code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
0
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
21
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class A ( unittest.TestCase ): def __lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" _a = tempfile.mkdtemp() _a = BlipImageProcessor() _a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) _a = BlipaProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int , **lowerCAmelCase_ : Any ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).tokenizer def __lowerCAmelCase ( self : Tuple , **lowerCAmelCase_ : Any ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : str ) -> int: """simple docstring""" _a = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _a = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _a = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) _a = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = self.prepare_image_inputs() _a = image_processor(lowerCAmelCase_ , return_tensors='''np''' ) _a = processor(images=lowerCAmelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = '''lower newer''' _a = processor(text=lowerCAmelCase_ ) _a = tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = '''lower newer''' _a = self.prepare_image_inputs() _a = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a = processor.batch_decode(lowerCAmelCase_ ) _a = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = '''lower newer''' _a = self.prepare_image_inputs() _a = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
22
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[Any] = logging.get_logger(__name__) def _snake_case (__lowercase): # initialize config if "resnet-50" in model_name: UpperCamelCase_ = ResNetConfig.from_pretrained('microsoft/resnet-50') elif "resnet-101" in model_name: UpperCamelCase_ = ResNetConfig.from_pretrained('microsoft/resnet-101') else: raise ValueError('Model name should include either resnet50 or resnet101') UpperCamelCase_ = DetrConfig(use_timm_backbone=__lowercase , backbone_config=__lowercase) # set label attributes UpperCamelCase_ = 'panoptic' in model_name if is_panoptic: UpperCamelCase_ = 250 else: UpperCamelCase_ = 91 UpperCamelCase_ = 'huggingface/label-files' UpperCamelCase_ = 'coco-detection-id2label.json' UpperCamelCase_ = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset') , 'r')) UpperCamelCase_ = {int(__lowercase): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def _snake_case (__lowercase): # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase_ = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight')) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight')) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias')) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean')) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var')) # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", )) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", )) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", )) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", )) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", )) # 3 convs for i in range(3): rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", )) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", )) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", )) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", )) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", )) # fmt: on for i in range(config.encoder_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""", )) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""", )) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""")) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", )) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", )) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ]) return rename_keys def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = state_dict.pop(__lowercase) UpperCamelCase_ = val def _snake_case (__lowercase , __lowercase=False): UpperCamelCase_ = '' if is_panoptic: UpperCamelCase_ = 'detr.' # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""") UpperCamelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""") # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ = in_proj_weight[:256, :] UpperCamelCase_ = in_proj_bias[:256] UpperCamelCase_ = in_proj_weight[256:512, :] UpperCamelCase_ = in_proj_bias[256:512] UpperCamelCase_ = in_proj_weight[-256:, :] UpperCamelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6): # read in weights + bias of input projection layer of self-attention UpperCamelCase_ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""") UpperCamelCase_ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""") # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ = in_proj_weight[:256, :] UpperCamelCase_ = in_proj_bias[:256] UpperCamelCase_ = in_proj_weight[256:512, :] UpperCamelCase_ = in_proj_bias[256:512] UpperCamelCase_ = in_proj_weight[-256:, :] UpperCamelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase_ = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""") UpperCamelCase_ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""") # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase_ = in_proj_weight_cross_attn[:256, :] UpperCamelCase_ = in_proj_bias_cross_attn[:256] UpperCamelCase_ = in_proj_weight_cross_attn[256:512, :] UpperCamelCase_ = in_proj_bias_cross_attn[256:512] UpperCamelCase_ = in_proj_weight_cross_attn[-256:, :] UpperCamelCase_ = in_proj_bias_cross_attn[-256:] def _snake_case (): UpperCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ = Image.open(requests.get(__lowercase , stream=__lowercase).raw) return im @torch.no_grad() def _snake_case (__lowercase , __lowercase=None , __lowercase=False): UpperCamelCase_ , UpperCamelCase_ = get_detr_config(__lowercase) # load original model from torch hub UpperCamelCase_ = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(f"""Converting model {model_name}...""") UpperCamelCase_ = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=__lowercase).eval() UpperCamelCase_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(__lowercase): if is_panoptic: UpperCamelCase_ = 'detr.' + src rename_key(__lowercase , __lowercase , __lowercase) # query, key and value matrices need special treatment read_in_q_k_v(__lowercase , is_panoptic=__lowercase) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase_ = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr') and not key.startswith('class_labels_classifier') and not key.startswith('bbox_predictor') ): UpperCamelCase_ = state_dict.pop(__lowercase) UpperCamelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase_ = state_dict.pop(__lowercase) UpperCamelCase_ = val elif key.startswith('bbox_attention') or key.startswith('mask_head'): continue else: UpperCamelCase_ = state_dict.pop(__lowercase) UpperCamelCase_ = val else: if not key.startswith('class_labels_classifier') and not key.startswith('bbox_predictor'): UpperCamelCase_ = state_dict.pop(__lowercase) UpperCamelCase_ = val # finally, create HuggingFace model and load state dict UpperCamelCase_ = DetrForSegmentation(__lowercase) if is_panoptic else DetrForObjectDetection(__lowercase) model.load_state_dict(__lowercase) model.eval() # verify our conversion on an image UpperCamelCase_ = 'coco_panoptic' if is_panoptic else 'coco_detection' UpperCamelCase_ = DetrImageProcessor(format=__lowercase) UpperCamelCase_ = processor(images=prepare_img() , return_tensors='pt') UpperCamelCase_ = encoding['pixel_values'] UpperCamelCase_ = detr(__lowercase) UpperCamelCase_ = model(__lowercase) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4) print('Looks ok!') if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""") Path(__lowercase).mkdir(exist_ok=__lowercase) model.save_pretrained(__lowercase) processor.save_pretrained(__lowercase) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...') model.push_to_hub(f"""nielsr/{model_name}""") processor.push_to_hub(f"""nielsr/{model_name}""") if __name__ == "__main__": snake_case__ : Any = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") snake_case__ : List[str] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
23
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
0
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase_ : Optional[Any] = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
import logging import os from .state import PartialState class _UpperCamelCase ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def __UpperCamelCase ( a : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __UpperCamelCase ( self : Optional[int] , a : Optional[Any] , a : Optional[int] , *a : Dict , **a : Any ) -> Union[str, Any]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("main_process_only" , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("in_order" , a ) if self.isEnabledFor(a ): if self._should_log(a ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.process(a , a ) self.logger.log(a , a , *a , **a ) elif in_order: SCREAMING_SNAKE_CASE : Any = PartialState() for i in range(state.num_processes ): if i == state.process_index: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.process(a , a ) self.logger.log(a , a , *a , **a ) state.wait_for_everyone() def lowerCamelCase__ ( _a , _a = None): if log_level is None: SCREAMING_SNAKE_CASE : Dict = os.environ.get("ACCELERATE_LOG_LEVEL" , _a) SCREAMING_SNAKE_CASE : int = logging.getLogger(_a) if log_level is not None: logger.setLevel(log_level.upper()) logger.root.setLevel(log_level.upper()) return MultiProcessAdapter(_a , {})
25
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = AltDiffusionPipeline lowercase__: Tuple = TEXT_TO_IMAGE_PARAMS lowercase__: List[str] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__: List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__: List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) __snake_case : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __snake_case : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) __snake_case : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __snake_case : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , ) __snake_case : Dict = CLIPTextModel(__magic_name__ ) __snake_case : Optional[int] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __snake_case : str = 77 __snake_case : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Any=0 ) -> Optional[int]: """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): __snake_case : int = torch.manual_seed(__magic_name__ ) else: __snake_case : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" __snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : Optional[Any] = self.get_dummy_components() torch.manual_seed(0 ) __snake_case : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder __snake_case : Optional[int] = RobertaSeriesModelWithTransformation(__magic_name__ ) __snake_case : Optional[Any] = text_encoder __snake_case : Any = AltDiffusionPipeline(**__magic_name__ ) __snake_case : Any = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : int = self.get_dummy_inputs(__magic_name__ ) __snake_case : Union[str, Any] = """A photo of an astronaut""" __snake_case : Any = alt_pipe(**__magic_name__ ) __snake_case : List[Any] = output.images __snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : Any = self.get_dummy_components() __snake_case : List[Any] = PNDMScheduler(skip_prk_steps=__magic_name__ ) torch.manual_seed(0 ) __snake_case : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder __snake_case : Dict = RobertaSeriesModelWithTransformation(__magic_name__ ) __snake_case : Tuple = text_encoder __snake_case : Optional[Any] = AltDiffusionPipeline(**__magic_name__ ) __snake_case : Optional[int] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Dict = self.get_dummy_inputs(__magic_name__ ) __snake_case : List[Any] = alt_pipe(**__magic_name__ ) __snake_case : Dict = output.images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : str = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__magic_name__ ) __snake_case : List[str] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : int = """A painting of a squirrel eating a burger""" __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : Dict = alt_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) __snake_case : Optional[Any] = output.images __snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : str = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) __snake_case : Dict = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__magic_name__ , safety_checker=__magic_name__ ) __snake_case : List[str] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Dict = """A painting of a squirrel eating a burger""" __snake_case : Dict = torch.manual_seed(0 ) __snake_case : Any = alt_pipe([prompt] , generator=__magic_name__ , num_inference_steps=2 , output_type="""numpy""" ) __snake_case : List[Any] = output.images __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Union[str, Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
26
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = int(_SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(_SCREAMING_SNAKE_CASE ) _A, _A = divmod(_SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(_SCREAMING_SNAKE_CASE ) + str(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = str(_SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError('No input value was provided' ) _A = '-' if number.startswith('-' ) else '' _A = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return F"{negative}0b{binary_recursive(int(_SCREAMING_SNAKE_CASE ) )}" if __name__ == "__main__": from doctest import testmod testmod()
27
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker A_ = """CompVis/stable-diffusion-v1-1""" A_ = """CompVis/stable-diffusion-v1-2""" A_ = """CompVis/stable-diffusion-v1-3""" A_ = """CompVis/stable-diffusion-v1-4""" class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ): super()._init_() lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase ) lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase ) lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase ) lowerCamelCase_ = StableDiffusionPipeline( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=UpperCAmelCase , requires_safety_checker=UpperCAmelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase__ ( self ): return {k: getattr(self , UpperCAmelCase ) for k in self.config.keys() if not k.startswith('''_''' )} def UpperCAmelCase__ ( self , UpperCAmelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.enable_attention_slicing(UpperCAmelCase ) @torch.no_grad() def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ): return self.pipea( prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , ) @torch.no_grad() def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ): return self.pipea( prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , ) @torch.no_grad() def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ): return self.pipea( prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , ) @torch.no_grad() def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ): return self.pipea( prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , ) @torch.no_grad() def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ): lowerCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(UpperCAmelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 lowerCamelCase_ = self.textaimg_sda_a( prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 lowerCamelCase_ = self.textaimg_sda_a( prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 lowerCamelCase_ = self.textaimg_sda_a( prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 lowerCamelCase_ = self.textaimg_sda_a( prompt=UpperCAmelCase , height=UpperCAmelCase , width=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , output_type=UpperCAmelCase , return_dict=UpperCAmelCase , callback=UpperCAmelCase , callback_steps=UpperCAmelCase , **UpperCAmelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
29
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __a = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase=None ): '''simple docstring''' UpperCAmelCase_ : Dict = XLNetConfig.from_json_file(_lowercase ) UpperCAmelCase_ : Optional[int] = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) UpperCAmelCase_ : Optional[int] = finetuning_task UpperCAmelCase_ : Optional[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_ : List[str] = XLNetForSequenceClassification(_lowercase ) elif "squad" in finetuning_task: UpperCAmelCase_ : Dict = finetuning_task UpperCAmelCase_ : List[str] = XLNetForQuestionAnswering(_lowercase ) else: UpperCAmelCase_ : List[str] = XLNetLMHeadModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowercase , _lowercase , _lowercase ) # Save pytorch-model UpperCAmelCase_ : int = os.path.join(_lowercase , _lowercase ) UpperCAmelCase_ : Union[str, Any] = os.path.join(_lowercase , _lowercase ) print(f'''Save PyTorch model to {os.path.abspath(_lowercase )}''' ) torch.save(model.state_dict() , _lowercase ) print(f'''Save configuration file to {os.path.abspath(_lowercase )}''' ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) __a = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
30
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
0
def UpperCAmelCase_ ( __UpperCAmelCase : int = 2_00 ) -> int: SCREAMING_SNAKE_CASE_ = [1, 2, 5, 10, 20, 50, 1_00, 2_00] SCREAMING_SNAKE_CASE_ = [0] * (pence + 1) SCREAMING_SNAKE_CASE_ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__UpperCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
31
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
0
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
0
import torch from diffusers import StableDiffusionPipeline lowerCamelCase__ : Any = """path-to-your-trained-model""" lowerCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") lowerCamelCase__ : int = """A photo of sks dog in a bucket""" lowerCamelCase__ : Any = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
33
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
0
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed a_ :str = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) a_ :int = 'sshleifer/student_marian_en_ro_6_1' a_ :List[str] = 'sshleifer/tiny-mbart' @require_torch class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : List[str] , _lowercase : Dict=False , _lowercase : Optional[Any]=None , _lowercase : Dict=True , _lowercase : str=True , _lowercase : Optional[Any]=True , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Any = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) SCREAMING_SNAKE_CASE__ : List[str] = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''' ) ).log_history if not do_eval: return SCREAMING_SNAKE_CASE__ : Union[str, Any] = [log for log in logs if '''eval_loss''' in log.keys()] SCREAMING_SNAKE_CASE__ : Tuple = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats SCREAMING_SNAKE_CASE__ : Optional[Any] = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowercase__ ( self : int ): self.run_seqaseq_quick() @require_torch_multi_gpu def lowercase__ ( self : Optional[int] ): self.run_seqaseq_quick(distributed=_lowercase ) @require_torch_multi_gpu def lowercase__ ( self : Any ): self.run_seqaseq_quick(distributed=_lowercase ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self : str ): self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self : List[Any] ): self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self : int ): self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self : Any ): self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase ) @require_apex @require_torch_gpu def lowercase__ ( self : Any ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def lowercase__ ( self : Optional[int] , _lowercase : Optional[int] ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout SCREAMING_SNAKE_CASE__ : Dict = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = experiments[experiment_id] SCREAMING_SNAKE_CASE__ : str = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} SCREAMING_SNAKE_CASE__ : int = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str'''] ) SCREAMING_SNAKE_CASE__ : Tuple = len(re.findall(_lowercase , cl.err ) ) self.assertEqual(_lowercase , data['''n_matches'''] ) @slow def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''' ) ).log_history SCREAMING_SNAKE_CASE__ : str = [log for log in logs if '''eval_loss''' in log.keys()] SCREAMING_SNAKE_CASE__ : Tuple = eval_metrics[0] SCREAMING_SNAKE_CASE__ : Any = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase ) # test if do_predict saves generations and metrics SCREAMING_SNAKE_CASE__ : Optional[Any] = os.listdir(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {os.path.basename(_lowercase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowercase__ ( self : Dict ): from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase : str ) -> Tuple[int, float]: SCREAMING_SNAKE_CASE__ : Optional[Any] = '''--skip_memory_metrics 0''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.run_trainer( max_len=1_28 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''' ) ).log_history SCREAMING_SNAKE_CASE__ : Tuple = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) SCREAMING_SNAKE_CASE__ : str = gpu_alloc_mem_orig - gpu_alloc_mem_bnb SCREAMING_SNAKE_CASE__ : str = gpu_peak_mem_orig + gpu_alloc_mem_orig SCREAMING_SNAKE_CASE__ : List[Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb SCREAMING_SNAKE_CASE__ : Optional[Any] = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings SCREAMING_SNAKE_CASE__ : List[str] = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" f""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" f""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( _lowercase , _lowercase , f"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def lowercase__ ( self : str , _lowercase : int , _lowercase : str , _lowercase : int , _lowercase : float = 3E-3 , _lowercase : str = "adafactor" , _lowercase : bool = False , _lowercase : str = None , _lowercase : int = 0 , _lowercase : bool = True , _lowercase : bool = True , _lowercase : bool = True , _lowercase : bool = True , _lowercase : int = None , ): SCREAMING_SNAKE_CASE__ : Any = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' SCREAMING_SNAKE_CASE__ : List[str] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : Dict = f""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(_lowercase )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(_lowercase )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() SCREAMING_SNAKE_CASE__ : Union[str, Any] = f""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(_lowercase )} """.split() SCREAMING_SNAKE_CASE__ : List[Any] = ''' --do_predict '''.split() SCREAMING_SNAKE_CASE__ : Optional[Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: SCREAMING_SNAKE_CASE__ : str = get_gpu_count() SCREAMING_SNAKE_CASE__ : int = get_torch_dist_unique_port() SCREAMING_SNAKE_CASE__ : Optional[int] = f""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() SCREAMING_SNAKE_CASE__ : int = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env() ) else: SCREAMING_SNAKE_CASE__ : int = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase ): main() return output_dir
35
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Optional[int] = logging.get_logger(__name__) def lowercase ( __A : Union[str, Any] ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = torch.load(__A , map_location="""cpu""" ) if "model" in sd.keys(): snake_case : str = torch.load(__A , map_location="""cpu""" )["""model"""] # pop unnecessary weights snake_case : Optional[Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(__A ) snake_case : Union[str, Any] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case : Dict = sd.pop(__A ) snake_case : List[str] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case : Dict = sd[key] # We split QKV in separate Q,K,V snake_case : str = key.replace(""".qkv_proj.""" , """.q_proj.""" ) snake_case : List[str] = key.replace(""".qkv_proj.""" , """.k_proj.""" ) snake_case : Union[str, Any] = key.replace(""".qkv_proj.""" , """.v_proj.""" ) snake_case : Optional[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case , snake_case , snake_case : Union[str, Any] = torch.split(__A , depth // 3 , dim=0 ) snake_case : Optional[int] = q snake_case : Optional[Any] = k snake_case : Any = v del sd[key] return sd @torch.no_grad() def lowercase ( __A : Tuple , __A : Dict , __A : List[str]=None ) -> Tuple: '''simple docstring''' snake_case : Optional[int] = load_checkpoint(__A ) if config is not None: snake_case : List[Any] = OPTConfig.from_pretrained(__A ) else: snake_case : Union[str, Any] = OPTConfig() snake_case : str = OPTModel(__A ).half().eval() model.load_state_dict(__A ) # Check results Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __lowercase : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
36
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCamelCase_ ( __a ) -> Union[str, Any]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase__ : nn.Module , lowerCamelCase__ : int ): super().__init__() a__ : int = module a__ : Any = nn.Sequential( nn.Linear(module.in_features , lowerCamelCase__ , bias=lowerCamelCase__ ) , nn.Linear(lowerCamelCase__ , module.out_features , bias=lowerCamelCase__ ) , ) a__ : Tuple = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCamelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): return self.module(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) + self.adapter(lowerCamelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" _lowercase = 'bigscience/bloom-1b7' # Constant values _lowercase = 2.1_09_65_95_52_69_25_74 _lowercase = 'Hello my name is' _lowercase = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) _lowercase = 1_0 def _UpperCamelCase( self : Dict ): # Models and tokenizer a__ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Union[str, Any] ): super().setUp() # Models and tokenizer a__ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) a__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : List[Any] ): a__ : str = self.model_abit.config self.assertTrue(hasattr(lowerCamelCase__ , "quantization_config" ) ) a__ : Optional[Any] = config.to_dict() a__ : int = config.to_diff_dict() a__ : List[str] = config.to_json_string() def _UpperCamelCase( self : int ): from bitsandbytes.nn import Paramsabit a__ : List[Any] = self.model_fpaa.get_memory_footprint() a__ : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a__ : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _UpperCamelCase( self : Tuple ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCamelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _UpperCamelCase( self : str ): a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Tuple = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[Any] = BitsAndBytesConfig() a__ : Optional[int] = True a__ : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , device_map="auto" ) a__ : str = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : int = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : Dict ): with self.assertRaises(lowerCamelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): a__ : int = BitsAndBytesConfig() with self.assertRaises(lowerCamelCase__ ): a__ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , load_in_abit=lowerCamelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def _UpperCamelCase( self : int ): with self.assertRaises(lowerCamelCase__ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a__ : int = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Any = self.model_fpaa.to(torch.floataa ) a__ : List[Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.to("cpu" ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.half() # Check this does not throw an error a__ : Dict = self.model_fpaa.float() def _UpperCamelCase( self : Dict ): a__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCamelCase__ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCamelCase( cls : str ): a__ : Dict = "t5-small" a__ : List[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense a__ : int = AutoTokenizer.from_pretrained(cls.model_name ) a__ : str = "Translate in German: Hello, my dog is cute" def _UpperCamelCase( self : Optional[int] ): gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Optional[int] ): from transformers import TaForConditionalGeneration a__ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules a__ : Optional[Any] = None # test with `t5-small` a__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Any = model.generate(**lowerCamelCase__ ) a__ : Union[str, Any] = modules def _UpperCamelCase( self : List[Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a__ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Optional[int] = model.generate(**lowerCamelCase__ ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : List[str] ): super().setUp() # model_name a__ : Union[str, Any] = "bigscience/bloom-560m" a__ : Union[str, Any] = "t5-small" # Different types of model a__ : int = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Sequence classification model a__ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # CausalLM model a__ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Seq2seq model a__ : Dict = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Union[str, Any] ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): super().setUp() def _UpperCamelCase( self : int ): del self.pipe gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Tuple ): a__ : int = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a__ : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Tuple ): super().setUp() def _UpperCamelCase( self : List[Any] ): a__ : str = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a__ : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch a__ : List[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): a__ : Any = "facebook/opt-350m" super().setUp() def _UpperCamelCase( self : int ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters a__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a__ : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a__ : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCamelCase__ ) ): a__ : Dict = LoRALayer(module.q_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.k_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a__ : Dict = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a__ : Optional[Any] = model.forward(**lowerCamelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCamelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( A__ ): """simple docstring""" _lowercase = 'gpt2-xl' _lowercase = 3.31_91_85_48_54_15_21_87
37
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
0
'''simple docstring''' import os import sys import unittest A_ : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A_ : Dict = os.path.join("tests", "models", "bert", "test_modeling_bert.py") A_ : str = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Optional[int] = get_test_to_tester_mapping(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = get_test_to_tester_mapping(__SCREAMING_SNAKE_CASE ) snake_case__ : int = {"""BertModelTest""": """BertModelTester"""} snake_case__ : List[str] = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = get_model_to_test_mapping(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = get_model_to_test_mapping(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } snake_case__ : Any = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[str] = get_model_to_tester_mapping(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = get_model_to_tester_mapping(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } snake_case__ : Optional[Any] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
38
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCAmelCase_ = False class snake_case_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Tuple ) ->Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : Dict ) ->List[str]: snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger ''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCamelCase ) snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = generator.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def snake_case__( self : List[str] ) ->Tuple: snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger ''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' ).images snake_case_ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
0
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCAmelCase__ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ = f'down_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'input_blocks.{3*i + j + 1}.0.' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ = f'down_blocks.{i}.attentions.{j}.' lowerCAmelCase__ = f'input_blocks.{3*i + j + 1}.1.' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ = f'up_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'output_blocks.{3*i + j}.0.' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ = f'up_blocks.{i}.attentions.{j}.' lowerCAmelCase__ = f'output_blocks.{3*i + j}.1.' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ = f'down_blocks.{i}.downsamplers.0.conv.' lowerCAmelCase__ = f'input_blocks.{3*(i+1)}.0.op.' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ = f'up_blocks.{i}.upsamplers.0.' lowerCAmelCase__ = f'output_blocks.{3*i + 2}.{1 if i == 0 else 2}.' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ = '''mid_block.attentions.0.''' lowerCAmelCase__ = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ = f'mid_block.resnets.{j}.' lowerCAmelCase__ = f'middle_block.{2*j}.' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _A ( A__ ): """simple docstring""" __lowercase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: __lowercase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: __lowercase = v.replace(A__ , A__ ) __lowercase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: __lowercase = v.replace(A__ , A__ ) __lowercase = v __lowercase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ = f'encoder.down_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'encoder.down.{i}.block.{j}.' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ = f'down_blocks.{i}.downsamplers.0.' lowerCAmelCase__ = f'down.{i}.downsample.' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ = f'up_blocks.{i}.upsamplers.0.' lowerCAmelCase__ = f'up.{3-i}.upsample.' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ = f'decoder.up_blocks.{i}.resnets.{j}.' lowerCAmelCase__ = f'decoder.up.{3-i}.block.{j}.' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ = f'mid_block.resnets.{i}.' lowerCAmelCase__ = f'mid.block_{i+1}.' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def _A ( A__ ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _A ( A__ ): """simple docstring""" __lowercase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: __lowercase = v.replace(A__ , A__ ) __lowercase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: __lowercase = v.replace(A__ , A__ ) __lowercase = v __lowercase = {v: vae_state_dict[k] for k, v in mapping.items()} __lowercase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"mid.attn_1.{weight_name}.weight" in k: print(F"Reshaping {k} for SD format" ) __lowercase = reshape_weight_for_sd(A__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCAmelCase__ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ = {'''q''': 0, '''k''': 1, '''v''': 2} def _A ( A__ ): """simple docstring""" __lowercase = {} __lowercase = {} __lowercase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): __lowercase = k[: -len('''.q_proj.weight''' )] __lowercase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: __lowercase = [None, None, None] __lowercase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): __lowercase = k[: -len('''.q_proj.bias''' )] __lowercase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: __lowercase = [None, None, None] __lowercase = v continue __lowercase = textenc_pattern.sub(lambda A__ : protected[re.escape(m.group(0 ) )] , A__ ) __lowercase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __lowercase = textenc_pattern.sub(lambda A__ : protected[re.escape(m.group(0 ) )] , A__ ) __lowercase = torch.cat(A__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __lowercase = textenc_pattern.sub(lambda A__ : protected[re.escape(m.group(0 ) )] , A__ ) __lowercase = torch.cat(A__ ) return new_state_dict def _A ( A__ ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCAmelCase__ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ = load_file(unet_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCAmelCase__ = load_file(vae_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCAmelCase__ = load_file(text_enc_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCAmelCase__ = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCAmelCase__ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
41
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ = 16 A_ = 32 def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 16 ,__UpperCamelCase = "bert-base-cased" ) -> List[Any]: lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = load_dataset('glue' ,'mrpc' ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets['train'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCamelCase_ = DataLoader( tokenized_datasets['validation'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: model.eval() lowerCamelCase_ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: lowerCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase ,references=__UpperCamelCase ,) lowerCamelCase_ = metric.compute() return eval_metric["accuracy"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]: # Initialize accelerator lowerCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config['lr'] lowerCamelCase_ = int(config['num_epochs'] ) lowerCamelCase_ = int(config['seed'] ) lowerCamelCase_ = int(config['batch_size'] ) lowerCamelCase_ = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCamelCase_ = 1 lowerCamelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCamelCase_ = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ = 0 lowerCamelCase_ = evaluate.load('glue' ,'mrpc' ) lowerCamelCase_ = num_epochs if args.partial_train_epoch is not None: lowerCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase_ = args.resume_from_checkpoint.split('epoch_' )[1] lowerCamelCase_ = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase_ = int(__UpperCamelCase ) + 1 lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) accelerator.print('resumed checkpoint performance:' ,__UpperCamelCase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,f'''state_{starting_epoch-1}.json''' ) ,'r' ) as f: lowerCamelCase_ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase_ = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.loss lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase_ = f'''epoch_{epoch}''' lowerCamelCase_ = os.path.join(args.output_dir ,__UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = accuracy lowerCamelCase_ = lr_scheduler.get_lr()[0] lowerCamelCase_ = optimizer.param_groups[0]['lr'] lowerCamelCase_ = epoch lowerCamelCase_ = overall_step accelerator.print(f'''epoch {epoch}:''' ,__UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f'''state_{epoch}.json''' ) ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> str: lowerCamelCase_ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=__UpperCamelCase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__UpperCamelCase ,) parser.add_argument( '--output_dir' ,type=__UpperCamelCase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=__UpperCamelCase ,default=2 ,help='Number of train epochs.' ,) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
42
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
0
from collections.abc import Sequence def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): lowercase__ = result * x + coeff return result if __name__ == "__main__": lowerCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCAmelCase = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
43
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
0
'''simple docstring''' import doctest from collections import deque import numpy as np class UpperCAmelCase__ : def __init__( self : Optional[int] ): _lowerCamelCase : List[Any] = [2, 1, 2, -1] _lowerCamelCase : Any = [1, 2, 3, 4] def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = len(self.first_signal ) _lowerCamelCase : str = len(self.second_signal ) _lowerCamelCase : Tuple = max(__A,__A ) # create a zero matrix of max_length x max_length _lowerCamelCase : Optional[int] = [[0] * max_length for i in range(__A )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__A ): _lowerCamelCase : str = deque(self.second_signal ) rotated_signal.rotate(__A ) for j, item in enumerate(__A ): matrix[i][j] += item # multiply the matrix with the first signal _lowerCamelCase : str = np.matmul(np.transpose(__A ),np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__A,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
44
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase = "bert-base-cased" UpperCamelCase = "fp16" UpperCamelCase = "bf16" UpperCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __a ( self :List[str] ): super().setUp() UpperCamelCase__ :str = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def __a ( self :Union[str, Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = self.dist_env.copy() UpperCamelCase__ :List[Any] = f"""{i + 1}""" UpperCamelCase__ :List[Any] = strategy with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __a ( self :Union[str, Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = self.dist_env.copy() UpperCamelCase__ :Optional[int] = prefetch_policy with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :Dict = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __a ( self :Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = self.dist_env.copy() UpperCamelCase__ :Tuple = state_dict_type with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = AutoModel.from_pretrained(lowerCamelCase__ ) for policy in FSDP_AUTO_WRAP_POLICY: UpperCamelCase__ :Optional[int] = self.dist_env.copy() UpperCamelCase__ :int = policy if policy == "TRANSFORMER_BASED_WRAP": UpperCamelCase__ :Optional[Any] = """BertLayer""" elif policy == "SIZE_BASED_WRAP": UpperCamelCase__ :Union[str, Any] = """2000""" with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :int = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCamelCase__ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) UpperCamelCase__ :Optional[int] = self.dist_env.copy() UpperCamelCase__ :str = """TRANSFORMER_BASED_WRAP""" UpperCamelCase__ :Union[str, Any] = """T5Layer""" with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :Any = FullyShardedDataParallelPlugin() with self.assertRaises(lowerCamelCase__ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowerCamelCase__ ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) UpperCamelCase__ :Dict = self.dist_env.copy() UpperCamelCase__ :int = """SIZE_BASED_WRAP""" UpperCamelCase__ :Union[str, Any] = """0""" with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCamelCase__ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __a ( self :Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: UpperCamelCase__ :Dict = self.dist_env.copy() UpperCamelCase__ :Dict = mp_dtype with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = Accelerator() if mp_dtype == "fp16": UpperCamelCase__ :Tuple = torch.floataa elif mp_dtype == "bf16": UpperCamelCase__ :Tuple = torch.bfloataa UpperCamelCase__ :int = MixedPrecision(param_dtype=lowerCamelCase__ , reduce_dtype=lowerCamelCase__ , buffer_dtype=lowerCamelCase__ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowerCamelCase__ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowerCamelCase__ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowerCamelCase__ ) def __a ( self :Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: UpperCamelCase__ :List[str] = self.dist_env.copy() UpperCamelCase__ :Dict = str(lowerCamelCase__ ).lower() with mockenv_context(**lowerCamelCase__ ): UpperCamelCase__ :List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowerCamelCase__ ) ) @require_fsdp @require_multi_gpu @slow class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __a ( self :Dict ): super().setUp() UpperCamelCase__ :str = 0.82 UpperCamelCase__ :int = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] UpperCamelCase__ :int = { """multi_gpu_fp16""": 32_00, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 20_00, """fsdp_full_shard_transformer_based_wrap_fp16""": 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } UpperCamelCase__ :Optional[Any] = 1_60 UpperCamelCase__ :List[str] = 1_60 UpperCamelCase__ :Union[str, Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase__ :Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def __a ( self :str ): UpperCamelCase__ :int = os.path.join(self.test_scripts_folder , """test_performance.py""" ) UpperCamelCase__ :List[str] = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: UpperCamelCase__ :Optional[Any] = cmd.copy() for i, strategy in enumerate(lowerCamelCase__ ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) def __a ( self :str ): UpperCamelCase__ :List[Any] = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) UpperCamelCase__ :Any = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue UpperCamelCase__ :Optional[int] = len(lowerCamelCase__ ) for state_dict_type in FSDP_STATE_DICT_TYPE: UpperCamelCase__ :Tuple = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) UpperCamelCase__ :List[Any] = cmd_config[:-1] UpperCamelCase__ :Tuple = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) def __a ( self :List[str] ): UpperCamelCase__ :List[str] = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) UpperCamelCase__ :Optional[int] = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): UpperCamelCase__ :Optional[int] = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(lowerCamelCase__ ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() )
45
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
0
"""simple docstring""" import os import sys import unittest _lowerCAmelCase : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCAmelCase : Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') _lowerCAmelCase : str = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class A_ ( unittest.TestCase ): def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : int = get_test_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = get_test_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Dict = {"BertModelTest": "BertModelTester"} _lowerCamelCase : Union[str, Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = get_model_to_test_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = get_model_to_test_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } _lowerCamelCase : Optional[Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = get_model_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Dict = get_model_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } _lowerCamelCase : List[str] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase )
46
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
SCREAMING_SNAKE_CASE__ = tuple[float, float, float] SCREAMING_SNAKE_CASE__ = tuple[float, float, float] def UpperCAmelCase__ ( lowerCamelCase_ : Pointad , lowerCamelCase_ : Pointad ): __a : int = end_pointa[0] - end_pointa[0] __a : List[Any] = end_pointa[1] - end_pointa[1] __a : List[str] = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase__ ( lowerCamelCase_ : Vectorad , lowerCamelCase_ : Vectorad ): __a : List[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i __a : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __a : List[str] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase__ ( lowerCamelCase_ : Vectorad , lowerCamelCase_ : int ): return tuple(round(lowerCamelCase_ , lowerCamelCase_ ) for x in vector ) == (0, 0, 0) def UpperCAmelCase__ ( lowerCamelCase_ : Pointad , lowerCamelCase_ : Pointad , lowerCamelCase_ : Pointad , lowerCamelCase_ : int = 1_0 ): __a : Dict = create_vector(lowerCamelCase_ , lowerCamelCase_ ) __a : Union[str, Any] = create_vector(lowerCamelCase_ , lowerCamelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ )
47
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
0
'''simple docstring''' UpperCAmelCase__ : int = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def A ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def A ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
48
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = """ZinengTang/tvlt-base""" lowerCamelCase__ = tempfile.mkdtemp() def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_feature_extractor() lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor ,_lowerCAmelCase ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_feature_extractor() lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ) lowerCamelCase__ = np.ones([1_20_00] ) lowerCamelCase__ = feature_extractor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(audio=_lowerCAmelCase ,return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_feature_extractor() lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ) lowerCamelCase__ = np.ones([3, 2_24, 2_24] ) lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_feature_extractor() lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ) lowerCamelCase__ = np.ones([1_20_00] ) lowerCamelCase__ = np.ones([3, 2_24, 2_24] ) lowerCamelCase__ = processor(audio=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_feature_extractor() lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names ,image_processor.model_input_names + feature_extractor.model_input_names ,msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" ,)
50
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
0
'''simple docstring''' from __future__ import annotations def __snake_case ( SCREAMING_SNAKE_CASE_ : list[float] ) -> float: """simple docstring""" UpperCAmelCase = 0.00 UpperCAmelCase = 0 for resistor in resistors: if resistor <= 0: UpperCAmelCase = f"Resistor at index {index} has a negative or zero value!" raise ValueError(SCREAMING_SNAKE_CASE_ ) first_sum += 1 / float(SCREAMING_SNAKE_CASE_ ) index += 1 return 1 / first_sum def __snake_case ( SCREAMING_SNAKE_CASE_ : list[float] ) -> float: """simple docstring""" UpperCAmelCase = 0.00 UpperCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCAmelCase = f"Resistor at index {index} has a negative value!" raise ValueError(SCREAMING_SNAKE_CASE_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _snake_case : Any = logging.get_logger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) a_ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a_ = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def lowercase ( self : List[Any] ) -> Dict: __lowerCAmelCase = self.task_name.lower() class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """train""" a_ = """dev""" a_ = """test""" class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 a_ = 42 a_ = 42 def __init__( self : Any , lowerCAmelCase_ : GlueDataTrainingArguments , lowerCAmelCase_ : PreTrainedTokenizerBase , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Union[str, Split] = Split.train , lowerCAmelCase_ : Optional[str] = None , ) -> List[str]: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , lowerCAmelCase_ , ) __lowerCAmelCase = args __lowerCAmelCase = glue_processors[args.task_name]() __lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) __lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCAmelCase , __lowerCAmelCase = label_list[2], label_list[1] __lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + '.lock' with FileLock(lowerCAmelCase_ ): if os.path.exists(lowerCAmelCase_ ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(lowerCAmelCase_ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowerCAmelCase = examples[:limit_length] __lowerCAmelCase = glue_convert_examples_to_features( lowerCAmelCase_ , lowerCAmelCase_ , max_length=args.max_seq_length , label_list=lowerCAmelCase_ , output_mode=self.output_mode , ) __lowerCAmelCase = time.time() torch.save(self.features , lowerCAmelCase_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Dict ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] ) -> InputFeatures: return self.features[i] def lowercase ( self : Any ) -> Dict: return self.label_list
53
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =job["started_at"] UpperCAmelCase_ =job["completed_at"] UpperCAmelCase_ =date_parser.parse(lowercase__ ) UpperCAmelCase_ =date_parser.parse(lowercase__ ) UpperCAmelCase_ =round((end_datetime - start_datetime).total_seconds() / 60.0 ) UpperCAmelCase_ =start UpperCAmelCase_ =end UpperCAmelCase_ =duration_in_min return job_info def a__ ( lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =None if token is not None: UpperCAmelCase_ ={"Accept": "application/vnd.github+json", "Authorization": F'Bearer {token}'} UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ , headers=lowercase__ ).json() UpperCAmelCase_ ={} try: job_time.update({job["name"]: extract_time_from_single_job(lowercase__ ) for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' , headers=lowercase__ ).json() job_time.update({job["name"]: extract_time_from_single_job(lowercase__ ) for job in result["jobs"]} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": __lowercase : Any =argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") __lowercase : Optional[int] =parser.parse_args() __lowercase : Optional[int] =get_job_time(args.workflow_run_id) __lowercase : Optional[Any] =dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
54
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Tuple = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "swin2sr" snake_case_ = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] ,A : str=64 ,A : Union[str, Any]=1 ,A : List[Any]=3 ,A : Dict=1_80 ,A : List[str]=[6, 6, 6, 6, 6, 6] ,A : Any=[6, 6, 6, 6, 6, 6] ,A : int=8 ,A : Dict=2.0 ,A : List[str]=True ,A : Dict=0.0 ,A : Tuple=0.0 ,A : Dict=0.1 ,A : List[Any]="gelu" ,A : int=False ,A : Optional[Any]=0.02 ,A : str=1E-5 ,A : List[Any]=2 ,A : Union[str, Any]=1.0 ,A : Any="1conv" ,A : Optional[int]="pixelshuffle" ,**A : Union[str, Any] ,): super().__init__(**A ) __A = image_size __A = patch_size __A = num_channels __A = embed_dim __A = depths __A = len(A ) __A = num_heads __A = window_size __A = mlp_ratio __A = qkv_bias __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = drop_path_rate __A = hidden_act __A = use_absolute_embeddings __A = layer_norm_eps __A = initializer_range __A = upscale __A = img_range __A = resi_connection __A = upsampler
55
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : Any = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ["ViTFeatureExtractor"] _a : Tuple = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar A_ : Dict = TypeVar('T') class _lowerCAmelCase( Generic[T] ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any | T = None UpperCamelCase_: int = len(_lowerCamelCase ) UpperCamelCase_: list[T] = [any_type for _ in range(self.N )] + arr UpperCamelCase_: str = fnc self.build() def _a ( self ): for p in range(self.N - 1 , 0 , -1 ): UpperCamelCase_: Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): p += self.N UpperCamelCase_: str = v while p > 1: UpperCamelCase_: Union[str, Any] = p // 2 UpperCamelCase_: Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): # noqa: E741 UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = l + self.N, r + self.N UpperCamelCase_: T | None = None while l <= r: if l % 2 == 1: UpperCamelCase_: Optional[Any] = self.st[l] if res is None else self.fn(_lowerCamelCase , self.st[l] ) if r % 2 == 0: UpperCamelCase_: Union[str, Any] = self.st[r] if res is None else self.fn(_lowerCamelCase , self.st[r] ) UpperCamelCase_ ,UpperCamelCase_: Tuple = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce A_ : Dict = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] A_ : Optional[int] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } A_ : str = SegmentTree(test_array, min) A_ : Tuple = SegmentTree(test_array, max) A_ : int = SegmentTree(test_array, lambda a, b: a + b) def snake_case () -> None: for i in range(len(UpperCAmelCase__ ) ): for j in range(UpperCAmelCase__ , len(UpperCAmelCase__ ) ): UpperCamelCase_: List[Any] = reduce(UpperCAmelCase__ , test_array[i : j + 1] ) UpperCamelCase_: Any = reduce(UpperCAmelCase__ , test_array[i : j + 1] ) UpperCamelCase_: Optional[int] = reduce(lambda UpperCAmelCase__ , UpperCAmelCase__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(UpperCAmelCase__ , UpperCAmelCase__ ) assert max_range == max_segment_tree.query(UpperCAmelCase__ , UpperCAmelCase__ ) assert sum_range == sum_segment_tree.query(UpperCAmelCase__ , UpperCAmelCase__ ) test_all_segments() for index, value in test_updates.items(): A_ : Any = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
57
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Any = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) snake_case_ : Tuple = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(__UpperCamelCase ) DownloadCommand.register_subcommand(__UpperCamelCase ) EnvironmentCommand.register_subcommand(__UpperCamelCase ) RunCommand.register_subcommand(__UpperCamelCase ) ServeCommand.register_subcommand(__UpperCamelCase ) UserCommands.register_subcommand(__UpperCamelCase ) AddNewModelCommand.register_subcommand(__UpperCamelCase ) AddNewModelLikeCommand.register_subcommand(__UpperCamelCase ) LfsCommands.register_subcommand(__UpperCamelCase ) PTtoTFCommand.register_subcommand(__UpperCamelCase ) # Let's go snake_case_ : Union[str, Any] = parser.parse_args() if not hasattr(__UpperCamelCase , """func""" ): parser.print_help() exit(1 ) # Run snake_case_ : List[Any] = args.func(__UpperCamelCase ) service.run() if __name__ == "__main__": main()
58
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
0
import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' lowerCamelCase__: int =DonutProcessor.from_pretrained(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: Any ={ "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } lowerCamelCase__: Tuple =( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) lowerCamelCase__: Optional[int] =self.processor.tokenajson(UpperCAmelCase_) self.assertDictEqual(UpperCAmelCase_ , UpperCAmelCase_)
59
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" snake_case_ : Dict = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=_UpperCamelCase , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=_UpperCamelCase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=_UpperCamelCase ) return parser.parse_args() def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" snake_case_ : Dict = parse_args() # Import training_script as a module. snake_case_ : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ : str = script_fpath.stem snake_case_ : Optional[int] = importlib.import_module(_UpperCamelCase ) # Patch sys.argv snake_case_ : Any = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
60
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
0
def _A ( lowerCAmelCase_ : int = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
61
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ), len(grid[0] ) if ( min(lowercase , lowercase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 count += depth_first_search(lowercase , row + 1 , lowercase , lowercase ) count += depth_first_search(lowercase , row - 1 , lowercase , lowercase ) count += depth_first_search(lowercase , lowercase , col + 1 , lowercase ) count += depth_first_search(lowercase , lowercase , col - 1 , lowercase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
62
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Tuple = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
63
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ : Tuple = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): __a = ["input_values", "attention_mask"] def __init__( self , lowerCAmelCase = 1 , lowerCAmelCase = 16000 , lowerCAmelCase = 0.0 , lowerCAmelCase = False , lowerCAmelCase = 80 , lowerCAmelCase = 16 , lowerCAmelCase = 64 , lowerCAmelCase = "hann_window" , lowerCAmelCase = 1.0 , lowerCAmelCase = 80 , lowerCAmelCase = 7600 , lowerCAmelCase = 1e-10 , lowerCAmelCase = 2 , lowerCAmelCase = True , **lowerCAmelCase , ) -> str: super().__init__(feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= do_normalize SCREAMING_SNAKE_CASE__: Optional[Any]= return_attention_mask SCREAMING_SNAKE_CASE__: Optional[int]= num_mel_bins SCREAMING_SNAKE_CASE__: Union[str, Any]= hop_length SCREAMING_SNAKE_CASE__: Optional[int]= win_length SCREAMING_SNAKE_CASE__: Dict= win_function SCREAMING_SNAKE_CASE__: str= frame_signal_scale SCREAMING_SNAKE_CASE__: Optional[int]= fmin SCREAMING_SNAKE_CASE__: Any= fmax SCREAMING_SNAKE_CASE__: Union[str, Any]= mel_floor SCREAMING_SNAKE_CASE__: Tuple= reduction_factor SCREAMING_SNAKE_CASE__: Dict= win_length * sampling_rate // 1000 SCREAMING_SNAKE_CASE__: int= hop_length * sampling_rate // 1000 SCREAMING_SNAKE_CASE__: List[str]= optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE__: List[Any]= (self.n_fft // 2) + 1 SCREAMING_SNAKE_CASE__: List[str]= window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , lowerCAmelCase , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , lowerCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase_ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: SCREAMING_SNAKE_CASE__: Any= np.array(lowerCAmelCase , np.intaa ) SCREAMING_SNAKE_CASE__: Optional[Any]= [] for vector, length in zip(lowerCAmelCase , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE__: str= (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE__: Optional[int]= padding_value normed_input_values.append(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__: List[str]= [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def UpperCamelCase_ ( self , lowerCAmelCase , ) -> np.ndarray: SCREAMING_SNAKE_CASE__: Tuple= spectrogram( lowerCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: SCREAMING_SNAKE_CASE__: str= self._process_audio( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase , ) else: SCREAMING_SNAKE_CASE__: int= None if audio_target is not None: SCREAMING_SNAKE_CASE__: Union[str, Any]= self._process_audio( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase , ) if inputs is None: return inputs_target else: SCREAMING_SNAKE_CASE__: Tuple= inputs_target['''input_values'''] SCREAMING_SNAKE_CASE__: List[str]= inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE__: Dict= decoder_attention_mask return inputs def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> BatchFeature: SCREAMING_SNAKE_CASE__: Tuple= isinstance(lowerCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) SCREAMING_SNAKE_CASE__: int= is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__: Optional[int]= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): SCREAMING_SNAKE_CASE__: Dict= np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__: int= speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__: List[str]= [speech] # needed to make pad() work on spectrogram inputs SCREAMING_SNAKE_CASE__: List[str]= self.feature_size # convert into correct format for padding if is_target: SCREAMING_SNAKE_CASE__: List[str]= [self._extract_mel_features(lowerCAmelCase ) for waveform in speech] SCREAMING_SNAKE_CASE__: int= BatchFeature({'''input_values''': features} ) SCREAMING_SNAKE_CASE__: str= self.num_mel_bins else: SCREAMING_SNAKE_CASE__: Union[str, Any]= BatchFeature({'''input_values''': speech} ) SCREAMING_SNAKE_CASE__: Union[str, Any]= self.pad( lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: str= feature_size_hack # convert input values to correct format SCREAMING_SNAKE_CASE__: Union[str, Any]= padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): SCREAMING_SNAKE_CASE__: Dict= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowerCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): SCREAMING_SNAKE_CASE__: List[str]= [array.astype(np.floataa ) for array in input_values] elif isinstance(lowerCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__: Dict= input_values.astype(np.floataa ) # convert attention_mask to correct format SCREAMING_SNAKE_CASE__: Union[str, Any]= padded_inputs.get('''attention_mask''' ) if attention_mask is not None: SCREAMING_SNAKE_CASE__: Optional[Any]= [np.asarray(lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: SCREAMING_SNAKE_CASE__: List[str]= ( attention_mask if self._get_padding_strategies(lowerCAmelCase , max_length=lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE__: Any= self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=lowerCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: SCREAMING_SNAKE_CASE__: List[str]= padded_inputs.convert_to_tensors(lowerCAmelCase ) return padded_inputs def UpperCamelCase_ ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE__: Tuple= super().to_dict() # Don't serialize these as they are derived from the other properties. SCREAMING_SNAKE_CASE__: List[str]= ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
64
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
0
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = CTRLTokenizer snake_case_ = False snake_case_ = False def __lowercase ( self : List[str] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : List[Any] = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase__ : Optional[int] = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase__ : int = {"""unk_token""": """<unk>"""} UpperCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def __lowercase ( self : int ,**A : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : List[Any] ,A : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = """adapt react readapt apt""" UpperCAmelCase__ : Any = """adapt react readapt apt""" return input_text, output_text def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase__ : Tuple = """adapt react readapt apt""" UpperCAmelCase__ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase__ : Dict = tokenizer.tokenize(A ) self.assertListEqual(A ,A ) UpperCAmelCase__ : Any = tokens + [tokenizer.unk_token] UpperCAmelCase__ : Dict = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,A )
65
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } UpperCamelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : int = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[Any] = value elif weight_type == "weight_g": _lowercase : Optional[Any] = value elif weight_type == "weight_v": _lowercase : Any = value elif weight_type == "bias": _lowercase : Any = value else: _lowercase : int = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Any = [] _lowercase : int = fairseq_model.state_dict() _lowercase : str = hf_model.feature_extractor _lowercase : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): _lowercase : Any = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : Tuple = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : Tuple = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _lowercase : int = True if "*" in mapped_key: _lowercase : Tuple = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Optional[int] = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Tuple = 'weight_g' elif "weight_v" in name: _lowercase : List[str] = 'weight_v' elif "bias" in name: _lowercase : Optional[int] = 'bias' elif "weight" in name: _lowercase : Tuple = 'weight' else: _lowercase : int = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : int = full_name.split('conv_layers.' )[-1] _lowercase : Dict = name.split('.' ) _lowercase : List[Any] = int(items[0] ) _lowercase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: _lowercase : Dict = full_name.split('adaptor.' )[-1] _lowercase : Optional[int] = name.split('.' ) if items[1].isdigit(): _lowercase : Any = int(items[1] ) else: _lowercase : Any = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" _lowercase : Any = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" _lowercase : str = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" _lowercase : int = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" _lowercase : Optional[Any] = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" _lowercase : Union[str, Any] = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" _lowercase : Optional[int] = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase , _lowercase : Tuple = emb.weight.shape _lowercase : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) _lowercase : int = emb.weight.data return lin_layer @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]: _lowercase : List[str] = WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE , add_adapter=SCREAMING_SNAKE_CASE , adapter_stride=SCREAMING_SNAKE_CASE , adapter_kernel_size=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , output_hidden_size=SCREAMING_SNAKE_CASE , ) _lowercase : Optional[Any] = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE ) # load model _lowercase , _lowercase , _lowercase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) _lowercase : int = model[0].eval() # load feature extractor _lowercase : int = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder _lowercase : str = WavaVecaModel(SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) # load decoder weights _lowercase : Any = MBartForCausalLM(SCREAMING_SNAKE_CASE ) _lowercase , _lowercase : Dict = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) _lowercase : List[Any] = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) _lowercase : int = False _lowercase : Tuple = MBartaaTokenizer(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = hf_wavavec.config.to_dict() _lowercase : List[str] = tokenizer.pad_token_id _lowercase : List[Any] = tokenizer.bos_token_id _lowercase : List[str] = tokenizer.eos_token_id _lowercase : int = 'mbart50' _lowercase : Tuple = 'wav2vec2' _lowercase : Optional[Any] = tokenizer.eos_token_id _lowercase : Optional[Any] = 250_004 _lowercase : Dict = tokenizer.eos_token_id _lowercase : int = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250_004, type=int, help="`decoder_start_token_id` of model config") UpperCamelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
66
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration snake_case = HfArgumentParser(InitializationArguments) snake_case = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization snake_case = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks snake_case = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) snake_case = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config snake_case = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
67
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __A = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def lowercase__ ( A_: int , A_: Optional[Any] , A_: List[str]=None ) -> List[str]: """simple docstring""" if rng is None: __UpperCAmelCase =random.Random() __UpperCAmelCase =1 for dim in shape: total_dims *= dim __UpperCAmelCase =[] for _ in range(A_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) __UpperCAmelCase =np.array(A_ , dtype=jnp.intaa ).reshape(A_ ) return output def lowercase__ ( A_: List[str] , A_: List[str]=None ) -> Any: """simple docstring""" __UpperCAmelCase =ids_tensor(A_ , vocab_size=2 , rng=A_ ) # make sure that at least one token is attended to for each batch __UpperCAmelCase =1 return attn_mask @require_flax class _A : """simple docstring""" lowerCamelCase : Optional[Any] = None lowerCamelCase : int = () def _a ( self : str ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __UpperCAmelCase =2 __UpperCAmelCase =inputs["""input_ids"""].shape[-1] // 2 __UpperCAmelCase =inputs["""input_ids"""][:max_batch_size, :sequence_length] __UpperCAmelCase =jnp.ones_like(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __UpperCAmelCase =input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __UpperCAmelCase =config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _a ( self : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length __UpperCAmelCase =0 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =pt_model_class(__SCREAMING_SNAKE_CASE ).eval() __UpperCAmelCase =load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE , flax_model.params ) __UpperCAmelCase =flax_model.generate(__SCREAMING_SNAKE_CASE ).sequences __UpperCAmelCase =pt_model.generate(torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __UpperCAmelCase =flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _a ( self : Optional[int] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =True __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : List[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length __UpperCAmelCase =2 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Any ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length __UpperCAmelCase =2 __UpperCAmelCase =2 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _a ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =True __UpperCAmelCase =max_length __UpperCAmelCase =0.8 __UpperCAmelCase =10 __UpperCAmelCase =0.3 __UpperCAmelCase =1 __UpperCAmelCase =8 __UpperCAmelCase =9 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =max_length __UpperCAmelCase =1 __UpperCAmelCase =8 __UpperCAmelCase =9 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Optional[int] ) -> Any: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =max_length __UpperCAmelCase =2 __UpperCAmelCase =1 __UpperCAmelCase =8 __UpperCAmelCase =9 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase =attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase =False __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Dict ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase =attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase =True __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Dict ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase =attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase =2 __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : int ) -> Any: __UpperCAmelCase =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) __UpperCAmelCase =FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __UpperCAmelCase ="""Hello world""" __UpperCAmelCase =tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , """do_samples""" ): model.generate(__SCREAMING_SNAKE_CASE , do_samples=__SCREAMING_SNAKE_CASE ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , """foo""" ): __UpperCAmelCase ={"""foo""": """bar"""} model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
68
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
0
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any="attention" ) -> Optional[int]: __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str]=False ) -> Optional[int]: if split_mlp_wi: __snake_case = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] __snake_case = (wi_a, wi_a) else: __snake_case = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ) -> int: return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def __UpperCAmelCase ( _UpperCAmelCase : dict , *, _UpperCAmelCase : int , _UpperCAmelCase : bool ) -> Optional[int]: __snake_case = traverse_util.flatten_dict(variables["target"] ) __snake_case = {"/".join(_UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __snake_case = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , _UpperCAmelCase ) __snake_case = collections.OrderedDict() # Shared embeddings. __snake_case = old["token_embedder/embedding"] # Encoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , "pre_attention_layer_norm" ) __snake_case , __snake_case , __snake_case , __snake_case = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , "attention" ) __snake_case = layer_norm __snake_case = k.T __snake_case = o.T __snake_case = q.T __snake_case = v.T # Block i, layer 1 (MLP). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , "pre_mlp_layer_norm" ) __snake_case , __snake_case = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , _UpperCAmelCase ) __snake_case = layer_norm if split_mlp_wi: __snake_case = wi[0].T __snake_case = wi[1].T else: __snake_case = wi.T __snake_case = wo.T __snake_case = old[ "encoder/relpos_bias/rel_embedding" ].T __snake_case = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) __snake_case , __snake_case , __snake_case , __snake_case = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "self_attention" ) __snake_case = layer_norm __snake_case = k.T __snake_case = o.T __snake_case = q.T __snake_case = v.T # Block i, layer 1 (Cross Attention). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) __snake_case , __snake_case , __snake_case , __snake_case = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "encoder_decoder_attention" ) __snake_case = layer_norm __snake_case = k.T __snake_case = o.T __snake_case = q.T __snake_case = v.T # Block i, layer 2 (MLP). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "pre_mlp_layer_norm" ) __snake_case , __snake_case = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , _UpperCAmelCase ) __snake_case = layer_norm if split_mlp_wi: __snake_case = wi[0].T __snake_case = wi[1].T else: __snake_case = wi.T __snake_case = wo.T __snake_case = old["decoder/decoder_norm/scale"] __snake_case = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __snake_case = old["decoder/logits_dense/kernel"].T return new def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : bool ) -> Optional[int]: __snake_case = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __snake_case = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __snake_case = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __snake_case = state_dict["shared.weight"] return state_dict def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Dict: __snake_case = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) __snake_case = convert_tax_to_pytorch(_UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=_UpperCAmelCase ) __snake_case = make_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : bool = False ) -> Optional[Any]: __snake_case = TaConfig.from_json_file(_UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __snake_case = TaEncoderModel(_UpperCAmelCase ) else: __snake_case = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCAmelCase ) print("Done" ) if __name__ == "__main__": a : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) a : Dict = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
69
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} lowerCamelCase : Tuple = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } lowerCamelCase : Any = { "abeja/gpt-neox-japanese-2.7b": 2_048, } def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' with open(lowercase , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = collections.OrderedDict() lowerCamelCase_ = collections.OrderedDict() lowerCamelCase_ = collections.OrderedDict() with open(lowercase , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowercase ): lowerCamelCase_ = b lowerCamelCase_ = idx for wd in b: lowerCamelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : str , A_ : Any , A_ : Any , A_ : Optional[Any]="<|endoftext|>" , A_ : Any="<|endoftext|>" , A_ : Optional[int]="<|startoftext|>" , A_ : Union[str, Any]="<|endoftext|>" , A_ : Any=False , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__( unk_token=A_ , pad_token=A_ , bos_token=A_ , eos_token=A_ , do_clean_text=A_ , **A_ , ) if not os.path.isfile(A_ ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(A_ ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) lowerCamelCase_ = do_clean_text lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = load_vocab_and_emoji(A_ , A_ ) lowerCamelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def a__ ( self : List[str] ) -> Dict: """simple docstring""" return len(self.raw_vocab ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def a__ ( self : Optional[Any] , A_ : str ) -> Tuple: """simple docstring""" return self.subword_tokenizer.tokenize(A_ , clean=self.do_clean_text ) def a__ ( self : Optional[int] , A_ : Dict ) -> List[Any]: """simple docstring""" return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def a__ ( self : Union[str, Any] , A_ : Union[str, Any] ) -> int: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(A_ ) def a__ ( self : Optional[int] , A_ : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = ''.join(A_ ).strip() return out_string def a__ ( self : Optional[Any] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A_ , add_special_tokens=A_ ) + [self.eos_token_id] ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] return input_ids def a__ ( self : List[Any] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_ = 0 if os.path.isdir(A_ ): lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: lowerCamelCase_ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) lowerCamelCase_ = token_index writer.write(','.join(A_ ) + '\n' ) index += 1 with open(A_ , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , A_ ) return vocab_file, emoji_file class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Any , A_ : Union[str, Any] , A_ : int , A_ : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = vocab # same as swe lowerCamelCase_ = ids_to_tokens # same as bpe lowerCamelCase_ = emoji lowerCamelCase_ = np.max([len(A_ ) for w in self.vocab.keys()] ) lowerCamelCase_ = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) lowerCamelCase_ = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) lowerCamelCase_ = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) lowerCamelCase_ = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowerCamelCase_ = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowerCamelCase_ = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) lowerCamelCase_ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' lowerCamelCase_ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' lowerCamelCase_ = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : str ) -> Optional[int]: """simple docstring""" return len(self.ids_to_tokens ) def a__ ( self : Union[str, Any] , A_ : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.content_repattera.sub('<URL>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<EMAIL>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<TEL>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<DATE>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<DATE>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<PRICE>' , A_ ) lowerCamelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCamelCase_ = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def a__ ( self : int , A_ : Optional[Any] , A_ : Tuple=False ) -> Dict: """simple docstring""" lowerCamelCase_ = text.replace(' ' , '<SP>' ) lowerCamelCase_ = text.replace(' ' , '<SP>' ) lowerCamelCase_ = text.replace('\r\n' , '<BR>' ) lowerCamelCase_ = text.replace('\n' , '<BR>' ) lowerCamelCase_ = text.replace('\r' , '<BR>' ) lowerCamelCase_ = text.replace('\t' , '<TAB>' ) lowerCamelCase_ = text.replace('—' , 'ー' ) lowerCamelCase_ = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCamelCase_ = text.replace(A_ , A_ ) if clean: lowerCamelCase_ = self.clean_text(A_ ) def check_simbol(A_ : Union[str, Any] ): lowerCamelCase_ = x.encode() if len(A_ ) == 1 and len(A_ ) == 2: lowerCamelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2_A1 and c <= 0XC2_BF) or (c >= 0XC7_80 and c <= 0XC7_83) or (c >= 0XCA_B9 and c <= 0XCB_BF) or (c >= 0XCC_80 and c <= 0XCD_A2) ): return True return False def checkuae(A_ : Tuple ): lowerCamelCase_ = x.encode() if len(A_ ) == 1 and len(A_ ) == 3: lowerCamelCase_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_80_80 and c <= 0XE2_B0_7F: return True return False lowerCamelCase_ = 0 lowerCamelCase_ = [] while pos < len(A_ ): lowerCamelCase_ = min(len(A_ ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 lowerCamelCase_ = [] # (token_id, token, pos) for e in range(A_ , A_ , -1 ): lowerCamelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(A_ ) > 2: lowerCamelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(A_ ) > 0: # the smallest token_id is adopted lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = sorted(A_ , key=lambda A_ : x[0] )[0] result.append(A_ ) lowerCamelCase_ = e else: lowerCamelCase_ = pos + 1 lowerCamelCase_ = text[pos:end] if check_simbol(A_ ): result.append('<KIGOU>' ) elif checkuae(A_ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) lowerCamelCase_ = end return result def a__ ( self : List[Any] , A_ : Tuple , A_ : List[str]="\n" ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(A_ ) > 0: words.append(bytearray(A_ ).decode('utf-8' , errors='replace' ) ) lowerCamelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(A_ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(A_ ) if len(A_ ) > 0: words.append(bytearray(A_ ).decode('utf-8' , errors='replace' ) ) lowerCamelCase_ = ''.join(A_ ) return text
70
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Dict =StableDiffusionPanoramaPipeline __A : Tuple =TEXT_TO_IMAGE_PARAMS __A : Dict =TEXT_TO_IMAGE_BATCH_PARAMS __A : Union[str, Any] =TEXT_TO_IMAGE_IMAGE_PARAMS __A : List[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ : Any = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=1 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) UpperCAmelCase_ : Union[str, Any] = DDIMScheduler() torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_snake_case ) UpperCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : Dict = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self ,_snake_case ,_snake_case=0 ): UpperCAmelCase_ : int = torch.manual_seed(_snake_case ) UpperCAmelCase_ : Optional[Any] = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline(**_snake_case ) UpperCAmelCase_ : Dict = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Any = sd_pipe(**_snake_case ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self ): super().test_inference_batch_single_identical(batch_size=2 ,expected_max_diff=3.25E-3 ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Tuple = StableDiffusionPanoramaPipeline(**_snake_case ) UpperCAmelCase_ : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Optional[int] = "french fries" UpperCAmelCase_ : Tuple = sd_pipe(**_snake_case ,negative_prompt=_snake_case ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Dict = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Any = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline(**_snake_case ) UpperCAmelCase_ : Optional[Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Dict = sd_pipe(**_snake_case ,view_batch_size=2 ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Any = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Optional[int] = self.get_dummy_components() UpperCAmelCase_ : List[Any] = EulerAncestralDiscreteScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ) UpperCAmelCase_ : str = StableDiffusionPanoramaPipeline(**_snake_case ) UpperCAmelCase_ : Dict = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Union[str, Any] = sd_pipe(**_snake_case ).images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Tuple = PNDMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,skip_prk_steps=_snake_case ) UpperCAmelCase_ : Tuple = StableDiffusionPanoramaPipeline(**_snake_case ) UpperCAmelCase_ : Optional[int] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : str = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : Optional[int] = sd_pipe(**_snake_case ).images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ,_snake_case=0 ): UpperCAmelCase_ : Any = torch.manual_seed(_snake_case ) UpperCAmelCase_ : List[Any] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = "stabilityai/stable-diffusion-2-base" UpperCAmelCase_ : int = DDIMScheduler.from_pretrained(_snake_case ,subfolder="scheduler" ) UpperCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case ,scheduler=_snake_case ,safety_checker=_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() UpperCAmelCase_ : Any = self.get_inputs() UpperCAmelCase_ : List[str] = pipe(**_snake_case ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) UpperCAmelCase_ : Optional[int] = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" ,safety_checker=_snake_case ) UpperCAmelCase_ : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() UpperCAmelCase_ : str = self.get_inputs() UpperCAmelCase_ : Optional[Any] = pipe(**_snake_case ).images UpperCAmelCase_ : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) UpperCAmelCase_ : str = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = 0 def callback_fn(_snake_case ,_snake_case ,_snake_case ) -> None: UpperCAmelCase_ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase_ : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) UpperCAmelCase_ : Tuple = latents[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[int] = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: UpperCAmelCase_ : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) UpperCAmelCase_ : Optional[int] = latents[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 UpperCAmelCase_ : int = False UpperCAmelCase_ : List[Any] = "stabilityai/stable-diffusion-2-base" UpperCAmelCase_ : Optional[Any] = DDIMScheduler.from_pretrained(_snake_case ,subfolder="scheduler" ) UpperCAmelCase_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case ,scheduler=_snake_case ,safety_checker=_snake_case ) UpperCAmelCase_ : int = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() UpperCAmelCase_ : Optional[int] = self.get_inputs() pipe(**_snake_case ,callback=_snake_case ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ : Dict = "stabilityai/stable-diffusion-2-base" UpperCAmelCase_ : Union[str, Any] = DDIMScheduler.from_pretrained(_snake_case ,subfolder="scheduler" ) UpperCAmelCase_ : Dict = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case ,scheduler=_snake_case ,safety_checker=_snake_case ) UpperCAmelCase_ : Tuple = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ : Union[str, Any] = self.get_inputs() UpperCAmelCase_ : Dict = pipe(**_snake_case ) UpperCAmelCase_ : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
71
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
'''simple docstring''' import math class __magic_name__ : def _A( self , snake_case_ , snake_case_ ): lowercase =0.0 lowercase =0.0 for i in range(len(snake_case_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): for i in range(len(snake_case_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowercase =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowercase =SelfOrganizingMap() lowercase =3 lowercase =0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample lowercase =training_samples[j] # Compute the winning vector lowercase =self_organizing_map.get_winner(lowercase_ , lowercase_ ) # Update the winning vector lowercase =self_organizing_map.update(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # classify test sample lowercase =[0, 0, 0, 1] lowercase =self_organizing_map.get_winner(lowercase_ , lowercase_ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
72
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
0
from __future__ import annotations class _snake_case : def __init__( self , a) -> None: SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def lowerCamelCase__ (_UpperCAmelCase): # In Order traversal of the tree if tree: display(tree.left) print(tree.data) display(tree.right) def lowerCamelCase__ (_UpperCAmelCase): return 1 + max(depth_of_tree(tree.left) , depth_of_tree(tree.right)) if tree else 0 def lowerCamelCase__ (_UpperCAmelCase): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left) and is_full_binary_tree(tree.right) else: return not tree.left and not tree.right def lowerCamelCase__ (): # Main function for testing. SCREAMING_SNAKE_CASE = Node(1) SCREAMING_SNAKE_CASE = Node(2) SCREAMING_SNAKE_CASE = Node(3) SCREAMING_SNAKE_CASE = Node(4) SCREAMING_SNAKE_CASE = Node(5) SCREAMING_SNAKE_CASE = Node(6) SCREAMING_SNAKE_CASE = Node(7) SCREAMING_SNAKE_CASE = Node(8) SCREAMING_SNAKE_CASE = Node(9) print(is_full_binary_tree(_UpperCAmelCase)) print(depth_of_tree(_UpperCAmelCase)) print('Tree is: ') display(_UpperCAmelCase) if __name__ == "__main__": main()
73
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''funnel''' lowerCAmelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : Dict , _A : Any=3_0522 , _A : Tuple=[4, 4, 4] , _A : Optional[Any]=None , _A : int=2 , _A : Any=768 , _A : str=12 , _A : Any=64 , _A : Union[str, Any]=3072 , _A : Any="gelu_new" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[Any]=0.0 , _A : int=0.1 , _A : Optional[int]=None , _A : Tuple=1e-9 , _A : Optional[Any]="mean" , _A : Dict="relative_shift" , _A : int=True , _A : List[str]=True , _A : List[Any]=True , **_A : List[Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Dict = block_sizes __SCREAMING_SNAKE_CASE : Optional[Any] = [1] * len(_A ) if block_repeats is None else block_repeats assert len(_A ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __SCREAMING_SNAKE_CASE : Union[str, Any] = num_decoder_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : int = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Any = hidden_dropout __SCREAMING_SNAKE_CASE : List[str] = attention_dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : List[Any] = initializer_std __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __SCREAMING_SNAKE_CASE : Optional[Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __SCREAMING_SNAKE_CASE : int = attention_type __SCREAMING_SNAKE_CASE : Dict = separate_cls __SCREAMING_SNAKE_CASE : Optional[int] = truncate_seq __SCREAMING_SNAKE_CASE : Any = pool_q_only super().__init__(**_A ) @property def UpperCAmelCase__ ( self : Any ): """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def UpperCAmelCase__ ( self : Dict , _A : List[Any] ): """simple docstring""" raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def UpperCAmelCase__ ( self : Optional[int] , _A : Optional[Any] ): """simple docstring""" raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
74
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : List[str] ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def lowercase_ ( self : List[Any] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings UpperCAmelCase__ : int = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_A , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_A , py_version='''py36''' , ) def lowercase_ ( self : Optional[int] , _A : Any ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def lowercase_ ( self : Optional[int] , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.create_estimator(_A ) # run training estimator.fit() # result dataframe UpperCAmelCase__ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase__ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
75
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
0
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () a_ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). a_ = [0, 2_5, 5_0] a_ = [2_5, 5_0, 7_5] a_ = fuzz.membership.trimf(X, abca) a_ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. a_ = np.ones(7_5) a_ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) a_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) a_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) a_ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) a_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] a_ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) a_ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] a_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] a_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
76
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : Dict = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __UpperCAmelCase : Union[str, Any] = n - k # Calculate C(n,k) for i in range(UpperCamelCase ): result *= n - i result //= i + 1 return result def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , UpperCamelCase ) // (node_count + 1) def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" if n < 0: raise ValueError("factorial() not defined for negative values" ) __UpperCAmelCase : Optional[Any] = 1 for i in range(1 , n + 1 ): result *= i return result def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" return catalan_number(UpperCamelCase ) * factorial(UpperCamelCase ) if __name__ == "__main__": A = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
77
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_: List[str] =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : str = ReformerTokenizer a__ : Optional[Any] = ReformerTokenizerFast a__ : Any = True a__ : Union[str, Any] = False a__ : int = True def _lowercase (self : List[str] ): super().setUp() UpperCAmelCase_ = ReformerTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase (self : int ): UpperCAmelCase_ = "<s>" UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__a ) , 1000 ) def _lowercase (self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowercase (self : Dict ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def _lowercase (self : Union[str, Any] , __a : List[str]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def _lowercase (self : Optional[Any] ): pass def _lowercase (self : Optional[int] ): UpperCAmelCase_ = ReformerTokenizer(__a , keep_accents=__a ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowercase (self : Optional[int] ): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) UpperCAmelCase_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def _lowercase (self : Tuple ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ = " ".join(__a ) UpperCAmelCase_ = self.big_tokenizer.encode_plus(__a , return_tensors="pt" ) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) UpperCAmelCase_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ = encoded_sequence["input_ids"].shape UpperCAmelCase_ = ReformerModel(__a ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def _lowercase (self : Dict ): # fmt: off UpperCAmelCase_ = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=__a , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=__a , sequences=__a , )
78
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
0
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase ): UpperCAmelCase__ : Any = data UpperCAmelCase__ : List[Any] = [0X6745_2301, 0Xefcd_ab89, 0X98ba_dcfe, 0X1032_5476, 0Xc3d2_e1f0] @staticmethod def __UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ): return ((n << b) | (n >> (32 - b))) & 0Xffff_ffff def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase__ : Optional[int] = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCAmelCase ( self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : Dict = list(struct.unpack(""">16L""" , _lowerCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase__ : Optional[int] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = self.padding() UpperCAmelCase__ : List[str] = self.split_blocks() for block in self.blocks: UpperCAmelCase__ : Tuple = self.expand_block(_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase__ : Optional[int] = (b & c) | ((~b) & d) UpperCAmelCase__ : int = 0X5a82_7999 elif 20 <= i < 40: UpperCAmelCase__ : Tuple = b ^ c ^ d UpperCAmelCase__ : int = 0X6ed9_eba1 elif 40 <= i < 60: UpperCAmelCase__ : List[str] = (b & c) | (b & d) | (c & d) UpperCAmelCase__ : Tuple = 0X8f1b_bcdc elif 60 <= i < 80: UpperCAmelCase__ : int = b ^ c ^ d UpperCAmelCase__ : str = 0Xca62_c1d6 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = ( self.rotate(_lowerCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0Xffff_ffff, a, self.rotate(_lowerCAmelCase , 30 ), c, d, ) UpperCAmelCase__ : int = ( self.h[0] + a & 0Xffff_ffff, self.h[1] + b & 0Xffff_ffff, self.h[2] + c & 0Xffff_ffff, self.h[3] + d & 0Xffff_ffff, self.h[4] + e & 0Xffff_ffff, ) return ("{:08x}" * 5).format(*self.h ) def _lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = B"""Test String""" assert SHAaHash(__lowerCamelCase ).final_hash() == hashlib.shaa(__lowerCamelCase ).hexdigest() # noqa: S324 def _lowerCamelCase ( ) -> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) UpperCAmelCase__ : str = parser.parse_args() UpperCAmelCase__ : Union[str, Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: UpperCAmelCase__ : List[Any] = f.read() else: UpperCAmelCase__ : int = bytes(__lowerCamelCase , """utf-8""" ) print(SHAaHash(__lowerCamelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
79
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
0
def snake_case ( ): '''simple docstring''' for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 1 __lowercase = 2 while i * i <= n: __lowercase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def snake_case ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
80
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
0
def lowerCAmelCase_ ( ): return [ a * b * (1_0_0_0 - a - b) for a in range(1 , 9_9_9 ) for b in range(__lowerCamelCase , 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
81
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowerCamelCase = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowerCAmelCase__ = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class __snake_case ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] ): """simple docstring""" _lowerCamelCase : Tuple = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) _lowerCamelCase : Any = FlaxBertModel(__lowerCAmelCase ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) _lowerCamelCase : Union[str, Any] = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) _lowerCamelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) _lowerCamelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _lowerCamelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__lowerCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCAmelCase , repo_id='''test-model-flax''' , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) _lowerCamelCase : Dict = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) _lowerCamelCase : Tuple = flatten_dict(unfreeze(model.params ) ) _lowerCamelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _lowerCamelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__lowerCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) _lowerCamelCase : Optional[int] = FlaxBertModel(__lowerCAmelCase ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) _lowerCamelCase : Optional[Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _lowerCamelCase : int = flatten_dict(unfreeze(model.params ) ) _lowerCamelCase : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _lowerCamelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__lowerCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __lowerCAmelCase , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) _lowerCamelCase : List[Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _lowerCamelCase : Tuple = flatten_dict(unfreeze(model.params ) ) _lowerCamelCase : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _lowerCamelCase : str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__lowerCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) def snake_case_ ( A_ : Any, A_ : str ): '''simple docstring''' _lowerCamelCase : Tuple = True _lowerCamelCase : List[Any] = flatten_dict(modela.params ) _lowerCamelCase : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: _lowerCamelCase : int = False return models_are_equal @require_flax class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _lowerCamelCase : Any = FlaxBertModel(__lowerCAmelCase ) _lowerCamelCase : Any = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : str = FlaxBertModel.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__lowerCAmelCase , subfolder=__lowerCAmelCase ) self.assertTrue(check_models_equal(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _lowerCamelCase : Tuple = FlaxBertModel(__lowerCAmelCase ) _lowerCamelCase : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , max_shard_size='''10KB''' ) with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Optional[int] = FlaxBertModel.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Dict = FlaxBertModel.from_pretrained(__lowerCAmelCase , subfolder=__lowerCAmelCase ) self.assertTrue(check_models_equal(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = '''bert''' _lowerCamelCase : Union[str, Any] = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = FlaxBertModel.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = FlaxBertModel.from_pretrained(__lowerCAmelCase , subfolder=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = '''bert''' _lowerCamelCase : Tuple = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : str = FlaxBertModel.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = FlaxBertModel.from_pretrained(__lowerCAmelCase , subfolder=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase )
83
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A_ : '''simple docstring''' _UpperCamelCase : int _UpperCamelCase : Node | None class A_ : '''simple docstring''' def __init__( self , snake_case ): lowercase = None for i in sorted(snake_case , reverse=snake_case ): lowercase = Node(snake_case , self.head ) def __iter__( self ): lowercase = self.head while node: yield node.data lowercase = node.next_node def __len__( self ): return sum(1 for _ in self ) def __str__( self ): return " -> ".join([str(snake_case ) for node in self] ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return SortedLinkedList(list(__SCREAMING_SNAKE_CASE ) + list(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
84
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
0
import os SCREAMING_SNAKE_CASE__ : Any = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def _a ( lowercase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : Dict = 0 while index < len(lowercase__ ) - 1: SCREAMING_SNAKE_CASE__ : List[str] = SYMBOLS[numerals[index]] SCREAMING_SNAKE_CASE__ : List[str] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _a ( lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = '' SCREAMING_SNAKE_CASE__ : Tuple = num // 10_00 numerals += m_count * "M" num %= 10_00 SCREAMING_SNAKE_CASE__ : Tuple = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 SCREAMING_SNAKE_CASE__ : Dict = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _a ( lowercase__ : str = "/p089_roman.txt" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 0 with open(os.path.dirname(lowercase__ ) + roman_numerals_filename ) as filea: SCREAMING_SNAKE_CASE__ : Optional[Any] = filea.readlines() for line in lines: SCREAMING_SNAKE_CASE__ : Optional[int] = line.strip() SCREAMING_SNAKE_CASE__ : Optional[int] = parse_roman_numerals(lowercase__ ) SCREAMING_SNAKE_CASE__ : int = generate_roman_numerals(lowercase__ ) savings += len(lowercase__ ) - len(lowercase__ ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
85
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase ) A_ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ = TextStreamer(UpperCAmelCase ) model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ = cs.out[:-1] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Tuple ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase ) A_ = tokenizer.decode(greedy_ids[0] ) A_ = TextIteratorStreamer(UpperCAmelCase ) A_ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} A_ = Thread(target=model.generate , kwargs=UpperCAmelCase ) thread.start() A_ = "" for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[str] ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase ) A_ = greedy_ids[:, input_ids.shape[1] :] A_ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ = TextStreamer(UpperCAmelCase , skip_prompt=UpperCAmelCase ) model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ = cs.out[:-1] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them A_ = AutoTokenizer.from_pretrained("distilgpt2" ) A_ = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = torch.ones((1, 5) , device=UpperCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ = TextStreamer(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) model.generate(UpperCAmelCase , max_new_tokens=1 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ = cs.out[:-1] # Remove the final "\n" A_ = tokenizer(UpperCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __A ( self : int ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = TextIteratorStreamer(UpperCAmelCase , timeout=0.001 ) A_ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} A_ = Thread(target=model.generate , kwargs=UpperCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCAmelCase ): A_ = "" for new_text in streamer: streamer_text += new_text
86
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" return EnvironmentCommand() class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : ArgumentParser) ->int: '''simple docstring''' A__ = parser.add_parser('''env''') download_parser.set_defaults(func=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = huggingface_hub.__version__ A__ = '''not installed''' A__ = '''NA''' if is_torch_available(): import torch A__ = torch.__version__ A__ = torch.cuda.is_available() A__ = '''not installed''' if is_transformers_available(): import transformers A__ = transformers.__version__ A__ = '''not installed''' if is_accelerate_available(): import accelerate A__ = accelerate.__version__ A__ = '''not installed''' if is_xformers_available(): import xformers A__ = xformers.__version__ A__ = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''') print(self.format_dict(UpperCAmelCase__)) return info @staticmethod def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : Tuple) ->Tuple: '''simple docstring''' return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()]) + "\n"
87
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
0
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase__ ( A_ ,unittest.TestCase ): __UpperCAmelCase = BioGptTokenizer __UpperCAmelCase = False def UpperCamelCase_ ( self) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] _lowerCamelCase : Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE)))) _lowerCamelCase : List[str] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""") as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE)) with open(self.merges_file , """w""") as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Union[str, Any]: _lowerCamelCase : Optional[int] = """lower newer""" _lowerCamelCase : Optional[Any] = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : Dict = BioGptTokenizer(self.vocab_file , self.merges_file) _lowerCamelCase : Dict = """lower""" _lowerCamelCase : List[Any] = ["""low""", """er</w>"""] _lowerCamelCase : Optional[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : int = tokens + ["""<unk>"""] _lowerCamelCase : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) @slow def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : int = BioGptTokenizer.from_pretrained("""microsoft/biogpt""") _lowerCamelCase : int = tokenizer.encode("""sequence builders""" , add_special_tokens=SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
88
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Any = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
89
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } __UpperCAmelCase = '''▁''' class a__ ( a__ ): '''simple docstring''' lowercase__ : Dict = VOCAB_FILES_NAMES lowercase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[str] = BigBirdTokenizer lowercase__ : Union[str, Any] = ["input_ids", "attention_mask"] lowercase__ : List[int] = [] def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="<unk>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[MASK]" , lowerCamelCase_="[CLS]" , **lowerCamelCase_ , ) -> Any: lowerCAmelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token lowerCAmelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token lowerCAmelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token lowerCAmelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token lowerCAmelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token lowerCAmelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCAmelCase__ = vocab_file lowerCAmelCase__ = False if not self.vocab_file else True def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
90
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
0
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Dict ,A_ : Optional[Any]=3 ,A_ : Optional[int]=32 ,A_ : Dict=3 ,A_ : Tuple=10 ,A_ : Tuple=[8, 16, 32, 64] ,A_ : Optional[int]=[1, 1, 2, 1] ,A_ : int=True ,A_ : Dict=True ,A_ : Union[str, Any]="relu" ,A_ : Dict=3 ,A_ : Optional[int]=None ,A_ : int=["stage2", "stage3", "stage4"] ,A_ : Tuple=[2, 3, 4] ,A_ : List[str]=1 ,) -> str: A = parent A = batch_size A = image_size A = num_channels A = embeddings_size A = hidden_sizes A = depths A = is_training A = use_labels A = hidden_act A = num_labels A = scope A = len(A_ ) A = out_features A = out_indices A = num_groups def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.num_labels ) A = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Any ,A_ : List[Any] ) -> Optional[Any]: A = BitModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any] ,A_ : int ,A_ : Tuple ) -> Tuple: A = self.num_labels A = BitForImageClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : str ,A_ : Optional[Any] ) -> str: A = BitBackbone(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None A = None A = BitBackbone(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[int] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCamelCase: List[Any] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: Optional[int] = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False _lowerCamelCase: Any = False def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = BitModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: return @unittest.skip(reason='Bit does not output attentions' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(config=A_ ) for name, module in model.named_modules(): if isinstance(A_ ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=F'Parameter {name} of model {model_class} seems not properly initialized' ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=F'Parameter {name} of model {model_class} seems not properly initialized' ,) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: def check_hidden_states_output(A_ : Any ,A_ : List[str] ,A_ : int ): A = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(A_ ,A_ ) ) A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A = self.model_tester.num_stages self.assertEqual(len(A_ ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) A , A = self.model_tester.prepare_config_and_inputs_for_common() A = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: A = layer_type A = True check_hidden_states_output(A_ ,A_ ,A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A = True check_hidden_states_output(A_ ,A_ ,A_ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = BitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(images=A_ ,return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): A = model(**A_ ) # verify the logits A = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,A_ ) A = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A_ ,atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = (BitBackbone,) if is_torch_available() else () _lowerCamelCase: List[str] = BitConfig _lowerCamelCase: Optional[Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: A = BitModelTester(self )
91
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
'''simple docstring''' import numpy as np def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : str ) -> List[str]: lowercase : str =int(np.ceil((x_end - xa) / h ) ) lowercase : Optional[Any] =np.zeros((n + 1,) ) lowercase : Optional[int] =ya lowercase : List[Any] =xa for k in range(__magic_name__ ): lowercase : str =f(__magic_name__ , y[k] ) lowercase : Optional[int] =f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowercase : List[str] =f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowercase : Optional[int] =f(x + h , y[k] + h * ka ) lowercase : List[Any] =y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
92
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _lowerCAmelCase ( a ): """simple docstring""" @slow @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) lowerCAmelCase__ :Tuple = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCAmelCase__ :str = bertabert.config.encoder.vocab_size lowerCAmelCase__ :Tuple = tokenizer.sep_token_id lowerCAmelCase__ :int = tokenizer.cls_token_id lowerCAmelCase__ :Any = 1_2_8 lowerCAmelCase__ :List[str] = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) lowerCAmelCase__ :str = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) lowerCAmelCase__ :Optional[Any] = train_dataset.select(range(3_2 ) ) lowerCAmelCase__ :Tuple = val_dataset.select(range(1_6 ) ) lowerCAmelCase__ :str = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCAmelCase__ :int = tokenizer(batch['article'] , padding='max_length' , truncation=__UpperCAmelCase , max_length=5_1_2 ) lowerCAmelCase__ :int = tokenizer(batch['highlights'] , padding='max_length' , truncation=__UpperCAmelCase , max_length=1_2_8 ) lowerCAmelCase__ :Any = inputs.input_ids lowerCAmelCase__ :Union[str, Any] = inputs.attention_mask lowerCAmelCase__ :Dict = outputs.input_ids lowerCAmelCase__ :Optional[Any] = outputs.input_ids.copy() lowerCAmelCase__ :List[str] = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] lowerCAmelCase__ :Dict = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 5_1_2 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): lowerCAmelCase__ :Optional[Any] = pred.label_ids lowerCAmelCase__ :List[Any] = pred.predictions # all unnecessary tokens are removed lowerCAmelCase__ :Tuple = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :Any = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :Dict = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowerCAmelCase__ :str = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset lowerCAmelCase__ :List[Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) lowerCAmelCase__ :str = self.get_auto_remove_tmp_dir() lowerCAmelCase__ :List[str] = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='steps' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowerCAmelCase__ :Any = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
93
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
'''simple docstring''' from math import pow, sqrt def lowercase_ ( *__A : float ) -> bool: """simple docstring""" lowercase : Dict =len(__A ) > 0 and all(value > 0.0 for value in values ) return result def lowercase_ ( __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def lowercase_ ( __A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase_ ( __A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase_ ( __A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase_ ( __A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
94
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase_ (__A ): __magic_name__ = '''''' __magic_name__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __magic_name__ = None # compression type in fsspec. ex: "gzip" __magic_name__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] , lowerCAmelCase_ : str = "" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , **lowerCAmelCase_ : List[str] ) -> List[Any]: super().__init__(self , **lowerCAmelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase_ : Dict = fsspec.open( lowerCAmelCase_ , mode="rb" , protocol=lowerCAmelCase_ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase_ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) UpperCAmelCase_ : Any = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) UpperCAmelCase_ : Any = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCAmelCase_ ).lstrip("/" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: if self.dir_cache is None: UpperCAmelCase_ : Optional[Any] = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} UpperCAmelCase_ : str = {f["name"]: f} def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : str ) -> Any: return self.file.open().read() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Tuple , ) -> Tuple: UpperCAmelCase_ : List[str] = self._strip_protocol(lowerCAmelCase_ ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class UpperCamelCase_ (__A ): __magic_name__ = '''bz2''' __magic_name__ = '''bz2''' __magic_name__ = '''.bz2''' class UpperCamelCase_ (__A ): __magic_name__ = '''gzip''' __magic_name__ = '''gzip''' __magic_name__ = '''.gz''' class UpperCamelCase_ (__A ): __magic_name__ = '''lz4''' __magic_name__ = '''lz4''' __magic_name__ = '''.lz4''' class UpperCamelCase_ (__A ): __magic_name__ = '''xz''' __magic_name__ = '''xz''' __magic_name__ = '''.xz''' class UpperCamelCase_ (__A ): __magic_name__ = '''zstd''' __magic_name__ = '''zstd''' __magic_name__ = '''.zst''' def __init__( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , lowerCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( fo=lowerCAmelCase_ , mode=lowerCAmelCase_ , target_protocol=lowerCAmelCase_ , target_options=lowerCAmelCase_ , block_size=lowerCAmelCase_ , **lowerCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase_ : Optional[Any] = self.file.__enter__ class UpperCamelCase_ : def __init__( self : Tuple , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = file_ def __enter__( self : Tuple ) -> List[Any]: self._file.__enter__() return self def __exit__( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : int ) -> Optional[int]: self._file.__exit__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __iter__( self : Optional[int] ) -> int: return iter(self._file ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return next(self._file ) def __getattr__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: return getattr(self._file , lowerCAmelCase_ ) def fixed_enter(*lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[Any] ): return WrappedFile(_enter(*lowerCAmelCase_ , **lowerCAmelCase_ ) ) UpperCAmelCase_ : List[Any] = fixed_enter
95
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __lowerCamelCase = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __lowerCamelCase = [0, 25, 50] __lowerCamelCase = [25, 50, 75] __lowerCamelCase = fuzz.membership.trimf(X, abca) __lowerCamelCase = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __lowerCamelCase = np.ones(75) __lowerCamelCase = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __lowerCamelCase = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __lowerCamelCase = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __lowerCamelCase = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __lowerCamelCase = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __lowerCamelCase = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __lowerCamelCase = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __lowerCamelCase = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __lowerCamelCase = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
96
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
0
import heapq import sys import numpy as np __a = tuple[int, int] class lowercase__: """simple docstring""" def __init__( self : Union[str, Any] ) -> Any: lowercase_ = [] lowercase_ = set() def _lowercase ( self : Dict ) -> Tuple: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _lowercase ( self : int ) -> Any: return len(self.elements ) == 0 def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str ) -> str: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(SCREAMING_SNAKE_CASE_ ) else: # update # print("update", item) lowercase_ = [] ((lowercase_) , (lowercase_)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowercase_) , (lowercase_)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: if item in self.set: self.set.remove(SCREAMING_SNAKE_CASE_ ) lowercase_ = [] ((lowercase_) , (lowercase_)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowercase_) , (lowercase_)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _lowercase ( self : Any ) -> Optional[int]: return self.elements[0][1] def _lowercase ( self : Tuple ) -> str: ((lowercase_) , (lowercase_)) = heapq.heappop(self.elements ) self.set.remove(SCREAMING_SNAKE_CASE_ ) return (priority, item) def a ( snake_case__: TPos , snake_case__: TPos ): '''simple docstring''' # euclidean distance lowercase_ = np.array(snake_case__ ) lowercase_ = np.array(snake_case__ ) return np.linalg.norm(a - b ) def a ( snake_case__: TPos , snake_case__: TPos ): '''simple docstring''' # integer division by time variable return consistent_heuristic(snake_case__ , snake_case__ ) // t def a ( snake_case__: TPos , snake_case__: TPos ): '''simple docstring''' # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def a ( snake_case__: TPos , snake_case__: int , snake_case__: TPos , snake_case__: dict[TPos, float] ): '''simple docstring''' lowercase_ = g_function[start] + Wa * heuristics[i](snake_case__ , snake_case__ ) return ans def a ( snake_case__: List[Any] , snake_case__: Dict , snake_case__: List[str] ): '''simple docstring''' lowercase_ = np.chararray((n, n) ) for i in range(snake_case__ ): for j in range(snake_case__ ): lowercase_ = '''*''' for i in range(snake_case__ ): for j in range(snake_case__ ): if (j, (n - 1) - i) in blocks: lowercase_ = '''#''' lowercase_ = '''-''' lowercase_ = back_pointer[goal] while x != start: ((lowercase_) , (lowercase_)) = x # print(x) lowercase_ = '''-''' lowercase_ = back_pointer[x] lowercase_ = '''-''' for i in range(snake_case__ ): for j in range(snake_case__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) lowercase_ = back_pointer[goal] while x != start: print(snake_case__ , end=''' ''' ) lowercase_ = back_pointer[x] print(snake_case__ ) sys.exit() def a ( snake_case__: TPos ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def a ( snake_case__: Optional[Any] , snake_case__: List[str] , snake_case__: Dict , snake_case__: str , snake_case__: Dict , snake_case__: Optional[Any] , snake_case__: List[Any] , snake_case__: Optional[int] , ): '''simple docstring''' for itera in range(snake_case__ ): open_list[itera].remove_element(snake_case__ ) # print("s", s) # print("j", j) ((lowercase_) , (lowercase_)) = s lowercase_ = (x - 1, y) lowercase_ = (x + 1, y) lowercase_ = (x, y + 1) lowercase_ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(snake_case__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(snake_case__ ) lowercase_ = -1 lowercase_ = float('''inf''' ) if valid(snake_case__ ) and g_function[neighbours] > g_function[s] + 1: lowercase_ = g_function[s] + 1 lowercase_ = s if neighbours not in close_list_anchor: open_list[0].put(snake_case__ , key(snake_case__ , 0 , snake_case__ , snake_case__ ) ) if neighbours not in close_list_inad: for var in range(1 , snake_case__ ): if key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) <= Wa * key( snake_case__ , 0 , snake_case__ , snake_case__ ): open_list[j].put( snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) def a ( ): '''simple docstring''' lowercase_ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __a = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __a = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] __a = make_common_ground() __a = blocks_blk # hyper parameters __a = 1 __a = 1 __a = 2_0 __a = 3 # one consistent and two other inconsistent # start and end destination __a = (0, 0) __a = (n - 1, n - 1) __a = 1 def a ( snake_case__: TPos , snake_case__: TPos , snake_case__: int ): '''simple docstring''' lowercase_ = {start: 0, goal: float('''inf''' )} lowercase_ = {start: -1, goal: -1} lowercase_ = [] lowercase_ = set() for i in range(snake_case__ ): open_list.append(PriorityQueue() ) open_list[i].put(snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) lowercase_ = [] lowercase_ = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , snake_case__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: lowercase_ , lowercase_ = open_list[i].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_inad.append(snake_case__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: lowercase_ = open_list[0].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , 0 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_anchor.append(snake_case__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(snake_case__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
97
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
0
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def a__ ( ) -> Tuple: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', lowercase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def a__ ( ) -> Tuple: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', lowercase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', lowercase ): pass def a__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', lowercase ) is None with patch_submodule(_test_patching, '''len''', lowercase ): assert _test_patching.len is mock assert _test_patching.len is len def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', lowercase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def a__ ( ) -> List[str]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', lowercase ): with patch_submodule(_test_patching, '''os.rename''', lowercase ): with patch_submodule(_test_patching, '''os.path.dirname''', lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', lowercase ): with patch_submodule(_test_patching, '''os.path.join''', lowercase ): with patch_submodule(_test_patching, '''os.path.dirname''', lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', lowercase ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', lowercase ): pass
98
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self , __A , __A ): __a = jnp.ones((batch_size, length) ) / length return scores def snake_case_ ( self ): __a = None __a = 20 __a = self._get_uniform_logits(batch_size=2 , length=__A ) # tweak scores to not be uniform anymore __a = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __a = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __a = jax.nn.softmax(__A , axis=-1 ) __a = FlaxTemperatureLogitsWarper(temperature=0.5 ) __a = FlaxTemperatureLogitsWarper(temperature=1.3 ) __a = jax.nn.softmax(temp_dist_warper_sharper(__A , scores.copy() , cur_len=__A ) , axis=-1 ) __a = jax.nn.softmax(temp_dist_warper_smoother(__A , scores.copy() , cur_len=__A ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def snake_case_ ( self ): __a = None __a = 10 __a = 2 # create ramp distribution __a = np.broadcast_to(np.arange(__A )[None, :] , (batch_size, vocab_size) ).copy() __a = ramp_logits[1:, : vocab_size // 2] + vocab_size __a = FlaxTopKLogitsWarper(3 ) __a = top_k_warp(__A , __A , cur_len=__A ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __a = 5 __a = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __a = np.broadcast_to(np.arange(__A )[None, :] , (batch_size, length) ).copy() __a = top_k_warp_safety_check(__A , __A , cur_len=__A ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def snake_case_ ( self ): __a = None __a = 10 __a = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __a = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __a = FlaxTopPLogitsWarper(0.8 ) __a = np.exp(top_p_warp(__A , __A , cur_len=__A ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __a = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # check edge cases with negative and extreme logits __a = np.broadcast_to(np.arange(__A )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __a = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __a = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __a = top_p_warp(__A , __A , cur_len=__A ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def snake_case_ ( self ): __a = 20 __a = 4 __a = 0 __a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__A ) # check that min length is applied at length 5 __a = ids_tensor((batch_size, 20) , vocab_size=20 ) __a = 5 __a = self._get_uniform_logits(__A , __A ) __a = min_dist_processor(__A , __A , cur_len=__A ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 __a = self._get_uniform_logits(__A , __A ) __a = 15 __a = min_dist_processor(__A , __A , cur_len=__A ) self.assertFalse(jnp.isinf(__A ).any() ) def snake_case_ ( self ): __a = 20 __a = 4 __a = 0 __a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__A ) # check that all scores are -inf except the bos_token_id score __a = ids_tensor((batch_size, 1) , vocab_size=20 ) __a = 1 __a = self._get_uniform_logits(__A , __A ) __a = logits_processor(__A , __A , cur_len=__A ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __a = 3 __a = self._get_uniform_logits(__A , __A ) __a = logits_processor(__A , __A , cur_len=__A ) self.assertFalse(jnp.isinf(__A ).any() ) def snake_case_ ( self ): __a = 20 __a = 4 __a = 0 __a = 5 __a = FlaxForcedEOSTokenLogitsProcessor(max_length=__A , eos_token_id=__A ) # check that all scores are -inf except the eos_token_id when max_length is reached __a = ids_tensor((batch_size, 4) , vocab_size=20 ) __a = 4 __a = self._get_uniform_logits(__A , __A ) __a = logits_processor(__A , __A , cur_len=__A ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __a = 3 __a = self._get_uniform_logits(__A , __A ) __a = logits_processor(__A , __A , cur_len=__A ) self.assertFalse(jnp.isinf(__A ).any() ) def snake_case_ ( self ): __a = 4 __a = 10 __a = 15 __a = 2 __a = 1 __a = 15 # dummy input_ids and scores __a = ids_tensor((batch_size, sequence_length) , __A ) __a = input_ids.copy() __a = self._get_uniform_logits(__A , __A ) __a = scores.copy() # instantiate all dist processors __a = FlaxTemperatureLogitsWarper(temperature=0.5 ) __a = FlaxTopKLogitsWarper(3 ) __a = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__A ) __a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__A ) __a = FlaxForcedEOSTokenLogitsProcessor(max_length=__A , eos_token_id=__A ) __a = 10 # no processor list __a = temp_dist_warp(__A , __A , cur_len=__A ) __a = top_k_warp(__A , __A , cur_len=__A ) __a = top_p_warp(__A , __A , cur_len=__A ) __a = min_dist_proc(__A , __A , cur_len=__A ) __a = bos_dist_proc(__A , __A , cur_len=__A ) __a = eos_dist_proc(__A , __A , cur_len=__A ) # with processor list __a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __a = processor(__A , __A , cur_len=__A ) # scores should be equal self.assertTrue(jnp.allclose(__A , __A , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def snake_case_ ( self ): __a = 4 __a = 10 __a = 15 __a = 2 __a = 1 __a = 15 # dummy input_ids and scores __a = ids_tensor((batch_size, sequence_length) , __A ) __a = input_ids.copy() __a = self._get_uniform_logits(__A , __A ) __a = scores.copy() # instantiate all dist processors __a = FlaxTemperatureLogitsWarper(temperature=0.5 ) __a = FlaxTopKLogitsWarper(3 ) __a = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__A ) __a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__A ) __a = FlaxForcedEOSTokenLogitsProcessor(max_length=__A , eos_token_id=__A ) __a = 10 # no processor list def run_no_processor_list(__A , __A , __A ): __a = temp_dist_warp(__A , __A , cur_len=__A ) __a = top_k_warp(__A , __A , cur_len=__A ) __a = top_p_warp(__A , __A , cur_len=__A ) __a = min_dist_proc(__A , __A , cur_len=__A ) __a = bos_dist_proc(__A , __A , cur_len=__A ) __a = eos_dist_proc(__A , __A , cur_len=__A ) return scores # with processor list def run_processor_list(__A , __A , __A ): __a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __a = processor(__A , __A , cur_len=__A ) return scores __a = jax.jit(__A ) __a = jax.jit(__A ) __a = jitted_run_no_processor_list(__A , __A , __A ) __a = jitted_run_processor_list(__A , __A , __A ) # scores should be equal self.assertTrue(jnp.allclose(__A , __A , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
99
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
0
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : List[Any] = None @property def lowercase_ ( self ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A_ , '''feature_size''' ) ) self.assertTrue(hasattr(A_ , '''sampling_rate''' ) ) self.assertTrue(hasattr(A_ , '''padding_value''' ) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(A_ ) == len(A_ ) for x, y in zip(A_ , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A_ ) SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) SCREAMING_SNAKE_CASE__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A_ ) SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) SCREAMING_SNAKE_CASE__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A_ ) SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) SCREAMING_SNAKE_CASE__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def lowercase_ ( self , A_=False ): '''simple docstring''' def _inputs_have_equal_length(A_ ): SCREAMING_SNAKE_CASE__ = len(input[0] ) for input_slice in input[1:]: if len(A_ ) != length: return False return True def _inputs_are_equal(A_ , A_ ): if len(A_ ) != len(A_ ): return False for input_slice_a, input_slice_a in zip(A_ , A_ ): if not np.allclose(np.asarray(A_ ) , np.asarray(A_ ) , atol=1E-3 ): return False return True SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=A_ ) SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding=A_ ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding='''longest''' ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='''max_length''' )[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , max_length=A_ , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_are_equal(A_ , A_ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding='''longest''' , pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , pad_to_multiple_of=10 , max_length=A_ ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , pad_to_multiple_of=10 , max_length=A_ , return_tensors='''np''' , ) SCREAMING_SNAKE_CASE__ = input_a[input_name] self.assertTrue(all(len(A_ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(A_ , A_ ) ) SCREAMING_SNAKE_CASE__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(A_ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE__ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def lowercase_ ( self , A_=False ): '''simple docstring''' def _inputs_have_equal_length(A_ ): SCREAMING_SNAKE_CASE__ = len(input[0] ) for input_slice in input[1:]: if len(A_ ) != length: return False return True def _inputs_are_equal(A_ , A_ ): if len(A_ ) != len(A_ ): return False for input_slice_a, input_slice_a in zip(A_ , A_ ): if not np.allclose(np.asarray(A_ ) , np.asarray(A_ ) , atol=1E-3 ): return False return True SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=A_ ) SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=A_ ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertFalse(_inputs_have_equal_length(A_ ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=A_ , ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A_ ) ) # truncate to middle SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=A_ , return_tensors='''np''' , ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=A_ ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_are_equal(A_ , A_ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A_ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(A_ ): feat_extract.pad(A_ , truncation=A_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='''longest''' , truncation=A_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='''longest''' , truncation=A_ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='''max_length''' , truncation=A_ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A_ , truncation=A_ , ) SCREAMING_SNAKE_CASE__ = input_a[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A_ , ) SCREAMING_SNAKE_CASE__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE__ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE__ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertFalse(_inputs_have_equal_length(A_ ) ) def lowercase_ ( self ): '''simple docstring''' self._check_padding(numpify=A_ ) def lowercase_ ( self ): '''simple docstring''' self._check_padding(numpify=A_ ) def lowercase_ ( self ): '''simple docstring''' self._check_truncation(numpify=A_ ) def lowercase_ ( self ): '''simple docstring''' self._check_truncation(numpify=A_ ) @require_torch def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''' )[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''' )[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.feat_extract_dict SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**A_ ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE__ = [len(A_ ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , A_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.feat_extract_dict SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**A_ ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE__ = [len(A_ ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = min(A_ ) SCREAMING_SNAKE_CASE__ = feat_extract.pad( A_ , padding='''max_length''' , max_length=A_ , truncation=A_ , return_tensors='''np''' ) self.assertIn('''attention_mask''' , A_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
100
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = FlaxAutoencoderKL @property def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : Optional[Any] = 3 SCREAMING_SNAKE_CASE_ : Any = (3_2, 3_2) SCREAMING_SNAKE_CASE_ : int = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = jax.random.uniform(lowerCAmelCase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } SCREAMING_SNAKE_CASE_ : Dict = self.dummy_input return init_dict, inputs_dict
101
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
0
"""simple docstring""" import math import tensorflow as tf from packaging import version def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : int = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : int = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) UpperCamelCase : str = tf.cast(math.pi , x.dtype ) UpperCamelCase : List[Any] = tf.cast(0.04_47_15 , x.dtype ) UpperCamelCase : List[str] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(SCREAMING_SNAKE_CASE , 3 )) )) return x * cdf def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) return x * tf.tanh(tf.math.softplus(SCREAMING_SNAKE_CASE ) ) def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : List[Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tf.cast(0.04_47_15 , x.dtype ) UpperCamelCase : Dict = tf.cast(0.79_78_84_56_08 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tf.cast(1.7_02 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def UpperCamelCase (SCREAMING_SNAKE_CASE ): return tf.clip_by_value(_gelu(SCREAMING_SNAKE_CASE ) , -10 , 10 ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ): UpperCamelCase , UpperCamelCase : List[str] = tf.split(SCREAMING_SNAKE_CASE , 2 , axis=SCREAMING_SNAKE_CASE ) return a * tf.math.sigmoid(SCREAMING_SNAKE_CASE ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def UpperCamelCase (SCREAMING_SNAKE_CASE ): return tf.keras.activations.gelu(SCREAMING_SNAKE_CASE , approximate=SCREAMING_SNAKE_CASE ) __magic_name__ : List[str] = tf.keras.activations.gelu __magic_name__ : int = approximate_gelu_wrap else: __magic_name__ : Optional[Any] = _gelu __magic_name__ : Optional[Any] = _gelu_new __magic_name__ : Optional[Any] = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def UpperCamelCase (SCREAMING_SNAKE_CASE ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
102
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
0
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Dict = WavaVecaPhonemeCTCTokenizer A__ : List[str] = False def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" super().setUp() _snake_case = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) _snake_case = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) _snake_case = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '''\n''' ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Any , __lowerCamelCase : Dict=False , __lowerCamelCase : List[Any]=2_0 , __lowerCamelCase : int=5 ): """simple docstring""" _snake_case = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCamelCase )) for i in range(len(__lowerCamelCase ) )] _snake_case = list(filter(lambda __lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__lowerCamelCase ) , __lowerCamelCase ) ) if max_length is not None and len(__lowerCamelCase ) > max_length: _snake_case = toks[:max_length] if min_length is not None and len(__lowerCamelCase ) < min_length and len(__lowerCamelCase ) > 0: while len(__lowerCamelCase ) < min_length: _snake_case = toks + toks # toks_str = [t[1] for t in toks] _snake_case = [t[0] for t in toks] # Ensure consistency _snake_case = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) if " " not in output_txt and len(__lowerCamelCase ) > 1: _snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCamelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCamelCase ) ) if with_prefix_space: _snake_case = ''' ''' + output_txt _snake_case = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) return output_txt, output_ids def __UpperCAmelCase ( self : List[Any] , **__lowerCamelCase : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) _snake_case = tokenizer('''m xxx ɪ''' , do_phonemize=__lowerCamelCase ).input_ids self.assertEqual(__lowerCamelCase , [1_3, 3_9_2, 1_7] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) _snake_case = tokenizer('''m aaa ɪ ccc''' , do_phonemize=__lowerCamelCase ).input_ids self.assertEqual(__lowerCamelCase , [1_3, 3_9_3, 1_7, 3_9_5] ) # aaa and ccc should be after xxx and 2 after aaa _snake_case = tokenizer('''maɪ c''' , do_phonemize=__lowerCamelCase ).input_ids self.assertEqual(__lowerCamelCase , [3, 2_0_0] ) # mai should be <unk> (=3) def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) _snake_case = '''Hello how are you''' _snake_case = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowerCamelCase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) _snake_case = '''Hello how are you''' _snake_case = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowerCamelCase ).input_ids , tokenizer(__lowerCamelCase , do_phonemize=__lowerCamelCase ).input_ids ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) _snake_case = '''Hello how are you''' _snake_case = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) _snake_case = tokenizer.decode(tokenizer(__lowerCamelCase ).input_ids ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) _snake_case = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7], ] _snake_case = tokenizer.decode(sample_ids[0] ) _snake_case = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , batch_tokens[0] ) self.assertEqual(__lowerCamelCase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) _snake_case = '''Hello how are you''' _snake_case = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowerCamelCase , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) _snake_case = '''Hello how are you''' _snake_case = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowerCamelCase ).input_ids , tokenizer(__lowerCamelCase , do_phonemize=__lowerCamelCase ).input_ids ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off _snake_case = [ [1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8], [tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7], ] # fmt: on # decode with word_del_token filter _snake_case = tokenizer.decode(sample_ids[0] ) _snake_case = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , batch_tokens[0] ) self.assertEqual(__lowerCamelCase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter _snake_case = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__lowerCamelCase ) _snake_case = tokenizer.batch_decode(__lowerCamelCase , filter_word_delimiter_token=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , batch_tokens[0] ) self.assertEqual(__lowerCamelCase , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) _snake_case = '''Hello how are you''' _snake_case = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) _snake_case = tokenizer.decode(tokenizer(__lowerCamelCase ).input_ids , filter_word_delimiter_token=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) _snake_case = '''Hello how are you''' _snake_case = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) _snake_case = tokenizer.decode(tokenizer(__lowerCamelCase ).input_ids , filter_word_delimiter_token=__lowerCamelCase ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , __lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=__lowerCamelCase ) _snake_case = '''Hello how are you''' _snake_case = tokenizer(__lowerCamelCase , phonemizer_lang='''en-us''' ).input_ids _snake_case = tokenizer(__lowerCamelCase , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) _snake_case = tokenizer.decode(__lowerCamelCase ) _snake_case = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(__lowerCamelCase , '''ɛ l o h aʊ a ʁ j u''' ) def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) _snake_case = '''Hello how Are you''' _snake_case = '''hello how are you''' _snake_case = tokenizer(__lowerCamelCase ).input_ids _snake_case = tokenizer(__lowerCamelCase ).input_ids self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off _snake_case = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4], ] # fmt: on _snake_case = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def __UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : str ): """simple docstring""" _snake_case = [d[key] for d in offsets] return retrieved_list def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _snake_case = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8] # fmt: on _snake_case = tokenizer.decode(__lowerCamelCase , output_char_offsets=__lowerCamelCase , filter_word_delimiter_token=__lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7] ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(__lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ): self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) ) self.assertTrue(isinstance(outputs_list[0] , __lowerCamelCase ) ) # transform list to ModelOutput _snake_case = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): if isinstance(__lowerCamelCase , __lowerCamelCase ): [recursive_check(__lowerCamelCase , __lowerCamelCase ) for la, la in zip(__lowerCamelCase , __lowerCamelCase )] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off _snake_case = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4], [2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _snake_case = tokenizer.batch_decode(__lowerCamelCase , output_char_offsets=__lowerCamelCase ) _snake_case = [tokenizer.decode(__lowerCamelCase , output_char_offsets=__lowerCamelCase ) for ids in sample_ids] check_list_tuples_equal(__lowerCamelCase , __lowerCamelCase ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def __UpperCAmelCase ( self : Any ): """simple docstring""" pass def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _snake_case = tokenizer.vocab_size _snake_case = len(__lowerCamelCase ) self.assertNotEqual(__lowerCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _snake_case = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] _snake_case = tokenizer.add_tokens(__lowerCamelCase ) _snake_case = tokenizer.vocab_size _snake_case = len(__lowerCamelCase ) self.assertNotEqual(__lowerCamelCase , 0 ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , len(__lowerCamelCase ) ) self.assertEqual(__lowerCamelCase , all_size + len(__lowerCamelCase ) ) _snake_case = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__lowerCamelCase ) self.assertGreaterEqual(len(__lowerCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _snake_case = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} _snake_case = tokenizer.add_special_tokens(__lowerCamelCase ) _snake_case = tokenizer.vocab_size _snake_case = len(__lowerCamelCase ) self.assertNotEqual(__lowerCamelCase , 0 ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , len(__lowerCamelCase ) ) self.assertEqual(__lowerCamelCase , all_size_a + len(__lowerCamelCase ) ) _snake_case = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__lowerCamelCase ) self.assertGreaterEqual(len(__lowerCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def __UpperCAmelCase ( self : int ): """simple docstring""" pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" pass def __UpperCAmelCase ( self : Tuple ): """simple docstring""" # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. _snake_case = self.get_tokenizers(fast=__lowerCamelCase , do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _snake_case = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] _snake_case = tokenizer.convert_tokens_to_string(__lowerCamelCase ) self.assertIsInstance(output['''text'''] , __lowerCamelCase )
103
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int ) -> bool: """simple docstring""" if not isinstance(UpperCAmelCase_, UpperCAmelCase_ ): A__ = F"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCAmelCase_ ) if number < 0: return False A__ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
104
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): __a : Tuple = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __a : Any = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = TextaTextGenerationPipeline(model=snake_case__ ,tokenizer=snake_case__ ) return generator, ["Something to write", "Something else"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = generator('Something there' ) self.assertEqual(snake_case__ ,[{'generated_text': ANY(snake_case__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) SCREAMING_SNAKE_CASE_ : List[Any] = generator(['This is great !', 'Something else'] ,num_return_sequences=2 ,do_sample=snake_case__ ) self.assertEqual( snake_case__ ,[ [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], ] ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = generator( ['This is great !', 'Something else'] ,num_return_sequences=2 ,batch_size=2 ,do_sample=snake_case__ ) self.assertEqual( snake_case__ ,[ [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], [{'generated_text': ANY(snake_case__ )}, {'generated_text': ANY(snake_case__ )}], ] ,) with self.assertRaises(snake_case__ ): generator(4 ) @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = pipeline('text2text-generation' ,model='patrickvonplaten/t5-tiny-random' ,framework='pt' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_ : str = generator('Something there' ,do_sample=snake_case__ ) self.assertEqual(snake_case__ ,[{'generated_text': ''}] ) SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : Dict = generator( 'Something there' ,num_return_sequences=snake_case__ ,num_beams=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = generator('This is a test' ,do_sample=snake_case__ ,num_return_sequences=2 ,return_tensors=snake_case__ ) self.assertEqual( snake_case__ ,[ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] ,) SCREAMING_SNAKE_CASE_ : Any = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_ : str = '<pad>' SCREAMING_SNAKE_CASE_ : str = generator( ['This is a test', 'This is a second test'] ,do_sample=snake_case__ ,num_return_sequences=2 ,batch_size=2 ,return_tensors=snake_case__ ,) self.assertEqual( snake_case__ ,[ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] ,) @require_tf def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = pipeline('text2text-generation' ,model='patrickvonplaten/t5-tiny-random' ,framework='tf' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_ : List[Any] = generator('Something there' ,do_sample=snake_case__ ) self.assertEqual(snake_case__ ,[{'generated_text': ''}] )
105
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
106
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
0
'''simple docstring''' import sys _UpperCAmelCase : Optional[int] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _SCREAMING_SNAKE_CASE ( __snake_case : str = N ): _A = -sys.maxsize - 1 for i in range(len(__snake_case ) - 1_2 ): _A = 1 for j in range(1_3 ): product *= int(n[i + j] ) if product > largest_product: _A = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
107
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a: Union[str, Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> List[Any]: _UpperCAmelCase = b.T _UpperCAmelCase = np.sum(np.square(__snake_case ) , axis=1 ) _UpperCAmelCase = np.sum(np.square(__snake_case ) , axis=0 ) _UpperCAmelCase = np.matmul(__snake_case , __snake_case ) _UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Tuple: _UpperCAmelCase = x.reshape(-1 , 3 ) _UpperCAmelCase = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = ['''pixel_values'''] def __init__( self : Dict , lowerCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase : bool = True , lowerCamelCase : bool = True , **lowerCamelCase : Dict , ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = size if size is not None else {"""height""": 256, """width""": 256} _UpperCAmelCase = get_size_dict(lowerCamelCase ) _UpperCAmelCase = np.array(lowerCamelCase ) if clusters is not None else None _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_normalize _UpperCAmelCase = do_color_quantize def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Any , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( lowerCamelCase , size=(size["""height"""], size["""width"""]) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = rescale(image=lowerCamelCase , scale=1 / 127.5 , data_format=lowerCamelCase ) _UpperCAmelCase = image - 1 return image def lowerCamelCase ( self : Any , lowerCamelCase : ImageInput , lowerCamelCase : bool = None , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowerCamelCase : List[str] , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(lowerCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _UpperCAmelCase = clusters if clusters is not None else self.clusters _UpperCAmelCase = np.array(lowerCamelCase ) _UpperCAmelCase = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=lowerCamelCase ) for image in images] if do_color_quantize: _UpperCAmelCase = [to_channel_dimension_format(lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _UpperCAmelCase = np.array(lowerCamelCase ) _UpperCAmelCase = color_quantize(lowerCamelCase , lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _UpperCAmelCase = images.shape[0] _UpperCAmelCase = images.reshape(lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _UpperCAmelCase = list(lowerCamelCase ) else: _UpperCAmelCase = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] _UpperCAmelCase = {"""input_ids""": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
108
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a = ["gpt2"] a = "gpt2" if is_tf_available(): class __a ( tf.Module ): def __init__( self : str ,lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = TFGPTaLMHeadModel.from_config(lowerCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) ,tf.string ,name="""text""" ),) ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenized["""input_ids"""].to_tensor() __SCREAMING_SNAKE_CASE = tf.cast(input_ids_dense > 0 ,tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __SCREAMING_SNAKE_CASE = self.model(input_ids=lowerCamelCase ,attention_mask=lowerCamelCase )["""logits"""] return outputs @require_tf @require_keras_nlp class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [GPTaTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __SCREAMING_SNAKE_CASE = [TFGPTaTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __SCREAMING_SNAKE_CASE = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] __SCREAMING_SNAKE_CASE = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in self.test_sentences: __SCREAMING_SNAKE_CASE = tokenizer([test_inputs] ,return_tensors="""tf""" ) __SCREAMING_SNAKE_CASE = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __SCREAMING_SNAKE_CASE = python_outputs[key].numpy() __SCREAMING_SNAKE_CASE = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCamelCase ,tf.intaa ) == tf_outputs_values ) ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = tf.function(lowerCamelCase ) for test_inputs in self.test_sentences: __SCREAMING_SNAKE_CASE = tf.constant(lowerCamelCase ) __SCREAMING_SNAKE_CASE = compiled_tokenizer(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf_tokenizer(lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = ModelToSave(tokenizer=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([self.test_sentences[0]] ) __SCREAMING_SNAKE_CASE = model.serving(lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """saved.model""" tf.saved_model.save(lowerCamelCase ,lowerCamelCase ,signatures={"""serving_default""": model.serving} ) __SCREAMING_SNAKE_CASE = tf.saved_model.load(lowerCamelCase ) __SCREAMING_SNAKE_CASE = loaded_model.signatures["""serving_default"""](lowerCamelCase )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([self.test_sentences[0]] ) __SCREAMING_SNAKE_CASE = tf_tokenizer(lowerCamelCase ) # Build model with some sample inputs __SCREAMING_SNAKE_CASE = tf_tokenizer.get_config() __SCREAMING_SNAKE_CASE = TFGPTaTokenizer.from_config(lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_from_config(lowerCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run __SCREAMING_SNAKE_CASE = 12_3123 for max_length in [3, 5, 1024]: __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([self.test_sentences[0]] ) __SCREAMING_SNAKE_CASE = tf_tokenizer(lowerCamelCase ,max_length=lowerCamelCase ) __SCREAMING_SNAKE_CASE = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
109
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
0
"""simple docstring""" from collections import defaultdict from math import gcd def lowerCamelCase ( _snake_case = 1500000 ): UpperCAmelCase__ : defaultdict = defaultdict(_snake_case ) UpperCAmelCase__ : str = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 ,_snake_case ,2 ): if gcd(_snake_case ,_snake_case ) > 1: continue UpperCAmelCase__ : Dict = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_snake_case ,limit + 1 ,_snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'{solution() = }')
110
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
654
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCamelCase : Tuple = 250004 __UpperCamelCase : Optional[Any] = 250020 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( _lowerCAmelCase,unittest.TestCase ): '''simple docstring''' a_ : List[str] = MBartaaTokenizer a_ : List[str] = MBartaaTokenizerFast a_ : Union[str, Any] = True a_ : Optional[Any] = True def _snake_case ( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase : Optional[Any] = MBartaaTokenizer(_lowercase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : Optional[int] = """<s>""" __lowerCamelCase : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(_lowercase ) , 1_0_5_4 ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Tuple = MBartaaTokenizer(_lowercase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=_lowercase ) __lowerCamelCase : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __lowerCamelCase : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) __lowerCamelCase : Dict = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __lowerCamelCase : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def _snake_case ( self : List[str] ): '''simple docstring''' __lowerCamelCase : Tuple = {"""input_ids""": [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def _snake_case ( self : Any ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCamelCase : Dict = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __lowerCamelCase : Optional[int] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __lowerCamelCase : Optional[int] = tempfile.mkdtemp() __lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(_lowercase ) __lowerCamelCase : Tuple = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __lowerCamelCase : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __lowerCamelCase : int = tokenizer_r.from_pretrained(_lowercase ) __lowerCamelCase : Optional[Any] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True __lowerCamelCase : int = tempfile.mkdtemp() __lowerCamelCase : Dict = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __lowerCamelCase : List[Any] = tokenizer_r.from_pretrained(_lowercase ) __lowerCamelCase : List[str] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False __lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() __lowerCamelCase : List[Any] = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __lowerCamelCase : List[Any] = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCamelCase : int = tokenizer_r.from_pretrained(_lowercase ) __lowerCamelCase : int = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' a_ : Tuple = "facebook/mbart-large-50-one-to-many-mmt" a_ : Optional[Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] a_ : List[str] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] a_ : Dict = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def _snake_case ( cls : Tuple ): '''simple docstring''' __lowerCamelCase : Dict = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __lowerCamelCase : Optional[Any] = 1 return cls def _snake_case ( self : Tuple ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 2_5_0_0_3_8 ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' self.assertIn(_lowercase , self.tokenizer.all_special_ids ) __lowerCamelCase : Optional[Any] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] __lowerCamelCase : Union[str, Any] = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __lowerCamelCase : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , _lowercase ) __lowerCamelCase : Optional[int] = 1_0 __lowerCamelCase : List[Any] = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[0] , _lowercase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowercase ) , _lowercase ) def _snake_case ( self : Dict ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : List[Any] = tempfile.mkdtemp() __lowerCamelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) __lowerCamelCase : List[str] = MBartaaTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors="""pt""" ) __lowerCamelCase : Tuple = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __lowerCamelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) __lowerCamelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors="""pt""" ) __lowerCamelCase : str = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=1_0 , return_tensors="""pt""" ) __lowerCamelCase : Tuple = targets["""input_ids"""] __lowerCamelCase : Any = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _snake_case ( self : List[str] ): '''simple docstring''' __lowerCamelCase : Tuple = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(_lowercase ) , { # en_XX, A, test, EOS """input_ids""": [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
519
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase = 600851475143 ): '''simple docstring''' try: _lowerCAmelCase : int = int(snake_case_ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : Optional[int] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _lowerCAmelCase : Optional[Any] = i while n % i == 0: _lowerCAmelCase : Optional[int] = n // i i += 1 return int(snake_case_ ) if __name__ == "__main__": print(F'''{solution() = }''')
259
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] ,*UpperCamelCase : int ,**UpperCamelCase : Tuple ) -> Dict: warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' ,_lowercase ,) super().__init__(*_lowercase ,**_lowercase )
125
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
0
def snake_case ( snake_case__ :list) -> Optional[Any]: _A = len(snake_case_) for _ in range(snake_case_): for i in range(_ % 2 , arr_size - 1 , 2): if arr[i + 1] < arr[i]: _A , _A = arr[i + 1], arr[i] return arr if __name__ == "__main__": _SCREAMING_SNAKE_CASE = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
401
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : str = logging.get_logger(__name__) __A : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} __A : List[str] = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } __A : List[str] = { 'allenai/longformer-base-4096': 4_0_9_6, 'allenai/longformer-large-4096': 4_0_9_6, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_0_9_6, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_0_9_6, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Any , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : int="<s>" , __lowerCamelCase : Tuple="<unk>" , __lowerCamelCase : Tuple="<pad>" , __lowerCamelCase : Tuple="<mask>" , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(_lowercase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self : str ): return len(self.encoder ) def _snake_case ( self : List[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : str , __lowerCamelCase : Any ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(_lowercase ) SCREAMING_SNAKE_CASE = get_pairs(_lowercase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(_lowercase , key=lambda __lowerCamelCase : self.bpe_ranks.get(_lowercase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(_lowercase ): try: SCREAMING_SNAKE_CASE = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(_lowercase ) SCREAMING_SNAKE_CASE = new_word if len(_lowercase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(_lowercase ) SCREAMING_SNAKE_CASE = " ".join(_lowercase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , _lowercase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(" " ) ) return bpe_tokens def _snake_case ( self : int , __lowerCamelCase : Union[str, Any] ): return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Any , __lowerCamelCase : List[Any] ): return self.decoder.get(_lowercase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = "".join(_lowercase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( _lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( _lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_lowercase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(_lowercase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(_lowercase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs)
16
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = KandinskyImgaImgPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image"] SCREAMING_SNAKE_CASE__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] SCREAMING_SNAKE_CASE__ : Tuple = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE__ : Optional[Any] = False @property def __magic_name__( self :Tuple ) -> Optional[int]: return 32 @property def __magic_name__( self :int ) -> Union[str, Any]: return 32 @property def __magic_name__( self :Optional[Any] ) -> Tuple: return self.time_input_dim @property def __magic_name__( self :Any ) -> Optional[int]: return self.time_input_dim * 4 @property def __magic_name__( self :Union[str, Any] ) -> Any: return 100 @property def __magic_name__( self :List[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) __SCREAMING_SNAKE_CASE : Tuple = MultilingualCLIP(_lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = text_encoder.eval() return text_encoder @property def __magic_name__( self :Any ) -> List[str]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDConditionModel(**_lowercase ) return model @property def __magic_name__( self :List[str] ) -> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__( self :Tuple ) -> int: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : str = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : List[str] = self.dummy_unet __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_movq __SCREAMING_SNAKE_CASE : List[Any] = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_lowercase ) __SCREAMING_SNAKE_CASE : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str]=0 ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowercase ) ).to(_lowercase ) __SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowercase ) # create init_image __SCREAMING_SNAKE_CASE : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = Image.fromarray(np.uinta(_lowercase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowercase ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(_lowercase ) else: __SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class(**_lowercase ) __SCREAMING_SNAKE_CASE : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_lowercase ) ) __SCREAMING_SNAKE_CASE : Any = output.images __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] __SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) __SCREAMING_SNAKE_CASE : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __SCREAMING_SNAKE_CASE : Any = '''A red cartoon frog, 4k''' __SCREAMING_SNAKE_CASE : int = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) __SCREAMING_SNAKE_CASE : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __SCREAMING_SNAKE_CASE : str = pipeline( _lowercase , image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
696
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : List[str]=13 , UpperCamelCase : List[Any]=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=True , UpperCamelCase : Dict=99 , UpperCamelCase : Any=32 , UpperCamelCase : Dict=2 , UpperCamelCase : int=4 , UpperCamelCase : str=37 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Tuple=5_12 , UpperCamelCase : str=16 , UpperCamelCase : List[str]=2 , UpperCamelCase : List[str]=0.02 , UpperCamelCase : List[Any]=3 , UpperCamelCase : Tuple=4 , UpperCamelCase : Dict=None , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Tuple = 13 _snake_case : Optional[Any] = 7 _snake_case : Union[str, Any] = True _snake_case : List[str] = True _snake_case : str = True _snake_case : Any = True _snake_case : Dict = 99 _snake_case : Any = 3_84 _snake_case : Dict = 2 _snake_case : Tuple = 4 _snake_case : str = 37 _snake_case : List[str] = 'gelu' _snake_case : Union[str, Any] = 0.1 _snake_case : int = 0.1 _snake_case : str = 5_12 _snake_case : Optional[Any] = 16 _snake_case : int = 2 _snake_case : Union[str, Any] = 0.02 _snake_case : Tuple = 3 _snake_case : List[Any] = 4 _snake_case : Optional[Any] = 1_28 _snake_case : int = 2 _snake_case : Union[str, Any] = 9 _snake_case : Tuple = 1 _snake_case : Optional[Any] = None def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : Union[str, Any] = None if self.use_input_mask: _snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : List[Any] = None if self.use_token_type_ids: _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : Tuple = None _snake_case : str = None _snake_case : Union[str, Any] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Dict = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Any ): '''simple docstring''' _snake_case : List[Any] = TFConvBertModel(config=_lowercase ) _snake_case : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case : List[str] = [input_ids, input_mask] _snake_case : Any = model(_lowercase ) _snake_case : int = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : str , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : Optional[Any] = TFConvBertForMaskedLM(config=_lowercase ) _snake_case : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _snake_case : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Dict , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Dict = self.num_labels _snake_case : Union[str, Any] = TFConvBertForSequenceClassification(config=_lowercase ) _snake_case : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _snake_case : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : List[str] = self.num_choices _snake_case : str = TFConvBertForMultipleChoice(config=_lowercase ) _snake_case : str = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _snake_case : Union[str, Any] = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _snake_case : List[str] = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _snake_case : Any = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _snake_case : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : str ): '''simple docstring''' _snake_case : Any = self.num_labels _snake_case : int = TFConvBertForTokenClassification(config=_lowercase ) _snake_case : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _snake_case : List[str] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Tuple = TFConvBertForQuestionAnswering(config=_lowercase ) _snake_case : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _snake_case : List[str] = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : int = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Optional[Any] = config_and_inputs _snake_case : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' a_ : Tuple =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a_ : List[str] =( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a_ : int =False a_ : List[str] =False a_ : Dict =False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = TFConvBertModelTester(self ) _snake_case : str = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Optional[int] = True _snake_case : str = True if hasattr(_lowercase , 'use_cache' ): _snake_case : Any = True _snake_case : Union[str, Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) _snake_case : List[Any] = getattr(self.model_tester , 'key_length' , _lowercase ) for model_class in self.all_model_classes: _snake_case : List[Any] = self._prepare_for_class(_lowercase , _lowercase ) _snake_case : Optional[Any] = model_class(_lowercase ) _snake_case : Union[str, Any] = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) _snake_case : Any = os.path.join(_lowercase , 'saved_model' , '1' ) _snake_case : Optional[int] = tf.keras.models.load_model(_lowercase ) _snake_case : List[Any] = model(_lowercase ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = outputs['encoder_hidden_states'] _snake_case : List[Any] = outputs['encoder_attentions'] else: _snake_case : str = outputs['hidden_states'] _snake_case : int = outputs['attentions'] self.assertEqual(len(_lowercase ) , _lowercase ) _snake_case : Dict = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_lowercase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = True _snake_case : Any = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) _snake_case : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) _snake_case : str = getattr(self.model_tester , 'key_length' , _lowercase ) _snake_case : Optional[int] = getattr(self.model_tester , 'key_length' , _lowercase ) def check_decoder_attentions_output(UpperCamelCase : Any ): _snake_case : Any = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) _snake_case : List[Any] = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCamelCase : Tuple ): _snake_case : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _snake_case : Dict = True _snake_case : str = False _snake_case : Tuple = model_class(_lowercase ) _snake_case : Dict = model(self._prepare_for_class(_lowercase , _lowercase ) ) _snake_case : Any = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: _snake_case : int = model_class(_lowercase ) _snake_case : Union[str, Any] = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : Optional[Any] = True _snake_case : Dict = model_class(_lowercase ) _snake_case : Tuple = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine _snake_case : Dict = True _snake_case : int = True _snake_case : str = model_class(_lowercase ) _snake_case : Dict = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : int = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) _snake_case : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) _snake_case : int = model(_lowercase )[0] _snake_case : List[str] = [1, 6, 7_68] self.assertEqual(output.shape , _lowercase ) _snake_case : Union[str, Any] = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1e-4 )
411
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
691
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
0