ) def lowercase__ ( snake_case_ :list[list[int]] ): __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(snake_case_ ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case_ ) * len(grid[0] )) - total def lowercase__ ( snake_case_ :list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def lowercase__ ( snake_case_ :list[list[int]] ): __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(snake_case_ ): if number < 0: total += len(snake_case_ ) - i break return total def lowercase__ ( ): from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(F'''{func}(grid=grid)''' , setup=snake_case_ , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
49
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
1
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase__ ( snake_case_ :str , snake_case_ :str , snake_case_ :str , snake_case_ :PreTrainedTokenizer , snake_case_ :int , snake_case_ :Optional[int] = None , ): __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=snake_case_ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(snake_case_ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(snake_case_ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(snake_case_ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda snake_case_ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=snake_case_ , max_length=snake_case_ , padding='''max_length''' ) , batched=snake_case_ , ) elif len(snake_case_ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda snake_case_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=snake_case_ , max_length=snake_case_ , padding='''max_length''' , ) , batched=snake_case_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( snake_case_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( snake_case_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( snake_case_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _lowercase : str = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a__ : int = field(metadata={"help": "Which column contains the label"} ) a__ : str = field(default=_lowerCAmelCase , metadata={"help": "The path of the training file"} ) a__ : Optional[str] = field(default=_lowerCAmelCase , metadata={"help": "The path of the development file"} ) a__ : Optional[str] = field(default=_lowerCAmelCase , metadata={"help": "The path of the test file"} ) a__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a__ : bool = field( default=_lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _UpperCAmelCase : a__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a__ : bool = field(default=_lowerCAmelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowercase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' F'''16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=snake_case_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(snake_case_ ) , labelaid=snake_case_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , ) def compute_metrics(snake_case_ :EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=snake_case_ , args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , compute_metrics=snake_case_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(snake_case_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) results.update(snake_case_ ) return results if __name__ == "__main__": main()
49
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
1
"""simple docstring""" from math import ceil def lowercase__ ( snake_case_ :int = 1_001 ): __UpperCAmelCase = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __UpperCAmelCase = 2 * i + 1 __UpperCAmelCase = 2 * i __UpperCAmelCase = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _lowercase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
49
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
1
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
1
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _UpperCAmelCase : pass
49
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
1
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : str = DebertaTokenizer a__ : Any = True a__ : Union[str, Any] = DebertaTokenizerFast def a ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __UpperCAmelCase = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''[UNK]'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowercase ) ) def a ( self : Tuple , **_lowercase : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def a ( self : Union[str, Any] , _lowercase : List[str] ): __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def a ( self : int ): __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def a ( self : int ): __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = tokenizer('''Hello''' , '''World''' ) __UpperCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , _lowercase ) @slow def a ( self : Any ): __UpperCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowercase ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def a ( self : Optional[Any] ): __UpperCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __UpperCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __UpperCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __UpperCAmelCase = tokenizer(_lowercase , padding=_lowercase ) __UpperCAmelCase = [tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) for seq in encoding['''input_ids''']] # fmt: off __UpperCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __UpperCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , _lowercase ) for expected, decoded in zip(_lowercase , _lowercase ): self.assertEqual(_lowercase , _lowercase )
49
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
1
"""simple docstring""" def lowercase__ ( snake_case_ :int ): if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True __UpperCAmelCase = 4 __UpperCAmelCase = (1 << p) - 1 for _ in range(p - 2 ): __UpperCAmelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
49
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
1
"""simple docstring""" from math import sqrt def lowercase__ ( snake_case_ :int ): __UpperCAmelCase = 0 for i in range(1 , int(sqrt(snake_case_ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case_ ): total += i + n // i elif i == sqrt(snake_case_ ): total += i return total - n def lowercase__ ( snake_case_ :int = 10_000 ): __UpperCAmelCase = sum( i for i in range(1 , snake_case_ ) if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
49
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
1
"""simple docstring""" class _UpperCAmelCase : def __init__( self : Any , _lowercase : int , _lowercase : Optional[Any]=None , _lowercase : Optional[Any]=None ): __UpperCAmelCase = data __UpperCAmelCase = previous __UpperCAmelCase = next_node def __str__( self : Optional[int] ): return F'''{self.data}''' def a ( self : Tuple ): return self.data def a ( self : Any ): return self.next def a ( self : Any ): return self.previous class _UpperCAmelCase : def __init__( self : int , _lowercase : List[Any] ): __UpperCAmelCase = head def __iter__( self : str ): return self def a ( self : Optional[int] ): if not self.current: raise StopIteration else: __UpperCAmelCase = self.current.get_data() __UpperCAmelCase = self.current.get_next() return value class _UpperCAmelCase : def __init__( self : int ): __UpperCAmelCase = None # First node in list __UpperCAmelCase = None # Last node in list def __str__( self : List[str] ): __UpperCAmelCase = self.head __UpperCAmelCase = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase = current.get_next() return " ".join(str(_lowercase ) for node in nodes ) def __contains__( self : int , _lowercase : int ): __UpperCAmelCase = self.head while current: if current.get_data() == value: return True __UpperCAmelCase = current.get_next() return False def __iter__( self : Union[str, Any] ): return LinkedListIterator(self.head ) def a ( self : Optional[Any] ): if self.head: return self.head.get_data() return None def a ( self : Union[str, Any] ): if self.tail: return self.tail.get_data() return None def a ( self : Optional[int] , _lowercase : Node ): if self.head is None: __UpperCAmelCase = node __UpperCAmelCase = node else: self.insert_before_node(self.head , _lowercase ) def a ( self : Optional[Any] , _lowercase : Node ): if self.head is None: self.set_head(_lowercase ) else: self.insert_after_node(self.tail , _lowercase ) def a ( self : Optional[int] , _lowercase : int ): __UpperCAmelCase = Node(_lowercase ) if self.head is None: self.set_head(_lowercase ) else: self.set_tail(_lowercase ) def a ( self : Optional[Any] , _lowercase : Node , _lowercase : Node ): __UpperCAmelCase = node __UpperCAmelCase = node.previous if node.get_previous() is None: __UpperCAmelCase = node_to_insert else: __UpperCAmelCase = node_to_insert __UpperCAmelCase = node_to_insert def a ( self : Optional[Any] , _lowercase : Node , _lowercase : Node ): __UpperCAmelCase = node __UpperCAmelCase = node.next if node.get_next() is None: __UpperCAmelCase = node_to_insert else: __UpperCAmelCase = node_to_insert __UpperCAmelCase = node_to_insert def a ( self : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = 1 __UpperCAmelCase = Node(_lowercase ) __UpperCAmelCase = self.head while node: if current_position == position: self.insert_before_node(_lowercase , _lowercase ) return current_position += 1 __UpperCAmelCase = node.next self.insert_after_node(self.tail , _lowercase ) def a ( self : Optional[int] , _lowercase : int ): __UpperCAmelCase = self.head while node: if node.get_data() == item: return node __UpperCAmelCase = node.get_next() raise Exception('''Node not found''' ) def a ( self : Any , _lowercase : str ): if (node := self.get_node(_lowercase )) is not None: if node == self.head: __UpperCAmelCase = self.head.get_next() if node == self.tail: __UpperCAmelCase = self.tail.get_previous() self.remove_node_pointers(_lowercase ) @staticmethod def a ( _lowercase : Node ): if node.get_next(): __UpperCAmelCase = node.previous if node.get_previous(): __UpperCAmelCase = node.next __UpperCAmelCase = None __UpperCAmelCase = None def a ( self : str ): return self.head is None def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
49
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : str = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = "xlnet" a__ : str = ["mems"] a__ : List[Any] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , _lowercase : Union[str, Any]=3_20_00 , _lowercase : Dict=10_24 , _lowercase : List[str]=24 , _lowercase : int=16 , _lowercase : Any=40_96 , _lowercase : Tuple="gelu" , _lowercase : Union[str, Any]=True , _lowercase : Optional[Any]="bi" , _lowercase : Dict=0.02 , _lowercase : int=1E-12 , _lowercase : Tuple=0.1 , _lowercase : Any=5_12 , _lowercase : Any=None , _lowercase : List[str]=True , _lowercase : List[Any]=False , _lowercase : Optional[int]=False , _lowercase : List[str]=-1 , _lowercase : Dict=False , _lowercase : str="last" , _lowercase : str=True , _lowercase : Dict="tanh" , _lowercase : str=0.1 , _lowercase : int=5 , _lowercase : Union[str, Any]=5 , _lowercase : List[str]=5 , _lowercase : Union[str, Any]=1 , _lowercase : int=2 , **_lowercase : Dict , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = d_model __UpperCAmelCase = n_layer __UpperCAmelCase = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) __UpperCAmelCase = d_model // n_head __UpperCAmelCase = ff_activation __UpperCAmelCase = d_inner __UpperCAmelCase = untie_r __UpperCAmelCase = attn_type __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = dropout __UpperCAmelCase = mem_len __UpperCAmelCase = reuse_len __UpperCAmelCase = bi_data __UpperCAmelCase = clamp_len __UpperCAmelCase = same_length __UpperCAmelCase = summary_type __UpperCAmelCase = summary_use_proj __UpperCAmelCase = summary_activation __UpperCAmelCase = summary_last_dropout __UpperCAmelCase = start_n_top __UpperCAmelCase = end_n_top __UpperCAmelCase = bos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , _lowercase , ) __UpperCAmelCase = kwargs['''use_cache'''] __UpperCAmelCase = use_mems_eval __UpperCAmelCase = use_mems_train super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) @property def a ( self : Optional[int] ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def a ( self : Tuple , _lowercase : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
49
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
1
"""simple docstring""" def lowercase__ ( snake_case_ :list ): __UpperCAmelCase = len(snake_case_ ) for _ in range(snake_case_ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __UpperCAmelCase , __UpperCAmelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": _lowercase : int = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
49
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
1