code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
_lowercase : Union[str, Any] = logging.get_logger(__name__)
def lowercase__ ( snake_case_ :str ):
__UpperCAmelCase = SwinConfig.from_pretrained(
'''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] )
__UpperCAmelCase = MaskFormerConfig(backbone_config=snake_case_ )
__UpperCAmelCase = '''huggingface/label-files'''
if "ade20k-full" in model_name:
# this should be ok
__UpperCAmelCase = 847
__UpperCAmelCase = '''maskformer-ade20k-full-id2label.json'''
elif "ade" in model_name:
# this should be ok
__UpperCAmelCase = 150
__UpperCAmelCase = '''ade20k-id2label.json'''
elif "coco-stuff" in model_name:
# this should be ok
__UpperCAmelCase = 171
__UpperCAmelCase = '''maskformer-coco-stuff-id2label.json'''
elif "coco" in model_name:
# TODO
__UpperCAmelCase = 133
__UpperCAmelCase = '''coco-panoptic-id2label.json'''
elif "cityscapes" in model_name:
# this should be ok
__UpperCAmelCase = 19
__UpperCAmelCase = '''cityscapes-id2label.json'''
elif "vistas" in model_name:
# this should be ok
__UpperCAmelCase = 65
__UpperCAmelCase = '''mapillary-vistas-id2label.json'''
__UpperCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) )
__UpperCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()}
return config
def lowercase__ ( snake_case_ :str ):
__UpperCAmelCase = []
# stem
# fmt: off
rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') )
rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') )
rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') )
rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') )
rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') )
rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') )
rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') )
# heads on top
rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') )
rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') )
rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') )
rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') )
rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') )
for i in range(3 ):
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def lowercase__ ( snake_case_ :List[str] , snake_case_ :int , snake_case_ :Union[str, Any] ):
__UpperCAmelCase = dct.pop(snake_case_ )
__UpperCAmelCase = val
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any ):
__UpperCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
__UpperCAmelCase = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
__UpperCAmelCase = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
__UpperCAmelCase = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase = in_proj_weight[:dim, :]
__UpperCAmelCase = in_proj_bias[: dim]
__UpperCAmelCase = in_proj_weight[
dim : dim * 2, :
]
__UpperCAmelCase = in_proj_bias[
dim : dim * 2
]
__UpperCAmelCase = in_proj_weight[
-dim :, :
]
__UpperCAmelCase = in_proj_bias[-dim :]
# fmt: on
def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :str ):
# fmt: off
__UpperCAmelCase = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
__UpperCAmelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
__UpperCAmelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase = in_proj_weight[: hidden_size, :]
__UpperCAmelCase = in_proj_bias[:config.hidden_size]
__UpperCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :]
__UpperCAmelCase = in_proj_bias[hidden_size : hidden_size * 2]
__UpperCAmelCase = in_proj_weight[-hidden_size :, :]
__UpperCAmelCase = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
__UpperCAmelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
__UpperCAmelCase = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase = in_proj_weight[: hidden_size, :]
__UpperCAmelCase = in_proj_bias[:config.hidden_size]
__UpperCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :]
__UpperCAmelCase = in_proj_bias[hidden_size : hidden_size * 2]
__UpperCAmelCase = in_proj_weight[-hidden_size :, :]
__UpperCAmelCase = in_proj_bias[-hidden_size :]
# fmt: on
def lowercase__ ( ):
__UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__UpperCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw )
return im
@torch.no_grad()
def lowercase__ ( snake_case_ :str , snake_case_ :str , snake_case_ :str , snake_case_ :bool = False ):
__UpperCAmelCase = get_maskformer_config(snake_case_ )
# load original state_dict
with open(snake_case_ , '''rb''' ) as f:
__UpperCAmelCase = pickle.load(snake_case_ )
__UpperCAmelCase = data['''model''']
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
__UpperCAmelCase = create_rename_keys(snake_case_ )
for src, dest in rename_keys:
rename_key(snake_case_ , snake_case_ , snake_case_ )
read_in_swin_q_k_v(snake_case_ , config.backbone_config )
read_in_decoder_q_k_v(snake_case_ , snake_case_ )
# update to torch tensors
for key, value in state_dict.items():
__UpperCAmelCase = torch.from_numpy(snake_case_ )
# load 🤗 model
__UpperCAmelCase = MaskFormerForInstanceSegmentation(snake_case_ )
model.eval()
for name, param in model.named_parameters():
print(snake_case_ , param.shape )
__UpperCAmelCase , __UpperCAmelCase = model.load_state_dict(snake_case_ , strict=snake_case_ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(snake_case_ ) == 0, F'''Unexpected keys: {unexpected_keys}'''
# verify results
__UpperCAmelCase = prepare_img()
if "vistas" in model_name:
__UpperCAmelCase = 65
elif "cityscapes" in model_name:
__UpperCAmelCase = 65_535
else:
__UpperCAmelCase = 255
__UpperCAmelCase = True if '''ade''' in model_name else False
__UpperCAmelCase = MaskFormerImageProcessor(ignore_index=snake_case_ , reduce_labels=snake_case_ )
__UpperCAmelCase = image_processor(snake_case_ , return_tensors='''pt''' )
__UpperCAmelCase = model(**snake_case_ )
print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
__UpperCAmelCase = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
model.save_pretrained(snake_case_ )
image_processor.save_pretrained(snake_case_ )
if push_to_hub:
print('''Pushing model and image processor to the hub...''' )
model.push_to_hub(F'''nielsr/{model_name}''' )
image_processor.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
_lowercase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='maskformer-swin-tiny-ade',
type=str,
help=('Name of the MaskFormer model you\'d like to convert',),
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl',
type=str,
help='Path to the original state dict (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_lowercase : int = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 49 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
@property
def a ( self : List[str] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a ( self : Dict ):
__UpperCAmelCase = ort.SessionOptions()
__UpperCAmelCase = False
return options
def a ( self : Any ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
__UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A red cat sitting on a park bench'''
__UpperCAmelCase = np.random.RandomState(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def a ( self : Optional[int] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
__UpperCAmelCase = LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
__UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A red cat sitting on a park bench'''
__UpperCAmelCase = np.random.RandomState(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int ):
if not isinstance(snake_case_ , snake_case_ ):
raise ValueError('''multiplicative_persistence() only accepts integral values''' )
if num < 0:
raise ValueError('''multiplicative_persistence() does not accept negative values''' )
__UpperCAmelCase = 0
__UpperCAmelCase = str(snake_case_ )
while len(snake_case_ ) != 1:
__UpperCAmelCase = [int(snake_case_ ) for i in num_string]
__UpperCAmelCase = 1
for i in range(0 , len(snake_case_ ) ):
total *= numbers[i]
__UpperCAmelCase = str(snake_case_ )
steps += 1
return steps
def lowercase__ ( snake_case_ :int ):
if not isinstance(snake_case_ , snake_case_ ):
raise ValueError('''additive_persistence() only accepts integral values''' )
if num < 0:
raise ValueError('''additive_persistence() does not accept negative values''' )
__UpperCAmelCase = 0
__UpperCAmelCase = str(snake_case_ )
while len(snake_case_ ) != 1:
__UpperCAmelCase = [int(snake_case_ ) for i in num_string]
__UpperCAmelCase = 0
for i in range(0 , len(snake_case_ ) ):
total += numbers[i]
__UpperCAmelCase = str(snake_case_ )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 |
"""simple docstring"""
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowercase__ ( snake_case_ :Dict , snake_case_ :int ):
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
__UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
__UpperCAmelCase = features.copy()
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ):
if issubclass(snake_case_ , snake_case_ ):
__UpperCAmelCase = jsonl_path
elif issubclass(snake_case_ , snake_case_ ):
__UpperCAmelCase = [jsonl_path]
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ):
assert isinstance(snake_case_ , snake_case_ )
for split in splits:
__UpperCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ):
if split:
__UpperCAmelCase = {split: jsonl_path}
else:
__UpperCAmelCase = '''train'''
__UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path}
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowercase__ ( snake_case_ :Optional[int] ):
return json.load(snake_case_ )
def lowercase__ ( snake_case_ :Any ):
return [json.loads(snake_case_ ) for line in buffer]
class _UpperCAmelCase :
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json_function(_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(exported_content[0] , _lowercase )
assert len(_lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json(_lowercase )
assert isinstance(_lowercase , _lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(_lowercase ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json_function(_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(exported_content[0] , _lowercase )
assert len(_lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json(_lowercase )
assert isinstance(_lowercase , _lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(_lowercase ) == 10
def a ( self : int , _lowercase : Any ):
with pytest.raises(_lowercase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ):
__UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}'''
__UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' )
JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write()
with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f:
__UpperCAmelCase = f.read()
with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f:
__UpperCAmelCase = f.read()
assert exported_content == original_content
| 49 | 1 |
"""simple docstring"""
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase__ ( snake_case_ :Union[str, Any] ):
return 1 / (1 + np.exp(-z ))
def lowercase__ ( snake_case_ :int , snake_case_ :Dict ):
return (-y * np.log(snake_case_ ) - (1 - y) * np.log(1 - h )).mean()
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Tuple , snake_case_ :int ):
__UpperCAmelCase = np.dot(snake_case_ , snake_case_ )
return np.sum(y * scores - np.log(1 + np.exp(snake_case_ ) ) )
def lowercase__ ( snake_case_ :Tuple , snake_case_ :Tuple , snake_case_ :Any , snake_case_ :Dict=70_000 ):
__UpperCAmelCase = np.zeros(x.shape[1] )
for iterations in range(snake_case_ ):
__UpperCAmelCase = np.dot(snake_case_ , snake_case_ )
__UpperCAmelCase = sigmoid_function(snake_case_ )
__UpperCAmelCase = np.dot(x.T , h - y ) / y.size
__UpperCAmelCase = theta - alpha * gradient # updating the weights
__UpperCAmelCase = np.dot(snake_case_ , snake_case_ )
__UpperCAmelCase = sigmoid_function(snake_case_ )
__UpperCAmelCase = cost_function(snake_case_ , snake_case_ )
if iterations % 100 == 0:
print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
_lowercase : Optional[Any] = datasets.load_iris()
_lowercase : Optional[int] = iris.data[:, :2]
_lowercase : List[str] = (iris.target != 0) * 1
_lowercase : str = 0.1
_lowercase : Union[str, Any] = logistic_reg(alpha, x, y, max_iterations=7_00_00)
print('theta: ', theta) # printing the theta i.e our weights vector
def lowercase__ ( snake_case_ :int ):
return sigmoid_function(
np.dot(snake_case_ , snake_case_ ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1')
((_lowercase) ,(_lowercase)) : List[Any] = (x[:, 0].min(), x[:, 0].max())
((_lowercase) ,(_lowercase)) : Optional[int] = (x[:, 1].min(), x[:, 1].max())
((_lowercase) ,(_lowercase)) : str = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
_lowercase : Optional[Any] = np.c_[xxa.ravel(), xxa.ravel()]
_lowercase : Optional[int] = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black')
plt.legend()
plt.show()
| 49 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Union[str, Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
__UpperCAmelCase = TextIteratorStreamer(_lowercase )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowercase , _lowercase )
def a ( self : str ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :]
__UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Tuple ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
__UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase )
model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
__UpperCAmelCase = cs.out[:-1] # Remove the final "\n"
__UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def a ( self : Tuple ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowercase ):
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
| 49 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase : int = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple = [
'SEW_PRETRAINED_MODEL_ARCHIVE_LIST',
'SEWForCTC',
'SEWForSequenceClassification',
'SEWModel',
'SEWPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
_lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :float , snake_case_ :float ):
if density <= 0:
raise ValueError('''Impossible fluid density''' )
if bulk_modulus <= 0:
raise ValueError('''Impossible bulk modulus''' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 | 1 |
"""simple docstring"""
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_lowercase : Optional[int] = logging.get_logger(__name__)
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : str = ["pixel_values"]
def __init__( self : Optional[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _lowercase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_lowercase : List[Any] , ):
super().__init__(**_lowercase )
__UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_24}
__UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase )
__UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
__UpperCAmelCase = get_size_dict(_lowercase , param_name='''crop_size''' )
__UpperCAmelCase = do_resize
__UpperCAmelCase = size
__UpperCAmelCase = resample
__UpperCAmelCase = do_center_crop
__UpperCAmelCase = crop_size
__UpperCAmelCase = do_rescale
__UpperCAmelCase = rescale_factor
__UpperCAmelCase = do_normalize
__UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def a ( self : Dict , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ):
__UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
__UpperCAmelCase = int((2_56 / 2_24) * size['''shortest_edge'''] )
__UpperCAmelCase = get_resize_output_image_size(_lowercase , size=_lowercase , default_to_square=_lowercase )
__UpperCAmelCase = {'''height''': output_size[0], '''width''': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' )
return resize(
_lowercase , size=(size_dict['''height'''], size_dict['''width''']) , resample=_lowercase , data_format=_lowercase , **_lowercase )
def a ( self : Union[str, Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Dict , ):
__UpperCAmelCase = get_size_dict(_lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(_lowercase , size=(size['''height'''], size['''width''']) , data_format=_lowercase , **_lowercase )
def a ( self : str , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ):
return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase )
def a ( self : Union[str, Any] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Dict , ):
return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase )
def a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Dict[str, int]] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, Iterable[float]]] = None , _lowercase : Optional[Union[float, Iterable[float]]] = None , _lowercase : Optional[TensorType] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Optional[Any] , ):
__UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase = resample if resample is not None else self.resample
__UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase = image_std if image_std is not None else self.image_std
__UpperCAmelCase = size if size is not None else self.size
__UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase )
__UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase = get_size_dict(_lowercase , param_name='''crop_size''' )
__UpperCAmelCase = make_list_of_images(_lowercase )
if not valid_images(_lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
__UpperCAmelCase = [to_numpy_array(_lowercase ) for image in images]
if do_resize:
__UpperCAmelCase = [self.resize(_lowercase , _lowercase , _lowercase ) for image in images]
if do_center_crop:
__UpperCAmelCase = [self.center_crop(_lowercase , _lowercase ) for image in images]
if do_rescale:
__UpperCAmelCase = [self.rescale(_lowercase , _lowercase ) for image in images]
if do_normalize:
__UpperCAmelCase = [self.normalize(_lowercase , _lowercase , _lowercase ) for image in images]
__UpperCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images]
__UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=_lowercase , tensor_type=_lowercase )
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :dict ):
__UpperCAmelCase = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
__UpperCAmelCase = set()
return any(
node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
for node in graph )
def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ):
visited.add(snake_case_ )
rec_stk.add(snake_case_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(snake_case_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[int] ): # This function is recursive
__UpperCAmelCase = len(snake_case_ )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
__UpperCAmelCase = array[0]
__UpperCAmelCase = False
__UpperCAmelCase = 1
__UpperCAmelCase = []
while not is_found and i < array_length:
if array[i] < pivot:
__UpperCAmelCase = True
__UpperCAmelCase = [element for element in array[i:] if element >= array[i]]
__UpperCAmelCase = longest_subsequence(snake_case_ )
if len(snake_case_ ) > len(snake_case_ ):
__UpperCAmelCase = temp_array
else:
i += 1
__UpperCAmelCase = [element for element in array[1:] if element >= pivot]
__UpperCAmelCase = [pivot, *longest_subsequence(snake_case_ )]
if len(snake_case_ ) > len(snake_case_ ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : Any = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[Any] = ['PoolFormerFeatureExtractor']
_lowercase : Any = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 49 | 1 |
"""simple docstring"""
import os
from typing import Dict, List, Tuple, TypeVar, Union
_lowercase : int = TypeVar('T')
_lowercase : str = Union[List[T], Tuple[T, ...]]
_lowercase : Optional[Any] = Union[T, List[T], Dict[str, T]]
_lowercase : List[Any] = Union[str, bytes, os.PathLike]
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Dict ): # noqa: E741
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = [0] * n
__UpperCAmelCase = [False] * n
__UpperCAmelCase = [False] * n
def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ):
if parent == root:
out_edge_count += 1
__UpperCAmelCase = True
__UpperCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__UpperCAmelCase = True
# AP found via cycle
if at == low[to]:
__UpperCAmelCase = True
else:
__UpperCAmelCase = min(low[at] , snake_case_ )
return out_edge_count
for i in range(snake_case_ ):
if not visited[i]:
__UpperCAmelCase = 0
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ )
__UpperCAmelCase = out_edge_count > 1
for x in range(len(snake_case_ ) ):
if is_art[x] is True:
print(snake_case_ )
# Adjacency list of graph
_lowercase : Optional[Any] = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 49 | 1 |
"""simple docstring"""
_lowercase : Union[str, Any] = {
0: '0',
1: '1',
2: '2',
3: '3',
4: '4',
5: '5',
6: '6',
7: '7',
8: '8',
9: '9',
10: 'a',
11: 'b',
12: 'c',
13: 'd',
14: 'e',
15: 'f',
}
def lowercase__ ( snake_case_ :float ):
assert type(snake_case_ ) in (int, float) and decimal == int(snake_case_ )
__UpperCAmelCase = int(snake_case_ )
__UpperCAmelCase = ''''''
__UpperCAmelCase = False
if decimal < 0:
__UpperCAmelCase = True
decimal *= -1
while decimal > 0:
__UpperCAmelCase , __UpperCAmelCase = divmod(snake_case_ , 16 )
__UpperCAmelCase = values[remainder] + hexadecimal
__UpperCAmelCase = '''0x''' + hexadecimal
if negative:
__UpperCAmelCase = '''-''' + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = "EncodecFeatureExtractor"
a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast")
def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ):
super().__init__(_lowercase , _lowercase )
__UpperCAmelCase = self.feature_extractor
__UpperCAmelCase = False
def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ):
return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase )
def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowercase , **_lowercase )
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''text''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if text is not None:
__UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase )
if audio is not None:
__UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
__UpperCAmelCase = audio_inputs['''input_values''']
if "padding_mask" in audio_inputs:
__UpperCAmelCase = audio_inputs['''padding_mask''']
return inputs
def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ):
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio_values is not None:
return self._decode_audio(_lowercase , padding_mask=_lowercase )
else:
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ):
__UpperCAmelCase = to_numpy(_lowercase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape
if padding_mask is None:
return list(_lowercase )
__UpperCAmelCase = to_numpy(_lowercase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
__UpperCAmelCase = seq_len - padding_mask.shape[-1]
__UpperCAmelCase = 1 - self.feature_extractor.padding_value
__UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase )
__UpperCAmelCase = audio_values.tolist()
for i in range(_lowercase ):
__UpperCAmelCase = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
__UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 )
return audio_values
| 49 | 1 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
_lowercase : Optional[Any] = 'pt'
elif is_tf_available():
_lowercase : int = 'tf'
else:
_lowercase : str = 'jax'
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Optional[Any] = ByTaTokenizer
a__ : Optional[int] = False
def a ( self : Tuple ):
super().setUp()
__UpperCAmelCase = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def a ( self : List[str] ):
return ByTaTokenizer.from_pretrained('''google/byt5-small''' )
def a ( self : List[Any] , **_lowercase : List[Any] ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase )
def a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False , _lowercase : List[str]=20 , _lowercase : List[Any]=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for ByT5 because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
try:
__UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowercase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__UpperCAmelCase = list(filter(lambda _lowercase : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , _lowercase ) )
__UpperCAmelCase = list(filter(lambda _lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowercase ) , _lowercase ) )
if max_length is not None and len(_lowercase ) > max_length:
__UpperCAmelCase = toks[:max_length]
if min_length is not None and len(_lowercase ) < min_length and len(_lowercase ) > 0:
while len(_lowercase ) < min_length:
__UpperCAmelCase = toks + toks
# toks_str = [t[1] for t in toks]
__UpperCAmelCase = [t[0] for t in toks]
# Ensure consistency
__UpperCAmelCase = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase )
if " " not in output_txt and len(_lowercase ) > 1:
__UpperCAmelCase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowercase )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowercase )
)
if with_prefix_space:
__UpperCAmelCase = ''' ''' + output_txt
__UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
return output_txt, output_ids
def a ( self : Any ):
__UpperCAmelCase = self.ta_base_tokenizer
__UpperCAmelCase = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] )
__UpperCAmelCase = tokenizer(['''hi''', '''I went to the gym''', ''''''] )
self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] )
def a ( self : Any ):
__UpperCAmelCase = self.ta_base_tokenizer
__UpperCAmelCase = '''Unicode €.'''
__UpperCAmelCase = tokenizer(_lowercase )
__UpperCAmelCase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1]
self.assertEqual(encoded['''input_ids'''] , _lowercase )
# decoding
__UpperCAmelCase = tokenizer.decode(_lowercase )
self.assertEqual(_lowercase , '''Unicode €.</s>''' )
__UpperCAmelCase = tokenizer('''e è é ê ë''' )
__UpperCAmelCase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1]
self.assertEqual(encoded['''input_ids'''] , _lowercase )
# decoding
__UpperCAmelCase = tokenizer.decode(_lowercase )
self.assertEqual(_lowercase , '''e è é ê ë</s>''' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = self.ta_base_tokenizer
__UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
# fmt: off
__UpperCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0]
# fmt: on
__UpperCAmelCase = tokenizer(_lowercase , padding=_lowercase , return_tensors=_lowercase )
self.assertIsInstance(_lowercase , _lowercase )
if FRAMEWORK != "jax":
__UpperCAmelCase = list(batch.input_ids.numpy()[0] )
else:
__UpperCAmelCase = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_lowercase , _lowercase )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def a ( self : Any ):
__UpperCAmelCase = self.ta_base_tokenizer
__UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
__UpperCAmelCase = tokenizer(_lowercase , padding=_lowercase , return_tensors=_lowercase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('''input_ids''' , _lowercase )
self.assertIn('''attention_mask''' , _lowercase )
self.assertNotIn('''decoder_input_ids''' , _lowercase )
self.assertNotIn('''decoder_attention_mask''' , _lowercase )
def a ( self : Tuple ):
__UpperCAmelCase = self.ta_base_tokenizer
__UpperCAmelCase = [
'''Summary of the text.''',
'''Another summary.''',
]
__UpperCAmelCase = tokenizer(
text_target=_lowercase , max_length=32 , padding='''max_length''' , truncation=_lowercase , return_tensors=_lowercase )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
def a ( self : List[Any] ):
__UpperCAmelCase = self.ta_base_tokenizer
__UpperCAmelCase = ['''A long paragraph for summarization. </s>''']
__UpperCAmelCase = ['''Summary of the text. </s>''']
# fmt: off
__UpperCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1]
__UpperCAmelCase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1]
# fmt: on
__UpperCAmelCase = tokenizer(_lowercase , text_target=_lowercase )
self.assertEqual(_lowercase , batch['''input_ids'''][0] )
self.assertEqual(_lowercase , batch['''labels'''][0] )
def a ( self : Union[str, Any] ):
# safety check on max_len default value so we are sure the test works
__UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
__UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer.__class__.from_pretrained(_lowercase )
__UpperCAmelCase = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
self.assertListEqual(_lowercase , _lowercase )
shutil.rmtree(_lowercase )
__UpperCAmelCase = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running'''
tokenizer.add_tokens(['''bim''', '''bambam'''] )
__UpperCAmelCase = tokenizer.additional_special_tokens
additional_special_tokens.append('''new_additional_special_token''' )
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} )
__UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer.__class__.from_pretrained(_lowercase )
__UpperCAmelCase = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
self.assertListEqual(_lowercase , _lowercase )
self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__UpperCAmelCase = tokenizer.__class__.from_pretrained(_lowercase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_lowercase )
def a ( self : List[str] ):
__UpperCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowercase )
with open(os.path.join(_lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file:
__UpperCAmelCase = json.load(_lowercase )
with open(os.path.join(_lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file:
__UpperCAmelCase = json.load(_lowercase )
__UpperCAmelCase = [F'''<extra_id_{i}>''' for i in range(1_25 )]
__UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
__UpperCAmelCase = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
with open(os.path.join(_lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(_lowercase , _lowercase )
with open(os.path.join(_lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(_lowercase , _lowercase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__UpperCAmelCase = tokenizer_class.from_pretrained(
_lowercase , )
self.assertIn(
'''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_lowercase )]
__UpperCAmelCase = tokenizer_class.from_pretrained(
_lowercase , additional_special_tokens=_lowercase , )
self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens )
self.assertEqual(
['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_class.from_pretrained(_lowercase )
self.assertTrue(tokenizer.decode([2_55] ) == '''''' )
def a ( self : Any ):
pass
def a ( self : List[Any] ):
pass
def a ( self : Tuple ):
pass
def a ( self : Union[str, Any] ):
pass
def a ( self : str ):
# The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings
# and special added tokens as tokens
__UpperCAmelCase = self.get_tokenizers(fast=_lowercase , do_lower_case=_lowercase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>''']
__UpperCAmelCase = tokenizer.convert_tokens_to_string(_lowercase )
self.assertIsInstance(_lowercase , _lowercase )
def a ( self : int ):
__UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase = [
'''bos_token''',
'''eos_token''',
'''unk_token''',
'''sep_token''',
'''pad_token''',
'''cls_token''',
'''mask_token''',
]
__UpperCAmelCase = 0
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(
_lowercase , skip_special_tokens=_lowercase )
for attr in attributes_list:
setattr(_lowercase , attr + '''_id''' , _lowercase )
self.assertEqual(getattr(_lowercase , _lowercase ) , _lowercase )
self.assertEqual(getattr(_lowercase , attr + '''_id''' ) , _lowercase )
setattr(_lowercase , attr + '''_id''' , _lowercase )
self.assertEqual(getattr(_lowercase , _lowercase ) , _lowercase )
self.assertEqual(getattr(_lowercase , attr + '''_id''' ) , _lowercase )
setattr(_lowercase , '''additional_special_tokens_ids''' , [] )
self.assertListEqual(getattr(_lowercase , '''additional_special_tokens''' ) , [] )
self.assertListEqual(getattr(_lowercase , '''additional_special_tokens_ids''' ) , [] )
setattr(_lowercase , '''additional_special_tokens_ids''' , [token_id_to_test_setters] )
self.assertListEqual(getattr(_lowercase , '''additional_special_tokens''' ) , [token_to_test_setters] )
self.assertListEqual(getattr(_lowercase , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
__UpperCAmelCase = True
for i in range(snake_case_ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
__UpperCAmelCase = True
if a[i].islower():
__UpperCAmelCase = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :int ):
if principal <= 0:
raise Exception('''Principal borrowed must be > 0''' )
if rate_per_annum < 0:
raise Exception('''Rate of interest must be >= 0''' )
if years_to_repay <= 0 or not isinstance(snake_case_ , snake_case_ ):
raise Exception('''Years to repay must be an integer > 0''' )
# Yearly rate is divided by 12 to get monthly rate
__UpperCAmelCase = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
__UpperCAmelCase = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 |
"""simple docstring"""
from collections import deque
class _UpperCAmelCase :
def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ):
__UpperCAmelCase = process_name # process name
__UpperCAmelCase = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
__UpperCAmelCase = arrival_time
__UpperCAmelCase = burst_time # remaining burst time
__UpperCAmelCase = 0 # total time of the process wait in ready queue
__UpperCAmelCase = 0 # time from arrival time to completion time
class _UpperCAmelCase :
def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ):
# total number of mlfq's queues
__UpperCAmelCase = number_of_queues
# time slice of queues that round robin algorithm applied
__UpperCAmelCase = time_slices
# unfinished process is in this ready_queue
__UpperCAmelCase = queue
# current time
__UpperCAmelCase = current_time
# finished process is in this sequence queue
__UpperCAmelCase = deque()
def a ( self : Dict ):
__UpperCAmelCase = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def a ( self : str , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def a ( self : Any , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def a ( self : Tuple , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def a ( self : Optional[int] , _lowercase : deque[Process] ):
return [q.burst_time for q in queue]
def a ( self : str , _lowercase : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def a ( self : Union[str, Any] , _lowercase : deque[Process] ):
__UpperCAmelCase = deque() # sequence deque of finished process
while len(_lowercase ) != 0:
__UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_lowercase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
__UpperCAmelCase = 0
# set the process's turnaround time because it is finished
__UpperCAmelCase = self.current_time - cp.arrival_time
# set the completion time
__UpperCAmelCase = self.current_time
# add the process to queue that has finished queue
finished.append(_lowercase )
self.finish_queue.extend(_lowercase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ):
__UpperCAmelCase = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_lowercase ) ):
__UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_lowercase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
__UpperCAmelCase = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_lowercase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
__UpperCAmelCase = 0
# set the finish time
__UpperCAmelCase = self.current_time
# update the process' turnaround time because it is finished
__UpperCAmelCase = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_lowercase )
self.finish_queue.extend(_lowercase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def a ( self : Union[str, Any] ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
__UpperCAmelCase , __UpperCAmelCase = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
_lowercase : List[str] = Process('P1', 0, 53)
_lowercase : str = Process('P2', 0, 17)
_lowercase : Union[str, Any] = Process('P3', 0, 68)
_lowercase : int = Process('P4', 0, 24)
_lowercase : Any = 3
_lowercase : Union[str, Any] = [17, 25]
_lowercase : Dict = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])})
_lowercase : Optional[Any] = Process('P1', 0, 53)
_lowercase : Tuple = Process('P2', 0, 17)
_lowercase : Optional[int] = Process('P3', 0, 68)
_lowercase : int = Process('P4', 0, 24)
_lowercase : int = 3
_lowercase : int = [17, 25]
_lowercase : List[str] = deque([Pa, Pa, Pa, Pa])
_lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0)
_lowercase : str = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
f"""waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print completion times of processes(P1, P2, P3, P4)
print(
f"""completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
f"""turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print sequence of finished processes
print(
f"""sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}"""
)
| 49 | 1 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _UpperCAmelCase :
def __init__( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[int]=3 , _lowercase : str=32 , _lowercase : List[str]=3 , _lowercase : str=10 , _lowercase : Optional[int]=[10, 20, 30, 40] , _lowercase : Optional[Any]=[1, 1, 2, 1] , _lowercase : Optional[Any]=True , _lowercase : List[str]=True , _lowercase : Union[str, Any]="relu" , _lowercase : List[Any]=3 , _lowercase : Tuple=None , ):
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = image_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embeddings_size
__UpperCAmelCase = hidden_sizes
__UpperCAmelCase = depths
__UpperCAmelCase = is_training
__UpperCAmelCase = use_labels
__UpperCAmelCase = hidden_act
__UpperCAmelCase = num_labels
__UpperCAmelCase = scope
__UpperCAmelCase = len(_lowercase )
def a ( self : Any ):
__UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def a ( self : List[str] ):
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def a ( self : Optional[int] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : List[Any] ):
__UpperCAmelCase = TFResNetModel(config=_lowercase )
__UpperCAmelCase = model(_lowercase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a ( self : Any , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ):
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFResNetForImageClassification(_lowercase )
__UpperCAmelCase = model(_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a ( self : int ):
__UpperCAmelCase = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs
__UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : str = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
a__ : Optional[Any] = (
{"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification}
if is_tf_available()
else {}
)
a__ : str = False
a__ : int = False
a__ : Union[str, Any] = False
a__ : Optional[int] = False
a__ : List[str] = False
def a ( self : str ):
__UpperCAmelCase = TFResNetModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase )
def a ( self : Tuple ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a ( self : int ):
return
@unittest.skip(reason='''ResNet does not use inputs_embeds''' )
def a ( self : Union[str, Any] ):
pass
@unittest.skip(reason='''ResNet does not support input and output embeddings''' )
def a ( self : Tuple ):
pass
def a ( self : Any ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(_lowercase )
__UpperCAmelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase = [*signature.parameters.keys()]
__UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowercase )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowercase )
def a ( self : Optional[Any] ):
def check_hidden_states_output(_lowercase : str , _lowercase : Optional[Any] , _lowercase : int ):
__UpperCAmelCase = model_class(_lowercase )
__UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) )
__UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase = self.model_tester.num_stages
self.assertEqual(len(_lowercase ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__UpperCAmelCase = layer_type
__UpperCAmelCase = True
check_hidden_states_output(_lowercase , _lowercase , _lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase = True
check_hidden_states_output(_lowercase , _lowercase , _lowercase )
def a ( self : int ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowercase )
@slow
def a ( self : Optional[Any] ):
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase = TFResNetModel.from_pretrained(_lowercase )
self.assertIsNotNone(_lowercase )
def lowercase__ ( ):
__UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
@cached_property
def a ( self : Optional[Any] ):
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def a ( self : Tuple ):
__UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__UpperCAmelCase = self.default_image_processor
__UpperCAmelCase = prepare_img()
__UpperCAmelCase = image_processor(images=_lowercase , return_tensors='''tf''' )
# forward pass
__UpperCAmelCase = model(**_lowercase )
# verify the logits
__UpperCAmelCase = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , _lowercase )
__UpperCAmelCase = tf.constant([-11.1_069, -9.7_877, -8.3_777] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowercase , atol=1E-4 ) )
| 49 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : Union[str, Any] = logging.get_logger(__name__)
_lowercase : List[Any] = {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json',
'umberto-commoncrawl-cased-v1': (
'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'
),
'umberto-wikipedia-uncased-v1': (
'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "camembert"
def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ):
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
__UpperCAmelCase = classifier_dropout
class _UpperCAmelCase ( _lowerCAmelCase ):
@property
def a ( self : Tuple ):
if self.task == "multiple-choice":
__UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 49 | 1 |
"""simple docstring"""
from pathlib import Path
import numpy as np
from PIL import Image
def lowercase__ ( snake_case_ :np.ndarray ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2989 * r + 0.5870 * g + 0.1140 * b
def lowercase__ ( snake_case_ :np.ndarray ):
return (gray > 127) & (gray <= 255)
def lowercase__ ( snake_case_ :np.ndarray , snake_case_ :np.ndarray ):
__UpperCAmelCase = np.zeros_like(snake_case_ )
__UpperCAmelCase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__UpperCAmelCase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__UpperCAmelCase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__UpperCAmelCase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
_lowercase : Optional[Any] = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg'
_lowercase : Any = np.array(Image.open(lena_path))
# kernel to be applied
_lowercase : str = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
_lowercase : Dict = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
_lowercase : int = Image.fromarray(output).convert('RGB')
pil_img.save('result_dilation.png')
| 49 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks if the entire collection has been sorted
if len(snake_case_ ) <= 1 or n <= 1:
return
insert_next(snake_case_ , n - 1 )
rec_insertion_sort(snake_case_ , n - 1 )
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks order between adjacent elements
if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
__UpperCAmelCase , __UpperCAmelCase = (
collection[index],
collection[index - 1],
)
insert_next(snake_case_ , index + 1 )
if __name__ == "__main__":
_lowercase : Any = input('Enter integers separated by spaces: ')
_lowercase : list[int] = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 49 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int = logging.get_logger(__name__)
_lowercase : Optional[Any] = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = "donut-swin"
a__ : str = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Dict , _lowercase : Union[str, Any]=2_24 , _lowercase : List[Any]=4 , _lowercase : Tuple=3 , _lowercase : Union[str, Any]=96 , _lowercase : Dict=[2, 2, 6, 2] , _lowercase : Optional[int]=[3, 6, 12, 24] , _lowercase : Union[str, Any]=7 , _lowercase : List[str]=4.0 , _lowercase : List[Any]=True , _lowercase : Dict=0.0 , _lowercase : str=0.0 , _lowercase : Union[str, Any]=0.1 , _lowercase : Optional[Any]="gelu" , _lowercase : Optional[Any]=False , _lowercase : List[str]=0.02 , _lowercase : Union[str, Any]=1E-5 , **_lowercase : int , ):
super().__init__(**_lowercase )
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = embed_dim
__UpperCAmelCase = depths
__UpperCAmelCase = len(_lowercase )
__UpperCAmelCase = num_heads
__UpperCAmelCase = window_size
__UpperCAmelCase = mlp_ratio
__UpperCAmelCase = qkv_bias
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = drop_path_rate
__UpperCAmelCase = hidden_act
__UpperCAmelCase = use_absolute_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) )
| 49 |
"""simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : Any = StableUnCLIPPipeline
a__ : Dict = TEXT_TO_IMAGE_PARAMS
a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS
a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
a__ : Optional[int] = False
def a ( self : List[str] ):
__UpperCAmelCase = 32
__UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
__UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase )
__UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , )
torch.manual_seed(0 )
__UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL()
__UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ):
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def a ( self : Any ):
__UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_lowercase )
def a ( self : int ):
__UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_lowercase )
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : Any ):
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' )
__UpperCAmelCase = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(_lowercase , _lowercase )
def a ( self : Any ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
__UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 49 | 1 |
"""simple docstring"""
from collections import defaultdict
from math import gcd
def lowercase__ ( snake_case_ :int = 1_500_000 ):
__UpperCAmelCase = defaultdict(snake_case_ )
__UpperCAmelCase = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , snake_case_ , 2 ):
if gcd(snake_case_ , snake_case_ ) > 1:
continue
__UpperCAmelCase = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(snake_case_ , limit + 1 , snake_case_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 49 |
"""simple docstring"""
from typing import Any
def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ):
_validation(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
# Creates data structures and fill initial step
__UpperCAmelCase = {}
__UpperCAmelCase = {}
for state in states_space:
__UpperCAmelCase = observations_space[0]
__UpperCAmelCase = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
__UpperCAmelCase = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(snake_case_ ) ):
__UpperCAmelCase = observations_space[o]
__UpperCAmelCase = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
__UpperCAmelCase = ''''''
__UpperCAmelCase = -1
for k_state in states_space:
__UpperCAmelCase = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
__UpperCAmelCase = probability
__UpperCAmelCase = k_state
# Update probabilities and pointers dicts
__UpperCAmelCase = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
__UpperCAmelCase = arg_max
# The final observation
__UpperCAmelCase = observations_space[len(snake_case_ ) - 1]
# argmax for given final observation
__UpperCAmelCase = ''''''
__UpperCAmelCase = -1
for k_state in states_space:
__UpperCAmelCase = probabilities[(k_state, final_observation)]
if probability > max_probability:
__UpperCAmelCase = probability
__UpperCAmelCase = k_state
__UpperCAmelCase = arg_max
# Process pointers backwards
__UpperCAmelCase = last_state
__UpperCAmelCase = []
for o in range(len(snake_case_ ) - 1 , -1 , -1 ):
result.append(snake_case_ )
__UpperCAmelCase = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
_validate_not_empty(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
_validate_lists(snake_case_ , snake_case_ )
_validate_dicts(
snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('''There\'s an empty parameter''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any ):
_validate_list(snake_case_ , '''observations_space''' )
_validate_list(snake_case_ , '''states_space''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :str ):
if not isinstance(_object , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a list'''
raise ValueError(snake_case_ )
else:
for x in _object:
if not isinstance(snake_case_ , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a list of strings'''
raise ValueError(snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
_validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ )
_validate_nested_dict(snake_case_ , '''transition_probabilities''' )
_validate_nested_dict(snake_case_ , '''emission_probabilities''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :str ):
_validate_dict(_object , snake_case_ , snake_case_ )
for x in _object.values():
_validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ):
if not isinstance(_object , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a dict'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ):
__UpperCAmelCase = F'''{var_name} all keys must be strings'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ):
__UpperCAmelCase = '''nested dictionary ''' if nested else ''''''
__UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(snake_case_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
_lowercase : Any = logging.get_logger(__name__)
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Tuple , *_lowercase : Optional[int] , **_lowercase : Union[str, Any] ):
warnings.warn(
'''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PoolFormerImageProcessor instead.''' , _lowercase , )
super().__init__(*_lowercase , **_lowercase )
| 49 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
_lowercase : int = logging.get_logger(__name__)
_lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_lowercase : str = {
'vocab_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'
),
},
}
_lowercase : int = {
'yjernite/retribert-base-uncased': 5_12,
}
_lowercase : Any = {
'yjernite/retribert-base-uncased': {'do_lower_case': True},
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : str = VOCAB_FILES_NAMES
a__ : Dict = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : str = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[Any] = RetriBertTokenizer
a__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ):
super().__init__(
_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , )
__UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars
):
__UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = strip_accents
__UpperCAmelCase = tokenize_chinese_chars
__UpperCAmelCase = normalizer_class(**_lowercase )
__UpperCAmelCase = do_lower_case
def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ):
__UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ):
__UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase )
return tuple(_lowercase )
| 49 | 1 |
"""simple docstring"""
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
_lowercase : int = logging.getLogger(__name__)
class _UpperCAmelCase :
def __init__( self : Tuple ):
__UpperCAmelCase = False
def a ( self : int , _lowercase : Tuple , _lowercase : Any , _lowercase : List[Any] , _lowercase : Tuple ):
if not self.initialized:
__UpperCAmelCase = RagRetriever(
_lowercase , question_encoder_tokenizer=_lowercase , generator_tokenizer=_lowercase , index=_lowercase , init_retrieval=_lowercase , )
__UpperCAmelCase = True
def a ( self : Optional[int] ):
self.retriever.index.init_index()
def a ( self : Any , _lowercase : Any , _lowercase : Optional[Any] ):
__UpperCAmelCase , __UpperCAmelCase = self.retriever._main_retrieve(_lowercase , _lowercase )
return doc_ids, retrieved_doc_embeds
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : List[Any] , _lowercase : Dict , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : int , _lowercase : Union[str, Any]=None ):
if index is not None and index.is_initialized() and len(_lowercase ) > 0:
raise ValueError(
'''When using Ray for distributed fine-tuning, '''
'''you\'ll need to provide the paths instead, '''
'''as the dataset and the index are loaded '''
'''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' )
super().__init__(
_lowercase , question_encoder_tokenizer=_lowercase , generator_tokenizer=_lowercase , index=_lowercase , init_retrieval=_lowercase , )
__UpperCAmelCase = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(_lowercase , _lowercase , _lowercase , _lowercase )
for worker in self.retrieval_workers
] )
def a ( self : List[str] ):
logger.info('''initializing retrieval''' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def a ( self : int , _lowercase : str , _lowercase : Tuple ):
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
__UpperCAmelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
__UpperCAmelCase , __UpperCAmelCase = ray.get(random_worker.retrieve.remote(_lowercase , _lowercase ) )
else:
__UpperCAmelCase , __UpperCAmelCase = self._main_retrieve(_lowercase , _lowercase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowercase )
@classmethod
def a ( cls : Union[str, Any] , _lowercase : int , _lowercase : List[Any]=None , **_lowercase : str ):
return super(_lowercase , cls ).get_tokenizers(_lowercase , _lowercase , **_lowercase )
@classmethod
def a ( cls : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : Any=None , **_lowercase : Union[str, Any] ):
__UpperCAmelCase = kwargs.pop('''config''' , _lowercase ) or RagConfig.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = RagTokenizer.from_pretrained(_lowercase , config=_lowercase )
__UpperCAmelCase = rag_tokenizer.question_encoder
__UpperCAmelCase = rag_tokenizer.generator
if indexed_dataset is not None:
__UpperCAmelCase = '''custom'''
__UpperCAmelCase = CustomHFIndex(config.retrieval_vector_size , _lowercase )
else:
__UpperCAmelCase = cls._build_index(_lowercase )
return cls(
_lowercase , question_encoder_tokenizer=_lowercase , generator_tokenizer=_lowercase , retrieval_workers=_lowercase , index=_lowercase , )
| 49 |
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
_lowercase : Dict = 'bart'
_lowercase : Dict = True
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
if LOAD_DENSE_INDEX:
__UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__UpperCAmelCase = qar_model.eval()
else:
__UpperCAmelCase , __UpperCAmelCase = (None, None)
if MODEL_TYPE == "bart":
__UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__UpperCAmelCase = sas_model.eval()
else:
__UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
if LOAD_DENSE_INDEX:
__UpperCAmelCase = faiss.StandardGpuResources()
__UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__UpperCAmelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__UpperCAmelCase = faiss.IndexFlatIP(128 )
__UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ )
wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU
else:
__UpperCAmelCase , __UpperCAmelCase = (None, None)
__UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
__UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__UpperCAmelCase = elia['''train_eli5''']
__UpperCAmelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__UpperCAmelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(snake_case_ )
return (elia_train, eli5_train_q_index)
_lowercase ,_lowercase ,_lowercase : Dict = load_indexes()
_lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models()
_lowercase ,_lowercase : Tuple = load_train_data()
def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ):
__UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ )
__UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]]
return nn_examples
def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ):
if source == "none":
__UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
else:
__UpperCAmelCase , __UpperCAmelCase = query_es_index(
snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , )
__UpperCAmelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda snake_case_ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None),
} )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ):
with torch.no_grad():
__UpperCAmelCase = qa_sas_generate(
snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title('Long Form Question Answering with ELI5')
# Start sidebar
_lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'
_lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
_lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n'
st.sidebar.markdown(description, unsafe_allow_html=True)
_lowercase : str = [
'Answer the question',
'View the retrieved document only',
'View the most similar ELI5 question and answer',
'Show me everything, please!',
]
_lowercase : Optional[int] = st.sidebar.checkbox('Demo options')
if demo_options:
_lowercase : Tuple = st.sidebar.selectbox(
'',
action_list,
index=3,
)
_lowercase : List[str] = action_list.index(action_st)
_lowercase : str = st.sidebar.selectbox(
'',
['Show full text of passages', 'Show passage section titles'],
index=0,
)
_lowercase : int = show_type == 'Show full text of passages'
else:
_lowercase : str = 3
_lowercase : List[Any] = True
_lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options')
if retrieval_options:
_lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n '
st.sidebar.markdown(retriever_info)
_lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none'])
_lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed'])
else:
_lowercase : List[str] = 'wiki40b'
_lowercase : Optional[int] = 'dense'
_lowercase : List[Any] = 'beam'
_lowercase : str = 2
_lowercase : Optional[int] = 64
_lowercase : Union[str, Any] = 2_56
_lowercase : List[str] = None
_lowercase : Optional[int] = None
_lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options')
if generate_options:
_lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n '
st.sidebar.markdown(generate_info)
_lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled'])
_lowercase : Optional[int] = st.sidebar.slider(
'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None
)
_lowercase : Optional[Any] = st.sidebar.slider(
'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None
)
if sampled == "beam":
_lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
_lowercase : List[Any] = st.sidebar.slider(
'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
_lowercase : Dict = st.sidebar.slider(
'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
_lowercase : Union[str, Any] = None
# start main text
_lowercase : Optional[int] = [
'<MY QUESTION>',
'How do people make chocolate?',
'Why do we get a fever when we are sick?',
'How can different animals perceive different colors?',
'What is natural language processing?',
'What\'s the best way to treat a sunburn?',
'What exactly are vitamins ?',
'How does nuclear energy provide electricity?',
'What\'s the difference between viruses and bacteria?',
'Why are flutes classified as woodwinds when most of them are made out of metal ?',
'Why do people like drinking coffee even though it tastes so bad?',
'What happens when wine ages? How does it make the wine taste better?',
'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?',
'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?',
'How does New Zealand have so many large bird predators?',
]
_lowercase : Optional[int] = st.selectbox(
'What would you like to ask? ---- select <MY QUESTION> to enter a new query',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
_lowercase : Optional[Any] = st.text_input('Enter your question here:', '')
else:
_lowercase : int = question_s
if st.button('Show me!'):
if action in [0, 1, 3]:
if index_type == "mixed":
_lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10)
_lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10)
_lowercase : Dict = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
_lowercase : Any = support_list[:10]
_lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list])
else:
_lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
_lowercase ,_lowercase : Union[str, Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == 'sampled'),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('### The model generated answer is:')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:')
for i, res in enumerate(support_list):
_lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_'))
_lowercase : Any = res[1].strip()
if sec_titles == "":
_lowercase : Dict = '[{}]({})'.format(res[0], wiki_url)
else:
_lowercase : List[Any] = sec_titles.split(' & ')
_lowercase : int = ' & '.join(
['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list]
)
st.markdown(
'{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True
)
if action in [2, 3]:
_lowercase : List[Any] = find_nearest_training(question)
_lowercase : Tuple = nn_train_list[0]
st.markdown(
'--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title'])
)
_lowercase : int = [
'{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != '']))
for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score']))
if i == 0 or sc > 2
]
st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st)))
_lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n'
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int = 100 ):
__UpperCAmelCase = set()
__UpperCAmelCase = 0
__UpperCAmelCase = n + 1 # maximum limit
for a in range(2 , snake_case_ ):
for b in range(2 , snake_case_ ):
__UpperCAmelCase = a**b # calculates the current power
collect_powers.add(snake_case_ ) # adds the result to the set
return len(snake_case_ )
if __name__ == "__main__":
print('Number of terms ', solution(int(str(input()).strip())))
| 49 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : List[str] = CycleDiffusionPipeline
a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
}
a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} )
a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS
a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
def a ( self : Optional[int] ):
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__UpperCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__UpperCAmelCase = CLIPTextModel(_lowercase )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ):
__UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = image / 2 + 0.5
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''An astronaut riding an elephant''',
'''source_prompt''': '''An astronaut riding a horse''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''eta''': 0.1,
'''strength''': 0.8,
'''guidance_scale''': 3,
'''source_guidance_scale''': 1,
'''output_type''': '''numpy''',
}
return inputs
def a ( self : Optional[int] ):
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = CycleDiffusionPipeline(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.get_dummy_components()
for name, module in components.items():
if hasattr(_lowercase , '''half''' ):
__UpperCAmelCase = module.half()
__UpperCAmelCase = CycleDiffusionPipeline(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def a ( self : Tuple ):
return super().test_save_load_local()
@unittest.skip('''non-deterministic pipeline''' )
def a ( self : List[str] ):
return super().test_inference_batch_single_identical()
@skip_mps
def a ( self : int ):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def a ( self : str ):
return super().test_save_load_optional_components()
@skip_mps
def a ( self : int ):
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : int ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' )
__UpperCAmelCase = init_image.resize((5_12, 5_12) )
__UpperCAmelCase = '''CompVis/stable-diffusion-v1-4'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
__UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(
_lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A black colored car'''
__UpperCAmelCase = '''A blue colored car'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5E-1
def a ( self : Optional[Any] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' )
__UpperCAmelCase = init_image.resize((5_12, 5_12) )
__UpperCAmelCase = '''CompVis/stable-diffusion-v1-4'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
__UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A black colored car'''
__UpperCAmelCase = '''A blue colored car'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
assert np.abs(image - expected_image ).max() < 2E-2
| 49 | 1 |
"""simple docstring"""
from __future__ import annotations
class _UpperCAmelCase :
def __init__( self : List[str] , _lowercase : Optional[Any]=None ):
__UpperCAmelCase = data
__UpperCAmelCase = None
def __repr__( self : Optional[Any] ):
__UpperCAmelCase = []
__UpperCAmelCase = self
while temp:
string_rep.append(F'''{temp.data}''' )
__UpperCAmelCase = temp.next
return "->".join(_lowercase )
def lowercase__ ( snake_case_ :list ):
if not elements_list:
raise Exception('''The Elements List is empty''' )
__UpperCAmelCase = __UpperCAmelCase = Node(elements_list[0] )
for i in range(1 , len(snake_case_ ) ):
__UpperCAmelCase = Node(elements_list[i] )
__UpperCAmelCase = current.next
return head
def lowercase__ ( snake_case_ :Node ):
if head_node is not None and isinstance(snake_case_ , snake_case_ ):
print_reverse(head_node.next )
print(head_node.data )
def lowercase__ ( ):
from doctest import testmod
testmod()
__UpperCAmelCase = make_linked_list([14, 52, 14, 12, 43] )
print('''Linked List:''' )
print(snake_case_ )
print('''Elements in Reverse:''' )
print_reverse(snake_case_ )
if __name__ == "__main__":
main()
| 49 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowercase : Optional[Any] = logging.get_logger(__name__)
_lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'}
_lowercase : Tuple = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
}
_lowercase : List[str] = {
'google/rembert': 2_56,
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Union[str, Any] = VOCAB_FILES_NAMES
a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ):
super().__init__(
do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = remove_space
__UpperCAmelCase = keep_accents
__UpperCAmelCase = vocab_file
__UpperCAmelCase = spm.SentencePieceProcessor()
self.sp_model.Load(_lowercase )
@property
def a ( self : int ):
return len(self.sp_model )
def a ( self : Tuple ):
__UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Tuple ):
__UpperCAmelCase = self.__dict__.copy()
__UpperCAmelCase = None
return state
def __setstate__( self : Tuple , _lowercase : str ):
__UpperCAmelCase = d
__UpperCAmelCase = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ):
__UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase )
return pieces
def a ( self : int , _lowercase : List[str] ):
return self.sp_model.PieceToId(_lowercase )
def a ( self : List[str] , _lowercase : str ):
return self.sp_model.IdToPiece(_lowercase )
def a ( self : Any , _lowercase : Dict ):
__UpperCAmelCase = self.sp_model.decode_pieces(_lowercase )
return out_string
def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1]
return [1] + ([0] * len(_lowercase )) + [1]
def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ):
if not os.path.isdir(_lowercase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) )
return
__UpperCAmelCase = os.path.join(
_lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ):
copyfile(self.vocab_file , _lowercase )
return (out_vocab_file,)
| 49 | 1 |
"""simple docstring"""
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : str = ""
a__ : str = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
a__ : str = None # compression type in fsspec. ex: "gzip"
a__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self : Optional[int] , _lowercase : str = "" , _lowercase : Optional[str] = None , _lowercase : Optional[dict] = None , **_lowercase : Dict ):
super().__init__(self , **_lowercase )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
__UpperCAmelCase = fsspec.open(
_lowercase , mode='''rb''' , protocol=_lowercase , compression=self.compression , client_kwargs={
'''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459
'''trust_env''': True, # Enable reading proxy env variables.
**(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed.
} , **(target_options or {}) , )
__UpperCAmelCase = os.path.basename(self.file.path.split('''::''' )[0] )
__UpperCAmelCase = (
self.compressed_name[: self.compressed_name.rindex('''.''' )]
if '''.''' in self.compressed_name
else self.compressed_name
)
__UpperCAmelCase = None
@classmethod
def a ( cls : Tuple , _lowercase : Any ):
# compressed file paths are always relative to the archive root
return super()._strip_protocol(_lowercase ).lstrip('''/''' )
def a ( self : Dict ):
if self.dir_cache is None:
__UpperCAmelCase = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name}
__UpperCAmelCase = {f['''name''']: f}
def a ( self : Optional[int] , _lowercase : str ):
return self.file.open().read()
def a ( self : Optional[Any] , _lowercase : str , _lowercase : str = "rb" , _lowercase : Optional[Any]=None , _lowercase : Any=True , _lowercase : Tuple=None , **_lowercase : Optional[Any] , ):
__UpperCAmelCase = self._strip_protocol(_lowercase )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = "bz2"
a__ : List[str] = "bz2"
a__ : List[str] = ".bz2"
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = "gzip"
a__ : Tuple = "gzip"
a__ : Optional[int] = ".gz"
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : int = "lz4"
a__ : List[str] = "lz4"
a__ : Union[str, Any] = ".lz4"
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Union[str, Any] = "xz"
a__ : Optional[Any] = "xz"
a__ : List[str] = ".xz"
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Optional[Any] = "zstd"
a__ : Any = "zstd"
a__ : Union[str, Any] = ".zst"
def __init__( self : Optional[Any] , _lowercase : str , _lowercase : str = "rb" , _lowercase : Optional[str] = None , _lowercase : Optional[dict] = None , _lowercase : int = DEFAULT_BLOCK_SIZE , **_lowercase : Any , ):
super().__init__(
fo=_lowercase , mode=_lowercase , target_protocol=_lowercase , target_options=_lowercase , block_size=_lowercase , **_lowercase , )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
__UpperCAmelCase = self.file.__enter__
class _UpperCAmelCase :
def __init__( self : int , _lowercase : Optional[int] ):
__UpperCAmelCase = file_
def __enter__( self : Tuple ):
self._file.__enter__()
return self
def __exit__( self : Union[str, Any] , *_lowercase : int , **_lowercase : int ):
self._file.__exit__(*_lowercase , **_lowercase )
def __iter__( self : Optional[Any] ):
return iter(self._file )
def a ( self : int ):
return next(self._file )
def __getattr__( self : Dict , _lowercase : Union[str, Any] ):
return getattr(self._file , _lowercase )
def fixed_enter(*_lowercase : Union[str, Any] , **_lowercase : Optional[Any] ):
return WrappedFile(_enter(*_lowercase , **_lowercase ) )
__UpperCAmelCase = fixed_enter
| 49 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : List[Any] = {
'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Dict = ['VivitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] = [
'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'VivitModel',
'VivitPreTrainedModel',
'VivitForVideoClassification',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int ):
__UpperCAmelCase = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def lowercase__ ( snake_case_ :int = 5_000 ):
__UpperCAmelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case_ )]
for i, pentagonal_i in enumerate(snake_case_ ):
for j in range(snake_case_ , len(snake_case_ ) ):
__UpperCAmelCase = pentagonal_nums[j]
__UpperCAmelCase = pentagonal_i + pentagonal_j
__UpperCAmelCase = pentagonal_j - pentagonal_i
if is_pentagonal(snake_case_ ) and is_pentagonal(snake_case_ ):
return b
return -1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 49 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
_lowercase : List[Any] = {
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def lowercase__ ( snake_case_ :Union[str, Any] ):
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def lowercase__ ( snake_case_ :int , snake_case_ :Dict ):
if args.student_type == "roberta":
__UpperCAmelCase = False
elif args.student_type == "gpt2":
__UpperCAmelCase = False
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ):
if args.student_type == "roberta":
__UpperCAmelCase = False
def lowercase__ ( ):
__UpperCAmelCase = argparse.ArgumentParser(description='''Training''' )
parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' )
parser.add_argument(
'''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' )
parser.add_argument(
'''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , )
parser.add_argument(
'''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , )
parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' )
parser.add_argument(
'''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' )
parser.add_argument(
'''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' )
parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' )
parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' )
parser.add_argument(
'''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , )
parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' )
parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' )
parser.add_argument(
'''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' )
parser.add_argument(
'''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , )
parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' )
parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' )
parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' )
parser.add_argument(
'''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , )
parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' )
parser.add_argument(
'''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , )
parser.add_argument(
'''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , )
parser.add_argument(
'''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , )
parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' )
parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' )
parser.add_argument(
'''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , )
parser.add_argument(
'''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , )
parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' )
parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' )
parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' )
parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' )
parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' )
parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' )
parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' )
__UpperCAmelCase = parser.parse_args()
sanity_checks(snake_case_ )
# ARGS #
init_gpu_params(snake_case_ )
set_seed(snake_case_ )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
''' itUse `--force` if you want to overwrite it''' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f:
json.dump(vars(snake_case_ ) , snake_case_ , indent=4 )
git_log(args.dump_path )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
__UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name )
__UpperCAmelCase = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
__UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ )
__UpperCAmelCase = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
__UpperCAmelCase = special_tok_ids
__UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , '''rb''' ) as fp:
__UpperCAmelCase = pickle.load(snake_case_ )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , '''rb''' ) as fp:
__UpperCAmelCase = pickle.load(snake_case_ )
__UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
__UpperCAmelCase = 0.0 # do not predict special tokens
__UpperCAmelCase = torch.from_numpy(snake_case_ )
else:
__UpperCAmelCase = None
__UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ )
logger.info('''Data loader created.''' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
__UpperCAmelCase = student_config_class.from_pretrained(args.student_config )
__UpperCAmelCase = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
__UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ )
else:
__UpperCAmelCase = student_model_class(snake_case_ )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('''Student loaded.''' )
# TEACHER #
__UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(snake_case_ , snake_case_ )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(snake_case_ , snake_case_ )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
__UpperCAmelCase = Distiller(
params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ )
distiller.train()
logger.info('''Let\'s go get some drinks.''' )
if __name__ == "__main__":
main()
| 49 | 1 |
"""simple docstring"""
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , _lowerCAmelCase , )
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = RobertaConfig
a__ : str = "roberta"
def __init__( self : List[str] , _lowercase : List[Any] ):
super().__init__(_lowercase )
__UpperCAmelCase = RobertaEmbeddings(_lowercase )
self.init_weights()
@add_start_docstrings(
"RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , _lowerCAmelCase , )
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Optional[int] = RobertaConfig
a__ : Optional[int] = "roberta"
def __init__( self : List[Any] , _lowercase : Union[str, Any] ):
super().__init__(_lowercase )
__UpperCAmelCase = config.num_labels
__UpperCAmelCase = config.num_hidden_layers
__UpperCAmelCase = DeeRobertaModel(_lowercase )
__UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob )
__UpperCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(_lowercase )
def a ( self : str , _lowercase : Tuple=None , _lowercase : Dict=None , _lowercase : Dict=None , _lowercase : Optional[int]=None , _lowercase : Optional[int]=None , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Union[str, Any]=-1 , _lowercase : int=False , ):
__UpperCAmelCase = self.num_layers
try:
__UpperCAmelCase = self.roberta(
_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , position_ids=_lowercase , head_mask=_lowercase , inputs_embeds=_lowercase , )
__UpperCAmelCase = outputs[1]
__UpperCAmelCase = self.dropout(_lowercase )
__UpperCAmelCase = self.classifier(_lowercase )
__UpperCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
__UpperCAmelCase = e.message
__UpperCAmelCase = e.exit_layer
__UpperCAmelCase = outputs[0]
if not self.training:
__UpperCAmelCase = entropy(_lowercase )
__UpperCAmelCase = []
__UpperCAmelCase = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
__UpperCAmelCase = MSELoss()
__UpperCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
__UpperCAmelCase = CrossEntropyLoss()
__UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
__UpperCAmelCase = []
for highway_exit in outputs[-1]:
__UpperCAmelCase = highway_exit[0]
if not self.training:
highway_logits_all.append(_lowercase )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
__UpperCAmelCase = MSELoss()
__UpperCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
__UpperCAmelCase = CrossEntropyLoss()
__UpperCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(_lowercase )
if train_highway:
__UpperCAmelCase = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
__UpperCAmelCase = (loss,) + outputs
if not self.training:
__UpperCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
__UpperCAmelCase = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 49 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ):
if len(snake_case_ ) == 0:
return False
__UpperCAmelCase = len(snake_case_ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , snake_case_ )
else:
return binary_search(a_list[midpoint + 1 :] , snake_case_ )
if __name__ == "__main__":
_lowercase : str = input('Enter numbers separated by comma:\n').strip()
_lowercase : int = [int(item.strip()) for item in user_input.split(',')]
_lowercase : str = int(input('Enter the number to be found in the list:\n').strip())
_lowercase : Union[str, Any] = '' if binary_search(sequence, target) else 'not '
print(f"""{target} was {not_str}found in {sequence}""")
| 49 |
"""simple docstring"""
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
_lowercase : Union[str, Any] = logging.getLogger(__name__)
_lowercase : Optional[Any] = 'Hello world! cécé herlolip'
_lowercase : str = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def lowercase__ ( snake_case_ :Any , snake_case_ :int ):
__UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , )
__UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage )
__UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ )
original.eval()
__UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
__UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
__UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
__UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 )
__UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
__UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
__UpperCAmelCase = encoder_input_ids
__UpperCAmelCase = decoder_input_ids
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
__UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
__UpperCAmelCase = original.generator(snake_case_ )
__UpperCAmelCase = new_model(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
__UpperCAmelCase = new_model.generator(snake_case_ )
__UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) )
__UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) )
__UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
_lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
_lowercase : List[str] = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 49 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[Any] ):
__UpperCAmelCase = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
__UpperCAmelCase = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
__UpperCAmelCase = os.path.join(self.tmpdirname , _lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(_lowercase , _lowercase )
def a ( self : Optional[int] , **_lowercase : List[str] ):
return BertTokenizer.from_pretrained(self.tmpdirname , **_lowercase )
def a ( self : Optional[int] , **_lowercase : List[str] ):
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowercase )
def a ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def a ( self : str ):
__UpperCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__UpperCAmelCase = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a ( self : Optional[int] ):
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_image_processor()
__UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowercase )
def a ( self : int ):
__UpperCAmelCase = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__UpperCAmelCase = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 )
__UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowercase )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.get_image_processor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase )
__UpperCAmelCase = self.prepare_image_inputs()
__UpperCAmelCase = image_processor(_lowercase , return_tensors='''np''' )
__UpperCAmelCase = processor(images=_lowercase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def a ( self : List[str] ):
__UpperCAmelCase = self.get_image_processor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase )
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = processor(text=_lowercase )
__UpperCAmelCase = tokenizer(_lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def a ( self : Optional[Any] ):
__UpperCAmelCase = self.get_image_processor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase )
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = self.prepare_image_inputs()
__UpperCAmelCase = processor(text=_lowercase , images=_lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(_lowercase ):
processor()
def a ( self : Optional[Any] ):
__UpperCAmelCase = self.get_image_processor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase )
__UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase = processor.batch_decode(_lowercase )
__UpperCAmelCase = tokenizer.batch_decode(_lowercase )
self.assertListEqual(_lowercase , _lowercase )
def a ( self : Dict ):
__UpperCAmelCase = self.get_image_processor()
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase )
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = self.prepare_image_inputs()
__UpperCAmelCase = processor(text=_lowercase , images=_lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 49 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
@property
def a ( self : List[str] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a ( self : Dict ):
__UpperCAmelCase = ort.SessionOptions()
__UpperCAmelCase = False
return options
def a ( self : Any ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
__UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A red cat sitting on a park bench'''
__UpperCAmelCase = np.random.RandomState(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def a ( self : Optional[int] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
__UpperCAmelCase = LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
__UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A red cat sitting on a park bench'''
__UpperCAmelCase = np.random.RandomState(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 49 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :int | float | str , snake_case_ :int | float | str ):
if nth_term == "":
return [""]
__UpperCAmelCase = int(snake_case_ )
__UpperCAmelCase = int(snake_case_ )
__UpperCAmelCase = []
for temp in range(int(snake_case_ ) ):
series.append(F'''1 / {pow(temp + 1 , int(snake_case_ ) )}''' if series else '''1''' )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : Optional[int] = int(input('Enter the last number (nth term) of the P-Series'))
_lowercase : Dict = int(input('Enter the power for P-Series'))
print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p')
print(p_series(nth_term, power))
| 49 |
"""simple docstring"""
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowercase__ ( snake_case_ :Dict , snake_case_ :int ):
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
__UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
__UpperCAmelCase = features.copy()
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ):
if issubclass(snake_case_ , snake_case_ ):
__UpperCAmelCase = jsonl_path
elif issubclass(snake_case_ , snake_case_ ):
__UpperCAmelCase = [jsonl_path]
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ):
assert isinstance(snake_case_ , snake_case_ )
for split in splits:
__UpperCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ):
if split:
__UpperCAmelCase = {split: jsonl_path}
else:
__UpperCAmelCase = '''train'''
__UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path}
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowercase__ ( snake_case_ :Optional[int] ):
return json.load(snake_case_ )
def lowercase__ ( snake_case_ :Any ):
return [json.loads(snake_case_ ) for line in buffer]
class _UpperCAmelCase :
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json_function(_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(exported_content[0] , _lowercase )
assert len(_lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json(_lowercase )
assert isinstance(_lowercase , _lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(_lowercase ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json_function(_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(exported_content[0] , _lowercase )
assert len(_lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json(_lowercase )
assert isinstance(_lowercase , _lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(_lowercase ) == 10
def a ( self : int , _lowercase : Any ):
with pytest.raises(_lowercase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ):
__UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}'''
__UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' )
JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write()
with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f:
__UpperCAmelCase = f.read()
with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f:
__UpperCAmelCase = f.read()
assert exported_content == original_content
| 49 | 1 |
"""simple docstring"""
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
_lowercase : Union[str, Any] = imread(r'digital_image_processing/image_data/lena_small.jpg')
_lowercase : Any = cvtColor(img, COLOR_BGR2GRAY)
def lowercase__ ( ):
__UpperCAmelCase = cn.convert_to_negative(snake_case_ )
# assert negative_img array for at least one True
assert negative_img.any()
def lowercase__ ( ):
with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img:
# Work around assertion for response
assert str(cc.change_contrast(snake_case_ , 110 ) ).startswith(
'''<PIL.Image.Image image mode=RGB size=100x100 at''' )
def lowercase__ ( ):
__UpperCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 )
# Assert ambiguous array
assert resp.all()
def lowercase__ ( ):
__UpperCAmelCase = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 )
# assert ambiguous array for all == True
assert canny_img.all()
__UpperCAmelCase = canny.canny(snake_case_ )
# assert canny array for at least one True
assert canny_array.any()
def lowercase__ ( ):
assert gg.gaussian_filter(snake_case_ , 5 , sigma=0.9 ).all()
def lowercase__ ( ):
# laplace diagonals
__UpperCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] )
__UpperCAmelCase = conv.img_convolve(snake_case_ , snake_case_ ).astype(snake_case_ )
assert res.any()
def lowercase__ ( ):
assert med.median_filter(snake_case_ , 3 ).any()
def lowercase__ ( ):
__UpperCAmelCase , __UpperCAmelCase = sob.sobel_filter(snake_case_ )
assert grad.any() and theta.any()
def lowercase__ ( ):
__UpperCAmelCase = sp.make_sepia(snake_case_ , 20 )
assert sepia.all()
def lowercase__ ( snake_case_ :str = "digital_image_processing/image_data/lena_small.jpg" ):
__UpperCAmelCase = bs.Burkes(imread(snake_case_ , 1 ) , 120 )
burkes.process()
assert burkes.output_img.any()
def lowercase__ ( snake_case_ :str = "digital_image_processing/image_data/lena_small.jpg" , ):
__UpperCAmelCase = rs.NearestNeighbour(imread(snake_case_ , 1 ) , 400 , 200 )
nn.process()
assert nn.output.any()
def lowercase__ ( ):
__UpperCAmelCase = '''digital_image_processing/image_data/lena.jpg'''
# Reading the image and converting it to grayscale.
__UpperCAmelCase = imread(snake_case_ , 0 )
# Test for get_neighbors_pixel function() return not None
__UpperCAmelCase = 0
__UpperCAmelCase = 0
__UpperCAmelCase = image[x_coordinate][y_coordinate]
__UpperCAmelCase = lbp.get_neighbors_pixel(
snake_case_ , snake_case_ , snake_case_ , snake_case_ )
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
__UpperCAmelCase = np.zeros((image.shape[0], image.shape[1]) )
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0 , image.shape[0] ):
for j in range(0 , image.shape[1] ):
__UpperCAmelCase = lbp.local_binary_value(snake_case_ , snake_case_ , snake_case_ )
assert lbp_image.any()
| 49 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Union[str, Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
__UpperCAmelCase = TextIteratorStreamer(_lowercase )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowercase , _lowercase )
def a ( self : str ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :]
__UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Tuple ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
__UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase )
model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
__UpperCAmelCase = cs.out[:-1] # Remove the final "\n"
__UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def a ( self : Tuple ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowercase ):
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
| 49 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : int = KandinskyImgaImgPipeline
a__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image"]
a__ : Optional[Any] = [
"prompt",
"negative_prompt",
"image_embeds",
"negative_image_embeds",
"image",
]
a__ : Tuple = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
a__ : Optional[Any] = False
@property
def a ( self : Tuple ):
return 32
@property
def a ( self : int ):
return 32
@property
def a ( self : Optional[Any] ):
return self.time_input_dim
@property
def a ( self : Any ):
return self.time_input_dim * 4
@property
def a ( self : Union[str, Any] ):
return 1_00
@property
def a ( self : List[Any] ):
__UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' )
return tokenizer
@property
def a ( self : Union[str, Any] ):
torch.manual_seed(0 )
__UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__UpperCAmelCase = MultilingualCLIP(_lowercase )
__UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def a ( self : Any ):
torch.manual_seed(0 )
__UpperCAmelCase = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''text_image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''text_image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
__UpperCAmelCase = UNetaDConditionModel(**_lowercase )
return model
@property
def a ( self : List[str] ):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def a ( self : Tuple ):
torch.manual_seed(0 )
__UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def a ( self : Optional[int] ):
__UpperCAmelCase = self.dummy_text_encoder
__UpperCAmelCase = self.dummy_tokenizer
__UpperCAmelCase = self.dummy_unet
__UpperCAmelCase = self.dummy_movq
__UpperCAmelCase = {
'''num_train_timesteps''': 10_00,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.00_085,
'''beta_end''': 0.012,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
__UpperCAmelCase = DDIMScheduler(**_lowercase )
__UpperCAmelCase = {
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def a ( self : Optional[int] , _lowercase : List[str] , _lowercase : List[str]=0 ):
__UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowercase )
# create init_image
__UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__UpperCAmelCase = Image.fromarray(np.uinta(_lowercase ) ).convert('''RGB''' ).resize((2_56, 2_56) )
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''horse''',
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 10,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def a ( self : List[Any] ):
__UpperCAmelCase = '''cpu'''
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = self.pipeline_class(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = pipe(**self.get_dummy_inputs(_lowercase ) )
__UpperCAmelCase = output.images
__UpperCAmelCase = pipe(
**self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0]
__UpperCAmelCase = image[0, -3:, -3:, -1]
__UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__UpperCAmelCase = np.array(
[0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : List[str] ):
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinsky/kandinsky_img2img_frog.npy''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
__UpperCAmelCase = '''A red cartoon frog, 4k'''
__UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(_lowercase )
__UpperCAmelCase = KandinskyImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa )
__UpperCAmelCase = pipeline.to(_lowercase )
pipeline.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__UpperCAmelCase , __UpperCAmelCase = pipe_prior(
_lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
__UpperCAmelCase = pipeline(
_lowercase , image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , )
__UpperCAmelCase = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(_lowercase , _lowercase )
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :float , snake_case_ :float ):
if density <= 0:
raise ValueError('''Impossible fluid density''' )
if bulk_modulus <= 0:
raise ValueError('''Impossible bulk modulus''' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase : Optional[Any] = {
'configuration_upernet': ['UperNetConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'UperNetForSemanticSegmentation',
'UperNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
_lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :dict ):
__UpperCAmelCase = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
__UpperCAmelCase = set()
return any(
node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
for node in graph )
def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ):
visited.add(snake_case_ )
rec_stk.add(snake_case_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(snake_case_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 | 1 |
"""simple docstring"""
import math
def lowercase__ ( snake_case_ :int ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase__ ( snake_case_ :float = 0.1 ):
__UpperCAmelCase = 3
__UpperCAmelCase = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(snake_case_ )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : Any = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[Any] = ['PoolFormerFeatureExtractor']
_lowercase : Any = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 49 | 1 |
"""simple docstring"""
_lowercase : int = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_lowercase : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}]
_lowercase : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Dict ): # noqa: E741
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = [0] * n
__UpperCAmelCase = [False] * n
__UpperCAmelCase = [False] * n
def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ):
if parent == root:
out_edge_count += 1
__UpperCAmelCase = True
__UpperCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__UpperCAmelCase = True
# AP found via cycle
if at == low[to]:
__UpperCAmelCase = True
else:
__UpperCAmelCase = min(low[at] , snake_case_ )
return out_edge_count
for i in range(snake_case_ ):
if not visited[i]:
__UpperCAmelCase = 0
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ )
__UpperCAmelCase = out_edge_count > 1
for x in range(len(snake_case_ ) ):
if is_art[x] is True:
print(snake_case_ )
# Adjacency list of graph
_lowercase : Optional[Any] = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 49 | 1 |
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class _UpperCAmelCase ( unittest.TestCase ):
a__ : List[str] = MODEL_FOR_CAUSAL_LM_MAPPING
a__ : Optional[int] = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def a ( self : Tuple ):
__UpperCAmelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' )
# Using `do_sample=False` to force deterministic output
__UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase )
self.assertEqual(
_lowercase , [
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
] , )
__UpperCAmelCase = text_generator(['''This is a test''', '''This is a second test'''] )
self.assertEqual(
_lowercase , [
[
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'''
''' oscope. oscope. FiliFili@@'''
)
}
],
] , )
__UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase , num_return_sequences=2 , return_tensors=_lowercase )
self.assertEqual(
_lowercase , [
{'''generated_token_ids''': ANY(_lowercase )},
{'''generated_token_ids''': ANY(_lowercase )},
] , )
__UpperCAmelCase = text_generator.model.config.eos_token_id
__UpperCAmelCase = '''<pad>'''
__UpperCAmelCase = text_generator(
['''This is a test''', '''This is a second test'''] , do_sample=_lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowercase , )
self.assertEqual(
_lowercase , [
[
{'''generated_token_ids''': ANY(_lowercase )},
{'''generated_token_ids''': ANY(_lowercase )},
],
[
{'''generated_token_ids''': ANY(_lowercase )},
{'''generated_token_ids''': ANY(_lowercase )},
],
] , )
@require_tf
def a ( self : Dict ):
__UpperCAmelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' )
# Using `do_sample=False` to force deterministic output
__UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase )
self.assertEqual(
_lowercase , [
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
] , )
__UpperCAmelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_lowercase )
self.assertEqual(
_lowercase , [
[
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'''
''' Cannes 閲閲Cannes Cannes Cannes 攵 please,'''
)
}
],
] , )
def a ( self : Any , _lowercase : str , _lowercase : Optional[int] , _lowercase : str ):
__UpperCAmelCase = TextGenerationPipeline(model=_lowercase , tokenizer=_lowercase )
return text_generator, ["This is a test", "Another test"]
def a ( self : List[Any] ):
__UpperCAmelCase = '''Hello I believe in'''
__UpperCAmelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = text_generator(_lowercase )
self.assertEqual(
_lowercase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , )
__UpperCAmelCase = text_generator(_lowercase , stop_sequence=''' fe''' )
self.assertEqual(_lowercase , [{'''generated_text''': '''Hello I believe in fe'''}] )
def a ( self : Optional[int] , _lowercase : List[Any] , _lowercase : str ):
__UpperCAmelCase = text_generator.model
__UpperCAmelCase = text_generator.tokenizer
__UpperCAmelCase = text_generator('''This is a test''' )
self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
__UpperCAmelCase = text_generator('''This is a test''' , return_full_text=_lowercase )
self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
__UpperCAmelCase = pipeline(task='''text-generation''' , model=_lowercase , tokenizer=_lowercase , return_full_text=_lowercase )
__UpperCAmelCase = text_generator('''This is a test''' )
self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
__UpperCAmelCase = text_generator('''This is a test''' , return_full_text=_lowercase )
self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
__UpperCAmelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_lowercase )
self.assertEqual(
_lowercase , [
[{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}],
[{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}],
] , )
if text_generator.tokenizer.pad_token is not None:
__UpperCAmelCase = text_generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_lowercase )
self.assertEqual(
_lowercase , [
[{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}],
[{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}],
] , )
with self.assertRaises(_lowercase ):
__UpperCAmelCase = text_generator('''test''' , return_full_text=_lowercase , return_text=_lowercase )
with self.assertRaises(_lowercase ):
__UpperCAmelCase = text_generator('''test''' , return_full_text=_lowercase , return_tensors=_lowercase )
with self.assertRaises(_lowercase ):
__UpperCAmelCase = text_generator('''test''' , return_text=_lowercase , return_tensors=_lowercase )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
__UpperCAmelCase = text_generator('''''' )
self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
__UpperCAmelCase = text_generator('''''' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
__UpperCAmelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM''']
if (
tokenizer.model_max_length < 1_00_00
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('''This is a test''' * 5_00 , max_new_tokens=20 )
__UpperCAmelCase = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(_lowercase ):
text_generator(
'''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def a ( self : List[Any] ):
import torch
# Classic `model_kwargs`
__UpperCAmelCase = pipeline(
model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
__UpperCAmelCase = pipe('''This is a test''' )
self.assertEqual(
_lowercase , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
__UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
__UpperCAmelCase = pipe('''This is a test''' )
self.assertEqual(
_lowercase , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
__UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
__UpperCAmelCase = pipe('''This is a test''' )
self.assertEqual(
_lowercase , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
@require_torch
@require_torch_gpu
def a ( self : Union[str, Any] ):
import torch
__UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa )
pipe('''This is a test''' )
@require_torch
@require_accelerate
@require_torch_gpu
def a ( self : int ):
import torch
__UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa )
pipe('''This is a test''' , do_sample=_lowercase , top_p=0.5 )
def a ( self : int ):
__UpperCAmelCase = '''Hello world'''
__UpperCAmelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
if text_generator.model.framework == "tf":
__UpperCAmelCase = logging.get_logger('''transformers.generation.tf_utils''' )
else:
__UpperCAmelCase = logging.get_logger('''transformers.generation.utils''' )
__UpperCAmelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(_lowercase ) as cl:
__UpperCAmelCase = text_generator(_lowercase , max_length=10 , max_new_tokens=1 )
self.assertIn(_lowercase , cl.out )
# The user only sets one -> no warning
with CaptureLogger(_lowercase ) as cl:
__UpperCAmelCase = text_generator(_lowercase , max_new_tokens=1 )
self.assertNotIn(_lowercase , cl.out )
with CaptureLogger(_lowercase ) as cl:
__UpperCAmelCase = text_generator(_lowercase , max_length=10 )
self.assertNotIn(_lowercase , cl.out )
| 49 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = "EncodecFeatureExtractor"
a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast")
def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ):
super().__init__(_lowercase , _lowercase )
__UpperCAmelCase = self.feature_extractor
__UpperCAmelCase = False
def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ):
return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase )
def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowercase , **_lowercase )
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''text''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if text is not None:
__UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase )
if audio is not None:
__UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
__UpperCAmelCase = audio_inputs['''input_values''']
if "padding_mask" in audio_inputs:
__UpperCAmelCase = audio_inputs['''padding_mask''']
return inputs
def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ):
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio_values is not None:
return self._decode_audio(_lowercase , padding_mask=_lowercase )
else:
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ):
__UpperCAmelCase = to_numpy(_lowercase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape
if padding_mask is None:
return list(_lowercase )
__UpperCAmelCase = to_numpy(_lowercase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
__UpperCAmelCase = seq_len - padding_mask.shape[-1]
__UpperCAmelCase = 1 - self.feature_extractor.padding_value
__UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase )
__UpperCAmelCase = audio_values.tolist()
for i in range(_lowercase ):
__UpperCAmelCase = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
__UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 )
return audio_values
| 49 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase : Tuple = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple = [
'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'IBertForMaskedLM',
'IBertForMultipleChoice',
'IBertForQuestionAnswering',
'IBertForSequenceClassification',
'IBertForTokenClassification',
'IBertModel',
'IBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
_lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
__UpperCAmelCase = True
for i in range(snake_case_ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
__UpperCAmelCase = True
if a[i].islower():
__UpperCAmelCase = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Union[str, Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def a ( self : Any ):
__UpperCAmelCase = 1
__UpperCAmelCase = 3
__UpperCAmelCase = (32, 32)
__UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase )
return image
@property
def a ( self : int ):
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
return model
@property
def a ( self : Optional[int] ):
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def a ( self : List[str] ):
torch.manual_seed(0 )
__UpperCAmelCase = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , )
return RobertaSeriesModelWithTransformation(_lowercase )
@property
def a ( self : str ):
def extract(*_lowercase : Optional[Any] , **_lowercase : Optional[Any] ):
class _UpperCAmelCase :
def __init__( self : Dict ):
__UpperCAmelCase = torch.ones([0] )
def a ( self : Union[str, Any] , _lowercase : Tuple ):
self.pixel_values.to(_lowercase )
return self
return Out()
return extract
def a ( self : List[str] ):
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.dummy_cond_unet
__UpperCAmelCase = PNDMScheduler(skip_prk_steps=_lowercase )
__UpperCAmelCase = self.dummy_vae
__UpperCAmelCase = self.dummy_text_encoder
__UpperCAmelCase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
__UpperCAmelCase = 77
__UpperCAmelCase = self.dummy_image.to(_lowercase )
__UpperCAmelCase = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
__UpperCAmelCase = AltDiffusionImgaImgPipeline(
unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , )
__UpperCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowercase )
__UpperCAmelCase = alt_pipe.to(_lowercase )
alt_pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A painting of a squirrel eating a burger'''
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCAmelCase = alt_pipe(
[prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_lowercase , )
__UpperCAmelCase = output.images
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 )
__UpperCAmelCase = alt_pipe(
[prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_lowercase , return_dict=_lowercase , )[0]
__UpperCAmelCase = image[0, -3:, -3:, -1]
__UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def a ( self : int ):
__UpperCAmelCase = self.dummy_cond_unet
__UpperCAmelCase = PNDMScheduler(skip_prk_steps=_lowercase )
__UpperCAmelCase = self.dummy_vae
__UpperCAmelCase = self.dummy_text_encoder
__UpperCAmelCase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
__UpperCAmelCase = 77
__UpperCAmelCase = self.dummy_image.to(_lowercase )
# put models in fp16
__UpperCAmelCase = unet.half()
__UpperCAmelCase = vae.half()
__UpperCAmelCase = bert.half()
# make sure here that pndm scheduler skips prk
__UpperCAmelCase = AltDiffusionImgaImgPipeline(
unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , )
__UpperCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowercase )
__UpperCAmelCase = alt_pipe.to(_lowercase )
alt_pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A painting of a squirrel eating a burger'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = alt_pipe(
[prompt] , generator=_lowercase , num_inference_steps=2 , output_type='''np''' , image=_lowercase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
__UpperCAmelCase = init_image.resize((7_60, 5_04) )
__UpperCAmelCase = '''BAAI/AltDiffusion'''
__UpperCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained(
_lowercase , safety_checker=_lowercase , )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A fantasy landscape, trending on artstation'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , strength=0.75 , guidance_scale=7.5 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images[0]
__UpperCAmelCase = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 7_60, 3)
__UpperCAmelCase = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : Tuple ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
__UpperCAmelCase = init_image.resize((7_68, 5_12) )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
__UpperCAmelCase = '''BAAI/AltDiffusion'''
__UpperCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained(
_lowercase , safety_checker=_lowercase , )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A fantasy landscape, trending on artstation'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , strength=0.75 , guidance_scale=7.5 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images[0]
assert image.shape == (5_12, 7_68, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 49 |
"""simple docstring"""
from collections import deque
class _UpperCAmelCase :
def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ):
__UpperCAmelCase = process_name # process name
__UpperCAmelCase = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
__UpperCAmelCase = arrival_time
__UpperCAmelCase = burst_time # remaining burst time
__UpperCAmelCase = 0 # total time of the process wait in ready queue
__UpperCAmelCase = 0 # time from arrival time to completion time
class _UpperCAmelCase :
def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ):
# total number of mlfq's queues
__UpperCAmelCase = number_of_queues
# time slice of queues that round robin algorithm applied
__UpperCAmelCase = time_slices
# unfinished process is in this ready_queue
__UpperCAmelCase = queue
# current time
__UpperCAmelCase = current_time
# finished process is in this sequence queue
__UpperCAmelCase = deque()
def a ( self : Dict ):
__UpperCAmelCase = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def a ( self : str , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def a ( self : Any , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def a ( self : Tuple , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def a ( self : Optional[int] , _lowercase : deque[Process] ):
return [q.burst_time for q in queue]
def a ( self : str , _lowercase : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def a ( self : Union[str, Any] , _lowercase : deque[Process] ):
__UpperCAmelCase = deque() # sequence deque of finished process
while len(_lowercase ) != 0:
__UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_lowercase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
__UpperCAmelCase = 0
# set the process's turnaround time because it is finished
__UpperCAmelCase = self.current_time - cp.arrival_time
# set the completion time
__UpperCAmelCase = self.current_time
# add the process to queue that has finished queue
finished.append(_lowercase )
self.finish_queue.extend(_lowercase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ):
__UpperCAmelCase = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_lowercase ) ):
__UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_lowercase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
__UpperCAmelCase = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_lowercase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
__UpperCAmelCase = 0
# set the finish time
__UpperCAmelCase = self.current_time
# update the process' turnaround time because it is finished
__UpperCAmelCase = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_lowercase )
self.finish_queue.extend(_lowercase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def a ( self : Union[str, Any] ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
__UpperCAmelCase , __UpperCAmelCase = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
_lowercase : List[str] = Process('P1', 0, 53)
_lowercase : str = Process('P2', 0, 17)
_lowercase : Union[str, Any] = Process('P3', 0, 68)
_lowercase : int = Process('P4', 0, 24)
_lowercase : Any = 3
_lowercase : Union[str, Any] = [17, 25]
_lowercase : Dict = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])})
_lowercase : Optional[Any] = Process('P1', 0, 53)
_lowercase : Tuple = Process('P2', 0, 17)
_lowercase : Optional[int] = Process('P3', 0, 68)
_lowercase : int = Process('P4', 0, 24)
_lowercase : int = 3
_lowercase : int = [17, 25]
_lowercase : List[str] = deque([Pa, Pa, Pa, Pa])
_lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0)
_lowercase : str = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
f"""waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print completion times of processes(P1, P2, P3, P4)
print(
f"""completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
f"""turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print sequence of finished processes
print(
f"""sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}"""
)
| 49 | 1 |
"""simple docstring"""
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str]=13 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : List[Any]=True , _lowercase : Tuple=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[Any]=99 , _lowercase : Union[str, Any]=64 , _lowercase : int=32 , _lowercase : Optional[Any]=5 , _lowercase : List[str]=4 , _lowercase : Optional[Any]=37 , _lowercase : List[str]="gelu" , _lowercase : Any=0.1 , _lowercase : List[Any]=0.1 , _lowercase : Any=5_12 , _lowercase : Tuple=16 , _lowercase : List[str]=2 , _lowercase : Union[str, Any]=0.02 , _lowercase : Tuple=3 , _lowercase : Any=4 , _lowercase : List[str]=None , ):
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = seq_length
__UpperCAmelCase = is_training
__UpperCAmelCase = use_input_mask
__UpperCAmelCase = use_token_type_ids
__UpperCAmelCase = use_labels
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = embedding_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_act
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = type_sequence_label_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = num_labels
__UpperCAmelCase = num_choices
__UpperCAmelCase = scope
def a ( self : List[str] ):
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_input_mask:
__UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase = None
if self.use_token_type_ids:
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a ( self : Tuple ):
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , )
def a ( self : List[Any] , _lowercase : List[str] , _lowercase : int , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Dict , _lowercase : List[str] , _lowercase : List[Any] ):
__UpperCAmelCase = MegatronBertModel(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase )
__UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase )
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : List[str] , _lowercase : Dict ):
__UpperCAmelCase = MegatronBertForMaskedLM(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a ( self : str , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : str , _lowercase : List[Any] , _lowercase : str , _lowercase : str , _lowercase : Union[str, Any] ):
__UpperCAmelCase = MegatronBertForCausalLM(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a ( self : Optional[Any] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : str , _lowercase : Dict , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Any ):
__UpperCAmelCase = MegatronBertForNextSentencePrediction(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(
_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def a ( self : List[Any] , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : str , _lowercase : List[Any] , _lowercase : int , _lowercase : List[Any] , _lowercase : Dict ):
__UpperCAmelCase = MegatronBertForPreTraining(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(
_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , next_sentence_label=_lowercase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def a ( self : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : Any , _lowercase : List[str] , _lowercase : List[str] , _lowercase : List[Any] ):
__UpperCAmelCase = MegatronBertForQuestionAnswering(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(
_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a ( self : int , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any] ):
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = MegatronBertForSequenceClassification(_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a ( self : Optional[Any] , _lowercase : str , _lowercase : int , _lowercase : List[str] , _lowercase : Dict , _lowercase : List[str] , _lowercase : int , _lowercase : Dict ):
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = MegatronBertForTokenClassification(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a ( self : Dict , _lowercase : Tuple , _lowercase : Tuple , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : Optional[Any] ):
__UpperCAmelCase = self.num_choices
__UpperCAmelCase = MegatronBertForMultipleChoice(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase = model(
_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a ( self : str ):
__UpperCAmelCase = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) = config_and_inputs
__UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : List[str] = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
a__ : Union[str, Any] = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
a__ : Optional[Any] = True
# test_resize_embeddings = False
a__ : Dict = False
def a ( self : Union[str, Any] , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : List[str]=False ):
__UpperCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase )
if return_labels:
if model_class in get_values(_lowercase ):
__UpperCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase )
__UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowercase )
return inputs_dict
def a ( self : List[Any] ):
__UpperCAmelCase = MegatronBertModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 )
def a ( self : str ):
self.config_tester.run_common_tests()
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*_lowercase )
def a ( self : str ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowercase )
def a ( self : List[Any] ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowercase )
def a ( self : Tuple ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowercase )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowercase )
def a ( self : Dict ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowercase )
def a ( self : Dict ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowercase )
def a ( self : str ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowercase )
def lowercase__ ( snake_case_ :int ):
return torch.tensor(
snake_case_ , dtype=torch.long , device=snake_case_ , )
_lowercase : List[str] = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
@slow
@unittest.skip('''Model is not available.''' )
def a ( self : Optional[Any] ):
__UpperCAmelCase = '''nvidia/megatron-bert-uncased-345m'''
if "MYDIR" in os.environ:
__UpperCAmelCase = os.path.join(os.environ['''MYDIR'''] , _lowercase )
__UpperCAmelCase = MegatronBertModel.from_pretrained(_lowercase )
model.to(_lowercase )
model.half()
__UpperCAmelCase = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] )
with torch.no_grad():
__UpperCAmelCase = model(_lowercase )[0]
__UpperCAmelCase = torch.Size((1, 9, 10_24) )
self.assertEqual(output.shape , _lowercase )
__UpperCAmelCase = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728]
for ii in range(3 ):
for jj in range(3 ):
__UpperCAmelCase = output[0, ii, jj]
__UpperCAmelCase = expected[3 * ii + jj]
__UpperCAmelCase = '''ii={} jj={} a={} b={}'''.format(_lowercase , _lowercase , _lowercase , _lowercase )
self.assertTrue(math.isclose(_lowercase , _lowercase , rel_tol=_lowercase , abs_tol=_lowercase ) , msg=_lowercase )
| 49 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : Union[str, Any] = logging.get_logger(__name__)
_lowercase : List[Any] = {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json',
'umberto-commoncrawl-cased-v1': (
'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'
),
'umberto-wikipedia-uncased-v1': (
'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "camembert"
def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ):
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
__UpperCAmelCase = classifier_dropout
class _UpperCAmelCase ( _lowerCAmelCase ):
@property
def a ( self : Tuple ):
if self.task == "multiple-choice":
__UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 49 | 1 |
"""simple docstring"""
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def lowercase__ ( snake_case_ :Dict=32 , snake_case_ :Dict=10 , snake_case_ :Union[str, Any]=100 , snake_case_ :Union[str, Any]=1_026 , snake_case_ :str=True , snake_case_ :List[str]="data/tokenized_stories_train_wikitext103.jbl" , snake_case_ :List[str]="igf_context_pairs.jbl" , ):
set_seed(3 )
# generate train_data and objective_set
__UpperCAmelCase , __UpperCAmelCase = generate_datasets(
snake_case_ , snake_case_ , number=snake_case_ , min_len=1_026 , trim=snake_case_ )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
__UpperCAmelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
# load pretrained model
__UpperCAmelCase = load_gpta('''gpt2''' ).to(snake_case_ )
print('''computing perplexity on objective set''' )
__UpperCAmelCase = compute_perplexity(snake_case_ , snake_case_ , snake_case_ ).item()
print('''perplexity on objective set:''' , snake_case_ )
# collect igf pairs and save to file demo.jbl
collect_objective_set(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def lowercase__ ( snake_case_ :Dict , snake_case_ :List[Any]=15 , snake_case_ :Any=128 , snake_case_ :int=100 , snake_case_ :List[str]="igf_model.pt" , ):
set_seed(42 )
# Load pre-trained model
__UpperCAmelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' )
# Initialize secondary learner to use embedding weights of model
__UpperCAmelCase = SecondaryLearner(snake_case_ )
# Train secondary learner
__UpperCAmelCase = train_secondary_learner(
snake_case_ , snake_case_ , max_epochs=snake_case_ , batch_size=snake_case_ , eval_freq=100 , igf_model_path=snake_case_ , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def lowercase__ ( snake_case_ :str , snake_case_ :int , snake_case_ :str , snake_case_ :List[str]=32 , snake_case_ :Optional[Any]=1_000 , snake_case_ :Optional[Any]=16 , snake_case_ :List[str]=1.0 , snake_case_ :List[Any]=recopy_gpta , snake_case_ :Optional[int]=None , snake_case_ :Optional[int]=10 , snake_case_ :Tuple="gpt2_finetuned.pt" , ):
__UpperCAmelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
__UpperCAmelCase = RandomSampler(snake_case_ )
__UpperCAmelCase = DataLoader(snake_case_ , sampler=snake_case_ )
__UpperCAmelCase = max_steps // (len(snake_case_ )) + 1
__UpperCAmelCase = 0
__UpperCAmelCase = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case_ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = recopy_model(snake_case_ , snake_case_ , snake_case_ )
model.train()
if secondary_learner is not None:
secondary_learner.to(snake_case_ )
secondary_learner.eval()
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = []
__UpperCAmelCase = []
# Compute the performance of the transformer model at the beginning
__UpperCAmelCase = compute_perplexity(snake_case_ , snake_case_ , snake_case_ )
test_perps.append(snake_case_ )
print('''Test perplexity, step''' , snake_case_ , ''':''' , snake_case_ )
for epoch in range(int(snake_case_ ) ):
for step, example in enumerate(snake_case_ ):
torch.cuda.empty_cache()
__UpperCAmelCase = random.randint(0 , example.size(2 ) - context_len - 1 )
__UpperCAmelCase = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
__UpperCAmelCase = model(snake_case_ , labels=snake_case_ )
__UpperCAmelCase = True
if secondary_learner is not None:
__UpperCAmelCase = secondary_learner.forward(
torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(snake_case_ ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
__UpperCAmelCase = -1
if predicted_q < threshold:
__UpperCAmelCase = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
__UpperCAmelCase = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
__UpperCAmelCase = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
__UpperCAmelCase = compute_perplexity(snake_case_ , snake_case_ , snake_case_ )
test_perps.append(snake_case_ )
print('''Test perplexity, step''' , snake_case_ , ''':''' , snake_case_ )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , snake_case_ )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def lowercase__ ( ):
__UpperCAmelCase = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' )
# Required parameters
parser.add_argument(
'''--data_dir''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''The input data dir. Should contain data files for WikiText.''' , )
parser.add_argument(
'''--model_name_or_path''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--data_file''' , type=snake_case_ , default=snake_case_ , help=(
'''A jbl file containing tokenized data which can be split as objective dataset, '''
'''train_dataset and test_dataset.'''
) , )
parser.add_argument(
'''--igf_data_file''' , type=snake_case_ , default=snake_case_ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , )
parser.add_argument(
'''--output_dir''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''The output directory where the final fine-tuned model is stored.''' , )
parser.add_argument(
'''--tokenizer_name''' , default=snake_case_ , type=snake_case_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument('''--seed''' , type=snake_case_ , default=snake_case_ , help='''A seed for reproducible training.''' )
parser.add_argument(
'''--context_len''' , default=32 , type=snake_case_ , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--size_objective_set''' , default=100 , type=snake_case_ , help='''number of articles that are long enough to be used as our objective set''' , )
parser.add_argument(
'''--eval_freq''' , default=100 , type=snake_case_ , help='''secondary model evaluation is triggered at eval_freq''' )
parser.add_argument('''--max_steps''' , default=1_000 , type=snake_case_ , help='''To calculate training epochs''' )
parser.add_argument(
'''--secondary_learner_batch_size''' , default=128 , type=snake_case_ , help='''batch size of training data for secondary learner''' , )
parser.add_argument(
'''--batch_size''' , default=16 , type=snake_case_ , help='''batch size of training data of language model(gpt2) ''' )
parser.add_argument(
'''--eval_interval''' , default=10 , type=snake_case_ , help=(
'''decay the selectivity of our secondary learner filter from'''
'''1 standard deviation above average to 1 below average after 10 batches'''
) , )
parser.add_argument(
'''--number''' , default=100 , type=snake_case_ , help='''The number of examples split to be used as objective_set/test_data''' )
parser.add_argument(
'''--min_len''' , default=1_026 , type=snake_case_ , help='''The minimum length of the article to be used as objective set''' )
parser.add_argument(
'''--secondary_learner_max_epochs''' , default=15 , type=snake_case_ , help='''number of epochs to train secondary learner''' )
parser.add_argument('''--trim''' , default=snake_case_ , type=snake_case_ , help='''truncate the example if it exceeds context length''' )
parser.add_argument(
'''--threshold''' , default=1.0 , type=snake_case_ , help=(
'''The threshold value used by secondary learner to filter the train_data and allow only'''
''' informative data as input to the model'''
) , )
parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=snake_case_ , help='''finetuned_model_name''' )
parser.add_argument(
'''--recopy_model''' , default=snake_case_ , type=snake_case_ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=snake_case_ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , )
# Load train data for secondary learner
__UpperCAmelCase = joblib.load('''data/IGF_values.jbl''' )
# Train secondary learner
__UpperCAmelCase = training_secondary_learner(
snake_case_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , )
# load pretrained gpt2 model
__UpperCAmelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
__UpperCAmelCase , __UpperCAmelCase = generate_datasets(
context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=snake_case_ )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
snake_case_ , snake_case_ , snake_case_ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=snake_case_ , secondary_learner=snake_case_ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , )
if __name__ == "__main__":
main()
| 49 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks if the entire collection has been sorted
if len(snake_case_ ) <= 1 or n <= 1:
return
insert_next(snake_case_ , n - 1 )
rec_insertion_sort(snake_case_ , n - 1 )
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks order between adjacent elements
if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
__UpperCAmelCase , __UpperCAmelCase = (
collection[index],
collection[index - 1],
)
insert_next(snake_case_ , index + 1 )
if __name__ == "__main__":
_lowercase : Any = input('Enter integers separated by spaces: ')
_lowercase : list[int] = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 49 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _UpperCAmelCase :
def __init__( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=13 , _lowercase : Union[str, Any]=[30, 30] , _lowercase : int=2 , _lowercase : Dict=3 , _lowercase : Optional[int]=True , _lowercase : Dict=True , _lowercase : Union[str, Any]=32 , _lowercase : Tuple=5 , _lowercase : Optional[Any]=4 , _lowercase : Any=37 , _lowercase : Optional[int]="gelu" , _lowercase : Dict=0.1 , _lowercase : List[Any]=0.1 , _lowercase : Dict=10 , _lowercase : Tuple=0.02 , _lowercase : Optional[int]=3 , _lowercase : Union[str, Any]=None , _lowercase : Optional[int]=8 , _lowercase : Tuple=10 , ):
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = image_size
__UpperCAmelCase = patch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = is_training
__UpperCAmelCase = use_labels
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_act
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = type_sequence_label_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = num_labels
__UpperCAmelCase = scope
__UpperCAmelCase = n_targets
__UpperCAmelCase = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
__UpperCAmelCase = (image_size[1] // patch_size) * (image_size[0] // patch_size)
__UpperCAmelCase = num_patches + 1 + self.num_detection_tokens
def a ( self : str ):
__UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
__UpperCAmelCase = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
__UpperCAmelCase = []
for i in range(self.batch_size ):
__UpperCAmelCase = {}
__UpperCAmelCase = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=_lowercase )
__UpperCAmelCase = torch.rand(self.n_targets , 4 , device=_lowercase )
labels.append(_lowercase )
__UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def a ( self : Any ):
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def a ( self : Dict , _lowercase : Dict , _lowercase : List[Any] , _lowercase : List[Any] ):
__UpperCAmelCase = YolosModel(config=_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def a ( self : List[Any] , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Dict ):
__UpperCAmelCase = YolosForObjectDetection(_lowercase )
model.to(_lowercase )
model.eval()
__UpperCAmelCase = model(pixel_values=_lowercase )
__UpperCAmelCase = model(_lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
__UpperCAmelCase = model(pixel_values=_lowercase , labels=_lowercase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def a ( self : Tuple ):
__UpperCAmelCase = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs
__UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : str = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
a__ : Optional[Any] = (
{"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {}
)
a__ : List[Any] = False
a__ : Any = False
a__ : int = False
a__ : List[Any] = False
def a ( self : List[str] , _lowercase : str , _lowercase : Optional[int] , _lowercase : str=False ):
__UpperCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
__UpperCAmelCase = []
for i in range(self.model_tester.batch_size ):
__UpperCAmelCase = {}
__UpperCAmelCase = torch.ones(
size=(self.model_tester.n_targets,) , device=_lowercase , dtype=torch.long )
__UpperCAmelCase = torch.ones(
self.model_tester.n_targets , 4 , device=_lowercase , dtype=torch.float )
labels.append(_lowercase )
__UpperCAmelCase = labels
return inputs_dict
def a ( self : Dict ):
__UpperCAmelCase = YolosModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 )
def a ( self : List[Any] ):
self.config_tester.run_common_tests()
def a ( self : Optional[int] ):
# YOLOS does not use inputs_embeds
pass
def a ( self : Any ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(_lowercase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) )
def a ( self : Any ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(_lowercase )
__UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase = [*signature.parameters.keys()]
__UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowercase )
def a ( self : str ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowercase )
def a ( self : Any ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase = True
# in YOLOS, the seq_len is different
__UpperCAmelCase = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = model_class(_lowercase )
model.to(_lowercase )
model.eval()
with torch.no_grad():
__UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) )
__UpperCAmelCase = outputs.attentions
self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase = True
__UpperCAmelCase = model_class(_lowercase )
model.to(_lowercase )
model.eval()
with torch.no_grad():
__UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) )
__UpperCAmelCase = outputs.attentions
self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__UpperCAmelCase = len(_lowercase )
# Check attention is always last and order is fine
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = model_class(_lowercase )
model.to(_lowercase )
model.eval()
with torch.no_grad():
__UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) )
__UpperCAmelCase = 1
self.assertEqual(out_len + added_hidden_states , len(_lowercase ) )
__UpperCAmelCase = outputs.attentions
self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def a ( self : str ):
def check_hidden_states_output(_lowercase : List[Any] , _lowercase : Any , _lowercase : Optional[Any] ):
__UpperCAmelCase = model_class(_lowercase )
model.to(_lowercase )
model.eval()
with torch.no_grad():
__UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) )
__UpperCAmelCase = outputs.hidden_states
__UpperCAmelCase = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_lowercase ) , _lowercase )
# YOLOS has a different seq_length
__UpperCAmelCase = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = True
check_hidden_states_output(_lowercase , _lowercase , _lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase = True
check_hidden_states_output(_lowercase , _lowercase , _lowercase )
def a ( self : Dict ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*_lowercase )
@slow
def a ( self : Optional[Any] ):
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase = YolosModel.from_pretrained(_lowercase )
self.assertIsNotNone(_lowercase )
def lowercase__ ( ):
__UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
@cached_property
def a ( self : str ):
return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None
@slow
def a ( self : List[str] ):
__UpperCAmelCase = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(_lowercase )
__UpperCAmelCase = self.default_image_processor
__UpperCAmelCase = prepare_img()
__UpperCAmelCase = image_processor(images=_lowercase , return_tensors='''pt''' ).to(_lowercase )
# forward pass
with torch.no_grad():
__UpperCAmelCase = model(inputs.pixel_values )
# verify outputs
__UpperCAmelCase = torch.Size((1, 1_00, 92) )
self.assertEqual(outputs.logits.shape , _lowercase )
__UpperCAmelCase = torch.tensor(
[[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=_lowercase , )
__UpperCAmelCase = torch.tensor(
[[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=_lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowercase , atol=1E-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowercase , atol=1E-4 ) )
# verify postprocessing
__UpperCAmelCase = image_processor.post_process_object_detection(
_lowercase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
__UpperCAmelCase = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(_lowercase )
__UpperCAmelCase = [75, 75, 17, 63, 17]
__UpperCAmelCase = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(_lowercase )
self.assertEqual(len(results['''scores'''] ) , 5 )
self.assertTrue(torch.allclose(results['''scores'''] , _lowercase , atol=1E-4 ) )
self.assertSequenceEqual(results['''labels'''].tolist() , _lowercase )
self.assertTrue(torch.allclose(results['''boxes'''][0, :] , _lowercase ) )
| 49 |
"""simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : Any = StableUnCLIPPipeline
a__ : Dict = TEXT_TO_IMAGE_PARAMS
a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS
a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
a__ : Optional[int] = False
def a ( self : List[str] ):
__UpperCAmelCase = 32
__UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
__UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase )
__UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , )
torch.manual_seed(0 )
__UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL()
__UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ):
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def a ( self : Any ):
__UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_lowercase )
def a ( self : int ):
__UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_lowercase )
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : Any ):
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' )
__UpperCAmelCase = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(_lowercase , _lowercase )
def a ( self : Any ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
__UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 49 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Any = {
'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'],
'tokenization_lxmert': ['LxmertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = ['LxmertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] = [
'LxmertEncoder',
'LxmertForPreTraining',
'LxmertForQuestionAnswering',
'LxmertModel',
'LxmertPreTrainedModel',
'LxmertVisualFeatureEncoder',
'LxmertXLayer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLxmertForPreTraining',
'TFLxmertMainLayer',
'TFLxmertModel',
'TFLxmertPreTrainedModel',
'TFLxmertVisualFeatureEncoder',
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
_lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 |
"""simple docstring"""
from typing import Any
def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ):
_validation(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
# Creates data structures and fill initial step
__UpperCAmelCase = {}
__UpperCAmelCase = {}
for state in states_space:
__UpperCAmelCase = observations_space[0]
__UpperCAmelCase = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
__UpperCAmelCase = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(snake_case_ ) ):
__UpperCAmelCase = observations_space[o]
__UpperCAmelCase = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
__UpperCAmelCase = ''''''
__UpperCAmelCase = -1
for k_state in states_space:
__UpperCAmelCase = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
__UpperCAmelCase = probability
__UpperCAmelCase = k_state
# Update probabilities and pointers dicts
__UpperCAmelCase = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
__UpperCAmelCase = arg_max
# The final observation
__UpperCAmelCase = observations_space[len(snake_case_ ) - 1]
# argmax for given final observation
__UpperCAmelCase = ''''''
__UpperCAmelCase = -1
for k_state in states_space:
__UpperCAmelCase = probabilities[(k_state, final_observation)]
if probability > max_probability:
__UpperCAmelCase = probability
__UpperCAmelCase = k_state
__UpperCAmelCase = arg_max
# Process pointers backwards
__UpperCAmelCase = last_state
__UpperCAmelCase = []
for o in range(len(snake_case_ ) - 1 , -1 , -1 ):
result.append(snake_case_ )
__UpperCAmelCase = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
_validate_not_empty(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
_validate_lists(snake_case_ , snake_case_ )
_validate_dicts(
snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('''There\'s an empty parameter''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any ):
_validate_list(snake_case_ , '''observations_space''' )
_validate_list(snake_case_ , '''states_space''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :str ):
if not isinstance(_object , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a list'''
raise ValueError(snake_case_ )
else:
for x in _object:
if not isinstance(snake_case_ , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a list of strings'''
raise ValueError(snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
_validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ )
_validate_nested_dict(snake_case_ , '''transition_probabilities''' )
_validate_nested_dict(snake_case_ , '''emission_probabilities''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :str ):
_validate_dict(_object , snake_case_ , snake_case_ )
for x in _object.values():
_validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ):
if not isinstance(_object , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a dict'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ):
__UpperCAmelCase = F'''{var_name} all keys must be strings'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ):
__UpperCAmelCase = '''nested dictionary ''' if nested else ''''''
__UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(snake_case_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 | 1 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def lowercase__ ( snake_case_ :Optional[Any] ):
__UpperCAmelCase = 384
if "tiny" in model_name:
__UpperCAmelCase = [3, 3, 9, 3]
__UpperCAmelCase = [96, 192, 384, 768]
if "small" in model_name:
__UpperCAmelCase = [3, 3, 27, 3]
__UpperCAmelCase = [96, 192, 384, 768]
if "base" in model_name:
__UpperCAmelCase = [3, 3, 27, 3]
__UpperCAmelCase = [128, 256, 512, 1_024]
__UpperCAmelCase = 512
if "large" in model_name:
__UpperCAmelCase = [3, 3, 27, 3]
__UpperCAmelCase = [192, 384, 768, 1_536]
__UpperCAmelCase = 768
if "xlarge" in model_name:
__UpperCAmelCase = [3, 3, 27, 3]
__UpperCAmelCase = [256, 512, 1_024, 2_048]
__UpperCAmelCase = 1_024
# set label information
__UpperCAmelCase = 150
__UpperCAmelCase = '''huggingface/label-files'''
__UpperCAmelCase = '''ade20k-id2label.json'''
__UpperCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) )
__UpperCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()}
__UpperCAmelCase = {v: k for k, v in idalabel.items()}
__UpperCAmelCase = ConvNextConfig(
depths=snake_case_ , hidden_sizes=snake_case_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] )
__UpperCAmelCase = UperNetConfig(
backbone_config=snake_case_ , auxiliary_in_channels=snake_case_ , num_labels=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ , )
return config
def lowercase__ ( snake_case_ :Dict ):
__UpperCAmelCase = []
# fmt: off
# stem
rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') )
rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') )
rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') )
rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''),
('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''),
('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''),
('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''),
] )
# fmt: on
return rename_keys
def lowercase__ ( snake_case_ :Tuple , snake_case_ :Optional[int] , snake_case_ :Any ):
__UpperCAmelCase = dct.pop(snake_case_ )
__UpperCAmelCase = val
def lowercase__ ( snake_case_ :Dict , snake_case_ :List[str] , snake_case_ :List[Any] ):
__UpperCAmelCase = {
'''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''',
'''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''',
'''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''',
'''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''',
'''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''',
}
__UpperCAmelCase = model_name_to_url[model_name]
__UpperCAmelCase = torch.hub.load_state_dict_from_url(snake_case_ , map_location='''cpu''' )['''state_dict''']
__UpperCAmelCase = get_upernet_config(snake_case_ )
__UpperCAmelCase = UperNetForSemanticSegmentation(snake_case_ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__UpperCAmelCase = state_dict.pop(snake_case_ )
if "bn" in key:
__UpperCAmelCase = key.replace('''bn''' , '''batch_norm''' )
__UpperCAmelCase = val
# rename keys
__UpperCAmelCase = create_rename_keys(snake_case_ )
for src, dest in rename_keys:
rename_key(snake_case_ , snake_case_ , snake_case_ )
model.load_state_dict(snake_case_ )
# verify on image
__UpperCAmelCase = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
__UpperCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert('''RGB''' )
__UpperCAmelCase = SegformerImageProcessor()
__UpperCAmelCase = processor(snake_case_ , return_tensors='''pt''' ).pixel_values
with torch.no_grad():
__UpperCAmelCase = model(snake_case_ )
if model_name == "upernet-convnext-tiny":
__UpperCAmelCase = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
__UpperCAmelCase = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
__UpperCAmelCase = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
__UpperCAmelCase = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
__UpperCAmelCase = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print('''Logits:''' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
print(F'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(snake_case_ )
if push_to_hub:
print(F'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(F'''openmmlab/{model_name}''' )
processor.push_to_hub(F'''openmmlab/{model_name}''' )
if __name__ == "__main__":
_lowercase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-convnext-tiny',
type=str,
choices=[f"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']],
help='Name of the ConvNext UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_lowercase : Dict = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 49 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
_lowercase : int = logging.get_logger(__name__)
_lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_lowercase : str = {
'vocab_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'
),
},
}
_lowercase : int = {
'yjernite/retribert-base-uncased': 5_12,
}
_lowercase : Any = {
'yjernite/retribert-base-uncased': {'do_lower_case': True},
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : str = VOCAB_FILES_NAMES
a__ : Dict = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : str = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[Any] = RetriBertTokenizer
a__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ):
super().__init__(
_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , )
__UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars
):
__UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = strip_accents
__UpperCAmelCase = tokenize_chinese_chars
__UpperCAmelCase = normalizer_class(**_lowercase )
__UpperCAmelCase = do_lower_case
def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ):
__UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ):
__UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase )
return tuple(_lowercase )
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :List[str] ):
__UpperCAmelCase = len(snake_case_ )
for i in range(length - 1 ):
__UpperCAmelCase = i
for k in range(i + 1 , snake_case_ ):
if collection[k] < collection[least]:
__UpperCAmelCase = k
if least != i:
__UpperCAmelCase , __UpperCAmelCase = (collection[i], collection[least])
return collection
if __name__ == "__main__":
_lowercase : Dict = input('Enter numbers separated by a comma:\n').strip()
_lowercase : Optional[Any] = [int(item) for item in user_input.split(',')]
print(selection_sort(unsorted))
| 49 |
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
_lowercase : Dict = 'bart'
_lowercase : Dict = True
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
if LOAD_DENSE_INDEX:
__UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__UpperCAmelCase = qar_model.eval()
else:
__UpperCAmelCase , __UpperCAmelCase = (None, None)
if MODEL_TYPE == "bart":
__UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__UpperCAmelCase = sas_model.eval()
else:
__UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
if LOAD_DENSE_INDEX:
__UpperCAmelCase = faiss.StandardGpuResources()
__UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__UpperCAmelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__UpperCAmelCase = faiss.IndexFlatIP(128 )
__UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ )
wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU
else:
__UpperCAmelCase , __UpperCAmelCase = (None, None)
__UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
__UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__UpperCAmelCase = elia['''train_eli5''']
__UpperCAmelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__UpperCAmelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(snake_case_ )
return (elia_train, eli5_train_q_index)
_lowercase ,_lowercase ,_lowercase : Dict = load_indexes()
_lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models()
_lowercase ,_lowercase : Tuple = load_train_data()
def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ):
__UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ )
__UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]]
return nn_examples
def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ):
if source == "none":
__UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
else:
__UpperCAmelCase , __UpperCAmelCase = query_es_index(
snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , )
__UpperCAmelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda snake_case_ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None),
} )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ):
with torch.no_grad():
__UpperCAmelCase = qa_sas_generate(
snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title('Long Form Question Answering with ELI5')
# Start sidebar
_lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'
_lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
_lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n'
st.sidebar.markdown(description, unsafe_allow_html=True)
_lowercase : str = [
'Answer the question',
'View the retrieved document only',
'View the most similar ELI5 question and answer',
'Show me everything, please!',
]
_lowercase : Optional[int] = st.sidebar.checkbox('Demo options')
if demo_options:
_lowercase : Tuple = st.sidebar.selectbox(
'',
action_list,
index=3,
)
_lowercase : List[str] = action_list.index(action_st)
_lowercase : str = st.sidebar.selectbox(
'',
['Show full text of passages', 'Show passage section titles'],
index=0,
)
_lowercase : int = show_type == 'Show full text of passages'
else:
_lowercase : str = 3
_lowercase : List[Any] = True
_lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options')
if retrieval_options:
_lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n '
st.sidebar.markdown(retriever_info)
_lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none'])
_lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed'])
else:
_lowercase : List[str] = 'wiki40b'
_lowercase : Optional[int] = 'dense'
_lowercase : List[Any] = 'beam'
_lowercase : str = 2
_lowercase : Optional[int] = 64
_lowercase : Union[str, Any] = 2_56
_lowercase : List[str] = None
_lowercase : Optional[int] = None
_lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options')
if generate_options:
_lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n '
st.sidebar.markdown(generate_info)
_lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled'])
_lowercase : Optional[int] = st.sidebar.slider(
'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None
)
_lowercase : Optional[Any] = st.sidebar.slider(
'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None
)
if sampled == "beam":
_lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
_lowercase : List[Any] = st.sidebar.slider(
'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
_lowercase : Dict = st.sidebar.slider(
'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
_lowercase : Union[str, Any] = None
# start main text
_lowercase : Optional[int] = [
'<MY QUESTION>',
'How do people make chocolate?',
'Why do we get a fever when we are sick?',
'How can different animals perceive different colors?',
'What is natural language processing?',
'What\'s the best way to treat a sunburn?',
'What exactly are vitamins ?',
'How does nuclear energy provide electricity?',
'What\'s the difference between viruses and bacteria?',
'Why are flutes classified as woodwinds when most of them are made out of metal ?',
'Why do people like drinking coffee even though it tastes so bad?',
'What happens when wine ages? How does it make the wine taste better?',
'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?',
'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?',
'How does New Zealand have so many large bird predators?',
]
_lowercase : Optional[int] = st.selectbox(
'What would you like to ask? ---- select <MY QUESTION> to enter a new query',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
_lowercase : Optional[Any] = st.text_input('Enter your question here:', '')
else:
_lowercase : int = question_s
if st.button('Show me!'):
if action in [0, 1, 3]:
if index_type == "mixed":
_lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10)
_lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10)
_lowercase : Dict = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
_lowercase : Any = support_list[:10]
_lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list])
else:
_lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
_lowercase ,_lowercase : Union[str, Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == 'sampled'),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('### The model generated answer is:')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:')
for i, res in enumerate(support_list):
_lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_'))
_lowercase : Any = res[1].strip()
if sec_titles == "":
_lowercase : Dict = '[{}]({})'.format(res[0], wiki_url)
else:
_lowercase : List[Any] = sec_titles.split(' & ')
_lowercase : int = ' & '.join(
['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list]
)
st.markdown(
'{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True
)
if action in [2, 3]:
_lowercase : List[Any] = find_nearest_training(question)
_lowercase : Tuple = nn_train_list[0]
st.markdown(
'--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title'])
)
_lowercase : int = [
'{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != '']))
for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score']))
if i == 0 or sc > 2
]
st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st)))
_lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n'
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 49 | 1 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Union[str, Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
__UpperCAmelCase = TextIteratorStreamer(_lowercase )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowercase , _lowercase )
def a ( self : str ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :]
__UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Tuple ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
__UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase )
model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
__UpperCAmelCase = cs.out[:-1] # Remove the final "\n"
__UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def a ( self : Tuple ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowercase ):
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
| 49 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : List[str] = CycleDiffusionPipeline
a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
}
a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} )
a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS
a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
def a ( self : Optional[int] ):
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__UpperCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__UpperCAmelCase = CLIPTextModel(_lowercase )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ):
__UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = image / 2 + 0.5
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''An astronaut riding an elephant''',
'''source_prompt''': '''An astronaut riding a horse''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''eta''': 0.1,
'''strength''': 0.8,
'''guidance_scale''': 3,
'''source_guidance_scale''': 1,
'''output_type''': '''numpy''',
}
return inputs
def a ( self : Optional[int] ):
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = CycleDiffusionPipeline(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.get_dummy_components()
for name, module in components.items():
if hasattr(_lowercase , '''half''' ):
__UpperCAmelCase = module.half()
__UpperCAmelCase = CycleDiffusionPipeline(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def a ( self : Tuple ):
return super().test_save_load_local()
@unittest.skip('''non-deterministic pipeline''' )
def a ( self : List[str] ):
return super().test_inference_batch_single_identical()
@skip_mps
def a ( self : int ):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def a ( self : str ):
return super().test_save_load_optional_components()
@skip_mps
def a ( self : int ):
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : int ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' )
__UpperCAmelCase = init_image.resize((5_12, 5_12) )
__UpperCAmelCase = '''CompVis/stable-diffusion-v1-4'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
__UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(
_lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A black colored car'''
__UpperCAmelCase = '''A blue colored car'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5E-1
def a ( self : Optional[Any] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' )
__UpperCAmelCase = init_image.resize((5_12, 5_12) )
__UpperCAmelCase = '''CompVis/stable-diffusion-v1-4'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
__UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A black colored car'''
__UpperCAmelCase = '''A blue colored car'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
assert np.abs(image - expected_image ).max() < 2E-2
| 49 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : str = KandinskyInpaintPipeline
a__ : Tuple = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"]
a__ : List[str] = [
"prompt",
"negative_prompt",
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
a__ : Optional[Any] = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
a__ : List[Any] = False
@property
def a ( self : Optional[int] ):
return 32
@property
def a ( self : List[str] ):
return 32
@property
def a ( self : Union[str, Any] ):
return self.time_input_dim
@property
def a ( self : Union[str, Any] ):
return self.time_input_dim * 4
@property
def a ( self : Union[str, Any] ):
return 1_00
@property
def a ( self : Dict ):
__UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' )
return tokenizer
@property
def a ( self : List[str] ):
torch.manual_seed(0 )
__UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__UpperCAmelCase = MultilingualCLIP(_lowercase )
__UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def a ( self : Optional[int] ):
torch.manual_seed(0 )
__UpperCAmelCase = {
'''in_channels''': 9,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''text_image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''text_image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
__UpperCAmelCase = UNetaDConditionModel(**_lowercase )
return model
@property
def a ( self : List[str] ):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def a ( self : int ):
torch.manual_seed(0 )
__UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def a ( self : List[Any] ):
__UpperCAmelCase = self.dummy_text_encoder
__UpperCAmelCase = self.dummy_tokenizer
__UpperCAmelCase = self.dummy_unet
__UpperCAmelCase = self.dummy_movq
__UpperCAmelCase = DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_lowercase , )
__UpperCAmelCase = {
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def a ( self : Union[str, Any] , _lowercase : List[Any] , _lowercase : Tuple=0 ):
__UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowercase )
# create init_image
__UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__UpperCAmelCase = Image.fromarray(np.uinta(_lowercase ) ).convert('''RGB''' ).resize((2_56, 2_56) )
# create mask
__UpperCAmelCase = np.ones((64, 64) , dtype=np.floataa )
__UpperCAmelCase = 0
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''horse''',
'''image''': init_image,
'''mask_image''': mask,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 2,
'''guidance_scale''': 4.0,
'''output_type''': '''np''',
}
return inputs
def a ( self : Union[str, Any] ):
__UpperCAmelCase = '''cpu'''
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = self.pipeline_class(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = pipe(**self.get_dummy_inputs(_lowercase ) )
__UpperCAmelCase = output.images
__UpperCAmelCase = pipe(
**self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0]
__UpperCAmelCase = image[0, -3:, -3:, -1]
__UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
__UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def a ( self : Any ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : Tuple ):
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
__UpperCAmelCase = np.ones((7_68, 7_68) , dtype=np.floataa )
__UpperCAmelCase = 0
__UpperCAmelCase = '''a hat'''
__UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(_lowercase )
__UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa )
__UpperCAmelCase = pipeline.to(_lowercase )
pipeline.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__UpperCAmelCase , __UpperCAmelCase = pipe_prior(
_lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
__UpperCAmelCase = pipeline(
_lowercase , image=_lowercase , mask_image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='''np''' , )
__UpperCAmelCase = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(_lowercase , _lowercase )
| 49 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowercase : Optional[Any] = logging.get_logger(__name__)
_lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'}
_lowercase : Tuple = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
}
_lowercase : List[str] = {
'google/rembert': 2_56,
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Union[str, Any] = VOCAB_FILES_NAMES
a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ):
super().__init__(
do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = remove_space
__UpperCAmelCase = keep_accents
__UpperCAmelCase = vocab_file
__UpperCAmelCase = spm.SentencePieceProcessor()
self.sp_model.Load(_lowercase )
@property
def a ( self : int ):
return len(self.sp_model )
def a ( self : Tuple ):
__UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Tuple ):
__UpperCAmelCase = self.__dict__.copy()
__UpperCAmelCase = None
return state
def __setstate__( self : Tuple , _lowercase : str ):
__UpperCAmelCase = d
__UpperCAmelCase = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ):
__UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase )
return pieces
def a ( self : int , _lowercase : List[str] ):
return self.sp_model.PieceToId(_lowercase )
def a ( self : List[str] , _lowercase : str ):
return self.sp_model.IdToPiece(_lowercase )
def a ( self : Any , _lowercase : Dict ):
__UpperCAmelCase = self.sp_model.decode_pieces(_lowercase )
return out_string
def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1]
return [1] + ([0] * len(_lowercase )) + [1]
def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ):
if not os.path.isdir(_lowercase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) )
return
__UpperCAmelCase = os.path.join(
_lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ):
copyfile(self.vocab_file , _lowercase )
return (out_vocab_file,)
| 49 | 1 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_lowercase : Union[str, Any] = logging.get_logger(__name__)
_lowercase : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'ctc_proj',
'mask_emb': 'masked_spec_embed',
}
_lowercase : List[Any] = [
'ctc_proj',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :Tuple , snake_case_ :Optional[int] , snake_case_ :List[str] ):
for attribute in key.split('''.''' ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
__UpperCAmelCase = '''lm_head'''
__UpperCAmelCase = getattr(snake_case_ , snake_case_ )
if weight_type is not None:
__UpperCAmelCase = getattr(snake_case_ , snake_case_ ).shape
else:
__UpperCAmelCase = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__UpperCAmelCase = value
elif weight_type == "weight_g":
__UpperCAmelCase = value
elif weight_type == "weight_v":
__UpperCAmelCase = value
elif weight_type == "bias":
__UpperCAmelCase = value
else:
__UpperCAmelCase = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def lowercase__ ( snake_case_ :str , snake_case_ :Tuple , snake_case_ :Optional[Any] ):
__UpperCAmelCase = []
__UpperCAmelCase = fairseq_model.state_dict()
__UpperCAmelCase = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
__UpperCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == '''group''' , )
__UpperCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
__UpperCAmelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__UpperCAmelCase = True
if "*" in mapped_key:
__UpperCAmelCase = name.split(snake_case_ )[0].split('''.''' )[-2]
__UpperCAmelCase = mapped_key.replace('''*''' , snake_case_ )
if "weight_g" in name:
__UpperCAmelCase = '''weight_g'''
elif "weight_v" in name:
__UpperCAmelCase = '''weight_v'''
elif "bias" in name:
__UpperCAmelCase = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCAmelCase = '''weight'''
else:
__UpperCAmelCase = None
set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Union[str, Any] , snake_case_ :Optional[int] , snake_case_ :int , snake_case_ :List[Any] ):
__UpperCAmelCase = full_name.split('''conv_layers.''' )[-1]
__UpperCAmelCase = name.split('''.''' )
__UpperCAmelCase = int(items[0] )
__UpperCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__UpperCAmelCase = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__UpperCAmelCase = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__UpperCAmelCase = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__UpperCAmelCase = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[int] , snake_case_ :List[str]=None , snake_case_ :Optional[Any]=None , snake_case_ :Optional[int]=True ):
if config_path is not None:
__UpperCAmelCase = UniSpeechConfig.from_pretrained(snake_case_ )
else:
__UpperCAmelCase = UniSpeechConfig()
if is_finetuned:
if dict_path:
__UpperCAmelCase = Dictionary.load_from_json(snake_case_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCAmelCase = target_dict.pad_index
__UpperCAmelCase = target_dict.bos_index
__UpperCAmelCase = target_dict.eos_index
__UpperCAmelCase = len(target_dict.symbols )
__UpperCAmelCase = os.path.join(snake_case_ , '''vocab.json''' )
if not os.path.isdir(snake_case_ ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case_ ) )
return
os.makedirs(snake_case_ , exist_ok=snake_case_ )
__UpperCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCAmelCase = 42
__UpperCAmelCase = 43
with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(snake_case_ , snake_case_ )
__UpperCAmelCase = WavaVecaPhonemeCTCTokenizer(
snake_case_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case_ , )
__UpperCAmelCase = True if config.feat_extract_norm == '''layer''' else False
__UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , )
__UpperCAmelCase = WavaVecaProcessor(feature_extractor=snake_case_ , tokenizer=snake_case_ )
processor.save_pretrained(snake_case_ )
__UpperCAmelCase = UniSpeechForCTC(snake_case_ )
else:
__UpperCAmelCase = UniSpeechForPreTraining(snake_case_ )
if is_finetuned:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} )
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
__UpperCAmelCase = model[0].eval()
recursively_load_weights(snake_case_ , snake_case_ , snake_case_ )
hf_unispeech.save_pretrained(snake_case_ )
if __name__ == "__main__":
_lowercase : Any = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
_lowercase : List[str] = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 49 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : List[Any] = {
'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Dict = ['VivitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] = [
'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'VivitModel',
'VivitPreTrainedModel',
'VivitForVideoClassification',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : int = LEDTokenizer
a__ : Optional[Any] = LEDTokenizerFast
a__ : List[Any] = True
def a ( self : int ):
super().setUp()
__UpperCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__UpperCAmelCase = dict(zip(_lowercase , range(len(_lowercase ) ) ) )
__UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__UpperCAmelCase = {'''unk_token''': '''<unk>'''}
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(_lowercase ) )
def a ( self : str , **_lowercase : Any ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase )
def a ( self : Optional[int] , **_lowercase : int ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase )
def a ( self : Union[str, Any] , _lowercase : List[Any] ):
return "lower newer", "lower newer"
@cached_property
def a ( self : int ):
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def a ( self : Union[str, Any] ):
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def a ( self : Tuple ):
__UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
__UpperCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase = tokenizer(_lowercase , max_length=len(_lowercase ) , padding=_lowercase , return_tensors='''pt''' )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(_lowercase , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase = tokenizer(_lowercase , padding=_lowercase , return_tensors='''pt''' )
self.assertIn('''input_ids''' , _lowercase )
self.assertIn('''attention_mask''' , _lowercase )
self.assertNotIn('''labels''' , _lowercase )
self.assertNotIn('''decoder_attention_mask''' , _lowercase )
@require_torch
def a ( self : Union[str, Any] ):
__UpperCAmelCase = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase = tokenizer(text_target=_lowercase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def a ( self : Any ):
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase = tokenizer(
['''I am a small frog''' * 10_24, '''I am a small frog'''] , padding=_lowercase , truncation=_lowercase , return_tensors='''pt''' )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual(batch.input_ids.shape , (2, 51_22) )
@require_torch
def a ( self : str ):
__UpperCAmelCase = ['''A long paragraph for summarization.''']
__UpperCAmelCase = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = tokenizer(text_target=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = inputs['''input_ids''']
__UpperCAmelCase = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def a ( self : List[str] ):
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase = ['''Summary of the text.''', '''Another summary.''']
__UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
__UpperCAmelCase = tokenizer(_lowercase , padding=_lowercase )
__UpperCAmelCase = [[0] * len(_lowercase ) for x in encoded_output['''input_ids''']]
__UpperCAmelCase = tokenizer.pad(_lowercase )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , _lowercase )
def a ( self : Tuple ):
pass
def a ( self : Dict ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = '''A, <mask> AllenNLP sentence.'''
__UpperCAmelCase = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase )
__UpperCAmelCase = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
__UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
__UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
_lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
_lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 49 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
_lowercase : List[Any] = {
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def lowercase__ ( snake_case_ :Union[str, Any] ):
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def lowercase__ ( snake_case_ :int , snake_case_ :Dict ):
if args.student_type == "roberta":
__UpperCAmelCase = False
elif args.student_type == "gpt2":
__UpperCAmelCase = False
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ):
if args.student_type == "roberta":
__UpperCAmelCase = False
def lowercase__ ( ):
__UpperCAmelCase = argparse.ArgumentParser(description='''Training''' )
parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' )
parser.add_argument(
'''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' )
parser.add_argument(
'''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , )
parser.add_argument(
'''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , )
parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' )
parser.add_argument(
'''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' )
parser.add_argument(
'''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' )
parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' )
parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' )
parser.add_argument(
'''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , )
parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' )
parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' )
parser.add_argument(
'''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' )
parser.add_argument(
'''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , )
parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' )
parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' )
parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' )
parser.add_argument(
'''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , )
parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' )
parser.add_argument(
'''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , )
parser.add_argument(
'''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , )
parser.add_argument(
'''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , )
parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' )
parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' )
parser.add_argument(
'''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , )
parser.add_argument(
'''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , )
parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' )
parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' )
parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' )
parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' )
parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' )
parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' )
parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' )
__UpperCAmelCase = parser.parse_args()
sanity_checks(snake_case_ )
# ARGS #
init_gpu_params(snake_case_ )
set_seed(snake_case_ )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
''' itUse `--force` if you want to overwrite it''' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f:
json.dump(vars(snake_case_ ) , snake_case_ , indent=4 )
git_log(args.dump_path )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
__UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name )
__UpperCAmelCase = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
__UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ )
__UpperCAmelCase = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
__UpperCAmelCase = special_tok_ids
__UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , '''rb''' ) as fp:
__UpperCAmelCase = pickle.load(snake_case_ )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , '''rb''' ) as fp:
__UpperCAmelCase = pickle.load(snake_case_ )
__UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
__UpperCAmelCase = 0.0 # do not predict special tokens
__UpperCAmelCase = torch.from_numpy(snake_case_ )
else:
__UpperCAmelCase = None
__UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ )
logger.info('''Data loader created.''' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
__UpperCAmelCase = student_config_class.from_pretrained(args.student_config )
__UpperCAmelCase = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
__UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ )
else:
__UpperCAmelCase = student_model_class(snake_case_ )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('''Student loaded.''' )
# TEACHER #
__UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(snake_case_ , snake_case_ )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(snake_case_ , snake_case_ )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
__UpperCAmelCase = Distiller(
params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ )
distiller.train()
logger.info('''Let\'s go get some drinks.''' )
if __name__ == "__main__":
main()
| 49 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : int = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : Tuple = 25_00_04
_lowercase : Optional[Any] = 25_00_20
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : List[str] = MBartaaTokenizer
a__ : List[str] = MBartaaTokenizerFast
a__ : Union[str, Any] = True
a__ : Optional[Any] = True
def a ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self : Any ):
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase )
def a ( self : List[str] ):
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_lowercase ) , 10_54 )
def a ( self : Union[str, Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def a ( self : List[Any] ):
__UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase )
self.assertListEqual(
_lowercase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertListEqual(
_lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def a ( self : List[str] ):
# fmt: off
__UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def a ( self : Any ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it save with the same files
self.assertSequenceEqual(_lowercase , _lowercase )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase )
__UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase )
__UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowercase , _lowercase ) )
shutil.rmtree(_lowercase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
a__ : Tuple = "facebook/mbart-large-50-one-to-many-mmt"
a__ : Optional[Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
a__ : List[str] = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
a__ : Dict = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def a ( cls : Tuple ):
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
__UpperCAmelCase = 1
return cls
def a ( self : Tuple ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 )
def a ( self : int ):
__UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
def a ( self : Union[str, Any] ):
self.assertIn(_lowercase , self.tokenizer.all_special_ids )
__UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
__UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase )
self.assertEqual(_lowercase , _lowercase )
self.assertNotIn(self.tokenizer.eos_token , _lowercase )
def a ( self : Any ):
__UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _lowercase )
__UpperCAmelCase = 10
__UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0]
self.assertEqual(ids[0] , _lowercase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowercase ) , _lowercase )
def a ( self : Dict ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] )
def a ( self : Any ):
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowercase )
__UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase )
@require_torch
def a ( self : Dict ):
__UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self : Optional[int] ):
__UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowercase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' )
__UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' )
__UpperCAmelCase = targets['''input_ids''']
__UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self : List[str] ):
__UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_lowercase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[25_00_04, 62, 30_34, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_00_01,
} , )
| 49 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int = 4_000_000 ):
__UpperCAmelCase = [0, 1]
__UpperCAmelCase = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
__UpperCAmelCase = 0
for j in range(len(snake_case_ ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(f"""{solution() = }""")
| 49 |
"""simple docstring"""
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
_lowercase : Union[str, Any] = logging.getLogger(__name__)
_lowercase : Optional[Any] = 'Hello world! cécé herlolip'
_lowercase : str = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def lowercase__ ( snake_case_ :Any , snake_case_ :int ):
__UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , )
__UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage )
__UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ )
original.eval()
__UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
__UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
__UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
__UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 )
__UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
__UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
__UpperCAmelCase = encoder_input_ids
__UpperCAmelCase = decoder_input_ids
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
__UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
__UpperCAmelCase = original.generator(snake_case_ )
__UpperCAmelCase = new_model(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
__UpperCAmelCase = new_model.generator(snake_case_ )
__UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) )
__UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) )
__UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
_lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
_lowercase : List[str] = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 49 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=_lowerCAmelCase ):
a__ : Tuple = ["torch", "transformers", "onnx"]
def __init__( self : Optional[int] , *_lowercase : int , **_lowercase : Optional[int] ):
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : Tuple , *_lowercase : List[Any] , **_lowercase : Tuple ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : List[str] , *_lowercase : Optional[int] , **_lowercase : List[Any] ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class _UpperCAmelCase ( metaclass=_lowerCAmelCase ):
a__ : Optional[int] = ["torch", "transformers", "onnx"]
def __init__( self : Tuple , *_lowercase : Optional[Any] , **_lowercase : List[Any] ):
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : Optional[Any] , *_lowercase : Tuple , **_lowercase : Tuple ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : Dict , *_lowercase : List[Any] , **_lowercase : Union[str, Any] ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class _UpperCAmelCase ( metaclass=_lowerCAmelCase ):
a__ : Optional[Any] = ["torch", "transformers", "onnx"]
def __init__( self : List[str] , *_lowercase : int , **_lowercase : List[Any] ):
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : Any , *_lowercase : str , **_lowercase : Any ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : int , *_lowercase : Dict , **_lowercase : List[Any] ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class _UpperCAmelCase ( metaclass=_lowerCAmelCase ):
a__ : str = ["torch", "transformers", "onnx"]
def __init__( self : str , *_lowercase : str , **_lowercase : Optional[int] ):
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : Union[str, Any] , *_lowercase : Any , **_lowercase : Tuple ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : Tuple , *_lowercase : Tuple , **_lowercase : str ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class _UpperCAmelCase ( metaclass=_lowerCAmelCase ):
a__ : int = ["torch", "transformers", "onnx"]
def __init__( self : List[str] , *_lowercase : List[str] , **_lowercase : Any ):
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : List[str] , *_lowercase : List[str] , **_lowercase : Union[str, Any] ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : int , *_lowercase : Any , **_lowercase : Optional[int] ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class _UpperCAmelCase ( metaclass=_lowerCAmelCase ):
a__ : Any = ["torch", "transformers", "onnx"]
def __init__( self : int , *_lowercase : Any , **_lowercase : Optional[int] ):
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : Tuple , *_lowercase : Any , **_lowercase : Optional[int] ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a ( cls : Optional[Any] , *_lowercase : Optional[int] , **_lowercase : int ):
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
| 49 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
@property
def a ( self : List[str] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a ( self : Dict ):
__UpperCAmelCase = ort.SessionOptions()
__UpperCAmelCase = False
return options
def a ( self : Any ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
__UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A red cat sitting on a park bench'''
__UpperCAmelCase = np.random.RandomState(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def a ( self : Optional[int] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
__UpperCAmelCase = LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
__UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A red cat sitting on a park bench'''
__UpperCAmelCase = np.random.RandomState(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 49 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
_lowercase : str = 'platform'
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :Tuple=None , snake_case_ :Optional[Any]=None , snake_case_ :Union[str, Any]=None , snake_case_ :Optional[int]=None , snake_case_ :Union[str, Any]=None , snake_case_ :Dict=None , ):
if attention_mask is None:
__UpperCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
__UpperCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
__UpperCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _UpperCAmelCase :
def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : str=13 , _lowercase : Dict=7 , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=False , _lowercase : str=99 , _lowercase : List[str]=16 , _lowercase : List[str]=2 , _lowercase : str=4 , _lowercase : Optional[Any]=4 , _lowercase : List[Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : List[Any]=0.1 , _lowercase : List[Any]=32 , _lowercase : List[str]=2 , _lowercase : Optional[Any]=1 , _lowercase : Any=0 , _lowercase : Tuple=0.02 , ):
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = seq_length
__UpperCAmelCase = is_training
__UpperCAmelCase = use_labels
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_act
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = eos_token_id
__UpperCAmelCase = pad_token_id
__UpperCAmelCase = bos_token_id
__UpperCAmelCase = initializer_range
def a ( self : List[str] ):
__UpperCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
__UpperCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
__UpperCAmelCase = shift_tokens_right(_lowercase , 1 , 2 )
__UpperCAmelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowercase , )
__UpperCAmelCase = prepare_blenderbot_inputs_dict(_lowercase , _lowercase , _lowercase )
return config, inputs_dict
def a ( self : Tuple ):
__UpperCAmelCase , __UpperCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : List[str] ):
__UpperCAmelCase = 20
__UpperCAmelCase = model_class_name(_lowercase )
__UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] )
__UpperCAmelCase , __UpperCAmelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
__UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase )
__UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
__UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , )
__UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
__UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , )
__UpperCAmelCase = model.decode(_lowercase , _lowercase )
__UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
def a ( self : str , _lowercase : Any , _lowercase : List[str] , _lowercase : List[Any] ):
__UpperCAmelCase = 20
__UpperCAmelCase = model_class_name(_lowercase )
__UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] )
__UpperCAmelCase , __UpperCAmelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
__UpperCAmelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase )
__UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , )
__UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
__UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , )
__UpperCAmelCase = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase )
__UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
@require_flax
class _UpperCAmelCase ( unittest.TestCase ):
a__ : int = 99
def a ( self : Optional[Any] ):
__UpperCAmelCase = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
__UpperCAmelCase = input_ids.shape[0]
__UpperCAmelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def a ( self : str ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._get_config_and_data()
__UpperCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(_lowercase )
__UpperCAmelCase = lm_model(input_ids=_lowercase )
__UpperCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , _lowercase )
def a ( self : Tuple ):
__UpperCAmelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
__UpperCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(_lowercase )
__UpperCAmelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
__UpperCAmelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
__UpperCAmelCase = lm_model(input_ids=_lowercase , decoder_input_ids=_lowercase )
__UpperCAmelCase = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , _lowercase )
def a ( self : str ):
__UpperCAmelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
__UpperCAmelCase = shift_tokens_right(_lowercase , 1 , 2 )
__UpperCAmelCase = np.equal(_lowercase , 1 ).astype(np.floataa ).sum()
__UpperCAmelCase = np.equal(_lowercase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(_lowercase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase , _lowerCAmelCase ):
a__ : List[Any] = True
a__ : Union[str, Any] = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
a__ : Dict = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def a ( self : Optional[int] ):
__UpperCAmelCase = FlaxBlenderbotSmallModelTester(self )
def a ( self : Optional[Any] ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase )
def a ( self : int ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase )
def a ( self : List[Any] ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase )
__UpperCAmelCase = model_class(_lowercase )
@jax.jit
def encode_jitted(_lowercase : int , _lowercase : str=None , **_lowercase : List[Any] ):
return model.encode(input_ids=_lowercase , attention_mask=_lowercase )
with self.subTest('''JIT Enabled''' ):
__UpperCAmelCase = encode_jitted(**_lowercase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
__UpperCAmelCase = encode_jitted(**_lowercase ).to_tuple()
self.assertEqual(len(_lowercase ) , len(_lowercase ) )
for jitted_output, output in zip(_lowercase , _lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def a ( self : Optional[int] ):
__UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase = model_class(_lowercase )
__UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] )
__UpperCAmelCase = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(_lowercase : Optional[int] , _lowercase : Tuple , _lowercase : List[str] ):
return model.decode(
decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , )
with self.subTest('''JIT Enabled''' ):
__UpperCAmelCase = decode_jitted(**_lowercase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
__UpperCAmelCase = decode_jitted(**_lowercase ).to_tuple()
self.assertEqual(len(_lowercase ) , len(_lowercase ) )
for jitted_output, output in zip(_lowercase , _lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def a ( self : Dict ):
for model_class_name in self.all_model_classes:
__UpperCAmelCase = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
__UpperCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id
__UpperCAmelCase = model(_lowercase )
self.assertIsNotNone(_lowercase )
| 49 |
"""simple docstring"""
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowercase__ ( snake_case_ :Dict , snake_case_ :int ):
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
__UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
__UpperCAmelCase = features.copy()
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ):
if issubclass(snake_case_ , snake_case_ ):
__UpperCAmelCase = jsonl_path
elif issubclass(snake_case_ , snake_case_ ):
__UpperCAmelCase = [jsonl_path]
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ):
assert isinstance(snake_case_ , snake_case_ )
for split in splits:
__UpperCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ):
if split:
__UpperCAmelCase = {split: jsonl_path}
else:
__UpperCAmelCase = '''train'''
__UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path}
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowercase__ ( snake_case_ :Optional[int] ):
return json.load(snake_case_ )
def lowercase__ ( snake_case_ :Any ):
return [json.loads(snake_case_ ) for line in buffer]
class _UpperCAmelCase :
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json_function(_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(exported_content[0] , _lowercase )
assert len(_lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json(_lowercase )
assert isinstance(_lowercase , _lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(_lowercase ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json_function(_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(exported_content[0] , _lowercase )
assert len(_lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json(_lowercase )
assert isinstance(_lowercase , _lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(_lowercase ) == 10
def a ( self : int , _lowercase : Any ):
with pytest.raises(_lowercase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ):
__UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}'''
__UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' )
JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write()
with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f:
__UpperCAmelCase = f.read()
with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f:
__UpperCAmelCase = f.read()
assert exported_content == original_content
| 49 | 1 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "char"
a__ : List[Any] = "bpe"
a__ : str = "wp"
_lowercase : int = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Optional[Any] = ["image_processor", "char_tokenizer"]
a__ : Dict = "ViTImageProcessor"
a__ : Dict = "MgpstrTokenizer"
def __init__( self : Union[str, Any] , _lowercase : Optional[int]=None , _lowercase : Union[str, Any]=None , **_lowercase : List[str] ):
__UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _lowercase , )
__UpperCAmelCase = kwargs.pop('''feature_extractor''' )
__UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
__UpperCAmelCase = tokenizer
__UpperCAmelCase = AutoTokenizer.from_pretrained('''gpt2''' )
__UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-uncased''' )
super().__init__(_lowercase , _lowercase )
def __call__( self : Union[str, Any] , _lowercase : Optional[int]=None , _lowercase : Optional[int]=None , _lowercase : Tuple=None , **_lowercase : Tuple ):
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
__UpperCAmelCase = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase )
if text is not None:
__UpperCAmelCase = self.char_tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase )
if text is None:
return inputs
elif images is None:
return encodings
else:
__UpperCAmelCase = encodings['''input_ids''']
return inputs
def a ( self : Tuple , _lowercase : Tuple ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = sequences
__UpperCAmelCase = char_preds.size(0 )
__UpperCAmelCase , __UpperCAmelCase = self._decode_helper(_lowercase , '''char''' )
__UpperCAmelCase , __UpperCAmelCase = self._decode_helper(_lowercase , '''bpe''' )
__UpperCAmelCase , __UpperCAmelCase = self._decode_helper(_lowercase , '''wp''' )
__UpperCAmelCase = []
__UpperCAmelCase = []
for i in range(_lowercase ):
__UpperCAmelCase = [char_scores[i], bpe_scores[i], wp_scores[i]]
__UpperCAmelCase = [char_strs[i], bpe_strs[i], wp_strs[i]]
__UpperCAmelCase = scores.index(max(_lowercase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
__UpperCAmelCase = {}
__UpperCAmelCase = final_strs
__UpperCAmelCase = final_scores
__UpperCAmelCase = char_strs
__UpperCAmelCase = bpe_strs
__UpperCAmelCase = wp_strs
return out
def a ( self : Union[str, Any] , _lowercase : Any , _lowercase : str ):
if format == DecodeType.CHARACTER:
__UpperCAmelCase = self.char_decode
__UpperCAmelCase = 1
__UpperCAmelCase = '''[s]'''
elif format == DecodeType.BPE:
__UpperCAmelCase = self.bpe_decode
__UpperCAmelCase = 2
__UpperCAmelCase = '''#'''
elif format == DecodeType.WORDPIECE:
__UpperCAmelCase = self.wp_decode
__UpperCAmelCase = 1_02
__UpperCAmelCase = '''[SEP]'''
else:
raise ValueError(F'''Format {format} is not supported.''' )
__UpperCAmelCase , __UpperCAmelCase = [], []
__UpperCAmelCase = pred_logits.size(0 )
__UpperCAmelCase = pred_logits.size(1 )
__UpperCAmelCase , __UpperCAmelCase = pred_logits.topk(1 , dim=-1 , largest=_lowercase , sorted=_lowercase )
__UpperCAmelCase = preds_index.view(-1 , _lowercase )[:, 1:]
__UpperCAmelCase = decoder(_lowercase )
__UpperCAmelCase , __UpperCAmelCase = torch.nn.functional.softmax(_lowercase , dim=2 ).max(dim=2 )
__UpperCAmelCase = preds_max_prob[:, 1:]
for index in range(_lowercase ):
__UpperCAmelCase = preds_str[index].find(_lowercase )
__UpperCAmelCase = preds_str[index][:pred_eos]
__UpperCAmelCase = preds_index[index].cpu().tolist()
__UpperCAmelCase = pred_index.index(_lowercase ) if eos_token in pred_index else -1
__UpperCAmelCase = preds_max_prob[index][: pred_eos_index + 1]
__UpperCAmelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(_lowercase )
conf_scores.append(_lowercase )
return dec_strs, conf_scores
def a ( self : List[Any] , _lowercase : int ):
__UpperCAmelCase = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(_lowercase )]
return decode_strs
def a ( self : Optional[Any] , _lowercase : str ):
return self.bpe_tokenizer.batch_decode(_lowercase )
def a ( self : int , _lowercase : str ):
__UpperCAmelCase = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(_lowercase )]
return decode_strs
| 49 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Union[str, Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
__UpperCAmelCase = TextIteratorStreamer(_lowercase )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowercase , _lowercase )
def a ( self : str ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :]
__UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Tuple ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
__UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase )
model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
__UpperCAmelCase = cs.out[:-1] # Remove the final "\n"
__UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def a ( self : Tuple ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowercase ):
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
| 49 | 1 |
"""simple docstring"""
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Tuple , _lowercase : str , _lowercase : Union[str, Any]=None , _lowercase : Tuple=True , _lowercase : Tuple=None , **_lowercase : Optional[Any] ):
__UpperCAmelCase = parent
__UpperCAmelCase = config_class
__UpperCAmelCase = has_text_modality
__UpperCAmelCase = kwargs
__UpperCAmelCase = common_properties
def a ( self : Tuple ):
__UpperCAmelCase = self.config_class(**self.inputs_dict )
__UpperCAmelCase = (
['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers''']
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(['''vocab_size'''] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(_lowercase , _lowercase ) , msg=F'''`{prop}` does not exist''' )
# Test that config has the common properties as setter
for idx, name in enumerate(_lowercase ):
try:
setattr(_lowercase , _lowercase , _lowercase )
self.parent.assertEqual(
getattr(_lowercase , _lowercase ) , _lowercase , msg=F'''`{name} value {idx} expected, but was {getattr(_lowercase , _lowercase )}''' )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(_lowercase ):
try:
__UpperCAmelCase = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(_lowercase , _lowercase ) , _lowercase , msg=F'''`{name} value {idx} expected, but was {getattr(_lowercase , _lowercase )}''' )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def a ( self : List[Any] ):
__UpperCAmelCase = self.config_class(**self.inputs_dict )
__UpperCAmelCase = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , _lowercase )
def a ( self : Tuple ):
__UpperCAmelCase = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase = os.path.join(_lowercase , '''config.json''' )
config_first.to_json_file(_lowercase )
__UpperCAmelCase = self.config_class.from_json_file(_lowercase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def a ( self : Dict ):
__UpperCAmelCase = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(_lowercase )
__UpperCAmelCase = self.config_class.from_pretrained(_lowercase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def a ( self : Dict ):
__UpperCAmelCase = self.config_class(**self.inputs_dict )
__UpperCAmelCase = '''test'''
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase = os.path.join(_lowercase , _lowercase )
config_first.save_pretrained(_lowercase )
__UpperCAmelCase = self.config_class.from_pretrained(_lowercase , subfolder=_lowercase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
__UpperCAmelCase = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def a ( self : Any ):
if self.config_class.is_composition:
return
__UpperCAmelCase = self.config_class()
self.parent.assertIsNotNone(_lowercase )
def a ( self : Optional[int] ):
__UpperCAmelCase = copy.deepcopy(_lowercase )
__UpperCAmelCase = self.config_class(**_lowercase )
__UpperCAmelCase = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) )
elif getattr(_lowercase , _lowercase ) != value:
wrong_values.append((key, getattr(_lowercase , _lowercase ), value) )
if len(_lowercase ) > 0:
__UpperCAmelCase = '''\n'''.join([F'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] )
raise ValueError(F'''The following keys were not properly set in the config:\n{errors}''' )
def a ( self : Tuple ):
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :float , snake_case_ :float ):
if density <= 0:
raise ValueError('''Impossible fluid density''' )
if bulk_modulus <= 0:
raise ValueError('''Impossible bulk modulus''' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 | 1 |
"""simple docstring"""
from __future__ import annotations
_lowercase : int = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class _UpperCAmelCase :
def __init__( self : Dict , _lowercase : dict[str, list[str]] , _lowercase : str ):
__UpperCAmelCase = graph
# mapping node to its parent in resulting breadth first tree
__UpperCAmelCase = {}
__UpperCAmelCase = source_vertex
def a ( self : List[Any] ):
__UpperCAmelCase = {self.source_vertex}
__UpperCAmelCase = None
__UpperCAmelCase = [self.source_vertex] # first in first out queue
while queue:
__UpperCAmelCase = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(_lowercase )
__UpperCAmelCase = vertex
queue.append(_lowercase )
def a ( self : Optional[Any] , _lowercase : str ):
if target_vertex == self.source_vertex:
return self.source_vertex
__UpperCAmelCase = self.parent.get(_lowercase )
if target_vertex_parent is None:
__UpperCAmelCase = (
F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}'''
)
raise ValueError(_lowercase )
return self.shortest_path(_lowercase ) + F'''->{target_vertex}'''
if __name__ == "__main__":
_lowercase : Tuple = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :dict ):
__UpperCAmelCase = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
__UpperCAmelCase = set()
return any(
node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
for node in graph )
def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ):
visited.add(snake_case_ )
rec_stk.add(snake_case_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(snake_case_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 | 1 |
"""simple docstring"""
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :int , snake_case_ :Union[str, Any] ):
if isinstance(snake_case_ , torch.Tensor ):
return image
elif isinstance(snake_case_ , PIL.Image.Image ):
__UpperCAmelCase = [image]
if isinstance(image[0] , PIL.Image.Image ):
__UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
__UpperCAmelCase = np.concatenate(snake_case_ , axis=0 )
__UpperCAmelCase = np.array(snake_case_ ).astype(np.floataa ) / 255.0
__UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 )
__UpperCAmelCase = 2.0 * image - 1.0
__UpperCAmelCase = torch.from_numpy(snake_case_ )
elif isinstance(image[0] , torch.Tensor ):
__UpperCAmelCase = torch.cat(snake_case_ , dim=0 )
return image
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[int] , snake_case_ :Optional[Any] , snake_case_ :Union[str, Any]=0.9995 ):
if not isinstance(snake_case_ , np.ndarray ):
__UpperCAmelCase = True
__UpperCAmelCase = va.device
__UpperCAmelCase = va.cpu().numpy()
__UpperCAmelCase = va.cpu().numpy()
__UpperCAmelCase = np.sum(va * va / (np.linalg.norm(snake_case_ ) * np.linalg.norm(snake_case_ )) )
if np.abs(snake_case_ ) > DOT_THRESHOLD:
__UpperCAmelCase = (1 - t) * va + t * va
else:
__UpperCAmelCase = np.arccos(snake_case_ )
__UpperCAmelCase = np.sin(snake_case_ )
__UpperCAmelCase = theta_a * t
__UpperCAmelCase = np.sin(snake_case_ )
__UpperCAmelCase = np.sin(theta_a - theta_t ) / sin_theta_a
__UpperCAmelCase = sin_theta_t / sin_theta_a
__UpperCAmelCase = sa * va + sa * va
if inputs_are_torch:
__UpperCAmelCase = torch.from_numpy(snake_case_ ).to(snake_case_ )
return va
def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :List[Any] ):
__UpperCAmelCase = F.normalize(snake_case_ , dim=-1 )
__UpperCAmelCase = F.normalize(snake_case_ , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Optional[int] ):
for param in model.parameters():
__UpperCAmelCase = value
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : List[str] , _lowercase : AutoencoderKL , _lowercase : CLIPTextModel , _lowercase : CLIPModel , _lowercase : CLIPTokenizer , _lowercase : UNetaDConditionModel , _lowercase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _lowercase : CLIPFeatureExtractor , _lowercase : Optional[Any]=None , _lowercase : Any=None , _lowercase : Optional[Any]=None , ):
super().__init__()
self.register_modules(
vae=_lowercase , text_encoder=_lowercase , clip_model=_lowercase , tokenizer=_lowercase , unet=_lowercase , scheduler=_lowercase , feature_extractor=_lowercase , coca_model=_lowercase , coca_tokenizer=_lowercase , coca_transform=_lowercase , )
__UpperCAmelCase = (
feature_extractor.size
if isinstance(feature_extractor.size , _lowercase )
else feature_extractor.size['''shortest_edge''']
)
__UpperCAmelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , _lowercase )
set_requires_grad(self.clip_model , _lowercase )
def a ( self : Optional[int] , _lowercase : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__UpperCAmelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_lowercase )
def a ( self : List[Any] ):
self.enable_attention_slicing(_lowercase )
def a ( self : Tuple ):
set_requires_grad(self.vae , _lowercase )
def a ( self : List[str] ):
set_requires_grad(self.vae , _lowercase )
def a ( self : List[Any] ):
set_requires_grad(self.unet , _lowercase )
def a ( self : List[str] ):
set_requires_grad(self.unet , _lowercase )
def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[str] ):
# get the original timestep using init_timestep
__UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase )
__UpperCAmelCase = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a ( self : Optional[Any] , _lowercase : Any , _lowercase : List[str] , _lowercase : Any , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Any=None ):
if not isinstance(_lowercase , torch.Tensor ):
raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(_lowercase )}''' )
__UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase )
if isinstance(_lowercase , _lowercase ):
__UpperCAmelCase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase )
]
__UpperCAmelCase = torch.cat(_lowercase , dim=0 )
else:
__UpperCAmelCase = self.vae.encode(_lowercase ).latent_dist.sample(_lowercase )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__UpperCAmelCase = 0.18_215 * init_latents
__UpperCAmelCase = init_latents.repeat_interleave(_lowercase , dim=0 )
__UpperCAmelCase = randn_tensor(init_latents.shape , generator=_lowercase , device=_lowercase , dtype=_lowercase )
# get latents
__UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = init_latents
return latents
def a ( self : List[str] , _lowercase : Any ):
__UpperCAmelCase = self.coca_transform(_lowercase ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
__UpperCAmelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
__UpperCAmelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' )
def a ( self : int , _lowercase : List[str] , _lowercase : Optional[int] ):
__UpperCAmelCase = self.feature_extractor.preprocess(_lowercase )
__UpperCAmelCase = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half()
__UpperCAmelCase = self.clip_model.get_image_features(_lowercase )
__UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_lowercase )
__UpperCAmelCase = image_embeddings_clip.repeat_interleave(_lowercase , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def a ( self : Tuple , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : str , _lowercase : List[str] , ):
__UpperCAmelCase = latents.detach().requires_grad_()
__UpperCAmelCase = self.scheduler.scale_model_input(_lowercase , _lowercase )
# predict the noise residual
__UpperCAmelCase = self.unet(_lowercase , _lowercase , encoder_hidden_states=_lowercase ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
__UpperCAmelCase = self.scheduler.alphas_cumprod[timestep]
__UpperCAmelCase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__UpperCAmelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
__UpperCAmelCase = torch.sqrt(_lowercase )
__UpperCAmelCase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , _lowercase ):
__UpperCAmelCase = self.scheduler.sigmas[index]
__UpperCAmelCase = latents - sigma * noise_pred
else:
raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__UpperCAmelCase = 1 / 0.18_215 * sample
__UpperCAmelCase = self.vae.decode(_lowercase ).sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = transforms.Resize(self.feature_extractor_size )(_lowercase )
__UpperCAmelCase = self.normalize(_lowercase ).to(latents.dtype )
__UpperCAmelCase = self.clip_model.get_image_features(_lowercase )
__UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_lowercase )
__UpperCAmelCase = spherical_dist_loss(_lowercase , _lowercase ).mean() * clip_guidance_scale
__UpperCAmelCase = -torch.autograd.grad(_lowercase , _lowercase )[0]
if isinstance(self.scheduler , _lowercase ):
__UpperCAmelCase = latents.detach() + grads * (sigma**2)
__UpperCAmelCase = noise_pred_original
else:
__UpperCAmelCase = noise_pred_original - torch.sqrt(_lowercase ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : List[Any] , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Optional[int] = 5_12 , _lowercase : Optional[int] = 5_12 , _lowercase : float = 0.6 , _lowercase : Optional[int] = 50 , _lowercase : Optional[float] = 7.5 , _lowercase : Optional[int] = 1 , _lowercase : float = 0.0 , _lowercase : Optional[float] = 1_00 , _lowercase : Optional[torch.Generator] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , _lowercase : float = 0.8 , _lowercase : float = 0.1 , _lowercase : float = 0.1 , ):
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(_lowercase )} generators.''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if isinstance(_lowercase , torch.Generator ) and batch_size > 1:
__UpperCAmelCase = [generator] + [None] * (batch_size - 1)
__UpperCAmelCase = [
('''model''', self.coca_model is None),
('''tokenizer''', self.coca_tokenizer is None),
('''transform''', self.coca_transform is None),
]
__UpperCAmelCase = [x[0] for x in coca_is_none if x[1]]
__UpperCAmelCase = ''', '''.join(_lowercase )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(_lowercase ):
raise ValueError(
F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.'''
F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
__UpperCAmelCase = self.get_image_description(_lowercase )
if style_prompt is None:
if len(_lowercase ):
raise ValueError(
F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.'''
F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
__UpperCAmelCase = self.get_image_description(_lowercase )
# get prompt text embeddings for content and style
__UpperCAmelCase = self.tokenizer(
_lowercase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=_lowercase , return_tensors='''pt''' , )
__UpperCAmelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
__UpperCAmelCase = self.tokenizer(
_lowercase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=_lowercase , return_tensors='''pt''' , )
__UpperCAmelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
__UpperCAmelCase = slerp(_lowercase , _lowercase , _lowercase )
# duplicate text embeddings for each generation per prompt
__UpperCAmelCase = text_embeddings.repeat_interleave(_lowercase , dim=0 )
# set timesteps
__UpperCAmelCase = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
__UpperCAmelCase = {}
if accepts_offset:
__UpperCAmelCase = 1
self.scheduler.set_timesteps(_lowercase , **_lowercase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
__UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device )
__UpperCAmelCase = timesteps[:1].repeat(_lowercase )
# Preprocess image
__UpperCAmelCase = preprocess(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = self.prepare_latents(
_lowercase , _lowercase , _lowercase , text_embeddings.dtype , self.device , _lowercase )
__UpperCAmelCase = preprocess(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = self.prepare_latents(
_lowercase , _lowercase , _lowercase , text_embeddings.dtype , self.device , _lowercase )
__UpperCAmelCase = slerp(_lowercase , _lowercase , _lowercase )
if clip_guidance_scale > 0:
__UpperCAmelCase = self.get_clip_image_embeddings(_lowercase , _lowercase )
__UpperCAmelCase = self.get_clip_image_embeddings(_lowercase , _lowercase )
__UpperCAmelCase = slerp(
_lowercase , _lowercase , _lowercase )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__UpperCAmelCase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__UpperCAmelCase = content_text_input.input_ids.shape[-1]
__UpperCAmelCase = self.tokenizer([''''''] , padding='''max_length''' , max_length=_lowercase , return_tensors='''pt''' )
__UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
__UpperCAmelCase = uncond_embeddings.repeat_interleave(_lowercase , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__UpperCAmelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
__UpperCAmelCase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
__UpperCAmelCase = torch.randn(_lowercase , generator=_lowercase , device='''cpu''' , dtype=_lowercase ).to(
self.device )
else:
__UpperCAmelCase = torch.randn(_lowercase , generator=_lowercase , device=self.device , dtype=_lowercase )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
__UpperCAmelCase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__UpperCAmelCase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__UpperCAmelCase = {}
if accepts_eta:
__UpperCAmelCase = eta
# check if the scheduler accepts generator
__UpperCAmelCase = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
__UpperCAmelCase = generator
with self.progress_bar(total=_lowercase ):
for i, t in enumerate(_lowercase ):
# expand the latents if we are doing classifier free guidance
__UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__UpperCAmelCase = self.scheduler.scale_model_input(_lowercase , _lowercase )
# predict the noise residual
__UpperCAmelCase = self.unet(_lowercase , _lowercase , encoder_hidden_states=_lowercase ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
__UpperCAmelCase , __UpperCAmelCase = noise_pred.chunk(2 )
__UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
__UpperCAmelCase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
__UpperCAmelCase , __UpperCAmelCase = self.cond_fn(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , )
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
__UpperCAmelCase = 1 / 0.18_215 * latents
__UpperCAmelCase = self.vae.decode(_lowercase ).sample
__UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=_lowercase , nsfw_content_detected=_lowercase )
| 49 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : Any = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[Any] = ['PoolFormerFeatureExtractor']
_lowercase : Any = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 49 | 1 |
"""simple docstring"""
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
_lowercase : Union[str, Any] = logging.getLogger(__name__)
_lowercase : Optional[Any] = 'Hello world! cécé herlolip'
_lowercase : str = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def lowercase__ ( snake_case_ :Any , snake_case_ :int ):
__UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , )
__UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage )
__UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ )
original.eval()
__UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
__UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
__UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
__UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 )
__UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
__UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
__UpperCAmelCase = encoder_input_ids
__UpperCAmelCase = decoder_input_ids
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
__UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
__UpperCAmelCase = original.generator(snake_case_ )
__UpperCAmelCase = new_model(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
__UpperCAmelCase = new_model.generator(snake_case_ )
__UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) )
__UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) )
__UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
_lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
_lowercase : List[str] = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Dict ): # noqa: E741
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = [0] * n
__UpperCAmelCase = [False] * n
__UpperCAmelCase = [False] * n
def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ):
if parent == root:
out_edge_count += 1
__UpperCAmelCase = True
__UpperCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__UpperCAmelCase = True
# AP found via cycle
if at == low[to]:
__UpperCAmelCase = True
else:
__UpperCAmelCase = min(low[at] , snake_case_ )
return out_edge_count
for i in range(snake_case_ ):
if not visited[i]:
__UpperCAmelCase = 0
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ )
__UpperCAmelCase = out_edge_count > 1
for x in range(len(snake_case_ ) ):
if is_art[x] is True:
print(snake_case_ )
# Adjacency list of graph
_lowercase : Optional[Any] = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 49 | 1 |
"""simple docstring"""
import argparse
import os
from io import BytesIO
from pathlib import Path
import requests
from clip_retrieval.clip_client import ClipClient
from PIL import Image
from tqdm import tqdm
def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[Any] , snake_case_ :List[Any] ):
__UpperCAmelCase = 1.5
__UpperCAmelCase = int(factor * num_class_images )
__UpperCAmelCase = ClipClient(
url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=snake_case_ , aesthetic_weight=0.1 )
os.makedirs(F'''{class_data_dir}/images''' , exist_ok=snake_case_ )
if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images:
return
while True:
__UpperCAmelCase = client.query(text=snake_case_ )
if len(snake_case_ ) >= factor * num_class_images or num_images > 1E4:
break
else:
__UpperCAmelCase = int(factor * num_images )
__UpperCAmelCase = ClipClient(
url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=snake_case_ , aesthetic_weight=0.1 , )
__UpperCAmelCase = 0
__UpperCAmelCase = 0
__UpperCAmelCase = tqdm(desc='''downloading real regularization images''' , total=snake_case_ )
with open(F'''{class_data_dir}/caption.txt''' , '''w''' ) as fa, open(F'''{class_data_dir}/urls.txt''' , '''w''' ) as fa, open(
F'''{class_data_dir}/images.txt''' , '''w''' ) as fa:
while total < num_class_images:
__UpperCAmelCase = class_images[count]
count += 1
try:
__UpperCAmelCase = requests.get(images['''url'''] )
if img.status_code == 200:
__UpperCAmelCase = Image.open(BytesIO(img.content ) )
with open(F'''{class_data_dir}/images/{total}.jpg''' , '''wb''' ) as f:
f.write(img.content )
fa.write(images['''caption'''] + '''\n''' )
fa.write(images['''url'''] + '''\n''' )
fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '''\n''' )
total += 1
pbar.update(1 )
else:
continue
except Exception:
continue
return
def lowercase__ ( ):
__UpperCAmelCase = argparse.ArgumentParser('''''' , add_help=snake_case_ )
parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=snake_case_ , type=snake_case_ )
parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=snake_case_ , type=snake_case_ )
parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=200 , type=snake_case_ )
return parser.parse_args()
if __name__ == "__main__":
_lowercase : Tuple = parse_args()
retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
| 49 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = "EncodecFeatureExtractor"
a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast")
def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ):
super().__init__(_lowercase , _lowercase )
__UpperCAmelCase = self.feature_extractor
__UpperCAmelCase = False
def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ):
return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase )
def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowercase , **_lowercase )
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''text''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if text is not None:
__UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase )
if audio is not None:
__UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
__UpperCAmelCase = audio_inputs['''input_values''']
if "padding_mask" in audio_inputs:
__UpperCAmelCase = audio_inputs['''padding_mask''']
return inputs
def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ):
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio_values is not None:
return self._decode_audio(_lowercase , padding_mask=_lowercase )
else:
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ):
__UpperCAmelCase = to_numpy(_lowercase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape
if padding_mask is None:
return list(_lowercase )
__UpperCAmelCase = to_numpy(_lowercase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
__UpperCAmelCase = seq_len - padding_mask.shape[-1]
__UpperCAmelCase = 1 - self.feature_extractor.padding_value
__UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase )
__UpperCAmelCase = audio_values.tolist()
for i in range(_lowercase ):
__UpperCAmelCase = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
__UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 )
return audio_values
| 49 | 1 |
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : str ):
__UpperCAmelCase = inspect.getfile(accelerate.test_utils )
__UpperCAmelCase = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
__UpperCAmelCase = test_metrics
@require_cpu
def a ( self : Union[str, Any] ):
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def a ( self : Dict ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def a ( self : int ):
self.test_metrics.main()
@require_multi_gpu
def a ( self : Tuple ):
print(F'''Found {torch.cuda.device_count()} devices.''' )
__UpperCAmelCase = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_lowercase , env=os.environ.copy() )
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
__UpperCAmelCase = True
for i in range(snake_case_ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
__UpperCAmelCase = True
if a[i].islower():
__UpperCAmelCase = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks if the entire collection has been sorted
if len(snake_case_ ) <= 1 or n <= 1:
return
insert_next(snake_case_ , n - 1 )
rec_insertion_sort(snake_case_ , n - 1 )
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks order between adjacent elements
if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
__UpperCAmelCase , __UpperCAmelCase = (
collection[index],
collection[index - 1],
)
insert_next(snake_case_ , index + 1 )
if __name__ == "__main__":
_lowercase : Any = input('Enter integers separated by spaces: ')
_lowercase : list[int] = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 49 |
"""simple docstring"""
from collections import deque
class _UpperCAmelCase :
def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ):
__UpperCAmelCase = process_name # process name
__UpperCAmelCase = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
__UpperCAmelCase = arrival_time
__UpperCAmelCase = burst_time # remaining burst time
__UpperCAmelCase = 0 # total time of the process wait in ready queue
__UpperCAmelCase = 0 # time from arrival time to completion time
class _UpperCAmelCase :
def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ):
# total number of mlfq's queues
__UpperCAmelCase = number_of_queues
# time slice of queues that round robin algorithm applied
__UpperCAmelCase = time_slices
# unfinished process is in this ready_queue
__UpperCAmelCase = queue
# current time
__UpperCAmelCase = current_time
# finished process is in this sequence queue
__UpperCAmelCase = deque()
def a ( self : Dict ):
__UpperCAmelCase = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def a ( self : str , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def a ( self : Any , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def a ( self : Tuple , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def a ( self : Optional[int] , _lowercase : deque[Process] ):
return [q.burst_time for q in queue]
def a ( self : str , _lowercase : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def a ( self : Union[str, Any] , _lowercase : deque[Process] ):
__UpperCAmelCase = deque() # sequence deque of finished process
while len(_lowercase ) != 0:
__UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_lowercase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
__UpperCAmelCase = 0
# set the process's turnaround time because it is finished
__UpperCAmelCase = self.current_time - cp.arrival_time
# set the completion time
__UpperCAmelCase = self.current_time
# add the process to queue that has finished queue
finished.append(_lowercase )
self.finish_queue.extend(_lowercase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ):
__UpperCAmelCase = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_lowercase ) ):
__UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_lowercase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
__UpperCAmelCase = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_lowercase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
__UpperCAmelCase = 0
# set the finish time
__UpperCAmelCase = self.current_time
# update the process' turnaround time because it is finished
__UpperCAmelCase = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_lowercase )
self.finish_queue.extend(_lowercase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def a ( self : Union[str, Any] ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
__UpperCAmelCase , __UpperCAmelCase = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
_lowercase : List[str] = Process('P1', 0, 53)
_lowercase : str = Process('P2', 0, 17)
_lowercase : Union[str, Any] = Process('P3', 0, 68)
_lowercase : int = Process('P4', 0, 24)
_lowercase : Any = 3
_lowercase : Union[str, Any] = [17, 25]
_lowercase : Dict = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])})
_lowercase : Optional[Any] = Process('P1', 0, 53)
_lowercase : Tuple = Process('P2', 0, 17)
_lowercase : Optional[int] = Process('P3', 0, 68)
_lowercase : int = Process('P4', 0, 24)
_lowercase : int = 3
_lowercase : int = [17, 25]
_lowercase : List[str] = deque([Pa, Pa, Pa, Pa])
_lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0)
_lowercase : str = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
f"""waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print completion times of processes(P1, P2, P3, P4)
print(
f"""completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
f"""turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print sequence of finished processes
print(
f"""sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}"""
)
| 49 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_lowerCAmelCase )
class _UpperCAmelCase ( _lowerCAmelCase ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
a__ : str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} )
a__ : ClassVar[Features] = Features({"text": Value("string" )} )
a__ : ClassVar[Features] = Features({"summary": Value("string" )} )
a__ : str = "text"
a__ : str = "summary"
@property
def a ( self : Dict ):
return {self.text_column: "text", self.summary_column: "summary"}
| 49 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : Union[str, Any] = logging.get_logger(__name__)
_lowercase : List[Any] = {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json',
'umberto-commoncrawl-cased-v1': (
'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'
),
'umberto-wikipedia-uncased-v1': (
'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "camembert"
def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ):
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
__UpperCAmelCase = classifier_dropout
class _UpperCAmelCase ( _lowerCAmelCase ):
@property
def a ( self : Tuple ):
if self.task == "multiple-choice":
__UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 49 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : Optional[Any] = StableDiffusionXLImgaImgPipeline
a__ : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
a__ : str = PipelineTesterMixin.required_optional_params - {"latents"}
a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
def a ( self : Union[str, Any] ):
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=_lowercase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
__UpperCAmelCase = EulerDiscreteScheduler(
beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=32 , )
__UpperCAmelCase = CLIPTextModel(_lowercase )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=_lowercase )
__UpperCAmelCase = CLIPTextModelWithProjection(_lowercase )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=_lowercase )
__UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''text_encoder_2''': text_encoder_a,
'''tokenizer_2''': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def a ( self : List[Any] , _lowercase : List[str] , _lowercase : Any=0 ):
__UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = image / 2 + 0.5
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 5.0,
'''output_type''': '''numpy''',
'''strength''': 0.75,
}
return inputs
def a ( self : str ):
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = StableDiffusionXLImgaImgPipeline(**_lowercase )
__UpperCAmelCase = sd_pipe.to(_lowercase )
sd_pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = sd_pipe(**_lowercase ).images
__UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def a ( self : List[Any] ):
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def a ( self : int ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def a ( self : Optional[int] ):
pass
def a ( self : int ):
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = StableDiffusionXLImgaImgPipeline(**_lowercase )
__UpperCAmelCase = sd_pipe.to(_lowercase )
__UpperCAmelCase = sd_pipe.to(_lowercase )
sd_pipe.set_progress_bar_config(disable=_lowercase )
# forward without prompt embeds
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = 3 * ['''this is a negative prompt''']
__UpperCAmelCase = negative_prompt
__UpperCAmelCase = 3 * [inputs['''prompt''']]
__UpperCAmelCase = sd_pipe(**_lowercase )
__UpperCAmelCase = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = 3 * ['''this is a negative prompt''']
__UpperCAmelCase = 3 * [inputs.pop('''prompt''' )]
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) = sd_pipe.encode_prompt(_lowercase , negative_prompt=_lowercase )
__UpperCAmelCase = sd_pipe(
**_lowercase , prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , pooled_prompt_embeds=_lowercase , negative_pooled_prompt_embeds=_lowercase , )
__UpperCAmelCase = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Tuple ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : int="cpu" , _lowercase : List[str]=torch.floataa , _lowercase : Any=0 ):
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) )
__UpperCAmelCase = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase )
__UpperCAmelCase = {
'''prompt''': '''a photograph of an astronaut riding a horse''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def a ( self : Tuple ):
__UpperCAmelCase = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase ).images
__UpperCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 49 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks if the entire collection has been sorted
if len(snake_case_ ) <= 1 or n <= 1:
return
insert_next(snake_case_ , n - 1 )
rec_insertion_sort(snake_case_ , n - 1 )
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks order between adjacent elements
if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
__UpperCAmelCase , __UpperCAmelCase = (
collection[index],
collection[index - 1],
)
insert_next(snake_case_ , index + 1 )
if __name__ == "__main__":
_lowercase : Any = input('Enter integers separated by spaces: ')
_lowercase : list[int] = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 49 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Union[str, Any] = {
'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'],
'tokenization_electra': ['ElectraTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = ['ElectraTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = [
'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'ElectraForCausalLM',
'ElectraForMaskedLM',
'ElectraForMultipleChoice',
'ElectraForPreTraining',
'ElectraForQuestionAnswering',
'ElectraForSequenceClassification',
'ElectraForTokenClassification',
'ElectraModel',
'ElectraPreTrainedModel',
'load_tf_weights_in_electra',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFElectraForMaskedLM',
'TFElectraForMultipleChoice',
'TFElectraForPreTraining',
'TFElectraForQuestionAnswering',
'TFElectraForSequenceClassification',
'TFElectraForTokenClassification',
'TFElectraModel',
'TFElectraPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any = [
'FlaxElectraForCausalLM',
'FlaxElectraForMaskedLM',
'FlaxElectraForMultipleChoice',
'FlaxElectraForPreTraining',
'FlaxElectraForQuestionAnswering',
'FlaxElectraForSequenceClassification',
'FlaxElectraForTokenClassification',
'FlaxElectraModel',
'FlaxElectraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 |
"""simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : Any = StableUnCLIPPipeline
a__ : Dict = TEXT_TO_IMAGE_PARAMS
a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS
a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
a__ : Optional[int] = False
def a ( self : List[str] ):
__UpperCAmelCase = 32
__UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
__UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase )
__UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , )
torch.manual_seed(0 )
__UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL()
__UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ):
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def a ( self : Any ):
__UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_lowercase )
def a ( self : int ):
__UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_lowercase )
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : Any ):
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' )
__UpperCAmelCase = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(_lowercase , _lowercase )
def a ( self : Any ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
__UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 49 | 1 |
"""simple docstring"""
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
_lowercase : List[str] = {
'vocab_file': {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json',
'allenai/longformer-large-4096': (
'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'
),
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'
),
},
'merges_file': {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt',
'allenai/longformer-large-4096': (
'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'
),
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'
),
},
}
_lowercase : List[str] = {
'allenai/longformer-base-4096': 40_96,
'allenai/longformer-large-4096': 40_96,
'allenai/longformer-large-4096-finetuned-triviaqa': 40_96,
'allenai/longformer-base-4096-extra.pos.embd.only': 40_96,
'allenai/longformer-large-4096-extra.pos.embd.only': 40_96,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def lowercase__ ( ):
__UpperCAmelCase = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
__UpperCAmelCase = bs[:]
__UpperCAmelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case_ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase = [chr(snake_case_ ) for n in cs]
return dict(zip(snake_case_ , snake_case_ ) )
def lowercase__ ( snake_case_ :Tuple ):
__UpperCAmelCase = set()
__UpperCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase = char
return pairs
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = VOCAB_FILES_NAMES
a__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Dict = ["input_ids", "attention_mask"]
def __init__( self : Any , _lowercase : int , _lowercase : Optional[Any] , _lowercase : Optional[Any]="replace" , _lowercase : Optional[Any]="<s>" , _lowercase : List[str]="</s>" , _lowercase : str="</s>" , _lowercase : int="<s>" , _lowercase : Tuple="<unk>" , _lowercase : Tuple="<pad>" , _lowercase : Tuple="<mask>" , _lowercase : int=False , **_lowercase : Union[str, Any] , ):
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token
super().__init__(
errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , )
with open(_lowercase , encoding='''utf-8''' ) as vocab_handle:
__UpperCAmelCase = json.load(_lowercase )
__UpperCAmelCase = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase = errors # how to handle errors in decoding
__UpperCAmelCase = bytes_to_unicode()
__UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()}
with open(_lowercase , encoding='''utf-8''' ) as merges_handle:
__UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1]
__UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase = dict(zip(_lowercase , range(len(_lowercase ) ) ) )
__UpperCAmelCase = {}
__UpperCAmelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def a ( self : str ):
return len(self.encoder )
def a ( self : List[Any] ):
return dict(self.encoder , **self.added_tokens_encoder )
def a ( self : str , _lowercase : Any ):
if token in self.cache:
return self.cache[token]
__UpperCAmelCase = tuple(_lowercase )
__UpperCAmelCase = get_pairs(_lowercase )
if not pairs:
return token
while True:
__UpperCAmelCase = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase = bigram
__UpperCAmelCase = []
__UpperCAmelCase = 0
while i < len(_lowercase ):
try:
__UpperCAmelCase = word.index(_lowercase , _lowercase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase = j
if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase = tuple(_lowercase )
__UpperCAmelCase = new_word
if len(_lowercase ) == 1:
break
else:
__UpperCAmelCase = get_pairs(_lowercase )
__UpperCAmelCase = ''' '''.join(_lowercase )
__UpperCAmelCase = word
return word
def a ( self : List[Any] , _lowercase : Optional[int] ):
__UpperCAmelCase = []
for token in re.findall(self.pat , _lowercase ):
__UpperCAmelCase = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(''' ''' ) )
return bpe_tokens
def a ( self : int , _lowercase : Union[str, Any] ):
return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) )
def a ( self : Any , _lowercase : List[Any] ):
return self.decoder.get(_lowercase )
def a ( self : Optional[int] , _lowercase : List[Any] ):
__UpperCAmelCase = ''''''.join(_lowercase )
__UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ):
if not os.path.isdir(_lowercase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase = os.path.join(
_lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__UpperCAmelCase = os.path.join(
_lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + '''\n''' )
__UpperCAmelCase = 0
with open(_lowercase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
__UpperCAmelCase = token_index
writer.write(''' '''.join(_lowercase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
__UpperCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def a ( self : Dict , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase )
if token_ids_a is None:
return [1] + ([0] * len(_lowercase )) + [1]
return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1]
def a ( self : Dict , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a ( self : Optional[int] , _lowercase : Tuple , _lowercase : List[str]=False , **_lowercase : Optional[int] ):
__UpperCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()):
__UpperCAmelCase = ''' ''' + text
return (text, kwargs)
| 49 |
"""simple docstring"""
from typing import Any
def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ):
_validation(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
# Creates data structures and fill initial step
__UpperCAmelCase = {}
__UpperCAmelCase = {}
for state in states_space:
__UpperCAmelCase = observations_space[0]
__UpperCAmelCase = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
__UpperCAmelCase = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(snake_case_ ) ):
__UpperCAmelCase = observations_space[o]
__UpperCAmelCase = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
__UpperCAmelCase = ''''''
__UpperCAmelCase = -1
for k_state in states_space:
__UpperCAmelCase = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
__UpperCAmelCase = probability
__UpperCAmelCase = k_state
# Update probabilities and pointers dicts
__UpperCAmelCase = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
__UpperCAmelCase = arg_max
# The final observation
__UpperCAmelCase = observations_space[len(snake_case_ ) - 1]
# argmax for given final observation
__UpperCAmelCase = ''''''
__UpperCAmelCase = -1
for k_state in states_space:
__UpperCAmelCase = probabilities[(k_state, final_observation)]
if probability > max_probability:
__UpperCAmelCase = probability
__UpperCAmelCase = k_state
__UpperCAmelCase = arg_max
# Process pointers backwards
__UpperCAmelCase = last_state
__UpperCAmelCase = []
for o in range(len(snake_case_ ) - 1 , -1 , -1 ):
result.append(snake_case_ )
__UpperCAmelCase = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
_validate_not_empty(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
_validate_lists(snake_case_ , snake_case_ )
_validate_dicts(
snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('''There\'s an empty parameter''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any ):
_validate_list(snake_case_ , '''observations_space''' )
_validate_list(snake_case_ , '''states_space''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :str ):
if not isinstance(_object , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a list'''
raise ValueError(snake_case_ )
else:
for x in _object:
if not isinstance(snake_case_ , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a list of strings'''
raise ValueError(snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
_validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ )
_validate_nested_dict(snake_case_ , '''transition_probabilities''' )
_validate_nested_dict(snake_case_ , '''emission_probabilities''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :str ):
_validate_dict(_object , snake_case_ , snake_case_ )
for x in _object.values():
_validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ):
if not isinstance(_object , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a dict'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ):
__UpperCAmelCase = F'''{var_name} all keys must be strings'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ):
__UpperCAmelCase = '''nested dictionary ''' if nested else ''''''
__UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(snake_case_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 | 1 |
"""simple docstring"""
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : List[Any] = (EulerDiscreteScheduler,)
a__ : Dict = 10
def a ( self : List[Any] , **_lowercase : str ):
__UpperCAmelCase = {
'''num_train_timesteps''': 11_00,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**_lowercase )
return config
def a ( self : Union[str, Any] ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_lowercase )
def a ( self : Optional[Any] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def a ( self : Tuple ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_lowercase )
def a ( self : List[Any] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = self.scheduler_classes[0]
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps )
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = self.dummy_model()
__UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__UpperCAmelCase = sample.to(_lowercase )
for i, t in enumerate(scheduler.timesteps ):
__UpperCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase )
__UpperCAmelCase = model(_lowercase , _lowercase )
__UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
__UpperCAmelCase = output.prev_sample
__UpperCAmelCase = torch.sum(torch.abs(_lowercase ) )
__UpperCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 10.0_807 ) < 1E-2
assert abs(result_mean.item() - 0.0_131 ) < 1E-3
def a ( self : Optional[Any] ):
__UpperCAmelCase = self.scheduler_classes[0]
__UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
__UpperCAmelCase = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps )
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = self.dummy_model()
__UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__UpperCAmelCase = sample.to(_lowercase )
for i, t in enumerate(scheduler.timesteps ):
__UpperCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase )
__UpperCAmelCase = model(_lowercase , _lowercase )
__UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
__UpperCAmelCase = output.prev_sample
__UpperCAmelCase = torch.sum(torch.abs(_lowercase ) )
__UpperCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 0.0_002 ) < 1E-2
assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3
def a ( self : int ):
__UpperCAmelCase = self.scheduler_classes[0]
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**_lowercase )
scheduler.set_timesteps(self.num_inference_steps , device=_lowercase )
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = self.dummy_model()
__UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__UpperCAmelCase = sample.to(_lowercase )
for t in scheduler.timesteps:
__UpperCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase )
__UpperCAmelCase = model(_lowercase , _lowercase )
__UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
__UpperCAmelCase = output.prev_sample
__UpperCAmelCase = torch.sum(torch.abs(_lowercase ) )
__UpperCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 10.0_807 ) < 1E-2
assert abs(result_mean.item() - 0.0_131 ) < 1E-3
def a ( self : Dict ):
__UpperCAmelCase = self.scheduler_classes[0]
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**_lowercase , use_karras_sigmas=_lowercase )
scheduler.set_timesteps(self.num_inference_steps , device=_lowercase )
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = self.dummy_model()
__UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__UpperCAmelCase = sample.to(_lowercase )
for t in scheduler.timesteps:
__UpperCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase )
__UpperCAmelCase = model(_lowercase , _lowercase )
__UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase )
__UpperCAmelCase = output.prev_sample
__UpperCAmelCase = torch.sum(torch.abs(_lowercase ) )
__UpperCAmelCase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
| 49 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
_lowercase : int = logging.get_logger(__name__)
_lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_lowercase : str = {
'vocab_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'
),
},
}
_lowercase : int = {
'yjernite/retribert-base-uncased': 5_12,
}
_lowercase : Any = {
'yjernite/retribert-base-uncased': {'do_lower_case': True},
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : str = VOCAB_FILES_NAMES
a__ : Dict = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : str = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[Any] = RetriBertTokenizer
a__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ):
super().__init__(
_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , )
__UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars
):
__UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = strip_accents
__UpperCAmelCase = tokenize_chinese_chars
__UpperCAmelCase = normalizer_class(**_lowercase )
__UpperCAmelCase = do_lower_case
def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ):
__UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ):
__UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase )
return tuple(_lowercase )
| 49 | 1 |
"""simple docstring"""
from collections import defaultdict
def lowercase__ ( snake_case_ :int ):
__UpperCAmelCase = 1
__UpperCAmelCase = True
for v in tree[start]:
if v not in visited:
ret += dfs(snake_case_ )
if ret % 2 == 0:
cuts.append(snake_case_ )
return ret
def lowercase__ ( ):
dfs(1 )
if __name__ == "__main__":
_lowercase ,_lowercase : Union[str, Any] = 10, 9
_lowercase : Union[str, Any] = defaultdict(list)
_lowercase : dict[int, bool] = {}
_lowercase : list[int] = []
_lowercase : Tuple = 0
_lowercase : Optional[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| 49 |
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
_lowercase : Dict = 'bart'
_lowercase : Dict = True
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
if LOAD_DENSE_INDEX:
__UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__UpperCAmelCase = qar_model.eval()
else:
__UpperCAmelCase , __UpperCAmelCase = (None, None)
if MODEL_TYPE == "bart":
__UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__UpperCAmelCase = sas_model.eval()
else:
__UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
if LOAD_DENSE_INDEX:
__UpperCAmelCase = faiss.StandardGpuResources()
__UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__UpperCAmelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__UpperCAmelCase = faiss.IndexFlatIP(128 )
__UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ )
wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU
else:
__UpperCAmelCase , __UpperCAmelCase = (None, None)
__UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
__UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__UpperCAmelCase = elia['''train_eli5''']
__UpperCAmelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__UpperCAmelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(snake_case_ )
return (elia_train, eli5_train_q_index)
_lowercase ,_lowercase ,_lowercase : Dict = load_indexes()
_lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models()
_lowercase ,_lowercase : Tuple = load_train_data()
def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ):
__UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ )
__UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]]
return nn_examples
def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ):
if source == "none":
__UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
else:
__UpperCAmelCase , __UpperCAmelCase = query_es_index(
snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , )
__UpperCAmelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda snake_case_ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None),
} )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ):
with torch.no_grad():
__UpperCAmelCase = qa_sas_generate(
snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title('Long Form Question Answering with ELI5')
# Start sidebar
_lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'
_lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
_lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n'
st.sidebar.markdown(description, unsafe_allow_html=True)
_lowercase : str = [
'Answer the question',
'View the retrieved document only',
'View the most similar ELI5 question and answer',
'Show me everything, please!',
]
_lowercase : Optional[int] = st.sidebar.checkbox('Demo options')
if demo_options:
_lowercase : Tuple = st.sidebar.selectbox(
'',
action_list,
index=3,
)
_lowercase : List[str] = action_list.index(action_st)
_lowercase : str = st.sidebar.selectbox(
'',
['Show full text of passages', 'Show passage section titles'],
index=0,
)
_lowercase : int = show_type == 'Show full text of passages'
else:
_lowercase : str = 3
_lowercase : List[Any] = True
_lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options')
if retrieval_options:
_lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n '
st.sidebar.markdown(retriever_info)
_lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none'])
_lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed'])
else:
_lowercase : List[str] = 'wiki40b'
_lowercase : Optional[int] = 'dense'
_lowercase : List[Any] = 'beam'
_lowercase : str = 2
_lowercase : Optional[int] = 64
_lowercase : Union[str, Any] = 2_56
_lowercase : List[str] = None
_lowercase : Optional[int] = None
_lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options')
if generate_options:
_lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n '
st.sidebar.markdown(generate_info)
_lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled'])
_lowercase : Optional[int] = st.sidebar.slider(
'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None
)
_lowercase : Optional[Any] = st.sidebar.slider(
'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None
)
if sampled == "beam":
_lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
_lowercase : List[Any] = st.sidebar.slider(
'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
_lowercase : Dict = st.sidebar.slider(
'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
_lowercase : Union[str, Any] = None
# start main text
_lowercase : Optional[int] = [
'<MY QUESTION>',
'How do people make chocolate?',
'Why do we get a fever when we are sick?',
'How can different animals perceive different colors?',
'What is natural language processing?',
'What\'s the best way to treat a sunburn?',
'What exactly are vitamins ?',
'How does nuclear energy provide electricity?',
'What\'s the difference between viruses and bacteria?',
'Why are flutes classified as woodwinds when most of them are made out of metal ?',
'Why do people like drinking coffee even though it tastes so bad?',
'What happens when wine ages? How does it make the wine taste better?',
'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?',
'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?',
'How does New Zealand have so many large bird predators?',
]
_lowercase : Optional[int] = st.selectbox(
'What would you like to ask? ---- select <MY QUESTION> to enter a new query',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
_lowercase : Optional[Any] = st.text_input('Enter your question here:', '')
else:
_lowercase : int = question_s
if st.button('Show me!'):
if action in [0, 1, 3]:
if index_type == "mixed":
_lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10)
_lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10)
_lowercase : Dict = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
_lowercase : Any = support_list[:10]
_lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list])
else:
_lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
_lowercase ,_lowercase : Union[str, Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == 'sampled'),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('### The model generated answer is:')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:')
for i, res in enumerate(support_list):
_lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_'))
_lowercase : Any = res[1].strip()
if sec_titles == "":
_lowercase : Dict = '[{}]({})'.format(res[0], wiki_url)
else:
_lowercase : List[Any] = sec_titles.split(' & ')
_lowercase : int = ' & '.join(
['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list]
)
st.markdown(
'{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True
)
if action in [2, 3]:
_lowercase : List[Any] = find_nearest_training(question)
_lowercase : Tuple = nn_train_list[0]
st.markdown(
'--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title'])
)
_lowercase : int = [
'{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != '']))
for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score']))
if i == 0 or sc > 2
]
st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st)))
_lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n'
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 49 | 1 |
"""simple docstring"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
_lowercase : Dict = pd.read_csv('sample_data.csv', header=None)
_lowercase : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
_lowercase : Optional[int] = df.iloc[:, 1:2]
_lowercase : Optional[int] = actual_data.values.reshape(len_data, 1)
_lowercase : str = MinMaxScaler().fit_transform(actual_data)
_lowercase : Optional[int] = 10
_lowercase : Any = 5
_lowercase : Union[str, Any] = 20
_lowercase : Union[str, Any] = len_data - periods * look_back
_lowercase : int = actual_data[:division]
_lowercase : Optional[Any] = actual_data[division - look_back :]
_lowercase ,_lowercase : List[str] = [], []
_lowercase ,_lowercase : Any = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
_lowercase : Optional[int] = np.array(train_x)
_lowercase : Any = np.array(test_x)
_lowercase : Union[str, Any] = np.array([list(i.ravel()) for i in train_y])
_lowercase : Tuple = np.array([list(i.ravel()) for i in test_y])
_lowercase : int = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss='mean_squared_error', optimizer='adam')
_lowercase : Any = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
_lowercase : Optional[Any] = model.predict(x_test)
| 49 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : List[str] = CycleDiffusionPipeline
a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
}
a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} )
a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS
a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
def a ( self : Optional[int] ):
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__UpperCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__UpperCAmelCase = CLIPTextModel(_lowercase )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ):
__UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = image / 2 + 0.5
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''An astronaut riding an elephant''',
'''source_prompt''': '''An astronaut riding a horse''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''eta''': 0.1,
'''strength''': 0.8,
'''guidance_scale''': 3,
'''source_guidance_scale''': 1,
'''output_type''': '''numpy''',
}
return inputs
def a ( self : Optional[int] ):
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = CycleDiffusionPipeline(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.get_dummy_components()
for name, module in components.items():
if hasattr(_lowercase , '''half''' ):
__UpperCAmelCase = module.half()
__UpperCAmelCase = CycleDiffusionPipeline(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def a ( self : Tuple ):
return super().test_save_load_local()
@unittest.skip('''non-deterministic pipeline''' )
def a ( self : List[str] ):
return super().test_inference_batch_single_identical()
@skip_mps
def a ( self : int ):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def a ( self : str ):
return super().test_save_load_optional_components()
@skip_mps
def a ( self : int ):
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : int ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' )
__UpperCAmelCase = init_image.resize((5_12, 5_12) )
__UpperCAmelCase = '''CompVis/stable-diffusion-v1-4'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
__UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(
_lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A black colored car'''
__UpperCAmelCase = '''A blue colored car'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5E-1
def a ( self : Optional[Any] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' )
__UpperCAmelCase = init_image.resize((5_12, 5_12) )
__UpperCAmelCase = '''CompVis/stable-diffusion-v1-4'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
__UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A black colored car'''
__UpperCAmelCase = '''A blue colored car'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
assert np.abs(image - expected_image ).max() < 2E-2
| 49 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : torch.FloatTensor
class _UpperCAmelCase ( nn.Module ):
def __init__( self : str , _lowercase : Optional[Any]=3 , _lowercase : List[Any]=3 , _lowercase : Dict=("DownEncoderBlock2D",) , _lowercase : Dict=(64,) , _lowercase : Union[str, Any]=2 , _lowercase : List[str]=32 , _lowercase : List[str]="silu" , _lowercase : Optional[int]=True , ):
super().__init__()
__UpperCAmelCase = layers_per_block
__UpperCAmelCase = torch.nn.Convad(
_lowercase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
__UpperCAmelCase = None
__UpperCAmelCase = nn.ModuleList([] )
# down
__UpperCAmelCase = block_out_channels[0]
for i, down_block_type in enumerate(_lowercase ):
__UpperCAmelCase = output_channel
__UpperCAmelCase = block_out_channels[i]
__UpperCAmelCase = i == len(_lowercase ) - 1
__UpperCAmelCase = get_down_block(
_lowercase , num_layers=self.layers_per_block , in_channels=_lowercase , out_channels=_lowercase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=_lowercase , resnet_groups=_lowercase , attention_head_dim=_lowercase , temb_channels=_lowercase , )
self.down_blocks.append(_lowercase )
# mid
__UpperCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowercase , temb_channels=_lowercase , )
# out
__UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_lowercase , eps=1E-6 )
__UpperCAmelCase = nn.SiLU()
__UpperCAmelCase = 2 * out_channels if double_z else out_channels
__UpperCAmelCase = nn.Convad(block_out_channels[-1] , _lowercase , 3 , padding=1 )
__UpperCAmelCase = False
def a ( self : List[str] , _lowercase : Optional[Any] ):
__UpperCAmelCase = x
__UpperCAmelCase = self.conv_in(_lowercase )
if self.training and self.gradient_checkpointing:
def create_custom_forward(_lowercase : Dict ):
def custom_forward(*_lowercase : Any ):
return module(*_lowercase )
return custom_forward
# down
if is_torch_version('''>=''' , '''1.11.0''' ):
for down_block in self.down_blocks:
__UpperCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(_lowercase ) , _lowercase , use_reentrant=_lowercase )
# middle
__UpperCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , _lowercase , use_reentrant=_lowercase )
else:
for down_block in self.down_blocks:
__UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowercase ) , _lowercase )
# middle
__UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _lowercase )
else:
# down
for down_block in self.down_blocks:
__UpperCAmelCase = down_block(_lowercase )
# middle
__UpperCAmelCase = self.mid_block(_lowercase )
# post-process
__UpperCAmelCase = self.conv_norm_out(_lowercase )
__UpperCAmelCase = self.conv_act(_lowercase )
__UpperCAmelCase = self.conv_out(_lowercase )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Dict , _lowercase : Any=3 , _lowercase : Optional[Any]=3 , _lowercase : List[str]=("UpDecoderBlock2D",) , _lowercase : List[str]=(64,) , _lowercase : Optional[int]=2 , _lowercase : Optional[Any]=32 , _lowercase : Optional[Any]="silu" , _lowercase : List[Any]="group" , ):
super().__init__()
__UpperCAmelCase = layers_per_block
__UpperCAmelCase = nn.Convad(
_lowercase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
__UpperCAmelCase = None
__UpperCAmelCase = nn.ModuleList([] )
__UpperCAmelCase = in_channels if norm_type == '''spatial''' else None
# mid
__UpperCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowercase , temb_channels=_lowercase , )
# up
__UpperCAmelCase = list(reversed(_lowercase ) )
__UpperCAmelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(_lowercase ):
__UpperCAmelCase = output_channel
__UpperCAmelCase = reversed_block_out_channels[i]
__UpperCAmelCase = i == len(_lowercase ) - 1
__UpperCAmelCase = get_up_block(
_lowercase , num_layers=self.layers_per_block + 1 , in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=_lowercase , resnet_groups=_lowercase , attention_head_dim=_lowercase , temb_channels=_lowercase , resnet_time_scale_shift=_lowercase , )
self.up_blocks.append(_lowercase )
__UpperCAmelCase = output_channel
# out
if norm_type == "spatial":
__UpperCAmelCase = SpatialNorm(block_out_channels[0] , _lowercase )
else:
__UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_lowercase , eps=1E-6 )
__UpperCAmelCase = nn.SiLU()
__UpperCAmelCase = nn.Convad(block_out_channels[0] , _lowercase , 3 , padding=1 )
__UpperCAmelCase = False
def a ( self : Union[str, Any] , _lowercase : Any , _lowercase : Optional[Any]=None ):
__UpperCAmelCase = z
__UpperCAmelCase = self.conv_in(_lowercase )
__UpperCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(_lowercase : Optional[Any] ):
def custom_forward(*_lowercase : Optional[int] ):
return module(*_lowercase )
return custom_forward
if is_torch_version('''>=''' , '''1.11.0''' ):
# middle
__UpperCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , _lowercase , _lowercase , use_reentrant=_lowercase )
__UpperCAmelCase = sample.to(_lowercase )
# up
for up_block in self.up_blocks:
__UpperCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(_lowercase ) , _lowercase , _lowercase , use_reentrant=_lowercase )
else:
# middle
__UpperCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , _lowercase , _lowercase )
__UpperCAmelCase = sample.to(_lowercase )
# up
for up_block in self.up_blocks:
__UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowercase ) , _lowercase , _lowercase )
else:
# middle
__UpperCAmelCase = self.mid_block(_lowercase , _lowercase )
__UpperCAmelCase = sample.to(_lowercase )
# up
for up_block in self.up_blocks:
__UpperCAmelCase = up_block(_lowercase , _lowercase )
# post-process
if latent_embeds is None:
__UpperCAmelCase = self.conv_norm_out(_lowercase )
else:
__UpperCAmelCase = self.conv_norm_out(_lowercase , _lowercase )
__UpperCAmelCase = self.conv_act(_lowercase )
__UpperCAmelCase = self.conv_out(_lowercase )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Any , _lowercase : Union[str, Any]=None , _lowercase : Optional[Any]="random" , _lowercase : List[str]=False , _lowercase : Optional[Any]=True ):
super().__init__()
__UpperCAmelCase = n_e
__UpperCAmelCase = vq_embed_dim
__UpperCAmelCase = beta
__UpperCAmelCase = legacy
__UpperCAmelCase = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
__UpperCAmelCase = remap
if self.remap is not None:
self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) )
__UpperCAmelCase = self.used.shape[0]
__UpperCAmelCase = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
__UpperCAmelCase = self.re_embed
__UpperCAmelCase = self.re_embed + 1
print(
F'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
F'''Using {self.unknown_index} for unknown indices.''' )
else:
__UpperCAmelCase = n_e
__UpperCAmelCase = sane_index_shape
def a ( self : Union[str, Any] , _lowercase : str ):
__UpperCAmelCase = inds.shape
assert len(_lowercase ) > 1
__UpperCAmelCase = inds.reshape(ishape[0] , -1 )
__UpperCAmelCase = self.used.to(_lowercase )
__UpperCAmelCase = (inds[:, :, None] == used[None, None, ...]).long()
__UpperCAmelCase = match.argmax(-1 )
__UpperCAmelCase = match.sum(2 ) < 1
if self.unknown_index == "random":
__UpperCAmelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
__UpperCAmelCase = self.unknown_index
return new.reshape(_lowercase )
def a ( self : Any , _lowercase : Union[str, Any] ):
__UpperCAmelCase = inds.shape
assert len(_lowercase ) > 1
__UpperCAmelCase = inds.reshape(ishape[0] , -1 )
__UpperCAmelCase = self.used.to(_lowercase )
if self.re_embed > self.used.shape[0]: # extra token
__UpperCAmelCase = 0 # simply set to zero
__UpperCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _lowercase )
return back.reshape(_lowercase )
def a ( self : List[Any] , _lowercase : List[str] ):
# reshape z -> (batch, height, width, channel) and flatten
__UpperCAmelCase = z.permute(0 , 2 , 3 , 1 ).contiguous()
__UpperCAmelCase = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
__UpperCAmelCase = torch.argmin(torch.cdist(_lowercase , self.embedding.weight ) , dim=1 )
__UpperCAmelCase = self.embedding(_lowercase ).view(z.shape )
__UpperCAmelCase = None
__UpperCAmelCase = None
# compute loss for embedding
if not self.legacy:
__UpperCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
__UpperCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
__UpperCAmelCase = z + (z_q - z).detach()
# reshape back to match original input shape
__UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
__UpperCAmelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
__UpperCAmelCase = self.remap_to_used(_lowercase )
__UpperCAmelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
__UpperCAmelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def a ( self : Union[str, Any] , _lowercase : Dict , _lowercase : List[Any] ):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
__UpperCAmelCase = indices.reshape(shape[0] , -1 ) # add batch axis
__UpperCAmelCase = self.unmap_to_all(_lowercase )
__UpperCAmelCase = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
__UpperCAmelCase = self.embedding(_lowercase )
if shape is not None:
__UpperCAmelCase = z_q.view(_lowercase )
# reshape back to match original input shape
__UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Dict=False ):
__UpperCAmelCase = parameters
__UpperCAmelCase , __UpperCAmelCase = torch.chunk(_lowercase , 2 , dim=1 )
__UpperCAmelCase = torch.clamp(self.logvar , -30.0 , 20.0 )
__UpperCAmelCase = deterministic
__UpperCAmelCase = torch.exp(0.5 * self.logvar )
__UpperCAmelCase = torch.exp(self.logvar )
if self.deterministic:
__UpperCAmelCase = __UpperCAmelCase = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def a ( self : Union[str, Any] , _lowercase : Optional[torch.Generator] = None ):
# make sure sample is on the same device as the parameters and has same dtype
__UpperCAmelCase = randn_tensor(
self.mean.shape , generator=_lowercase , device=self.parameters.device , dtype=self.parameters.dtype )
__UpperCAmelCase = self.mean + self.std * sample
return x
def a ( self : Optional[int] , _lowercase : Tuple=None ):
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def a ( self : Dict , _lowercase : int , _lowercase : str=[1, 2, 3] ):
if self.deterministic:
return torch.Tensor([0.0] )
__UpperCAmelCase = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_lowercase )
def a ( self : List[str] ):
return self.mean
| 49 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowercase : Optional[Any] = logging.get_logger(__name__)
_lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'}
_lowercase : Tuple = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
}
_lowercase : List[str] = {
'google/rembert': 2_56,
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Union[str, Any] = VOCAB_FILES_NAMES
a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ):
super().__init__(
do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = remove_space
__UpperCAmelCase = keep_accents
__UpperCAmelCase = vocab_file
__UpperCAmelCase = spm.SentencePieceProcessor()
self.sp_model.Load(_lowercase )
@property
def a ( self : int ):
return len(self.sp_model )
def a ( self : Tuple ):
__UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Tuple ):
__UpperCAmelCase = self.__dict__.copy()
__UpperCAmelCase = None
return state
def __setstate__( self : Tuple , _lowercase : str ):
__UpperCAmelCase = d
__UpperCAmelCase = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ):
__UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase )
return pieces
def a ( self : int , _lowercase : List[str] ):
return self.sp_model.PieceToId(_lowercase )
def a ( self : List[str] , _lowercase : str ):
return self.sp_model.IdToPiece(_lowercase )
def a ( self : Any , _lowercase : Dict ):
__UpperCAmelCase = self.sp_model.decode_pieces(_lowercase )
return out_string
def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1]
return [1] + ([0] * len(_lowercase )) + [1]
def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ):
if not os.path.isdir(_lowercase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) )
return
__UpperCAmelCase = os.path.join(
_lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ):
copyfile(self.vocab_file , _lowercase )
return (out_vocab_file,)
| 49 | 1 |
"""simple docstring"""
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
_lowercase : Dict = False
try:
_lowercase : Union[str, Any] = _is_package_available('google.colab')
except ModuleNotFoundError:
pass
@input.register
class _UpperCAmelCase :
def __init__( self : Optional[int] , _lowercase : str = None , _lowercase : list = [] ):
__UpperCAmelCase = 0
__UpperCAmelCase = choices
__UpperCAmelCase = prompt
if sys.platform == "win32":
__UpperCAmelCase = '''*'''
else:
__UpperCAmelCase = '''➔ '''
def a ( self : Dict , _lowercase : Dict , _lowercase : str = "" ):
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , _lowercase )
else:
forceWrite(self.choices[index] , _lowercase )
def a ( self : List[str] , _lowercase : int ):
if index == self.position:
forceWrite(F''' {self.arrow_char} ''' )
self.write_choice(_lowercase )
else:
forceWrite(F''' {self.choices[index]}''' )
reset_cursor()
def a ( self : List[Any] , _lowercase : Direction , _lowercase : int = 1 ):
__UpperCAmelCase = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(_lowercase )
move_cursor(_lowercase , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP['''up'''] )
def a ( self : Any ):
self.move_direction(Direction.UP )
@input.mark(KEYMAP['''down'''] )
def a ( self : Any ):
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP['''newline'''] )
def a ( self : str ):
move_cursor(len(self.choices ) - self.position , '''DOWN''' )
return self.position
@input.mark(KEYMAP['''interrupt'''] )
def a ( self : Optional[Any] ):
move_cursor(len(self.choices ) - self.position , '''DOWN''' )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] )
def a ( self : Tuple ):
__UpperCAmelCase = int(chr(self.current_selection ) )
__UpperCAmelCase = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , _lowercase )
else:
return
else:
return
def a ( self : str , _lowercase : int = 0 ):
if self.prompt:
linebreak()
forceWrite(self.prompt , '''\n''' )
if in_colab:
forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' )
else:
forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' )
__UpperCAmelCase = default_choice
for i in range(len(self.choices ) ):
self.print_choice(_lowercase )
forceWrite('''\n''' )
move_cursor(len(self.choices ) - self.position , '''UP''' )
with cursor.hide():
while True:
if in_colab:
try:
__UpperCAmelCase = int(builtins.input() )
except ValueError:
__UpperCAmelCase = default_choice
else:
__UpperCAmelCase = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , '''UP''' )
clear_line()
self.write_choice(_lowercase , '''\n''' )
return choice
| 49 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : List[Any] = {
'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Dict = ['VivitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] = [
'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'VivitModel',
'VivitPreTrainedModel',
'VivitForVideoClassification',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] ):
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def lowercase__ ( snake_case_ :str , snake_case_ :Dict=0 ):
return sorted(snake_case_ , key=lambda snake_case_ : x[column] )
def lowercase__ ( snake_case_ :Tuple , snake_case_ :Optional[int] , snake_case_ :Optional[Any]=float('''inf''' ) ):
for i in range(points_counts - 1 ):
for j in range(i + 1 , snake_case_ ):
__UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCAmelCase = current_dis
return min_dis
def lowercase__ ( snake_case_ :Dict , snake_case_ :List[str] , snake_case_ :Any=float('''inf''' ) ):
for i in range(min(6 , points_counts - 1 ) , snake_case_ ):
for j in range(max(0 , i - 6 ) , snake_case_ ):
__UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCAmelCase = current_dis
return min_dis
def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :List[str] , snake_case_ :Dict ):
# base case
if points_counts <= 3:
return dis_between_closest_pair(snake_case_ , snake_case_ )
# recursion
__UpperCAmelCase = points_counts // 2
__UpperCAmelCase = closest_pair_of_points_sqr(
snake_case_ , points_sorted_on_y[:mid] , snake_case_ )
__UpperCAmelCase = closest_pair_of_points_sqr(
snake_case_ , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCAmelCase = min(snake_case_ , snake_case_ )
__UpperCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(snake_case_ )
__UpperCAmelCase = dis_between_closest_in_strip(
snake_case_ , len(snake_case_ ) , snake_case_ )
return min(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :Any ):
__UpperCAmelCase = column_based_sort(snake_case_ , column=0 )
__UpperCAmelCase = column_based_sort(snake_case_ , column=1 )
return (
closest_pair_of_points_sqr(
snake_case_ , snake_case_ , snake_case_ )
) ** 0.5
if __name__ == "__main__":
_lowercase : Optional[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print('Distance:', closest_pair_of_points(points, len(points)))
| 49 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
_lowercase : List[Any] = {
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def lowercase__ ( snake_case_ :Union[str, Any] ):
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def lowercase__ ( snake_case_ :int , snake_case_ :Dict ):
if args.student_type == "roberta":
__UpperCAmelCase = False
elif args.student_type == "gpt2":
__UpperCAmelCase = False
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ):
if args.student_type == "roberta":
__UpperCAmelCase = False
def lowercase__ ( ):
__UpperCAmelCase = argparse.ArgumentParser(description='''Training''' )
parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' )
parser.add_argument(
'''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' )
parser.add_argument(
'''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , )
parser.add_argument(
'''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , )
parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' )
parser.add_argument(
'''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' )
parser.add_argument(
'''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' )
parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' )
parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' )
parser.add_argument(
'''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , )
parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' )
parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' )
parser.add_argument(
'''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' )
parser.add_argument(
'''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , )
parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' )
parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' )
parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' )
parser.add_argument(
'''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , )
parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' )
parser.add_argument(
'''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , )
parser.add_argument(
'''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , )
parser.add_argument(
'''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , )
parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' )
parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' )
parser.add_argument(
'''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , )
parser.add_argument(
'''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , )
parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' )
parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' )
parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' )
parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' )
parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' )
parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' )
parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' )
__UpperCAmelCase = parser.parse_args()
sanity_checks(snake_case_ )
# ARGS #
init_gpu_params(snake_case_ )
set_seed(snake_case_ )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
''' itUse `--force` if you want to overwrite it''' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f:
json.dump(vars(snake_case_ ) , snake_case_ , indent=4 )
git_log(args.dump_path )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
__UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name )
__UpperCAmelCase = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
__UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ )
__UpperCAmelCase = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
__UpperCAmelCase = special_tok_ids
__UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , '''rb''' ) as fp:
__UpperCAmelCase = pickle.load(snake_case_ )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , '''rb''' ) as fp:
__UpperCAmelCase = pickle.load(snake_case_ )
__UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
__UpperCAmelCase = 0.0 # do not predict special tokens
__UpperCAmelCase = torch.from_numpy(snake_case_ )
else:
__UpperCAmelCase = None
__UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ )
logger.info('''Data loader created.''' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
__UpperCAmelCase = student_config_class.from_pretrained(args.student_config )
__UpperCAmelCase = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
__UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ )
else:
__UpperCAmelCase = student_model_class(snake_case_ )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('''Student loaded.''' )
# TEACHER #
__UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(snake_case_ , snake_case_ )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(snake_case_ , snake_case_ )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
__UpperCAmelCase = Distiller(
params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ )
distiller.train()
logger.info('''Let\'s go get some drinks.''' )
if __name__ == "__main__":
main()
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Dict ): # noqa: E741
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = [0] * n
__UpperCAmelCase = [False] * n
__UpperCAmelCase = [False] * n
def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ):
if parent == root:
out_edge_count += 1
__UpperCAmelCase = True
__UpperCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__UpperCAmelCase = True
# AP found via cycle
if at == low[to]:
__UpperCAmelCase = True
else:
__UpperCAmelCase = min(low[at] , snake_case_ )
return out_edge_count
for i in range(snake_case_ ):
if not visited[i]:
__UpperCAmelCase = 0
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ )
__UpperCAmelCase = out_edge_count > 1
for x in range(len(snake_case_ ) ):
if is_art[x] is True:
print(snake_case_ )
# Adjacency list of graph
_lowercase : Optional[Any] = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 49 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Optional[int] = {
'configuration_blenderbot_small': [
'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BlenderbotSmallConfig',
'BlenderbotSmallOnnxConfig',
],
'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple = ['BlenderbotSmallTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST',
'BlenderbotSmallForCausalLM',
'BlenderbotSmallForConditionalGeneration',
'BlenderbotSmallModel',
'BlenderbotSmallPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple = [
'TFBlenderbotSmallForConditionalGeneration',
'TFBlenderbotSmallModel',
'TFBlenderbotSmallPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] = [
'FlaxBlenderbotSmallForConditionalGeneration',
'FlaxBlenderbotSmallModel',
'FlaxBlenderbotSmallPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
_lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 |
"""simple docstring"""
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
_lowercase : Union[str, Any] = logging.getLogger(__name__)
_lowercase : Optional[Any] = 'Hello world! cécé herlolip'
_lowercase : str = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def lowercase__ ( snake_case_ :Any , snake_case_ :int ):
__UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , )
__UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage )
__UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ )
original.eval()
__UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
__UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
__UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
__UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 )
__UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
__UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
__UpperCAmelCase = encoder_input_ids
__UpperCAmelCase = decoder_input_ids
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
__UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
__UpperCAmelCase = original.generator(snake_case_ )
__UpperCAmelCase = new_model(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
__UpperCAmelCase = new_model.generator(snake_case_ )
__UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) )
__UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) )
__UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
_lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
_lowercase : List[str] = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] ):
print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' )
for i in range(snake_case_ ):
for j in range(snake_case_ ):
if dist[i][j] != float('''inf''' ):
print(int(dist[i][j] ) , end='''\t''' )
else:
print('''INF''' , end='''\t''' )
print()
def lowercase__ ( snake_case_ :int , snake_case_ :Any ):
__UpperCAmelCase = [[float('''inf''' ) for _ in range(snake_case_ )] for _ in range(snake_case_ )]
for i in range(snake_case_ ):
for j in range(snake_case_ ):
__UpperCAmelCase = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(snake_case_ ):
# looping through rows of graph array
for i in range(snake_case_ ):
# looping through columns of graph array
for j in range(snake_case_ ):
if (
dist[i][k] != float('''inf''' )
and dist[k][j] != float('''inf''' )
and dist[i][k] + dist[k][j] < dist[i][j]
):
__UpperCAmelCase = dist[i][k] + dist[k][j]
_print_dist(snake_case_ , snake_case_ )
return dist, v
if __name__ == "__main__":
_lowercase : str = int(input('Enter number of vertices: '))
_lowercase : Any = int(input('Enter number of edges: '))
_lowercase : Dict = [[float('inf') for i in range(v)] for j in range(v)]
for i in range(v):
_lowercase : Any = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print('\nEdge ', i + 1)
_lowercase : Any = int(input('Enter source:'))
_lowercase : str = int(input('Enter destination:'))
_lowercase : Tuple = float(input('Enter weight:'))
_lowercase : int = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 49 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
@property
def a ( self : List[str] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a ( self : Dict ):
__UpperCAmelCase = ort.SessionOptions()
__UpperCAmelCase = False
return options
def a ( self : Any ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
__UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A red cat sitting on a park bench'''
__UpperCAmelCase = np.random.RandomState(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def a ( self : Optional[int] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
__UpperCAmelCase = LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
__UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A red cat sitting on a park bench'''
__UpperCAmelCase = np.random.RandomState(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 49 | 1 |
"""simple docstring"""
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def lowercase__ ( snake_case_ :Dict ):
__UpperCAmelCase = {}
__UpperCAmelCase = job['''started_at''']
__UpperCAmelCase = job['''completed_at''']
__UpperCAmelCase = date_parser.parse(snake_case_ )
__UpperCAmelCase = date_parser.parse(snake_case_ )
__UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 )
__UpperCAmelCase = start
__UpperCAmelCase = end
__UpperCAmelCase = duration_in_min
return job_info
def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any]=None ):
__UpperCAmelCase = None
if token is not None:
__UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''}
__UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
__UpperCAmelCase = requests.get(snake_case_ , headers=snake_case_ ).json()
__UpperCAmelCase = {}
try:
job_time.update({job['''name''']: extract_time_from_single_job(snake_case_ ) for job in result['''jobs''']} )
__UpperCAmelCase = math.ceil((result['''total_count'''] - 100) / 100 )
for i in range(snake_case_ ):
__UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=snake_case_ ).json()
job_time.update({job['''name''']: extract_time_from_single_job(snake_case_ ) for job in result['''jobs''']} )
return job_time
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
if __name__ == "__main__":
_lowercase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
_lowercase : Tuple = parser.parse_args()
_lowercase : List[str] = get_job_time(args.workflow_run_id)
_lowercase : List[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(f"""{k}: {v["duration"]}""")
| 49 |
"""simple docstring"""
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowercase__ ( snake_case_ :Dict , snake_case_ :int ):
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
__UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
__UpperCAmelCase = features.copy()
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ):
if issubclass(snake_case_ , snake_case_ ):
__UpperCAmelCase = jsonl_path
elif issubclass(snake_case_ , snake_case_ ):
__UpperCAmelCase = [jsonl_path]
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ):
assert isinstance(snake_case_ , snake_case_ )
for split in splits:
__UpperCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ):
if split:
__UpperCAmelCase = {split: jsonl_path}
else:
__UpperCAmelCase = '''train'''
__UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path}
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowercase__ ( snake_case_ :Optional[int] ):
return json.load(snake_case_ )
def lowercase__ ( snake_case_ :Any ):
return [json.loads(snake_case_ ) for line in buffer]
class _UpperCAmelCase :
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json_function(_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(exported_content[0] , _lowercase )
assert len(_lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json(_lowercase )
assert isinstance(_lowercase , _lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(_lowercase ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json_function(_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(exported_content[0] , _lowercase )
assert len(_lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json(_lowercase )
assert isinstance(_lowercase , _lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(_lowercase ) == 10
def a ( self : int , _lowercase : Any ):
with pytest.raises(_lowercase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ):
__UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}'''
__UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' )
JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write()
with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f:
__UpperCAmelCase = f.read()
with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f:
__UpperCAmelCase = f.read()
assert exported_content == original_content
| 49 | 1 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = "EncodecFeatureExtractor"
a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast")
def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ):
super().__init__(_lowercase , _lowercase )
__UpperCAmelCase = self.feature_extractor
__UpperCAmelCase = False
def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ):
return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase )
def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowercase , **_lowercase )
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''text''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if text is not None:
__UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase )
if audio is not None:
__UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
__UpperCAmelCase = audio_inputs['''input_values''']
if "padding_mask" in audio_inputs:
__UpperCAmelCase = audio_inputs['''padding_mask''']
return inputs
def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ):
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio_values is not None:
return self._decode_audio(_lowercase , padding_mask=_lowercase )
else:
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ):
__UpperCAmelCase = to_numpy(_lowercase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape
if padding_mask is None:
return list(_lowercase )
__UpperCAmelCase = to_numpy(_lowercase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
__UpperCAmelCase = seq_len - padding_mask.shape[-1]
__UpperCAmelCase = 1 - self.feature_extractor.padding_value
__UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase )
__UpperCAmelCase = audio_values.tolist()
for i in range(_lowercase ):
__UpperCAmelCase = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
__UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 )
return audio_values
| 49 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Union[str, Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
__UpperCAmelCase = TextIteratorStreamer(_lowercase )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowercase , _lowercase )
def a ( self : str ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :]
__UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Tuple ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
__UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase )
model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
__UpperCAmelCase = cs.out[:-1] # Remove the final "\n"
__UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def a ( self : Tuple ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowercase ):
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
| 49 | 1 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : Optional[int] = 16
_lowercase : Optional[Any] = 32
def lowercase__ ( snake_case_ :Accelerator , snake_case_ :int = 16 , snake_case_ :str = "bert-base-cased" ):
__UpperCAmelCase = AutoTokenizer.from_pretrained(snake_case_ )
__UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case_ :Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCAmelCase = datasets.map(
snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case_ :Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__UpperCAmelCase = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
__UpperCAmelCase = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
return train_dataloader, eval_dataloader
def lowercase__ ( snake_case_ :List[Any] , snake_case_ :Optional[int] , snake_case_ :Tuple , snake_case_ :Optional[int] ):
model.eval()
__UpperCAmelCase = 0
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCAmelCase = model(**snake_case_ )
__UpperCAmelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__UpperCAmelCase , __UpperCAmelCase = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(snake_case_ ) - 1:
__UpperCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__UpperCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=snake_case_ , references=snake_case_ , )
__UpperCAmelCase = metric.compute()
return eval_metric["accuracy"]
def lowercase__ ( snake_case_ :int , snake_case_ :Dict ):
# Initialize accelerator
__UpperCAmelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCAmelCase = config['''lr''']
__UpperCAmelCase = int(config['''num_epochs'''] )
__UpperCAmelCase = int(config['''seed'''] )
__UpperCAmelCase = int(config['''batch_size'''] )
__UpperCAmelCase = args.model_name_or_path
set_seed(snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = get_dataloaders(snake_case_ , snake_case_ , snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ )
# Instantiate optimizer
__UpperCAmelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__UpperCAmelCase = optimizer_cls(params=model.parameters() , lr=snake_case_ )
if accelerator.state.deepspeed_plugin is not None:
__UpperCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
__UpperCAmelCase = 1
__UpperCAmelCase = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__UpperCAmelCase = get_linear_schedule_with_warmup(
optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , )
else:
__UpperCAmelCase = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# We need to keep track of how many total steps we have iterated over
__UpperCAmelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__UpperCAmelCase = 0
__UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' )
__UpperCAmelCase = num_epochs
if args.partial_train_epoch is not None:
__UpperCAmelCase = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
__UpperCAmelCase = args.resume_from_checkpoint.split('''epoch_''' )[1]
__UpperCAmelCase = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
__UpperCAmelCase = int(snake_case_ ) + 1
__UpperCAmelCase = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
accelerator.print('''resumed checkpoint performance:''' , snake_case_ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f:
__UpperCAmelCase = json.load(snake_case_ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
__UpperCAmelCase = {}
for epoch in range(snake_case_ , snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
__UpperCAmelCase = model(**snake_case_ )
__UpperCAmelCase = outputs.loss
__UpperCAmelCase = loss / gradient_accumulation_steps
accelerator.backward(snake_case_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
__UpperCAmelCase = F'''epoch_{epoch}'''
__UpperCAmelCase = os.path.join(args.output_dir , snake_case_ )
accelerator.save_state(snake_case_ )
__UpperCAmelCase = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = accuracy
__UpperCAmelCase = lr_scheduler.get_lr()[0]
__UpperCAmelCase = optimizer.param_groups[0]['''lr''']
__UpperCAmelCase = epoch
__UpperCAmelCase = overall_step
accelerator.print(F'''epoch {epoch}:''' , snake_case_ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , '''w''' ) as f:
json.dump(snake_case_ , snake_case_ )
def lowercase__ ( ):
__UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , )
parser.add_argument(
'''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--resume_from_checkpoint''' , type=snake_case_ , default=snake_case_ , help='''If the training should continue from a checkpoint folder.''' , )
parser.add_argument(
'''--partial_train_epoch''' , type=snake_case_ , default=snake_case_ , help='''If passed, the training will stop after this number of epochs.''' , )
parser.add_argument(
'''--num_epochs''' , type=snake_case_ , default=2 , help='''Number of train epochs.''' , )
__UpperCAmelCase = parser.parse_args()
__UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case_ , snake_case_ )
if __name__ == "__main__":
main()
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :float , snake_case_ :float ):
if density <= 0:
raise ValueError('''Impossible fluid density''' )
if bulk_modulus <= 0:
raise ValueError('''Impossible bulk modulus''' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase : Dict = {
'configuration_clap': [
'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST',
'ClapAudioConfig',
'ClapConfig',
'ClapTextConfig',
],
'processing_clap': ['ClapProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = [
'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST',
'ClapModel',
'ClapPreTrainedModel',
'ClapTextModel',
'ClapTextModelWithProjection',
'ClapAudioModel',
'ClapAudioModelWithProjection',
]
_lowercase : Union[str, Any] = ['ClapFeatureExtractor']
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :dict ):
__UpperCAmelCase = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
__UpperCAmelCase = set()
return any(
node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
for node in graph )
def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ):
visited.add(snake_case_ )
rec_stk.add(snake_case_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(snake_case_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :list ):
__UpperCAmelCase = 0
while len(snake_case_ ) > 1:
__UpperCAmelCase = 0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
__UpperCAmelCase = files.index(min(snake_case_ ) )
temp += files[min_index]
files.pop(snake_case_ )
files.append(snake_case_ )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : Any = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[Any] = ['PoolFormerFeatureExtractor']
_lowercase : Any = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 49 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
_lowercase : List[str] = None
_lowercase : Dict = logging.get_logger(__name__)
_lowercase : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
_lowercase : Tuple = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
},
'tokenizer_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json',
},
}
_lowercase : Any = {
'albert-base-v1': 5_12,
'albert-large-v1': 5_12,
'albert-xlarge-v1': 5_12,
'albert-xxlarge-v1': 5_12,
'albert-base-v2': 5_12,
'albert-large-v2': 5_12,
'albert-xlarge-v2': 5_12,
'albert-xxlarge-v2': 5_12,
}
_lowercase : Union[str, Any] = '▁'
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Optional[Any] = VOCAB_FILES_NAMES
a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP
a__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Union[str, Any] = AlbertTokenizer
def __init__( self : Dict , _lowercase : Optional[int]=None , _lowercase : List[Any]=None , _lowercase : int=True , _lowercase : Union[str, Any]=True , _lowercase : List[str]=False , _lowercase : List[str]="[CLS]" , _lowercase : int="[SEP]" , _lowercase : Optional[Any]="<unk>" , _lowercase : List[Any]="[SEP]" , _lowercase : int="<pad>" , _lowercase : Optional[int]="[CLS]" , _lowercase : List[str]="[MASK]" , **_lowercase : Optional[int] , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__UpperCAmelCase = (
AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase , normalized=_lowercase )
if isinstance(_lowercase , _lowercase )
else mask_token
)
super().__init__(
_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = remove_space
__UpperCAmelCase = keep_accents
__UpperCAmelCase = vocab_file
__UpperCAmelCase = False if not self.vocab_file else True
def a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a ( self : Union[str, Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_lowercase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase = os.path.join(
_lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ):
copyfile(self.vocab_file , _lowercase )
return (out_vocab_file,)
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Dict ): # noqa: E741
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = [0] * n
__UpperCAmelCase = [False] * n
__UpperCAmelCase = [False] * n
def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ):
if parent == root:
out_edge_count += 1
__UpperCAmelCase = True
__UpperCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__UpperCAmelCase = True
# AP found via cycle
if at == low[to]:
__UpperCAmelCase = True
else:
__UpperCAmelCase = min(low[at] , snake_case_ )
return out_edge_count
for i in range(snake_case_ ):
if not visited[i]:
__UpperCAmelCase = 0
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ )
__UpperCAmelCase = out_edge_count > 1
for x in range(len(snake_case_ ) ):
if is_art[x] is True:
print(snake_case_ )
# Adjacency list of graph
_lowercase : Optional[Any] = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 49 | 1 |
"""simple docstring"""
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : List[Any] = MobileBertTokenizer
a__ : str = MobileBertTokenizerFast
a__ : str = True
a__ : Optional[Any] = True
a__ : List[str] = filter_non_english
a__ : Optional[Any] = "google/mobilebert-uncased"
def a ( self : int ):
super().setUp()
__UpperCAmelCase = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
__UpperCAmelCase = [
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def a ( self : Any , _lowercase : Union[str, Any] ):
__UpperCAmelCase = '''UNwant\u00E9d,running'''
__UpperCAmelCase = '''unwanted, running'''
return input_text, output_text
def a ( self : Optional[int] ):
__UpperCAmelCase = self.tokenizer_class(self.vocab_file )
__UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [9, 6, 7, 12, 10, 11] )
def a ( self : Any ):
if not self.test_rust_tokenizer:
return
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_rust_tokenizer()
__UpperCAmelCase = '''UNwant\u00E9d,running'''
__UpperCAmelCase = tokenizer.tokenize(_lowercase )
__UpperCAmelCase = rust_tokenizer.tokenize(_lowercase )
self.assertListEqual(_lowercase , _lowercase )
__UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
__UpperCAmelCase = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
self.assertListEqual(_lowercase , _lowercase )
__UpperCAmelCase = self.get_rust_tokenizer()
__UpperCAmelCase = tokenizer.encode(_lowercase )
__UpperCAmelCase = rust_tokenizer.encode(_lowercase )
self.assertListEqual(_lowercase , _lowercase )
# With lower casing
__UpperCAmelCase = self.get_tokenizer(do_lower_case=_lowercase )
__UpperCAmelCase = self.get_rust_tokenizer(do_lower_case=_lowercase )
__UpperCAmelCase = '''UNwant\u00E9d,running'''
__UpperCAmelCase = tokenizer.tokenize(_lowercase )
__UpperCAmelCase = rust_tokenizer.tokenize(_lowercase )
self.assertListEqual(_lowercase , _lowercase )
__UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
__UpperCAmelCase = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
self.assertListEqual(_lowercase , _lowercase )
__UpperCAmelCase = self.get_rust_tokenizer()
__UpperCAmelCase = tokenizer.encode(_lowercase )
__UpperCAmelCase = rust_tokenizer.encode(_lowercase )
self.assertListEqual(_lowercase , _lowercase )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def a ( self : Optional[Any] ):
__UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def a ( self : int ):
__UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def a ( self : Optional[Any] ):
__UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def a ( self : str ):
__UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def a ( self : List[Any] ):
__UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def a ( self : Dict ):
__UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def a ( self : List[Any] ):
__UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def a ( self : Optional[int] ):
__UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__UpperCAmelCase = {}
for i, token in enumerate(_lowercase ):
__UpperCAmelCase = i
__UpperCAmelCase = WordpieceTokenizer(vocab=_lowercase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def a ( self : str ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def a ( self : Optional[int] ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def a ( self : Dict ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def a ( self : Dict ):
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(_lowercase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(_lowercase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def a ( self : List[Any] ):
__UpperCAmelCase = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' )
__UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowercase )
__UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowercase )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowercase )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase )
assert encoded_sentence == [1_01] + text + [1_02]
assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02]
def a ( self : Union[str, Any] ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__UpperCAmelCase = tokenizer_r.encode_plus(
_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase , )
__UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(_lowercase , '''do_lower_case''' ) else False
__UpperCAmelCase = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def a ( self : str ):
__UpperCAmelCase = ['''的''', '''人''', '''有''']
__UpperCAmelCase = ''''''.join(_lowercase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase = True
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tokenizer_p.encode(_lowercase , add_special_tokens=_lowercase )
__UpperCAmelCase = tokenizer_r.encode(_lowercase , add_special_tokens=_lowercase )
__UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(_lowercase )
__UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(_lowercase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(_lowercase , _lowercase )
self.assertListEqual(_lowercase , _lowercase )
__UpperCAmelCase = False
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
__UpperCAmelCase = tokenizer_r.encode(_lowercase , add_special_tokens=_lowercase )
__UpperCAmelCase = tokenizer_p.encode(_lowercase , add_special_tokens=_lowercase )
__UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(_lowercase )
__UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(_lowercase )
# it is expected that only the first Chinese character is not preceded by "##".
__UpperCAmelCase = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_lowercase )
]
self.assertListEqual(_lowercase , _lowercase )
self.assertListEqual(_lowercase , _lowercase )
| 49 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = "EncodecFeatureExtractor"
a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast")
def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ):
super().__init__(_lowercase , _lowercase )
__UpperCAmelCase = self.feature_extractor
__UpperCAmelCase = False
def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ):
return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase )
def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowercase , **_lowercase )
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''text''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if text is not None:
__UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase )
if audio is not None:
__UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
__UpperCAmelCase = audio_inputs['''input_values''']
if "padding_mask" in audio_inputs:
__UpperCAmelCase = audio_inputs['''padding_mask''']
return inputs
def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ):
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio_values is not None:
return self._decode_audio(_lowercase , padding_mask=_lowercase )
else:
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ):
__UpperCAmelCase = to_numpy(_lowercase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape
if padding_mask is None:
return list(_lowercase )
__UpperCAmelCase = to_numpy(_lowercase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
__UpperCAmelCase = seq_len - padding_mask.shape[-1]
__UpperCAmelCase = 1 - self.feature_extractor.padding_value
__UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase )
__UpperCAmelCase = audio_values.tolist()
for i in range(_lowercase ):
__UpperCAmelCase = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
__UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 )
return audio_values
| 49 | 1 |
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
_lowercase : str = 2_00
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
_lowercase : Any = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
_lowercase : int = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 10_00))
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = len([g for position, g in enumerate(snake_case_ ) if g == main_target[position]] )
return (item, float(snake_case_ ))
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = random.randint(0 , len(snake_case_ ) - 1 )
__UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
__UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def lowercase__ ( snake_case_ :str , snake_case_ :list[str] ):
__UpperCAmelCase = list(snake_case_ )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
__UpperCAmelCase = random.choice(snake_case_ )
return "".join(snake_case_ )
def lowercase__ ( snake_case_ :tuple[str, float] , snake_case_ :list[tuple[str, float]] , snake_case_ :list[str] , ):
__UpperCAmelCase = []
# Generate more children proportionally to the fitness score.
__UpperCAmelCase = int(parent_a[1] * 100 ) + 1
__UpperCAmelCase = 10 if child_n >= 10 else child_n
for _ in range(snake_case_ ):
__UpperCAmelCase = population_score[random.randint(0 , snake_case_ )][0]
__UpperCAmelCase , __UpperCAmelCase = crossover(parent_a[0] , snake_case_ )
# Append new string to the population list.
pop.append(mutate(snake_case_ , snake_case_ ) )
pop.append(mutate(snake_case_ , snake_case_ ) )
return pop
def lowercase__ ( snake_case_ :str , snake_case_ :list[str] , snake_case_ :bool = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
__UpperCAmelCase = F'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(snake_case_ )
# Verify that the target contains no genes besides the ones inside genes variable.
__UpperCAmelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
__UpperCAmelCase = F'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(snake_case_ )
# Generate random starting population.
__UpperCAmelCase = []
for _ in range(snake_case_ ):
population.append(''''''.join([random.choice(snake_case_ ) for i in range(len(snake_case_ ) )] ) )
# Just some logs to know what the algorithms is doing.
__UpperCAmelCase , __UpperCAmelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(snake_case_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
__UpperCAmelCase = [evaluate(snake_case_ , snake_case_ ) for item in population]
# Check if there is a matching evolution.
__UpperCAmelCase = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'''\nGeneration: {generation}'''
F'''\nTotal Population:{total_population}'''
F'''\nBest score: {population_score[0][1]}'''
F'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
__UpperCAmelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(snake_case_ )
# Normalize population score to be between 0 and 1.
__UpperCAmelCase = [
(item, score / len(snake_case_ )) for item, score in population_score
]
# This is selection
for i in range(snake_case_ ):
population.extend(select(population_score[int(snake_case_ )] , snake_case_ , snake_case_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(snake_case_ ) > N_POPULATION:
break
if __name__ == "__main__":
_lowercase : Optional[int] = (
'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'
)
_lowercase : Union[str, Any] = list(
' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'
'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'
)
_lowercase ,_lowercase ,_lowercase : Optional[int] = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
__UpperCAmelCase = True
for i in range(snake_case_ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
__UpperCAmelCase = True
if a[i].islower():
__UpperCAmelCase = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :list[int] , snake_case_ :str ):
__UpperCAmelCase = int(snake_case_ )
# Initialize Result
__UpperCAmelCase = []
# Traverse through all denomination
for denomination in reversed(snake_case_ ):
# Find denominations
while int(snake_case_ ) >= int(snake_case_ ):
total_value -= int(snake_case_ )
answer.append(snake_case_ ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
_lowercase : str = []
_lowercase : Union[str, Any] = '0'
if (
input('Do you want to enter your denominations ? (yY/n): ').strip().lower()
== "y"
):
_lowercase : List[Any] = int(input('Enter the number of denominations you want to add: ').strip())
for i in range(0, n):
denominations.append(int(input(f"""Denomination {i}: """).strip()))
_lowercase : Optional[Any] = input('Enter the change you want to make in Indian Currency: ').strip()
else:
# All denominations of Indian Currency if user does not enter
_lowercase : List[Any] = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00]
_lowercase : List[str] = input('Enter the change you want to make: ').strip()
if int(value) == 0 or int(value) < 0:
print('The total value cannot be zero or negative.')
else:
print(f"""Following is minimal change for {value}: """)
_lowercase : Optional[int] = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=' ')
| 49 |
"""simple docstring"""
from collections import deque
class _UpperCAmelCase :
def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ):
__UpperCAmelCase = process_name # process name
__UpperCAmelCase = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
__UpperCAmelCase = arrival_time
__UpperCAmelCase = burst_time # remaining burst time
__UpperCAmelCase = 0 # total time of the process wait in ready queue
__UpperCAmelCase = 0 # time from arrival time to completion time
class _UpperCAmelCase :
def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ):
# total number of mlfq's queues
__UpperCAmelCase = number_of_queues
# time slice of queues that round robin algorithm applied
__UpperCAmelCase = time_slices
# unfinished process is in this ready_queue
__UpperCAmelCase = queue
# current time
__UpperCAmelCase = current_time
# finished process is in this sequence queue
__UpperCAmelCase = deque()
def a ( self : Dict ):
__UpperCAmelCase = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def a ( self : str , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def a ( self : Any , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def a ( self : Tuple , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def a ( self : Optional[int] , _lowercase : deque[Process] ):
return [q.burst_time for q in queue]
def a ( self : str , _lowercase : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def a ( self : Union[str, Any] , _lowercase : deque[Process] ):
__UpperCAmelCase = deque() # sequence deque of finished process
while len(_lowercase ) != 0:
__UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_lowercase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
__UpperCAmelCase = 0
# set the process's turnaround time because it is finished
__UpperCAmelCase = self.current_time - cp.arrival_time
# set the completion time
__UpperCAmelCase = self.current_time
# add the process to queue that has finished queue
finished.append(_lowercase )
self.finish_queue.extend(_lowercase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ):
__UpperCAmelCase = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_lowercase ) ):
__UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_lowercase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
__UpperCAmelCase = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_lowercase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
__UpperCAmelCase = 0
# set the finish time
__UpperCAmelCase = self.current_time
# update the process' turnaround time because it is finished
__UpperCAmelCase = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_lowercase )
self.finish_queue.extend(_lowercase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def a ( self : Union[str, Any] ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
__UpperCAmelCase , __UpperCAmelCase = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
_lowercase : List[str] = Process('P1', 0, 53)
_lowercase : str = Process('P2', 0, 17)
_lowercase : Union[str, Any] = Process('P3', 0, 68)
_lowercase : int = Process('P4', 0, 24)
_lowercase : Any = 3
_lowercase : Union[str, Any] = [17, 25]
_lowercase : Dict = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])})
_lowercase : Optional[Any] = Process('P1', 0, 53)
_lowercase : Tuple = Process('P2', 0, 17)
_lowercase : Optional[int] = Process('P3', 0, 68)
_lowercase : int = Process('P4', 0, 24)
_lowercase : int = 3
_lowercase : int = [17, 25]
_lowercase : List[str] = deque([Pa, Pa, Pa, Pa])
_lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0)
_lowercase : str = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
f"""waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print completion times of processes(P1, P2, P3, P4)
print(
f"""completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
f"""turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print sequence of finished processes
print(
f"""sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}"""
)
| 49 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : Union[str, Any] = logging.get_logger(__name__)
_lowercase : List[Any] = {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json',
'umberto-commoncrawl-cased-v1': (
'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'
),
'umberto-wikipedia-uncased-v1': (
'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "camembert"
def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ):
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
__UpperCAmelCase = classifier_dropout
class _UpperCAmelCase ( _lowerCAmelCase ):
@property
def a ( self : Tuple ):
if self.task == "multiple-choice":
__UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 49 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
def __init__( self : Tuple , _lowercase : Tuple , _lowercase : List[Any]=7 , _lowercase : List[str]=3 , _lowercase : List[Any]=30 , _lowercase : Union[str, Any]=4_00 , _lowercase : Optional[int]=True , _lowercase : Any=None , _lowercase : Optional[Any]=0.9 , _lowercase : Optional[int]=None , _lowercase : Optional[int]=True , _lowercase : Tuple=[0.5, 0.5, 0.5] , _lowercase : Any=[0.5, 0.5, 0.5] , ):
__UpperCAmelCase = size if size is not None else {'''shortest_edge''': 30}
__UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30}
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = min_resolution
__UpperCAmelCase = max_resolution
__UpperCAmelCase = do_resize_and_center_crop
__UpperCAmelCase = size
__UpperCAmelCase = crop_pct
__UpperCAmelCase = crop_size
__UpperCAmelCase = do_normalize
__UpperCAmelCase = image_mean
__UpperCAmelCase = image_std
def a ( self : int ):
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
a__ : Union[str, Any] = PoolFormerImageProcessor if is_vision_available() else None
def a ( self : List[Any] ):
__UpperCAmelCase = PoolFormerImageProcessingTester(self )
@property
def a ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def a ( self : Any ):
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowercase , '''do_resize_and_center_crop''' ) )
self.assertTrue(hasattr(_lowercase , '''size''' ) )
self.assertTrue(hasattr(_lowercase , '''crop_pct''' ) )
self.assertTrue(hasattr(_lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(_lowercase , '''image_mean''' ) )
self.assertTrue(hasattr(_lowercase , '''image_std''' ) )
def a ( self : Union[str, Any] ):
__UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 30} )
self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} )
__UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def a ( self : List[str] ):
pass
def a ( self : Dict ):
# Initialize image_processing
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , Image.Image )
# Test not batched input
__UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__UpperCAmelCase = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def a ( self : Union[str, Any] ):
# Initialize image_processing
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , np.ndarray )
# Test not batched input
__UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__UpperCAmelCase = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def a ( self : Union[str, Any] ):
# Initialize image_processing
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase )
for image in image_inputs:
self.assertIsInstance(_lowercase , torch.Tensor )
# Test not batched input
__UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__UpperCAmelCase = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 49 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks if the entire collection has been sorted
if len(snake_case_ ) <= 1 or n <= 1:
return
insert_next(snake_case_ , n - 1 )
rec_insertion_sort(snake_case_ , n - 1 )
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks order between adjacent elements
if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
__UpperCAmelCase , __UpperCAmelCase = (
collection[index],
collection[index - 1],
)
insert_next(snake_case_ , index + 1 )
if __name__ == "__main__":
_lowercase : Any = input('Enter integers separated by spaces: ')
_lowercase : list[int] = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 49 | 1 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_lowercase : int = logging.get_logger(__name__)
_lowercase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
_lowercase : List[str] = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
_lowercase : Optional[int] = {
'gpt-neox-20b': 20_48,
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : List[str] = VOCAB_FILES_NAMES
a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : str = ["input_ids", "attention_mask"]
def __init__( self : Tuple , _lowercase : Optional[int]=None , _lowercase : Optional[Any]=None , _lowercase : str=None , _lowercase : List[Any]="<|endoftext|>" , _lowercase : List[Any]="<|endoftext|>" , _lowercase : Optional[int]="<|endoftext|>" , _lowercase : List[Any]=False , **_lowercase : Optional[int] , ):
super().__init__(
_lowercase , _lowercase , tokenizer_file=_lowercase , unk_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , )
__UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , _lowercase ) != add_prefix_space:
__UpperCAmelCase = getattr(_lowercase , pre_tok_state.pop('''type''' ) )
__UpperCAmelCase = add_prefix_space
__UpperCAmelCase = pre_tok_class(**_lowercase )
__UpperCAmelCase = add_prefix_space
def a ( self : int , _lowercase : str , _lowercase : Optional[str] = None ):
__UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase )
return tuple(_lowercase )
def a ( self : Any , _lowercase : "Conversation" ):
__UpperCAmelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_lowercase , add_special_tokens=_lowercase ) + [self.eos_token_id] )
if len(_lowercase ) > self.model_max_length:
__UpperCAmelCase = input_ids[-self.model_max_length :]
return input_ids
| 49 |
"""simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : Any = StableUnCLIPPipeline
a__ : Dict = TEXT_TO_IMAGE_PARAMS
a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS
a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
a__ : Optional[int] = False
def a ( self : List[str] ):
__UpperCAmelCase = 32
__UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
__UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase )
__UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , )
torch.manual_seed(0 )
__UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL()
__UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ):
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def a ( self : Any ):
__UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=_lowercase )
def a ( self : int ):
__UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=_lowercase )
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : Any ):
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' )
__UpperCAmelCase = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(_lowercase , _lowercase )
def a ( self : Any ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
__UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 49 | 1 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
_lowercase : Tuple = logging.get_logger(__name__)
_lowercase : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
_lowercase : Tuple = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def lowercase__ ( snake_case_ :Tuple , snake_case_ :Dict , snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Dict ):
for attribute in key.split('''.''' ):
__UpperCAmelCase = getattr(snake_case_ , snake_case_ )
if weight_type is not None:
__UpperCAmelCase = getattr(snake_case_ , snake_case_ ).shape
else:
__UpperCAmelCase = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__UpperCAmelCase = value
elif weight_type == "weight_g":
__UpperCAmelCase = value
elif weight_type == "weight_v":
__UpperCAmelCase = value
elif weight_type == "bias":
__UpperCAmelCase = value
else:
__UpperCAmelCase = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def lowercase__ ( snake_case_ :Dict , snake_case_ :Dict ):
__UpperCAmelCase = []
__UpperCAmelCase = fairseq_model.state_dict()
__UpperCAmelCase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__UpperCAmelCase = None
for name, value in fairseq_dict.items():
__UpperCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == '''group''' , )
__UpperCAmelCase = True
elif name.split('''.''' )[0] == "proj":
__UpperCAmelCase = fairseq_model.proj
__UpperCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__UpperCAmelCase = True
if "*" in mapped_key:
__UpperCAmelCase = name.split(snake_case_ )[0].split('''.''' )[-2]
__UpperCAmelCase = mapped_key.replace('''*''' , snake_case_ )
if "weight_g" in name:
__UpperCAmelCase = '''weight_g'''
elif "weight_v" in name:
__UpperCAmelCase = '''weight_v'''
elif "bias" in name:
__UpperCAmelCase = '''bias'''
elif "weight" in name:
__UpperCAmelCase = '''weight'''
else:
__UpperCAmelCase = None
set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(F'''Unused weights: {unused_weights}''' )
return proj_weight
def lowercase__ ( snake_case_ :str , snake_case_ :List[Any] , snake_case_ :str , snake_case_ :List[Any] , snake_case_ :Dict ):
__UpperCAmelCase = full_name.split('''conv_layers.''' )[-1]
__UpperCAmelCase = name.split('''.''' )
__UpperCAmelCase = int(items[0] )
__UpperCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__UpperCAmelCase = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__UpperCAmelCase = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__UpperCAmelCase = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__UpperCAmelCase = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(snake_case_ )
def lowercase__ ( snake_case_ :Any ):
__UpperCAmelCase , __UpperCAmelCase = emb.weight.shape
__UpperCAmelCase = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ )
__UpperCAmelCase = emb.weight.data
return lin_layer
def lowercase__ ( snake_case_ :str ):
with open(snake_case_ , '''r''' , encoding='''utf-8''' ) as f:
__UpperCAmelCase = f.readlines()
__UpperCAmelCase = [line.split(''' ''' )[0] for line in lines]
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = {
'''<s>''': 0,
'''<pad>''': 1,
'''</s>''': 2,
'''<unk>''': 3,
}
vocab_dict.update(dict(zip(snake_case_ , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Optional[int] , snake_case_ :Tuple , snake_case_ :Optional[int] , snake_case_ :Optional[Any] , snake_case_ :List[Any] , ):
__UpperCAmelCase = WavaVecaConfig.from_pretrained(snake_case_ )
__UpperCAmelCase = SpeechaTextaConfig.from_pretrained(
snake_case_ , vocab_size=snake_case_ , decoder_layers=snake_case_ , do_stable_layer_norm=snake_case_ )
__UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
__UpperCAmelCase = model[0].eval()
# set weights for wav2vec2 encoder
__UpperCAmelCase = WavaVecaModel(snake_case_ )
__UpperCAmelCase = recursively_load_weights_wavaveca(model.encoder , snake_case_ )
__UpperCAmelCase = SpeechaTextaForCausalLM(snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case_ )
# set output linear layer
unexpected_keys.remove('''embed_out''' )
__UpperCAmelCase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' )
logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' )
__UpperCAmelCase = SpeechEncoderDecoderModel(encoder=snake_case_ , decoder=snake_case_ )
__UpperCAmelCase = False
# add projection layer
__UpperCAmelCase = nn.Parameter(projection_layer.weight )
__UpperCAmelCase = nn.Parameter(projection_layer.bias )
__UpperCAmelCase = create_vocab_dict(snake_case_ )
with open(os.path.join(snake_case_ , '''vocab.json''' ) , '''w''' ) as fp:
json.dump(snake_case_ , snake_case_ )
__UpperCAmelCase = SpeechaTextaTokenizer(os.path.join(snake_case_ , '''vocab.json''' ) )
tokenizer.save_pretrained(snake_case_ )
__UpperCAmelCase = hf_wavavec.config.to_dict()
__UpperCAmelCase = tokenizer.pad_token_id
__UpperCAmelCase = tokenizer.bos_token_id
__UpperCAmelCase = tokenizer.eos_token_id
__UpperCAmelCase = '''speech_to_text_2'''
__UpperCAmelCase = '''wav2vec2'''
__UpperCAmelCase = SpeechEncoderDecoderConfig.from_dict(snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
feature_extractor.save_pretrained(snake_case_ )
if __name__ == "__main__":
_lowercase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument(
'--encoder_config_path',
default='facebook/wav2vec2-large-lv60',
type=str,
help='Path to hf encoder wav2vec2 checkpoint config',
)
parser.add_argument(
'--decoder_config_path',
default='facebook/s2t-small-mustc-en-fr-st',
type=str,
help='Path to hf decoder s2t checkpoint config',
)
parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder')
parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers')
_lowercase : Dict = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 49 |
"""simple docstring"""
from typing import Any
def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ):
_validation(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
# Creates data structures and fill initial step
__UpperCAmelCase = {}
__UpperCAmelCase = {}
for state in states_space:
__UpperCAmelCase = observations_space[0]
__UpperCAmelCase = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
__UpperCAmelCase = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(snake_case_ ) ):
__UpperCAmelCase = observations_space[o]
__UpperCAmelCase = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
__UpperCAmelCase = ''''''
__UpperCAmelCase = -1
for k_state in states_space:
__UpperCAmelCase = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
__UpperCAmelCase = probability
__UpperCAmelCase = k_state
# Update probabilities and pointers dicts
__UpperCAmelCase = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
__UpperCAmelCase = arg_max
# The final observation
__UpperCAmelCase = observations_space[len(snake_case_ ) - 1]
# argmax for given final observation
__UpperCAmelCase = ''''''
__UpperCAmelCase = -1
for k_state in states_space:
__UpperCAmelCase = probabilities[(k_state, final_observation)]
if probability > max_probability:
__UpperCAmelCase = probability
__UpperCAmelCase = k_state
__UpperCAmelCase = arg_max
# Process pointers backwards
__UpperCAmelCase = last_state
__UpperCAmelCase = []
for o in range(len(snake_case_ ) - 1 , -1 , -1 ):
result.append(snake_case_ )
__UpperCAmelCase = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
_validate_not_empty(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
_validate_lists(snake_case_ , snake_case_ )
_validate_dicts(
snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('''There\'s an empty parameter''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any ):
_validate_list(snake_case_ , '''observations_space''' )
_validate_list(snake_case_ , '''states_space''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :str ):
if not isinstance(_object , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a list'''
raise ValueError(snake_case_ )
else:
for x in _object:
if not isinstance(snake_case_ , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a list of strings'''
raise ValueError(snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
_validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ )
_validate_nested_dict(snake_case_ , '''transition_probabilities''' )
_validate_nested_dict(snake_case_ , '''emission_probabilities''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :str ):
_validate_dict(_object , snake_case_ , snake_case_ )
for x in _object.values():
_validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ):
if not isinstance(_object , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a dict'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ):
__UpperCAmelCase = F'''{var_name} all keys must be strings'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ):
__UpperCAmelCase = '''nested dictionary ''' if nested else ''''''
__UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(snake_case_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 | 1 |
"""simple docstring"""
def lowercase__ ( snake_case_ :str ):
assert column_title.isupper()
__UpperCAmelCase = 0
__UpperCAmelCase = len(snake_case_ ) - 1
__UpperCAmelCase = 0
while index >= 0:
__UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case_ )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
_lowercase : int = logging.get_logger(__name__)
_lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_lowercase : str = {
'vocab_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'
),
},
}
_lowercase : int = {
'yjernite/retribert-base-uncased': 5_12,
}
_lowercase : Any = {
'yjernite/retribert-base-uncased': {'do_lower_case': True},
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : str = VOCAB_FILES_NAMES
a__ : Dict = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : str = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[Any] = RetriBertTokenizer
a__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ):
super().__init__(
_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , )
__UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars
):
__UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = strip_accents
__UpperCAmelCase = tokenize_chinese_chars
__UpperCAmelCase = normalizer_class(**_lowercase )
__UpperCAmelCase = do_lower_case
def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ):
__UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ):
__UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase )
return tuple(_lowercase )
| 49 | 1 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Optional[Any] ):
__UpperCAmelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] )
__UpperCAmelCase = get_activation('''gelu''' )
self.assertTrue(torch.allclose(gelu_python(_lowercase ) , torch_builtin(_lowercase ) ) )
self.assertFalse(torch.allclose(gelu_python(_lowercase ) , gelu_new(_lowercase ) ) )
def a ( self : Any ):
__UpperCAmelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] )
__UpperCAmelCase = get_activation('''gelu''' )
__UpperCAmelCase = get_activation('''gelu_10''' )
__UpperCAmelCase = torch_builtin(_lowercase )
__UpperCAmelCase = geluaa(_lowercase )
__UpperCAmelCase = torch.where(y_gelu_aa < 10.0 , 1 , 0 )
self.assertTrue(torch.max(_lowercase ).item() == 10.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def a ( self : int ):
get_activation('''gelu''' )
get_activation('''gelu_10''' )
get_activation('''gelu_fast''' )
get_activation('''gelu_new''' )
get_activation('''gelu_python''' )
get_activation('''gelu_pytorch_tanh''' )
get_activation('''linear''' )
get_activation('''mish''' )
get_activation('''quick_gelu''' )
get_activation('''relu''' )
get_activation('''sigmoid''' )
get_activation('''silu''' )
get_activation('''swish''' )
get_activation('''tanh''' )
with self.assertRaises(_lowercase ):
get_activation('''bogus''' )
with self.assertRaises(_lowercase ):
get_activation(_lowercase )
def a ( self : List[Any] ):
__UpperCAmelCase = get_activation('''gelu''' )
__UpperCAmelCase = 1
__UpperCAmelCase = get_activation('''gelu''' )
self.assertEqual(acta.a , 1 )
with self.assertRaises(_lowercase ):
__UpperCAmelCase = acta.a
| 49 |
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
_lowercase : Dict = 'bart'
_lowercase : Dict = True
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
if LOAD_DENSE_INDEX:
__UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__UpperCAmelCase = qar_model.eval()
else:
__UpperCAmelCase , __UpperCAmelCase = (None, None)
if MODEL_TYPE == "bart":
__UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__UpperCAmelCase = sas_model.eval()
else:
__UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
if LOAD_DENSE_INDEX:
__UpperCAmelCase = faiss.StandardGpuResources()
__UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__UpperCAmelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__UpperCAmelCase = faiss.IndexFlatIP(128 )
__UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ )
wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU
else:
__UpperCAmelCase , __UpperCAmelCase = (None, None)
__UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=snake_case_ )
def lowercase__ ( ):
__UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__UpperCAmelCase = elia['''train_eli5''']
__UpperCAmelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__UpperCAmelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(snake_case_ )
return (elia_train, eli5_train_q_index)
_lowercase ,_lowercase ,_lowercase : Dict = load_indexes()
_lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models()
_lowercase ,_lowercase : Tuple = load_train_data()
def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ):
__UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ )
__UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]]
return nn_examples
def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ):
if source == "none":
__UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
else:
__UpperCAmelCase , __UpperCAmelCase = query_es_index(
snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , )
__UpperCAmelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda snake_case_ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None),
} )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ):
with torch.no_grad():
__UpperCAmelCase = qa_sas_generate(
snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title('Long Form Question Answering with ELI5')
# Start sidebar
_lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'
_lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
_lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n'
st.sidebar.markdown(description, unsafe_allow_html=True)
_lowercase : str = [
'Answer the question',
'View the retrieved document only',
'View the most similar ELI5 question and answer',
'Show me everything, please!',
]
_lowercase : Optional[int] = st.sidebar.checkbox('Demo options')
if demo_options:
_lowercase : Tuple = st.sidebar.selectbox(
'',
action_list,
index=3,
)
_lowercase : List[str] = action_list.index(action_st)
_lowercase : str = st.sidebar.selectbox(
'',
['Show full text of passages', 'Show passage section titles'],
index=0,
)
_lowercase : int = show_type == 'Show full text of passages'
else:
_lowercase : str = 3
_lowercase : List[Any] = True
_lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options')
if retrieval_options:
_lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n '
st.sidebar.markdown(retriever_info)
_lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none'])
_lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed'])
else:
_lowercase : List[str] = 'wiki40b'
_lowercase : Optional[int] = 'dense'
_lowercase : List[Any] = 'beam'
_lowercase : str = 2
_lowercase : Optional[int] = 64
_lowercase : Union[str, Any] = 2_56
_lowercase : List[str] = None
_lowercase : Optional[int] = None
_lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options')
if generate_options:
_lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n '
st.sidebar.markdown(generate_info)
_lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled'])
_lowercase : Optional[int] = st.sidebar.slider(
'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None
)
_lowercase : Optional[Any] = st.sidebar.slider(
'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None
)
if sampled == "beam":
_lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
_lowercase : List[Any] = st.sidebar.slider(
'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
_lowercase : Dict = st.sidebar.slider(
'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
_lowercase : Union[str, Any] = None
# start main text
_lowercase : Optional[int] = [
'<MY QUESTION>',
'How do people make chocolate?',
'Why do we get a fever when we are sick?',
'How can different animals perceive different colors?',
'What is natural language processing?',
'What\'s the best way to treat a sunburn?',
'What exactly are vitamins ?',
'How does nuclear energy provide electricity?',
'What\'s the difference between viruses and bacteria?',
'Why are flutes classified as woodwinds when most of them are made out of metal ?',
'Why do people like drinking coffee even though it tastes so bad?',
'What happens when wine ages? How does it make the wine taste better?',
'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?',
'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?',
'How does New Zealand have so many large bird predators?',
]
_lowercase : Optional[int] = st.selectbox(
'What would you like to ask? ---- select <MY QUESTION> to enter a new query',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
_lowercase : Optional[Any] = st.text_input('Enter your question here:', '')
else:
_lowercase : int = question_s
if st.button('Show me!'):
if action in [0, 1, 3]:
if index_type == "mixed":
_lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10)
_lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10)
_lowercase : Dict = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
_lowercase : Any = support_list[:10]
_lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list])
else:
_lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
_lowercase ,_lowercase : Union[str, Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == 'sampled'),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('### The model generated answer is:')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:')
for i, res in enumerate(support_list):
_lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_'))
_lowercase : Any = res[1].strip()
if sec_titles == "":
_lowercase : Dict = '[{}]({})'.format(res[0], wiki_url)
else:
_lowercase : List[Any] = sec_titles.split(' & ')
_lowercase : int = ' & '.join(
['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list]
)
st.markdown(
'{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True
)
if action in [2, 3]:
_lowercase : List[Any] = find_nearest_training(question)
_lowercase : Tuple = nn_train_list[0]
st.markdown(
'--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title'])
)
_lowercase : int = [
'{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != '']))
for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score']))
if i == 0 or sc > 2
]
st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st)))
_lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n'
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 49 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
_lowercase : List[str] = logging.get_logger(__name__)
_lowercase : Tuple = {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json',
'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json',
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = "longformer"
def __init__( self : List[str] , _lowercase : Union[List[int], int] = 5_12 , _lowercase : int = 2 , _lowercase : int = 1 , _lowercase : int = 0 , _lowercase : int = 2 , _lowercase : int = 3_05_22 , _lowercase : int = 7_68 , _lowercase : int = 12 , _lowercase : int = 12 , _lowercase : int = 30_72 , _lowercase : str = "gelu" , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : int = 5_12 , _lowercase : int = 2 , _lowercase : float = 0.02 , _lowercase : float = 1E-12 , _lowercase : bool = False , **_lowercase : List[str] , ):
super().__init__(pad_token_id=_lowercase , **_lowercase )
__UpperCAmelCase = attention_window
__UpperCAmelCase = sep_token_id
__UpperCAmelCase = bos_token_id
__UpperCAmelCase = eos_token_id
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = onnx_export
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : List[str] , _lowercase : "PretrainedConfig" , _lowercase : str = "default" , _lowercase : "List[PatchingSpec]" = None ):
super().__init__(_lowercase , _lowercase , _lowercase )
__UpperCAmelCase = True
@property
def a ( self : Dict ):
if self.task == "multiple-choice":
__UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''global_attention_mask''', dynamic_axis),
] )
@property
def a ( self : int ):
__UpperCAmelCase = super().outputs
if self.task == "default":
__UpperCAmelCase = {0: '''batch'''}
return outputs
@property
def a ( self : Any ):
return 1E-4
@property
def a ( self : Optional[Any] ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 14 )
def a ( self : List[str] , _lowercase : "PreTrainedTokenizerBase" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ):
__UpperCAmelCase = super().generate_dummy_inputs(
preprocessor=_lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
__UpperCAmelCase = torch.zeros_like(inputs['''input_ids'''] )
# make every second token global
__UpperCAmelCase = 1
return inputs
| 49 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : List[str] = CycleDiffusionPipeline
a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
}
a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} )
a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS
a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
def a ( self : Optional[int] ):
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__UpperCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__UpperCAmelCase = CLIPTextModel(_lowercase )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ):
__UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = image / 2 + 0.5
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''An astronaut riding an elephant''',
'''source_prompt''': '''An astronaut riding a horse''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''eta''': 0.1,
'''strength''': 0.8,
'''guidance_scale''': 3,
'''source_guidance_scale''': 1,
'''output_type''': '''numpy''',
}
return inputs
def a ( self : Optional[int] ):
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = CycleDiffusionPipeline(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.get_dummy_components()
for name, module in components.items():
if hasattr(_lowercase , '''half''' ):
__UpperCAmelCase = module.half()
__UpperCAmelCase = CycleDiffusionPipeline(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def a ( self : Tuple ):
return super().test_save_load_local()
@unittest.skip('''non-deterministic pipeline''' )
def a ( self : List[str] ):
return super().test_inference_batch_single_identical()
@skip_mps
def a ( self : int ):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def a ( self : str ):
return super().test_save_load_optional_components()
@skip_mps
def a ( self : int ):
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : int ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' )
__UpperCAmelCase = init_image.resize((5_12, 5_12) )
__UpperCAmelCase = '''CompVis/stable-diffusion-v1-4'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
__UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(
_lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A black colored car'''
__UpperCAmelCase = '''A blue colored car'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5E-1
def a ( self : Optional[Any] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' )
__UpperCAmelCase = init_image.resize((5_12, 5_12) )
__UpperCAmelCase = '''CompVis/stable-diffusion-v1-4'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
__UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A black colored car'''
__UpperCAmelCase = '''A blue colored car'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
assert np.abs(image - expected_image ).max() < 2E-2
| 49 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_lowercase : Tuple = {
'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'],
'tokenization_mvp': ['MvpTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] = ['MvpTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] = [
'MVP_PRETRAINED_MODEL_ARCHIVE_LIST',
'MvpForCausalLM',
'MvpForConditionalGeneration',
'MvpForQuestionAnswering',
'MvpForSequenceClassification',
'MvpModel',
'MvpPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
_lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowercase : Optional[Any] = logging.get_logger(__name__)
_lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'}
_lowercase : Tuple = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
}
_lowercase : List[str] = {
'google/rembert': 2_56,
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Union[str, Any] = VOCAB_FILES_NAMES
a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ):
super().__init__(
do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = remove_space
__UpperCAmelCase = keep_accents
__UpperCAmelCase = vocab_file
__UpperCAmelCase = spm.SentencePieceProcessor()
self.sp_model.Load(_lowercase )
@property
def a ( self : int ):
return len(self.sp_model )
def a ( self : Tuple ):
__UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Tuple ):
__UpperCAmelCase = self.__dict__.copy()
__UpperCAmelCase = None
return state
def __setstate__( self : Tuple , _lowercase : str ):
__UpperCAmelCase = d
__UpperCAmelCase = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ):
__UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase )
return pieces
def a ( self : int , _lowercase : List[str] ):
return self.sp_model.PieceToId(_lowercase )
def a ( self : List[str] , _lowercase : str ):
return self.sp_model.IdToPiece(_lowercase )
def a ( self : Any , _lowercase : Dict ):
__UpperCAmelCase = self.sp_model.decode_pieces(_lowercase )
return out_string
def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1]
return [1] + ([0] * len(_lowercase )) + [1]
def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ):
if not os.path.isdir(_lowercase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) )
return
__UpperCAmelCase = os.path.join(
_lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ):
copyfile(self.vocab_file , _lowercase )
return (out_vocab_file,)
| 49 | 1 |
"""simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class _UpperCAmelCase :
def __init__( self : Tuple ):
__UpperCAmelCase = ''''''
__UpperCAmelCase = ''''''
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = 2_56
__UpperCAmelCase = 0
__UpperCAmelCase = 0
__UpperCAmelCase = 0
__UpperCAmelCase = 0
def a ( self : List[Any] , _lowercase : List[Any] ):
__UpperCAmelCase = cva.imread(_lowercase , 0 )
__UpperCAmelCase = copy.deepcopy(self.img )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='''x''' )
__UpperCAmelCase = np.sum(_lowercase )
for i in range(len(_lowercase ) ):
__UpperCAmelCase = x[i] / self.k
self.sk += prk
__UpperCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
__UpperCAmelCase = int(last % last )
__UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(_lowercase )
__UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
__UpperCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
__UpperCAmelCase = self.img[j][i]
if num != self.last_list[num]:
__UpperCAmelCase = self.last_list[num]
cva.imwrite('''output_data/output.jpg''' , self.img )
def a ( self : Tuple ):
plt.hist(self.img.ravel() , 2_56 , [0, 2_56] )
def a ( self : Union[str, Any] ):
cva.imshow('''Output-Image''' , self.img )
cva.imshow('''Input-Image''' , self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
_lowercase : Optional[int] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
_lowercase : Union[str, Any] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 49 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : List[Any] = {
'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Dict = ['VivitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] = [
'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'VivitModel',
'VivitPreTrainedModel',
'VivitForVideoClassification',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Optional[Any] = "bert-generation"
def __init__( self : Any , _lowercase : List[Any]=5_03_58 , _lowercase : str=10_24 , _lowercase : str=24 , _lowercase : int=16 , _lowercase : Any=40_96 , _lowercase : Union[str, Any]="gelu" , _lowercase : str=0.1 , _lowercase : Union[str, Any]=0.1 , _lowercase : Optional[Any]=5_12 , _lowercase : str=0.02 , _lowercase : Dict=1E-12 , _lowercase : int=0 , _lowercase : Optional[int]=2 , _lowercase : Dict=1 , _lowercase : Dict="absolute" , _lowercase : Tuple=True , **_lowercase : str , ):
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
| 49 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
_lowercase : List[Any] = {
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def lowercase__ ( snake_case_ :Union[str, Any] ):
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def lowercase__ ( snake_case_ :int , snake_case_ :Dict ):
if args.student_type == "roberta":
__UpperCAmelCase = False
elif args.student_type == "gpt2":
__UpperCAmelCase = False
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ):
if args.student_type == "roberta":
__UpperCAmelCase = False
def lowercase__ ( ):
__UpperCAmelCase = argparse.ArgumentParser(description='''Training''' )
parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' )
parser.add_argument(
'''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' )
parser.add_argument(
'''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , )
parser.add_argument(
'''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , )
parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' )
parser.add_argument(
'''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' )
parser.add_argument(
'''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' )
parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' )
parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' )
parser.add_argument(
'''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , )
parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' )
parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' )
parser.add_argument(
'''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' )
parser.add_argument(
'''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , )
parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' )
parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' )
parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' )
parser.add_argument(
'''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , )
parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' )
parser.add_argument(
'''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , )
parser.add_argument(
'''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , )
parser.add_argument(
'''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , )
parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' )
parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' )
parser.add_argument(
'''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , )
parser.add_argument(
'''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , )
parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' )
parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' )
parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' )
parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' )
parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' )
parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' )
parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' )
__UpperCAmelCase = parser.parse_args()
sanity_checks(snake_case_ )
# ARGS #
init_gpu_params(snake_case_ )
set_seed(snake_case_ )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
''' itUse `--force` if you want to overwrite it''' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f:
json.dump(vars(snake_case_ ) , snake_case_ , indent=4 )
git_log(args.dump_path )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
__UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name )
__UpperCAmelCase = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
__UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ )
__UpperCAmelCase = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
__UpperCAmelCase = special_tok_ids
__UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , '''rb''' ) as fp:
__UpperCAmelCase = pickle.load(snake_case_ )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , '''rb''' ) as fp:
__UpperCAmelCase = pickle.load(snake_case_ )
__UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
__UpperCAmelCase = 0.0 # do not predict special tokens
__UpperCAmelCase = torch.from_numpy(snake_case_ )
else:
__UpperCAmelCase = None
__UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ )
logger.info('''Data loader created.''' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
__UpperCAmelCase = student_config_class.from_pretrained(args.student_config )
__UpperCAmelCase = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
__UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ )
else:
__UpperCAmelCase = student_model_class(snake_case_ )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('''Student loaded.''' )
# TEACHER #
__UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(snake_case_ , snake_case_ )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(snake_case_ , snake_case_ )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
__UpperCAmelCase = Distiller(
params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ )
distiller.train()
logger.info('''Let\'s go get some drinks.''' )
if __name__ == "__main__":
main()
| 49 | 1 |
"""simple docstring"""
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('0.12.2'):
raise Exception('requires fairseq >= 0.12.2')
if version.parse(fairseq.__version__) > version.parse('2'):
raise Exception('requires fairseq < v2')
logging.set_verbosity_info()
_lowercase : Tuple = logging.get_logger(__name__)
_lowercase : Dict = 'Hello, World!'
_lowercase : Optional[int] = 'en_XX'
def lowercase__ ( snake_case_ :str , snake_case_ :str , snake_case_ :bool ):
__UpperCAmelCase = Path('''data_bin''' )
__UpperCAmelCase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(snake_case_ ).parent ) , checkpoint_file=Path(snake_case_ ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(snake_case_ ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(snake_case_ ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(snake_case_ )
__UpperCAmelCase = xmod.model.encoder.sentence_encoder
__UpperCAmelCase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__UpperCAmelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , snake_case_ )
__UpperCAmelCase = XmodForSequenceClassification(snake_case_ ) if classification_head else XmodForMaskedLM(snake_case_ )
model.eval()
# Now let's copy all the weights.
# Embeddings
__UpperCAmelCase = xmod_sent_encoder.embed_tokens.weight
__UpperCAmelCase = xmod_sent_encoder.embed_positions.weight
__UpperCAmelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__UpperCAmelCase = xmod_sent_encoder.layernorm_embedding.weight
__UpperCAmelCase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__UpperCAmelCase = model.roberta.encoder.layer[i]
__UpperCAmelCase = xmod_sent_encoder.layers[i]
# self attention
__UpperCAmelCase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
__UpperCAmelCase = xmod_layer.self_attn.q_proj.weight
__UpperCAmelCase = xmod_layer.self_attn.q_proj.bias
__UpperCAmelCase = xmod_layer.self_attn.k_proj.weight
__UpperCAmelCase = xmod_layer.self_attn.k_proj.bias
__UpperCAmelCase = xmod_layer.self_attn.v_proj.weight
__UpperCAmelCase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__UpperCAmelCase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
__UpperCAmelCase = xmod_layer.self_attn.out_proj.weight
__UpperCAmelCase = xmod_layer.self_attn.out_proj.bias
__UpperCAmelCase = xmod_layer.self_attn_layer_norm.weight
__UpperCAmelCase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__UpperCAmelCase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
__UpperCAmelCase = xmod_layer.fca.weight
__UpperCAmelCase = xmod_layer.fca.bias
# output
__UpperCAmelCase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
__UpperCAmelCase = xmod_layer.fca.weight
__UpperCAmelCase = xmod_layer.fca.bias
__UpperCAmelCase = xmod_layer.final_layer_norm.weight
__UpperCAmelCase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__UpperCAmelCase = xmod_layer.adapter_layer_norm.weight
__UpperCAmelCase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__UpperCAmelCase = bert_output.adapter_modules[lang_code]
__UpperCAmelCase = xmod_layer.adapter_modules[lang_code]
__UpperCAmelCase = from_adapter.fca.weight
__UpperCAmelCase = from_adapter.fca.bias
__UpperCAmelCase = from_adapter.fca.weight
__UpperCAmelCase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__UpperCAmelCase = xmod_sent_encoder.layer_norm.weight
__UpperCAmelCase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__UpperCAmelCase = xmod.model.classification_heads['''mnli'''].dense.weight
__UpperCAmelCase = xmod.model.classification_heads['''mnli'''].dense.bias
__UpperCAmelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight
__UpperCAmelCase = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
__UpperCAmelCase = xmod.model.encoder.lm_head.dense.weight
__UpperCAmelCase = xmod.model.encoder.lm_head.dense.bias
__UpperCAmelCase = xmod.model.encoder.lm_head.layer_norm.weight
__UpperCAmelCase = xmod.model.encoder.lm_head.layer_norm.bias
__UpperCAmelCase = xmod.model.encoder.lm_head.weight
__UpperCAmelCase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__UpperCAmelCase = xmod.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(snake_case_ )
__UpperCAmelCase = model(snake_case_ )[0]
if classification_head:
__UpperCAmelCase = xmod.model.classification_heads['''mnli'''](xmod.extract_features(snake_case_ ) )
else:
__UpperCAmelCase = xmod.model(snake_case_ , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__UpperCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
__UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
if __name__ == "__main__":
_lowercase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--classification_head', action='store_true', help='Whether to convert a final classification head.'
)
_lowercase : Dict = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 49 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 49 | 1 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def lowercase__ ( snake_case_ :Dataset , snake_case_ :Dict[str, str] ):
__UpperCAmelCase = args.log_outputs
__UpperCAmelCase = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
__UpperCAmelCase = load_metric('''wer''' )
__UpperCAmelCase = load_metric('''cer''' )
# compute metrics
__UpperCAmelCase = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
__UpperCAmelCase = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
__UpperCAmelCase = F'''WER: {wer_result}\nCER: {cer_result}'''
print(snake_case_ )
with open(F'''{dataset_id}_eval_results.txt''' , '''w''' ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
__UpperCAmelCase = F'''log_{dataset_id}_predictions.txt'''
__UpperCAmelCase = F'''log_{dataset_id}_targets.txt'''
with open(snake_case_ , '''w''' ) as p, open(snake_case_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(snake_case_ :Optional[int] , snake_case_ :str ):
p.write(F'''{i}''' + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F'''{i}''' + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(snake_case_ , with_indices=snake_case_ )
def lowercase__ ( snake_case_ :str ):
__UpperCAmelCase = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
__UpperCAmelCase = re.sub(snake_case_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
__UpperCAmelCase = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
__UpperCAmelCase = ''' '''.join(text.split(snake_case_ ) )
return text
def lowercase__ ( snake_case_ :Dict ):
# load dataset
__UpperCAmelCase = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
__UpperCAmelCase = AutoFeatureExtractor.from_pretrained(args.model_id )
__UpperCAmelCase = feature_extractor.sampling_rate
# resample audio
__UpperCAmelCase = dataset.cast_column('''audio''' , Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
__UpperCAmelCase = 0 if torch.cuda.is_available() else -1
__UpperCAmelCase = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ :Dict ):
__UpperCAmelCase = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
__UpperCAmelCase = prediction['''text''']
__UpperCAmelCase = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
__UpperCAmelCase = dataset.map(snake_case_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ , snake_case_ )
if __name__ == "__main__":
_lowercase : str = argparse.ArgumentParser()
parser.add_argument(
'--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers'
)
parser.add_argument(
'--dataset',
type=str,
required=True,
help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets',
)
parser.add_argument(
'--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice'
)
parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`')
parser.add_argument(
'--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.'
)
parser.add_argument(
'--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.'
)
parser.add_argument(
'--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.'
)
parser.add_argument(
'--device',
type=int,
default=None,
help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.',
)
_lowercase : List[Any] = parser.parse_args()
main(args)
| 49 |
"""simple docstring"""
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
_lowercase : Union[str, Any] = logging.getLogger(__name__)
_lowercase : Optional[Any] = 'Hello world! cécé herlolip'
_lowercase : str = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def lowercase__ ( snake_case_ :Any , snake_case_ :int ):
__UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , )
__UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage )
__UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ )
original.eval()
__UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
__UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
__UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
__UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 )
__UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
__UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
__UpperCAmelCase = encoder_input_ids
__UpperCAmelCase = decoder_input_ids
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
__UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
__UpperCAmelCase = original.generator(snake_case_ )
__UpperCAmelCase = new_model(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
__UpperCAmelCase = new_model.generator(snake_case_ )
__UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) )
__UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) )
__UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
_lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
_lowercase : List[str] = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 49 | 1 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[Any] ):
__UpperCAmelCase = get_activation('''swish''' )
self.assertIsInstance(_lowercase , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def a ( self : List[str] ):
__UpperCAmelCase = get_activation('''silu''' )
self.assertIsInstance(_lowercase , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def a ( self : Optional[Any] ):
__UpperCAmelCase = get_activation('''mish''' )
self.assertIsInstance(_lowercase , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def a ( self : Any ):
__UpperCAmelCase = get_activation('''gelu''' )
self.assertIsInstance(_lowercase , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 49 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
@property
def a ( self : List[str] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a ( self : Dict ):
__UpperCAmelCase = ort.SessionOptions()
__UpperCAmelCase = False
return options
def a ( self : Any ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
__UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A red cat sitting on a park bench'''
__UpperCAmelCase = np.random.RandomState(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def a ( self : Optional[int] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
__UpperCAmelCase = LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
__UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = '''A red cat sitting on a park bench'''
__UpperCAmelCase = np.random.RandomState(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 49 | 1 |
"""simple docstring"""
import heapq
import sys
import numpy as np
_lowercase : Optional[Any] = tuple[int, int]
class _UpperCAmelCase :
def __init__( self : List[Any] ):
__UpperCAmelCase = []
__UpperCAmelCase = set()
def a ( self : Tuple ):
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def a ( self : List[Any] ):
return len(self.elements ) == 0
def a ( self : Any , _lowercase : Optional[Any] , _lowercase : int ):
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(_lowercase )
else:
# update
# print("update", item)
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def a ( self : Any , _lowercase : Any ):
if item in self.set:
self.set.remove(_lowercase )
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def a ( self : Union[str, Any] ):
return self.elements[0][1]
def a ( self : Tuple ):
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
self.set.remove(_lowercase )
return (priority, item)
def lowercase__ ( snake_case_ :TPos , snake_case_ :TPos ):
# euclidean distance
__UpperCAmelCase = np.array(snake_case_ )
__UpperCAmelCase = np.array(snake_case_ )
return np.linalg.norm(a - b )
def lowercase__ ( snake_case_ :TPos , snake_case_ :TPos ):
# integer division by time variable
return consistent_heuristic(snake_case_ , snake_case_ ) // t
def lowercase__ ( snake_case_ :TPos , snake_case_ :TPos ):
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def lowercase__ ( snake_case_ :TPos , snake_case_ :int , snake_case_ :TPos , snake_case_ :dict[TPos, float] ):
__UpperCAmelCase = g_function[start] + Wa * heuristics[i](snake_case_ , snake_case_ )
return ans
def lowercase__ ( snake_case_ :Dict , snake_case_ :int , snake_case_ :List[str] ):
__UpperCAmelCase = np.chararray((n, n) )
for i in range(snake_case_ ):
for j in range(snake_case_ ):
__UpperCAmelCase = '''*'''
for i in range(snake_case_ ):
for j in range(snake_case_ ):
if (j, (n - 1) - i) in blocks:
__UpperCAmelCase = '''#'''
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[goal]
while x != start:
((__UpperCAmelCase) , (__UpperCAmelCase)) = x
# print(x)
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[x]
__UpperCAmelCase = '''-'''
for i in range(snake_case_ ):
for j in range(snake_case_ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
__UpperCAmelCase = back_pointer[goal]
while x != start:
print(snake_case_ , end=''' ''' )
__UpperCAmelCase = back_pointer[x]
print(snake_case_ )
sys.exit()
def lowercase__ ( snake_case_ :TPos ):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Dict , snake_case_ :str , snake_case_ :Optional[int] , snake_case_ :List[str] , snake_case_ :List[Any] , snake_case_ :List[Any] , snake_case_ :Union[str, Any] , ):
for itera in range(snake_case_ ):
open_list[itera].remove_element(snake_case_ )
# print("s", s)
# print("j", j)
((__UpperCAmelCase) , (__UpperCAmelCase)) = s
__UpperCAmelCase = (x - 1, y)
__UpperCAmelCase = (x + 1, y)
__UpperCAmelCase = (x, y + 1)
__UpperCAmelCase = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(snake_case_ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(snake_case_ )
__UpperCAmelCase = -1
__UpperCAmelCase = float('''inf''' )
if valid(snake_case_ ) and g_function[neighbours] > g_function[s] + 1:
__UpperCAmelCase = g_function[s] + 1
__UpperCAmelCase = s
if neighbours not in close_list_anchor:
open_list[0].put(snake_case_ , key(snake_case_ , 0 , snake_case_ , snake_case_ ) )
if neighbours not in close_list_inad:
for var in range(1 , snake_case_ ):
if key(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) <= Wa * key(
snake_case_ , 0 , snake_case_ , snake_case_ ):
open_list[j].put(
snake_case_ , key(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) )
def lowercase__ ( ):
__UpperCAmelCase = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
_lowercase : Any = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
_lowercase : Optional[Any] = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
_lowercase : int = make_common_ground()
_lowercase : List[Any] = blocks_blk
# hyper parameters
_lowercase : Tuple = 1
_lowercase : Dict = 1
_lowercase : List[str] = 20
_lowercase : List[Any] = 3 # one consistent and two other inconsistent
# start and end destination
_lowercase : Dict = (0, 0)
_lowercase : Dict = (n - 1, n - 1)
_lowercase : Tuple = 1
def lowercase__ ( snake_case_ :TPos , snake_case_ :TPos , snake_case_ :int ):
__UpperCAmelCase = {start: 0, goal: float('''inf''' )}
__UpperCAmelCase = {start: -1, goal: -1}
__UpperCAmelCase = []
__UpperCAmelCase = set()
for i in range(snake_case_ ):
open_list.append(PriorityQueue() )
open_list[i].put(snake_case_ , key(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) )
__UpperCAmelCase = []
__UpperCAmelCase = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , snake_case_ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(snake_case_ , snake_case_ , snake_case_ )
else:
__UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show()
visited.add(snake_case_ )
expand_state(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
close_list_inad.append(snake_case_ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(snake_case_ , snake_case_ , snake_case_ )
else:
__UpperCAmelCase = open_list[0].top_show()
visited.add(snake_case_ )
expand_state(
snake_case_ , 0 , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
close_list_anchor.append(snake_case_ )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(snake_case_ ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 49 |
"""simple docstring"""
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowercase__ ( snake_case_ :Dict , snake_case_ :int ):
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ):
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
__UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
__UpperCAmelCase = features.copy()
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read()
assert isinstance(snake_case_ , snake_case_ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ):
if issubclass(snake_case_ , snake_case_ ):
__UpperCAmelCase = jsonl_path
elif issubclass(snake_case_ , snake_case_ ):
__UpperCAmelCase = [jsonl_path]
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read()
_check_json_dataset(snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ):
assert isinstance(snake_case_ , snake_case_ )
for split in splits:
__UpperCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ):
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = features.copy() if features else default_expected_features
__UpperCAmelCase = (
Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ):
if split:
__UpperCAmelCase = {split: jsonl_path}
else:
__UpperCAmelCase = '''train'''
__UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path}
__UpperCAmelCase = tmp_path / '''cache'''
__UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read()
_check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowercase__ ( snake_case_ :Optional[int] ):
return json.load(snake_case_ )
def lowercase__ ( snake_case_ :Any ):
return [json.loads(snake_case_ ) for line in buffer]
class _UpperCAmelCase :
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json_function(_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(exported_content[0] , _lowercase )
assert len(_lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json(_lowercase )
assert isinstance(_lowercase , _lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(_lowercase ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json_function(_lowercase )
assert isinstance(_lowercase , _lowercase )
assert isinstance(exported_content[0] , _lowercase )
assert len(_lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase = load_json(_lowercase )
assert isinstance(_lowercase , _lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(_lowercase ) == 10
def a ( self : int , _lowercase : Any ):
with pytest.raises(_lowercase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ):
__UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}'''
__UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' )
JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write()
with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f:
__UpperCAmelCase = f.read()
with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f:
__UpperCAmelCase = f.read()
assert exported_content == original_content
| 49 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class _UpperCAmelCase :
a__ : Optional[Any] = PegasusConfig
a__ : Optional[int] = {}
a__ : Dict = "gelu"
def __init__( self : List[Any] , _lowercase : int , _lowercase : List[Any]=13 , _lowercase : Dict=7 , _lowercase : str=True , _lowercase : str=False , _lowercase : List[Any]=99 , _lowercase : str=32 , _lowercase : Dict=2 , _lowercase : Optional[Any]=4 , _lowercase : Optional[int]=37 , _lowercase : List[Any]=0.1 , _lowercase : Any=0.1 , _lowercase : Optional[Any]=40 , _lowercase : Dict=2 , _lowercase : List[str]=1 , _lowercase : List[str]=0 , ):
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = seq_length
__UpperCAmelCase = is_training
__UpperCAmelCase = use_labels
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = eos_token_id
__UpperCAmelCase = pad_token_id
__UpperCAmelCase = bos_token_id
def a ( self : Tuple ):
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCAmelCase = prepare_pegasus_inputs_dict(_lowercase , _lowercase , _lowercase )
return config, inputs_dict
def a ( self : Optional[int] , _lowercase : Tuple , _lowercase : str ):
__UpperCAmelCase = TFPegasusModel(config=_lowercase ).get_decoder()
__UpperCAmelCase = inputs_dict['''input_ids''']
__UpperCAmelCase = input_ids[:1, :]
__UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :]
__UpperCAmelCase = inputs_dict['''head_mask''']
__UpperCAmelCase = 1
# first forward pass
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , head_mask=_lowercase , use_cache=_lowercase )
__UpperCAmelCase , __UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
__UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase )[0]
__UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , past_key_values=_lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
__UpperCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowercase , _lowercase , rtol=1E-3 )
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[str]=None , snake_case_ :Dict=None , snake_case_ :List[Any]=None , snake_case_ :Dict=None , snake_case_ :int=None , ):
if attention_mask is None:
__UpperCAmelCase = tf.cast(tf.math.not_equal(snake_case_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__UpperCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : Optional[Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
a__ : int = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
a__ : List[Any] = (
{
"conversational": TFPegasusForConditionalGeneration,
"feature-extraction": TFPegasusModel,
"summarization": TFPegasusForConditionalGeneration,
"text2text-generation": TFPegasusForConditionalGeneration,
"translation": TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
a__ : Optional[Any] = True
a__ : Union[str, Any] = False
a__ : str = False
def a ( self : Dict ):
__UpperCAmelCase = TFPegasusModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=_lowercase )
def a ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def a ( self : Tuple ):
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowercase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
a__ : Tuple = [
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
a__ : Dict = [
"California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to"
" reduce the risk of wildfires.",
"N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.",
] # differs slightly from pytorch, likely due to numerical differences in linear layers
a__ : List[Any] = "google/pegasus-xsum"
@cached_property
def a ( self : Optional[int] ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def a ( self : List[str] ):
__UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def a ( self : Tuple , **_lowercase : List[str] ):
__UpperCAmelCase = self.translate_src_text(**_lowercase )
assert self.expected_text == generated_words
def a ( self : Optional[Any] , **_lowercase : Any ):
__UpperCAmelCase = self.tokenizer(self.src_text , **_lowercase , padding=_lowercase , return_tensors='''tf''' )
__UpperCAmelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowercase , )
__UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowercase )
return generated_words
@slow
def a ( self : Union[str, Any] ):
self._assert_generated_batch_equal_expected()
| 49 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Union[str, Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Optional[Any] ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = tokenizer.decode(greedy_ids[0] )
__UpperCAmelCase = TextIteratorStreamer(_lowercase )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowercase , _lowercase )
def a ( self : str ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase )
__UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :]
__UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase )
model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
__UpperCAmelCase = cs.out[:-1]
self.assertEqual(_lowercase , _lowercase )
def a ( self : Tuple ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
__UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
__UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase )
model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
__UpperCAmelCase = cs.out[:-1] # Remove the final "\n"
__UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def a ( self : Tuple ):
__UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase )
__UpperCAmelCase = -1
__UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase )
__UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 )
__UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
__UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowercase ):
__UpperCAmelCase = ''''''
for new_text in streamer:
streamer_text += new_text
| 49 | 1 |
"""simple docstring"""
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ):
a__ : Tuple = 1
@register_to_config
def __init__( self : List[Any] , _lowercase : Any=20_00 , _lowercase : Union[str, Any]=0.1 , _lowercase : Union[str, Any]=20 , _lowercase : Optional[int]=1E-3 ):
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
def a ( self : List[Any] , _lowercase : str , _lowercase : Union[str, torch.device] = None ):
__UpperCAmelCase = torch.linspace(1 , self.config.sampling_eps , _lowercase , device=_lowercase )
def a ( self : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : Dict , _lowercase : Dict=None ):
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
__UpperCAmelCase = (
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
__UpperCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
__UpperCAmelCase = std.flatten()
while len(std.shape ) < len(score.shape ):
__UpperCAmelCase = std.unsqueeze(-1 )
__UpperCAmelCase = -score / std
# compute
__UpperCAmelCase = -1.0 / len(self.timesteps )
__UpperCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
__UpperCAmelCase = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
__UpperCAmelCase = beta_t.unsqueeze(-1 )
__UpperCAmelCase = -0.5 * beta_t * x
__UpperCAmelCase = torch.sqrt(_lowercase )
__UpperCAmelCase = drift - diffusion**2 * score
__UpperCAmelCase = x + drift * dt
# add noise
__UpperCAmelCase = randn_tensor(x.shape , layout=x.layout , generator=_lowercase , device=x.device , dtype=x.dtype )
__UpperCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self : Optional[int] ):
return self.config.num_train_timesteps
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :float , snake_case_ :float ):
if density <= 0:
raise ValueError('''Impossible fluid density''' )
if bulk_modulus <= 0:
raise ValueError('''Impossible bulk modulus''' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 | 1 |
"""simple docstring"""
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def lowercase__ ( snake_case_ :Any ):
__UpperCAmelCase = int(snake_case_ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = t // 3_600, (t // 60) % 60, t % 60
return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}'''
def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :str=300 ):
# docstyle-ignore
return F'''
<div>
{prefix}
<progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>
{label}
</div>
'''
def lowercase__ ( snake_case_ :Dict ):
__UpperCAmelCase = '''<table border="1" class="dataframe">\n'''
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += F''' <th>{i}</th>\n'''
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
__UpperCAmelCase = F'''{elt:.6f}''' if isinstance(snake_case_ , snake_case_ ) else str(snake_case_ )
html_code += F''' <td>{elt}</td>\n'''
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class _UpperCAmelCase :
a__ : str = 5
a__ : Any = 0.2
def __init__( self : List[Any] , _lowercase : int , _lowercase : Optional[str] = None , _lowercase : bool = True , _lowercase : Optional["NotebookTrainingTracker"] = None , _lowercase : int = 3_00 , ):
__UpperCAmelCase = total
__UpperCAmelCase = '''''' if prefix is None else prefix
__UpperCAmelCase = leave
__UpperCAmelCase = parent
__UpperCAmelCase = width
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
def a ( self : List[str] , _lowercase : int , _lowercase : bool = False , _lowercase : str = None ):
__UpperCAmelCase = value
if comment is not None:
__UpperCAmelCase = comment
if self.last_value is None:
__UpperCAmelCase = __UpperCAmelCase = time.time()
__UpperCAmelCase = __UpperCAmelCase = value
__UpperCAmelCase = __UpperCAmelCase = None
__UpperCAmelCase = self.warmup
__UpperCAmelCase = 1
self.update_bar(_lowercase )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
__UpperCAmelCase = time.time()
__UpperCAmelCase = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
__UpperCAmelCase = self.elapsed_time / (value - self.start_value)
else:
__UpperCAmelCase = None
if value >= self.total:
__UpperCAmelCase = self.total
__UpperCAmelCase = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
__UpperCAmelCase = self.average_time_per_item * (self.total - value)
self.update_bar(_lowercase )
__UpperCAmelCase = value
__UpperCAmelCase = current_time
if self.average_time_per_item is None:
__UpperCAmelCase = 1
else:
__UpperCAmelCase = max(int(self.update_every / self.average_time_per_item ) , 1 )
def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=None ):
__UpperCAmelCase = ''' ''' * (len(str(self.total ) ) - len(str(_lowercase ) )) + str(_lowercase )
if self.elapsed_time is None:
__UpperCAmelCase = F'''[{spaced_value}/{self.total} : < :'''
elif self.predicted_remaining is None:
__UpperCAmelCase = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}'''
else:
__UpperCAmelCase = (
F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <'''
F''' {format_time(self.predicted_remaining )}'''
)
self.label += F''', {1/self.average_time_per_item:.2f} it/s'''
self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]'''
self.display()
def a ( self : int ):
__UpperCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
__UpperCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=_lowercase )
else:
self.output.update(disp.HTML(self.html_code ) )
def a ( self : Any ):
if self.parent is None and self.output is not None:
self.output.update(disp.HTML('''''' ) )
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : Optional[Any] , _lowercase : List[str] , _lowercase : str=None ):
super().__init__(_lowercase )
__UpperCAmelCase = None if column_names is None else [column_names]
__UpperCAmelCase = None
def a ( self : List[str] ):
__UpperCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
__UpperCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=_lowercase )
else:
self.output.update(disp.HTML(self.html_code ) )
def a ( self : str , _lowercase : int ):
if self.inner_table is None:
__UpperCAmelCase = [list(values.keys() ), list(values.values() )]
else:
__UpperCAmelCase = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(_lowercase )
__UpperCAmelCase = columns
self.inner_table.append([values[c] for c in columns] )
def a ( self : List[str] , _lowercase : List[str] , _lowercase : str=None , _lowercase : int=3_00 ):
__UpperCAmelCase = NotebookProgressBar(_lowercase , prefix=_lowercase , parent=self , width=_lowercase )
return self.child_bar
def a ( self : Optional[int] ):
__UpperCAmelCase = None
self.display()
class _UpperCAmelCase ( _lowerCAmelCase ):
def __init__( self : List[Any] ):
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = False
def a ( self : Tuple , _lowercase : List[Any] , _lowercase : Any , _lowercase : Union[str, Any] , **_lowercase : str ):
__UpperCAmelCase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step'''
__UpperCAmelCase = 0
__UpperCAmelCase = 0
__UpperCAmelCase = [self.first_column] + ['''Training Loss''']
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append('''Validation Loss''' )
__UpperCAmelCase = NotebookTrainingTracker(state.max_steps , _lowercase )
def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Tuple , **_lowercase : str ):
__UpperCAmelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}'''
self.training_tracker.update(
state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , )
__UpperCAmelCase = False
def a ( self : Any , _lowercase : List[Any] , _lowercase : List[Any] , _lowercase : int , _lowercase : Union[str, Any]=None , **_lowercase : str ):
if not has_length(_lowercase ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
__UpperCAmelCase = self.training_tracker.add_child(len(_lowercase ) )
else:
__UpperCAmelCase = NotebookProgressBar(len(_lowercase ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def a ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Optional[int] , **_lowercase : Dict ):
if self.prediction_bar is not None:
self.prediction_bar.close()
__UpperCAmelCase = None
def a ( self : List[str] , _lowercase : int , _lowercase : Tuple , _lowercase : List[str] , _lowercase : int=None , **_lowercase : List[str] ):
# Only for when there is no evaluation
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
__UpperCAmelCase = {'''Training Loss''': logs['''loss''']}
# First column is necessarily Step sine we're not in epoch eval strategy
__UpperCAmelCase = state.global_step
self.training_tracker.write_line(_lowercase )
def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : str , _lowercase : int=None , **_lowercase : Union[str, Any] ):
if self.training_tracker is not None:
__UpperCAmelCase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''}
for log in reversed(state.log_history ):
if "loss" in log:
__UpperCAmelCase = log['''loss''']
break
if self.first_column == "Epoch":
__UpperCAmelCase = int(state.epoch )
else:
__UpperCAmelCase = state.global_step
__UpperCAmelCase = '''eval'''
for k in metrics:
if k.endswith('''_loss''' ):
__UpperCAmelCase = re.sub(r'''\_loss$''' , '''''' , _lowercase )
__UpperCAmelCase = metrics.pop('''total_flos''' , _lowercase )
__UpperCAmelCase = metrics.pop('''epoch''' , _lowercase )
__UpperCAmelCase = metrics.pop(F'''{metric_key_prefix}_runtime''' , _lowercase )
__UpperCAmelCase = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , _lowercase )
__UpperCAmelCase = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , _lowercase )
__UpperCAmelCase = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , _lowercase )
for k, v in metrics.items():
if k == F'''{metric_key_prefix}_loss''':
__UpperCAmelCase = v
else:
__UpperCAmelCase = k.split('''_''' )
__UpperCAmelCase = ''' '''.join([part.capitalize() for part in splits[1:]] )
__UpperCAmelCase = v
self.training_tracker.write_line(_lowercase )
self.training_tracker.remove_child()
__UpperCAmelCase = None
# Evaluation takes a long time so we should force the next update.
__UpperCAmelCase = True
def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : List[Any] , **_lowercase : List[str] ):
self.training_tracker.update(
state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=_lowercase )
__UpperCAmelCase = None
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :dict ):
__UpperCAmelCase = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
__UpperCAmelCase = set()
return any(
node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
for node in graph )
def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ):
visited.add(snake_case_ )
rec_stk.add(snake_case_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(snake_case_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
_lowercase : int = logging.get_logger(__name__)
_lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_lowercase : str = {
'vocab_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'
),
},
}
_lowercase : int = {
'yjernite/retribert-base-uncased': 5_12,
}
_lowercase : Any = {
'yjernite/retribert-base-uncased': {'do_lower_case': True},
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : str = VOCAB_FILES_NAMES
a__ : Dict = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : str = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[Any] = RetriBertTokenizer
a__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ):
super().__init__(
_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , )
__UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars
):
__UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = strip_accents
__UpperCAmelCase = tokenize_chinese_chars
__UpperCAmelCase = normalizer_class(**_lowercase )
__UpperCAmelCase = do_lower_case
def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ):
__UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ):
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ):
__UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase )
return tuple(_lowercase )
| 49 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : Any = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[Any] = ['PoolFormerFeatureExtractor']
_lowercase : Any = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 49 | 1 |
"""simple docstring"""
from .data_collator import (
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeqaSeq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadVaProcessor,
SquadVaProcessor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Dict ): # noqa: E741
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = [0] * n
__UpperCAmelCase = [False] * n
__UpperCAmelCase = [False] * n
def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ):
if parent == root:
out_edge_count += 1
__UpperCAmelCase = True
__UpperCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__UpperCAmelCase = True
# AP found via cycle
if at == low[to]:
__UpperCAmelCase = True
else:
__UpperCAmelCase = min(low[at] , snake_case_ )
return out_edge_count
for i in range(snake_case_ ):
if not visited[i]:
__UpperCAmelCase = 0
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ )
__UpperCAmelCase = out_edge_count > 1
for x in range(len(snake_case_ ) ):
if is_art[x] is True:
print(snake_case_ )
# Adjacency list of graph
_lowercase : Optional[Any] = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 49 | 1 |
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class _UpperCAmelCase ( datasets.BeamBasedBuilder ):
def a ( self : Optional[int] ):
return datasets.DatasetInfo(
features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=_lowercase , )
def a ( self : Tuple , _lowercase : List[Any] , _lowercase : Union[str, Any] ):
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )]
def a ( self : List[str] , _lowercase : str , _lowercase : Dict ):
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_lowercase )
class _UpperCAmelCase ( datasets.BeamBasedBuilder ):
def a ( self : Optional[int] ):
return datasets.DatasetInfo(
features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=_lowercase , )
def a ( self : int , _lowercase : Tuple , _lowercase : List[str] ):
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} )
]
def a ( self : List[str] , _lowercase : str , _lowercase : Any ):
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_lowercase )
def lowercase__ ( ):
return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
def lowercase__ ( ):
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
class _UpperCAmelCase ( _lowerCAmelCase ):
@require_beam
def a ( self : List[str] ):
__UpperCAmelCase = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__UpperCAmelCase = DummyBeamDataset(cache_dir=_lowercase , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_lowercase , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
__UpperCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , _lowercase )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _lowercase )
self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def a ( self : Any ):
import apache_beam as beam
__UpperCAmelCase = beam.io.parquetio.WriteToParquet
__UpperCAmelCase = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__UpperCAmelCase = DummyBeamDataset(cache_dir=_lowercase , beam_runner='''DirectRunner''' )
with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock:
__UpperCAmelCase = partial(_lowercase , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
_lowercase , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
_lowercase , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
__UpperCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , _lowercase )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _lowercase )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) )
self.assertTrue(
os.path.exists(os.path.join(_lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def a ( self : List[str] ):
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__UpperCAmelCase = DummyBeamDataset(cache_dir=_lowercase )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def a ( self : Tuple ):
__UpperCAmelCase = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__UpperCAmelCase = NestedBeamDataset(cache_dir=_lowercase , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_lowercase , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) )
__UpperCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , _lowercase )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _lowercase )
self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_lowercase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
| 49 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Dict = "EncodecFeatureExtractor"
a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast")
def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ):
super().__init__(_lowercase , _lowercase )
__UpperCAmelCase = self.feature_extractor
__UpperCAmelCase = False
def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ):
return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase )
def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowercase , **_lowercase )
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''text''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if text is not None:
__UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase )
if audio is not None:
__UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
__UpperCAmelCase = audio_inputs['''input_values''']
if "padding_mask" in audio_inputs:
__UpperCAmelCase = audio_inputs['''padding_mask''']
return inputs
def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ):
__UpperCAmelCase = kwargs.pop('''audio''' , _lowercase )
__UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase )
if len(_lowercase ) > 0:
__UpperCAmelCase = args[0]
__UpperCAmelCase = args[1:]
if audio_values is not None:
return self._decode_audio(_lowercase , padding_mask=_lowercase )
else:
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ):
__UpperCAmelCase = to_numpy(_lowercase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape
if padding_mask is None:
return list(_lowercase )
__UpperCAmelCase = to_numpy(_lowercase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
__UpperCAmelCase = seq_len - padding_mask.shape[-1]
__UpperCAmelCase = 1 - self.feature_extractor.padding_value
__UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase )
__UpperCAmelCase = audio_values.tolist()
for i in range(_lowercase ):
__UpperCAmelCase = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
__UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 )
return audio_values
| 49 | 1 |
"""simple docstring"""
import functools
def lowercase__ ( snake_case_ :list[int] , snake_case_ :list[int] ):
# Validation
if not isinstance(snake_case_ , snake_case_ ) or not all(isinstance(snake_case_ , snake_case_ ) for day in days ):
raise ValueError('''The parameter days should be a list of integers''' )
if len(snake_case_ ) != 3 or not all(isinstance(snake_case_ , snake_case_ ) for cost in costs ):
raise ValueError('''The parameter costs should be a list of three integers''' )
if len(snake_case_ ) == 0:
return 0
if min(snake_case_ ) <= 0:
raise ValueError('''All days elements should be greater than 0''' )
if max(snake_case_ ) >= 366:
raise ValueError('''All days elements should be less than 366''' )
__UpperCAmelCase = set(snake_case_ )
@functools.cache
def dynamic_programming(snake_case_ :int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :str , snake_case_ :str ):
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
__UpperCAmelCase = True
for i in range(snake_case_ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
__UpperCAmelCase = True
if a[i].islower():
__UpperCAmelCase = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49 | 1 |
"""simple docstring"""
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] ):
self.assertEqual(len(_lowercase ) , len(_lowercase ) )
for a, b in zip(_lowercase , _lowercase ):
self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase )
def a ( self : List[str] ):
__UpperCAmelCase = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_lowercase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 )
def a ( self : Tuple ):
__UpperCAmelCase = None
ops.enable_eager_execution_internal()
__UpperCAmelCase = tf.config.list_physical_devices('''CPU''' )
if len(_lowercase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
__UpperCAmelCase = tf.config.list_logical_devices(device_type='''CPU''' )
__UpperCAmelCase = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
__UpperCAmelCase = GradientAccumulator()
__UpperCAmelCase = tf.Variable([4.0, 3.0] )
__UpperCAmelCase , __UpperCAmelCase = create_optimizer(5E-5 , 10 , 5 )
__UpperCAmelCase = tf.Variable([0.0, 0.0] , trainable=_lowercase )
def accumulate_on_replica(_lowercase : Optional[int] ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(_lowercase : Dict , _lowercase : Tuple ):
with strategy.scope():
__UpperCAmelCase = strategy.experimental_local_results(_lowercase )
local_variables[0].assign(_lowercase )
local_variables[1].assign(_lowercase )
strategy.run(_lowercase , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_lowercase )
def _check_local_values(_lowercase : Tuple , _lowercase : Optional[Any] ):
__UpperCAmelCase = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , _lowercase , tol=1E-2 )
self.assertListAlmostEqual(values[1].value() , _lowercase , tol=1E-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 49 |
"""simple docstring"""
from collections import deque
class _UpperCAmelCase :
def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ):
__UpperCAmelCase = process_name # process name
__UpperCAmelCase = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
__UpperCAmelCase = arrival_time
__UpperCAmelCase = burst_time # remaining burst time
__UpperCAmelCase = 0 # total time of the process wait in ready queue
__UpperCAmelCase = 0 # time from arrival time to completion time
class _UpperCAmelCase :
def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ):
# total number of mlfq's queues
__UpperCAmelCase = number_of_queues
# time slice of queues that round robin algorithm applied
__UpperCAmelCase = time_slices
# unfinished process is in this ready_queue
__UpperCAmelCase = queue
# current time
__UpperCAmelCase = current_time
# finished process is in this sequence queue
__UpperCAmelCase = deque()
def a ( self : Dict ):
__UpperCAmelCase = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def a ( self : str , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def a ( self : Any , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def a ( self : Tuple , _lowercase : list[Process] ):
__UpperCAmelCase = []
for i in range(len(_lowercase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def a ( self : Optional[int] , _lowercase : deque[Process] ):
return [q.burst_time for q in queue]
def a ( self : str , _lowercase : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def a ( self : Union[str, Any] , _lowercase : deque[Process] ):
__UpperCAmelCase = deque() # sequence deque of finished process
while len(_lowercase ) != 0:
__UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_lowercase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
__UpperCAmelCase = 0
# set the process's turnaround time because it is finished
__UpperCAmelCase = self.current_time - cp.arrival_time
# set the completion time
__UpperCAmelCase = self.current_time
# add the process to queue that has finished queue
finished.append(_lowercase )
self.finish_queue.extend(_lowercase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ):
__UpperCAmelCase = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_lowercase ) ):
__UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_lowercase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
__UpperCAmelCase = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_lowercase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
__UpperCAmelCase = 0
# set the finish time
__UpperCAmelCase = self.current_time
# update the process' turnaround time because it is finished
__UpperCAmelCase = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_lowercase )
self.finish_queue.extend(_lowercase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def a ( self : Union[str, Any] ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
__UpperCAmelCase , __UpperCAmelCase = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
_lowercase : List[str] = Process('P1', 0, 53)
_lowercase : str = Process('P2', 0, 17)
_lowercase : Union[str, Any] = Process('P3', 0, 68)
_lowercase : int = Process('P4', 0, 24)
_lowercase : Any = 3
_lowercase : Union[str, Any] = [17, 25]
_lowercase : Dict = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])})
_lowercase : Optional[Any] = Process('P1', 0, 53)
_lowercase : Tuple = Process('P2', 0, 17)
_lowercase : Optional[int] = Process('P3', 0, 68)
_lowercase : int = Process('P4', 0, 24)
_lowercase : int = 3
_lowercase : int = [17, 25]
_lowercase : List[str] = deque([Pa, Pa, Pa, Pa])
_lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0)
_lowercase : str = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
f"""waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print completion times of processes(P1, P2, P3, P4)
print(
f"""completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
f"""turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print sequence of finished processes
print(
f"""sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}"""
)
| 49 | 1 |
"""simple docstring"""
from typing import Any
def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ):
_validation(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
# Creates data structures and fill initial step
__UpperCAmelCase = {}
__UpperCAmelCase = {}
for state in states_space:
__UpperCAmelCase = observations_space[0]
__UpperCAmelCase = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
__UpperCAmelCase = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(snake_case_ ) ):
__UpperCAmelCase = observations_space[o]
__UpperCAmelCase = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
__UpperCAmelCase = ''''''
__UpperCAmelCase = -1
for k_state in states_space:
__UpperCAmelCase = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
__UpperCAmelCase = probability
__UpperCAmelCase = k_state
# Update probabilities and pointers dicts
__UpperCAmelCase = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
__UpperCAmelCase = arg_max
# The final observation
__UpperCAmelCase = observations_space[len(snake_case_ ) - 1]
# argmax for given final observation
__UpperCAmelCase = ''''''
__UpperCAmelCase = -1
for k_state in states_space:
__UpperCAmelCase = probabilities[(k_state, final_observation)]
if probability > max_probability:
__UpperCAmelCase = probability
__UpperCAmelCase = k_state
__UpperCAmelCase = arg_max
# Process pointers backwards
__UpperCAmelCase = last_state
__UpperCAmelCase = []
for o in range(len(snake_case_ ) - 1 , -1 , -1 ):
result.append(snake_case_ )
__UpperCAmelCase = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
_validate_not_empty(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , )
_validate_lists(snake_case_ , snake_case_ )
_validate_dicts(
snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('''There\'s an empty parameter''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any ):
_validate_list(snake_case_ , '''observations_space''' )
_validate_list(snake_case_ , '''states_space''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :str ):
if not isinstance(_object , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a list'''
raise ValueError(snake_case_ )
else:
for x in _object:
if not isinstance(snake_case_ , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a list of strings'''
raise ValueError(snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ):
_validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ )
_validate_nested_dict(snake_case_ , '''transition_probabilities''' )
_validate_nested_dict(snake_case_ , '''emission_probabilities''' )
def lowercase__ ( snake_case_ :Any , snake_case_ :str ):
_validate_dict(_object , snake_case_ , snake_case_ )
for x in _object.values():
_validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ):
if not isinstance(_object , snake_case_ ):
__UpperCAmelCase = F'''{var_name} must be a dict'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ):
__UpperCAmelCase = F'''{var_name} all keys must be strings'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ):
__UpperCAmelCase = '''nested dictionary ''' if nested else ''''''
__UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(snake_case_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : Union[str, Any] = logging.get_logger(__name__)
_lowercase : List[Any] = {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json',
'umberto-commoncrawl-cased-v1': (
'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'
),
'umberto-wikipedia-uncased-v1': (
'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'
),
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "camembert"
def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ):
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
__UpperCAmelCase = classifier_dropout
class _UpperCAmelCase ( _lowerCAmelCase ):
@property
def a ( self : Tuple ):
if self.task == "multiple-choice":
__UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 49 | 1 |
"""simple docstring"""
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def lowercase__ ( snake_case_ :Sequence[float] , snake_case_ :int , snake_case_ :int ):
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
__UpperCAmelCase = (low + high) // 2
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = max_subarray(snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = max_subarray(snake_case_ , mid + 1 , snake_case_ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = max_cross_sum(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def lowercase__ ( snake_case_ :Sequence[float] , snake_case_ :int , snake_case_ :int , snake_case_ :int ):
__UpperCAmelCase , __UpperCAmelCase = float('''-inf''' ), -1
__UpperCAmelCase , __UpperCAmelCase = float('''-inf''' ), -1
__UpperCAmelCase = 0
for i in range(snake_case_ , low - 1 , -1 ):
summ += arr[i]
if summ > left_sum:
__UpperCAmelCase = summ
__UpperCAmelCase = i
__UpperCAmelCase = 0
for i in range(mid + 1 , high + 1 ):
summ += arr[i]
if summ > right_sum:
__UpperCAmelCase = summ
__UpperCAmelCase = i
return max_left, max_right, (left_sum + right_sum)
def lowercase__ ( snake_case_ :int ):
__UpperCAmelCase = [randint(1 , snake_case_ ) for _ in range(snake_case_ )]
__UpperCAmelCase = time.time()
max_subarray(snake_case_ , 0 , input_size - 1 )
__UpperCAmelCase = time.time()
return end - start
def lowercase__ ( ):
__UpperCAmelCase = [10, 100, 1_000, 10_000, 50_000, 100_000, 200_000, 300_000, 400_000, 500_000]
__UpperCAmelCase = [time_max_subarray(snake_case_ ) for input_size in input_sizes]
print('''No of Inputs\t\tTime Taken''' )
for input_size, runtime in zip(snake_case_ , snake_case_ ):
print(snake_case_ , '''\t\t''' , snake_case_ )
plt.plot(snake_case_ , snake_case_ )
plt.xlabel('''Number of Inputs''' )
plt.ylabel('''Time taken in seconds''' )
plt.show()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 49 |
"""simple docstring"""
from __future__ import annotations
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks if the entire collection has been sorted
if len(snake_case_ ) <= 1 or n <= 1:
return
insert_next(snake_case_ , n - 1 )
rec_insertion_sort(snake_case_ , n - 1 )
def lowercase__ ( snake_case_ :list , snake_case_ :int ):
# Checks order between adjacent elements
if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
__UpperCAmelCase , __UpperCAmelCase = (
collection[index],
collection[index - 1],
)
insert_next(snake_case_ , index + 1 )
if __name__ == "__main__":
_lowercase : Any = input('Enter integers separated by spaces: ')
_lowercase : list[int] = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 49 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.