code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from maths.prime_factors import prime_factors def snake_case (UpperCAmelCase__ ) -> List[str]: if not isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: Dict = F'''Input value of [number={number}] must be an integer''' raise TypeError(snake_case_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(snake_case_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
57
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
0
from pathlib import Path import numpy as np from PIL import Image def _UpperCAmelCase ( a : np.ndarray ): snake_case__ , snake_case__ , snake_case__ = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def _UpperCAmelCase ( a : np.ndarray ): return (gray > 127) & (gray <= 255) def _UpperCAmelCase ( a : np.ndarray , a : np.ndarray ): snake_case__ = np.zeros_like(snake_case_ ) snake_case__ = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image snake_case__ = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): snake_case__ = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() snake_case__ = int(summation > 0 ) return output if __name__ == "__main__": # read original image a__ = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' a__ = np.array(Image.open(lena_path)) # kernel to be applied a__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) a__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image a__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
654
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def _UpperCAmelCase ( UpperCAmelCase : ndarray ): """simple docstring""" return np.dot(snake_case_ , snake_case_ ) class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , *, _lowerCamelCase : float = np.inf , _lowerCamelCase : str = "linear" , _lowerCamelCase : float = 0.0 , ): '''simple docstring''' __lowerCamelCase : List[Any] = regularization __lowerCamelCase : List[str] = gamma if kernel == "linear": __lowerCamelCase : Union[str, Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) __lowerCamelCase : List[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __lowerCamelCase : Optional[int] = F"""Unknown kernel: {kernel}""" raise ValueError(_lowercase ) def _snake_case ( self : Optional[Any] , _lowerCamelCase : ndarray , _lowerCamelCase : ndarray ): '''simple docstring''' return np.dot(_lowercase , _lowercase ) def _snake_case ( self : List[Any] , _lowerCamelCase : ndarray , _lowerCamelCase : ndarray ): '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _snake_case ( self : Dict , _lowerCamelCase : list[ndarray] , _lowerCamelCase : ndarray ): '''simple docstring''' __lowerCamelCase : Any = observations __lowerCamelCase : Any = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__lowerCamelCase ) , ) : Optional[Any] = np.shape(_lowercase ) def to_minimize(_lowerCamelCase : ndarray ) -> float: __lowerCamelCase : List[str] = 0 ((__lowerCamelCase ) , ) : Tuple = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) __lowerCamelCase : Any = LinearConstraint(_lowercase , 0 , 0 ) __lowerCamelCase : Optional[Any] = Bounds(0 , self.regularization ) __lowerCamelCase : List[Any] = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x __lowerCamelCase : Union[str, Any] = l_star # calculating mean offset of separation plane to points __lowerCamelCase : Optional[int] = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __lowerCamelCase : List[Any] = s / n def _snake_case ( self : Optional[int] , _lowerCamelCase : ndarray ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
519
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class __UpperCamelCase ( _lowerCAmelCase ): _UpperCAmelCase = "roberta-prelayernorm" def __init__( self ,_A=5_0265 ,_A=768 ,_A=12 ,_A=12 ,_A=3072 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=2 ,_A=0.0_2 ,_A=1E-12 ,_A=1 ,_A=0 ,_A=2 ,_A="absolute" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__(pad_token_id=_lowercase ,bos_token_id=_lowercase ,eos_token_id=_lowercase ,**_lowercase ) _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : List[Any] = position_embedding_type _lowerCAmelCase : Union[str, Any] = use_cache _lowerCAmelCase : str = classifier_dropout class __UpperCamelCase ( _lowerCAmelCase ): @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
259
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
0
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A = threading.Lock() A = None A = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } A = logging.WARNING A = True def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , snake_case_) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys()) }''') return _default_log_level def SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' return __name__.split('.')[0] def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' return logging.getLogger(_get_library_name()) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowercase : Optional[int] = logging.StreamHandler() # Set sys.stderr as stream. _lowercase : Optional[int] = sys.stderr.flush # Apply our default configuration to the library root logger. _lowercase : Optional[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) _lowercase : List[str] = False def SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return _lowercase : Any = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _lowercase : Optional[Any] = None def SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' return log_levels def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Optional[str] = None) -> List[str]: '''simple docstring''' if name is None: _lowercase : int = _get_library_name() _configure_library_root_logger() return logging.getLogger(snake_case_) def SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : int) -> str: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(snake_case_) def SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' return set_verbosity(snake_case_) def SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' return set_verbosity(snake_case_) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' return set_verbosity(snake_case_) def SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' return set_verbosity(snake_case_) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : logging.Handler) -> int: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(snake_case_) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : logging.Handler) -> List[Any]: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(snake_case_) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' _configure_library_root_logger() _lowercase : Tuple = False def SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' _configure_library_root_logger() _lowercase : List[Any] = True def SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' _lowercase : Dict = _get_library_root_logger().handlers for handler in handlers: _lowercase : Tuple = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s') handler.setFormatter(snake_case_) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(snake_case_) def SCREAMING_SNAKE_CASE ( self : List[str] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : int) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , snake_case_) if no_advisory_warnings: return self.warning(*snake_case_ , **snake_case_) A = warning_advice @functools.lru_cache(snake_case_) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str]) -> Union[str, Any]: '''simple docstring''' self.warning(*snake_case_ , **snake_case_) A = warning_once class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str ,*UpperCamelCase : int ,**UpperCamelCase : str ) -> List[Any]: # pylint: disable=unused-argument _lowercase : Union[str, Any] = args[0] if args else None def __iter__( self : Tuple ) -> str: return iter(self._iterator ) def __getattr__( self : Any ,UpperCamelCase : Optional[int] ) -> Dict: def empty_fn(*UpperCamelCase : List[str] ,**UpperCamelCase : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[Any] ) -> List[str]: return self def __exit__( self : List[Any] ,UpperCamelCase : Tuple ,UpperCamelCase : List[Any] ,UpperCamelCase : Dict ) -> str: return class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : int ,*UpperCamelCase : Optional[int] ,**UpperCamelCase : List[Any] ) -> Tuple: if _tqdm_active: return tqdm_lib.tqdm(*_lowercase ,**_lowercase ) else: return EmptyTqdm(*_lowercase ,**_lowercase ) def _lowerCamelCase ( self : Optional[int] ,*UpperCamelCase : Optional[int] ,**UpperCamelCase : Any ) -> Any: _lowercase : List[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_lowercase ,**_lowercase ) def _lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: if _tqdm_active: return tqdm_lib.tqdm.get_lock() A = _tqdm_cls() def SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' global _tqdm_active return bool(_tqdm_active) def SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' global _tqdm_active _lowercase : str = True hf_hub_utils.enable_progress_bars() def SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' global _tqdm_active _lowercase : str = False hf_hub_utils.disable_progress_bars()
125
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class a ( _lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[Any] = "conditional_detr" lowerCamelCase :Tuple = ["past_key_values"] lowerCamelCase :Optional[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=3 , lowerCAmelCase_=3_00 , lowerCAmelCase_=6 , lowerCAmelCase_=20_48 , lowerCAmelCase_=8 , lowerCAmelCase_=6 , lowerCAmelCase_=20_48 , lowerCAmelCase_=8 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=2_56 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1.0 , lowerCAmelCase_=False , lowerCAmelCase_="sine" , lowerCAmelCase_="resnet50" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=2 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=1 , lowerCAmelCase_=2 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=0.25 , **lowerCAmelCase_ , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can\'t specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _A = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_lowercase , _lowercase ): _A = backbone_config.get("""model_type""" ) _A = CONFIG_MAPPING[backbone_model_type] _A = config_class.from_dict(_lowercase ) _A = use_timm_backbone _A = backbone_config _A = num_channels _A = num_queries _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = init_xavier_std _A = encoder_layerdrop _A = decoder_layerdrop _A = encoder_layers _A = auxiliary_loss _A = position_embedding_type _A = backbone _A = use_pretrained_backbone _A = dilation # Hungarian matcher _A = class_cost _A = bbox_cost _A = giou_cost # Loss coefficients _A = mask_loss_coefficient _A = dice_loss_coefficient _A = cls_loss_coefficient _A = bbox_loss_coefficient _A = giou_loss_coefficient _A = focal_alpha super().__init__(is_encoder_decoder=_lowercase , **_lowercase ) @property def UpperCAmelCase ( self ) -> str: return self.encoder_attention_heads @property def UpperCAmelCase ( self ) -> Optional[int]: return self.d_model def UpperCAmelCase ( self ) -> Dict: _A = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _A = self.backbone_config.to_dict() _A = self.__class__.model_type return output class a ( _lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[Any] = version.parse('''1.11''' ) @property def UpperCAmelCase ( self ) -> Union[str, Any]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def UpperCAmelCase ( self ) -> List[str]: return 1E-5 @property def UpperCAmelCase ( self ) -> str: return 12
401
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : str = logging.get_logger(__name__) __A : Optional[int] = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : str , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=[256, 512, 1024, 2048] , __lowerCamelCase : Optional[int]=[3, 4, 6, 3] , __lowerCamelCase : List[Any]="bottleneck" , __lowerCamelCase : List[str]="relu" , __lowerCamelCase : int=False , __lowerCamelCase : Dict=None , __lowerCamelCase : str=None , **__lowerCamelCase : Any , ): super().__init__(**_lowercase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(_lowercase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : int ): return 1e-3
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase : str ='platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): if attention_mask is None: __SCREAMING_SNAKE_CASE : Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE : str = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __SCREAMING_SNAKE_CASE : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str=13 , lowerCAmelCase__ :Dict=7 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :str=99 , lowerCAmelCase__ :List[str]=16 , lowerCAmelCase__ :List[str]=2 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Optional[Any]=4 , lowerCAmelCase__ :List[Any]="gelu" , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :List[Any]=32 , lowerCAmelCase__ :List[str]=2 , lowerCAmelCase__ :Optional[Any]=1 , lowerCAmelCase__ :Any=0 , lowerCAmelCase__ :Tuple=0.02 , ) -> List[str]: __SCREAMING_SNAKE_CASE : Union[str, Any] = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Dict = is_training __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : List[str] = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = eos_token_id __SCREAMING_SNAKE_CASE : List[Any] = pad_token_id __SCREAMING_SNAKE_CASE : Tuple = bos_token_id __SCREAMING_SNAKE_CASE : str = initializer_range def __magic_name__( self :List[str] ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __SCREAMING_SNAKE_CASE : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __SCREAMING_SNAKE_CASE : List[str] = shift_tokens_right(_lowercase , 1 , 2 ) __SCREAMING_SNAKE_CASE : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowercase , ) __SCREAMING_SNAKE_CASE : Optional[Any] = prepare_blenderbot_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def __magic_name__( self :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() return config, inputs_dict def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Any = 20 __SCREAMING_SNAKE_CASE : Tuple = model_class_name(_lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = model.encode(inputs_dict['''input_ids'''] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) __SCREAMING_SNAKE_CASE : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __SCREAMING_SNAKE_CASE : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) __SCREAMING_SNAKE_CASE : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __SCREAMING_SNAKE_CASE : str = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) __SCREAMING_SNAKE_CASE : Optional[int] = model.decode(_lowercase , _lowercase ) __SCREAMING_SNAKE_CASE : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def __magic_name__( self :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = 20 __SCREAMING_SNAKE_CASE : Optional[int] = model_class_name(_lowercase ) __SCREAMING_SNAKE_CASE : int = model.encode(inputs_dict['''input_ids'''] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __SCREAMING_SNAKE_CASE : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __SCREAMING_SNAKE_CASE : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE : Tuple = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) __SCREAMING_SNAKE_CASE : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __SCREAMING_SNAKE_CASE : Optional[int] = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) __SCREAMING_SNAKE_CASE : Any = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase ) __SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = 99 def __magic_name__( self :Optional[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __SCREAMING_SNAKE_CASE : Dict = input_ids.shape[0] __SCREAMING_SNAKE_CASE : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __magic_name__( self :str ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self._get_config_and_data() __SCREAMING_SNAKE_CASE : List[Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = lm_model(input_ids=_lowercase ) __SCREAMING_SNAKE_CASE : int = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _lowercase ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __SCREAMING_SNAKE_CASE : str = FlaxBlenderbotSmallForConditionalGeneration(_lowercase ) __SCREAMING_SNAKE_CASE : Tuple = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE : int = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE : str = lm_model(input_ids=_lowercase , decoder_input_ids=_lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _lowercase ) def __magic_name__( self :str ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE : Optional[Any] = shift_tokens_right(_lowercase , 1 , 2 ) __SCREAMING_SNAKE_CASE : Optional[int] = np.equal(_lowercase , 1 ).astype(np.floataa ).sum() __SCREAMING_SNAKE_CASE : List[Any] = np.equal(_lowercase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowercase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowercase ( _lowerCAmelCase , unittest.TestCase , _lowerCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE__ : Dict = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __magic_name__( self :Optional[int] ) -> int: __SCREAMING_SNAKE_CASE : List[str] = FlaxBlenderbotSmallModelTester(self ) def __magic_name__( self :Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase ) def __magic_name__( self :int ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase ) def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(_lowercase , _lowercase ) __SCREAMING_SNAKE_CASE : Tuple = model_class(_lowercase ) @jax.jit def encode_jitted(lowerCAmelCase__ :int , lowerCAmelCase__ :str=None , **lowerCAmelCase__ :List[Any] ): return model.encode(input_ids=_lowercase , attention_mask=_lowercase ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE : str = encode_jitted(**_lowercase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE : List[Any] = encode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def __magic_name__( self :Optional[int] ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE : Dict = model_class(_lowercase ) __SCREAMING_SNAKE_CASE : Tuple = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __SCREAMING_SNAKE_CASE : Any = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE : Tuple = decode_jitted(**_lowercase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE : int = decode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __magic_name__( self :Dict ) -> List[str]: for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE : int = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __SCREAMING_SNAKE_CASE : str = np.ones((1, 1) ) * model.config.eos_token_id __SCREAMING_SNAKE_CASE : Optional[int] = model(_lowercase ) self.assertIsNotNone(_lowercase )
696
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def lowerCAmelCase__ ( __magic_name__ ) ->Optional[Any]: __lowercase = SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=["stage2", "stage3", "stage4"] , ) __lowercase = DetaConfig( backbone_config=snake_case_ , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=snake_case_ , with_box_refine=snake_case_ , two_stage=snake_case_ , ) # set labels __lowercase = "huggingface/label-files" if "o365" in model_name: __lowercase = 3_6_6 __lowercase = "object365-id2label.json" else: __lowercase = 9_1 __lowercase = "coco-detection-id2label.json" __lowercase = num_labels __lowercase = json.load(open(cached_download(hf_hub_url(snake_case_ , snake_case_ , repo_type="dataset" ) ) , "r" ) ) __lowercase = {int(snake_case_ ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( __magic_name__ ) ->Tuple: __lowercase = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ) ->Dict: __lowercase = dct.pop(snake_case_ ) __lowercase = val def lowerCAmelCase__ ( __magic_name__ , __magic_name__ ) ->Optional[Any]: __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __lowercase = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase__ ( __magic_name__ , __magic_name__ ) ->Union[str, Any]: # transformer decoder self-attention layers __lowercase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __lowercase = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __lowercase = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:hidden_size, :] __lowercase = in_proj_bias[:hidden_size] __lowercase = in_proj_weight[ hidden_size : hidden_size * 2, : ] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size:, :] __lowercase = in_proj_bias[-hidden_size:] def lowerCAmelCase__ ( ) ->Optional[int]: __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ) ->List[str]: __lowercase = get_deta_config(snake_case_ ) # load original state dict if model_name == "deta-swin-large": __lowercase = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": __lowercase = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F'''Model name {model_name} not supported''' ) __lowercase = torch.load(snake_case_ , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(snake_case_ , param.shape ) # rename keys __lowercase = create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_swin_q_k_v(snake_case_ , config.backbone_config ) read_in_decoder_q_k_v(snake_case_ , snake_case_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __lowercase = state_dict.pop(snake_case_ ) __lowercase = val if "input_proj" in key: __lowercase = state_dict.pop(snake_case_ ) __lowercase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __lowercase = state_dict.pop(snake_case_ ) __lowercase = val # finally, create HuggingFace model and load state dict __lowercase = DetaForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() __lowercase = "cuda" if torch.cuda.is_available() else "cpu" model.to(snake_case_ ) # load image processor __lowercase = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image __lowercase = prepare_img() __lowercase = processor(images=snake_case_ , return_tensors="pt" ) __lowercase = encoding["pixel_values"] __lowercase = model(pixel_values.to(snake_case_ ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __lowercase = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __lowercase = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __lowercase = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __lowercase = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(snake_case_ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(snake_case_ ) , atol=1E-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowercase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
118
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: List[Any] , lowerCAmelCase: List[Any] )-> Dict: _snake_case : int = 1.5 _snake_case : Union[str, Any] = int(factor * num_class_images ) _snake_case : str = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=snake_case_ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=snake_case_ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: _snake_case : Dict = client.query(text=snake_case_ ) if len(snake_case_ ) >= factor * num_class_images or num_images > 1E4: break else: _snake_case : Dict = int(factor * num_images ) _snake_case : List[str] = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=snake_case_ , aesthetic_weight=0.1 , ) _snake_case : Optional[int] = 0 _snake_case : List[str] = 0 _snake_case : Any = tqdm(desc='downloading real regularization images' , total=snake_case_ ) with open(F"""{class_data_dir}/caption.txt""" , 'w' ) as fa, open(F"""{class_data_dir}/urls.txt""" , 'w' ) as fa, open( F"""{class_data_dir}/images.txt""" , 'w' ) as fa: while total < num_class_images: _snake_case : Optional[int] = class_images[count] count += 1 try: _snake_case : List[Any] = requests.get(images['url'] ) if img.status_code == 2_00: _snake_case : int = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCamelCase_ ( )-> List[str]: _snake_case : Optional[Any] = argparse.ArgumentParser('' , add_help=snake_case_ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=snake_case_ , type=snake_case_ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=snake_case_ , type=snake_case_ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=2_00 , type=snake_case_ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
411
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
0
import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class A__ ( _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase = 1 @register_to_config def __init__( self : List[Any] , _a : Any=2000 , _a : Union[str, Any]=0.1 , _a : Union[str, Any]=20 , _a : Optional[int]=1E-3 ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None def __UpperCamelCase ( self : List[Any] , _a : str , _a : Union[str, torch.device] = None ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.linspace(1 , self.config.sampling_eps , _lowercase , device=_lowercase ) def __UpperCamelCase ( self : Optional[int] , _a : Any , _a : Tuple , _a : Dict , _a : Dict=None ) -> Any: """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _SCREAMING_SNAKE_CASE =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _SCREAMING_SNAKE_CASE =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _SCREAMING_SNAKE_CASE =std.flatten() while len(std.shape ) < len(score.shape ): _SCREAMING_SNAKE_CASE =std.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE =-score / std # compute _SCREAMING_SNAKE_CASE =-1.0 / len(self.timesteps ) _SCREAMING_SNAKE_CASE =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _SCREAMING_SNAKE_CASE =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _SCREAMING_SNAKE_CASE =beta_t.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE =-0.5 * beta_t * x _SCREAMING_SNAKE_CASE =torch.sqrt(_lowercase ) _SCREAMING_SNAKE_CASE =drift - diffusion**2 * score _SCREAMING_SNAKE_CASE =x + drift * dt # add noise _SCREAMING_SNAKE_CASE =randn_tensor(x.shape , layout=x.layout , generator=_lowercase , device=x.device , dtype=x.dtype ) _SCREAMING_SNAKE_CASE =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
691
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
0
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
57
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
0
from itertools import product def _UpperCAmelCase ( a : int , a : int ): snake_case__ = sides_number snake_case__ = max_face_number * dice_number snake_case__ = [0] * (max_total + 1) snake_case__ = 1 snake_case__ = range(snake_case_ , max_face_number + 1 ) for dice_numbers in product(snake_case_ , repeat=snake_case_ ): snake_case__ = sum(snake_case_ ) totals_frequencies[total] += 1 return totals_frequencies def _UpperCAmelCase ( ): snake_case__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) snake_case__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) snake_case__ = 0 snake_case__ = 9 snake_case__ = 4 * 9 snake_case__ = 6 for peter_total in range(snake_case_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case__ = (4**9) * (6**6) snake_case__ = peter_wins_count / total_games_number snake_case__ = round(snake_case_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
654
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
0
def _UpperCAmelCase ( UpperCAmelCase : str ): """simple docstring""" __lowerCamelCase : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) __lowerCamelCase : Union[str, Any] = hex_num[0] == """-""" if is_negative: __lowerCamelCase : str = hex_num[1:] try: __lowerCamelCase : str = int(snake_case_ , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) __lowerCamelCase : Optional[int] = """""" while int_num > 0: __lowerCamelCase : Optional[Any] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
519
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCAmelCase = 'pt' elif is_tf_available(): _lowerCAmelCase = 'tf' else: _lowerCAmelCase = 'jax' class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): _UpperCAmelCase = ByTaTokenizer _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowercase ) def __lowerCamelCase ( self ,_A ,_A=False ,_A=20 ,_A=5 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for i in range(len(_lowercase ) ): try: _lowerCAmelCase : List[str] = tokenizer.decode([i] ,clean_up_tokenization_spaces=_lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowerCAmelCase : Any = list(filter(lambda _A : re.match(r'^[ a-zA-Z]+$' ,t[1] ) ,_lowercase ) ) _lowerCAmelCase : Any = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] ,add_special_tokens=_lowercase ) ,_lowercase ) ) if max_length is not None and len(_lowercase ) > max_length: _lowerCAmelCase : Dict = toks[:max_length] if min_length is not None and len(_lowercase ) < min_length and len(_lowercase ) > 0: while len(_lowercase ) < min_length: _lowerCAmelCase : Any = toks + toks # toks_str = [t[1] for t in toks] _lowerCAmelCase : Tuple = [t[0] for t in toks] # Ensure consistency _lowerCAmelCase : Union[str, Any] = tokenizer.decode(_lowercase ,clean_up_tokenization_spaces=_lowercase ) if " " not in output_txt and len(_lowercase ) > 1: _lowerCAmelCase : Optional[Any] = ( tokenizer.decode([toks_ids[0]] ,clean_up_tokenization_spaces=_lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] ,clean_up_tokenization_spaces=_lowercase ) ) if with_prefix_space: _lowerCAmelCase : str = ' ' + output_txt _lowerCAmelCase : List[Any] = tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) return output_txt, output_ids def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.ta_base_tokenizer _lowerCAmelCase : Optional[int] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowerCAmelCase : List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] ,batch_without_eos_added['input_ids'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.ta_base_tokenizer _lowerCAmelCase : Any = 'Unicode €.' _lowerCAmelCase : Union[str, Any] = tokenizer(_lowercase ) _lowerCAmelCase : str = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] ,_lowercase ) # decoding _lowerCAmelCase : Optional[int] = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase ,'Unicode €.</s>' ) _lowerCAmelCase : Any = tokenizer('e è é ê ë' ) _lowerCAmelCase : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] ,_lowercase ) # decoding _lowerCAmelCase : Tuple = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase ,'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) ,'e è é ê ë</s>' ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.ta_base_tokenizer _lowerCAmelCase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowerCAmelCase : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowerCAmelCase : int = tokenizer(_lowercase ,padding=_lowercase ,return_tensors=_lowercase ) self.assertIsInstance(_lowercase ,_lowercase ) if FRAMEWORK != "jax": _lowerCAmelCase : Tuple = list(batch.input_ids.numpy()[0] ) else: _lowerCAmelCase : str = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowercase ,_lowercase ) self.assertEqual((2, 37) ,batch.input_ids.shape ) self.assertEqual((2, 37) ,batch.attention_mask.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.ta_base_tokenizer _lowerCAmelCase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCAmelCase : str = tokenizer(_lowercase ,padding=_lowercase ,return_tensors=_lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' ,_lowercase ) self.assertIn('attention_mask' ,_lowercase ) self.assertNotIn('decoder_input_ids' ,_lowercase ) self.assertNotIn('decoder_attention_mask' ,_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.ta_base_tokenizer _lowerCAmelCase : List[str] = [ 'Summary of the text.', 'Another summary.', ] _lowerCAmelCase : List[str] = tokenizer( text_target=_lowercase ,max_length=32 ,padding='max_length' ,truncation=_lowercase ,return_tensors=_lowercase ) self.assertEqual(32 ,targets['input_ids'].shape[1] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.ta_base_tokenizer _lowerCAmelCase : int = ['A long paragraph for summarization. </s>'] _lowerCAmelCase : Optional[Any] = ['Summary of the text. </s>'] # fmt: off _lowerCAmelCase : int = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowerCAmelCase : str = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowerCAmelCase : Any = tokenizer(_lowercase ,text_target=_lowercase ) self.assertEqual(_lowercase ,batch['input_ids'][0] ) self.assertEqual(_lowercase ,batch['labels'][0] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test _lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : Tuple = tempfile.mkdtemp() _lowerCAmelCase : List[Any] = ' He is very happy, UNwant\u00E9d,running' _lowerCAmelCase : Dict = tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) _lowerCAmelCase : int = tokenizer.__class__.from_pretrained(_lowercase ) _lowerCAmelCase : int = after_tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) shutil.rmtree(_lowercase ) _lowerCAmelCase : Optional[int] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : int = tempfile.mkdtemp() _lowerCAmelCase : Any = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowerCAmelCase : str = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowerCAmelCase : Dict = tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) _lowerCAmelCase : Any = tokenizer.__class__.from_pretrained(_lowercase ) _lowerCAmelCase : Any = after_tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) self.assertIn('new_additional_special_token' ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) _lowerCAmelCase : Optional[int] = tokenizer.__class__.from_pretrained(_lowercase ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowercase ) with open(os.path.join(_lowercase ,'special_tokens_map.json' ) ,encoding='utf-8' ) as json_file: _lowerCAmelCase : List[Any] = json.load(_lowercase ) with open(os.path.join(_lowercase ,'tokenizer_config.json' ) ,encoding='utf-8' ) as json_file: _lowerCAmelCase : List[Any] = json.load(_lowercase ) _lowerCAmelCase : int = [F"""<extra_id_{i}>""" for i in range(125 )] _lowerCAmelCase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowerCAmelCase : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowercase ,'special_tokens_map.json' ) ,'w' ,encoding='utf-8' ) as outfile: json.dump(_lowercase ,_lowercase ) with open(os.path.join(_lowercase ,'tokenizer_config.json' ) ,'w' ,encoding='utf-8' ) as outfile: json.dump(_lowercase ,_lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCAmelCase : Union[str, Any] = tokenizer_class.from_pretrained( _lowercase ,) self.assertIn( 'an_additional_special_token' ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) ,) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCAmelCase : Dict = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' ,lstrip=_lowercase )] _lowerCAmelCase : Dict = tokenizer_class.from_pretrained( _lowercase ,additional_special_tokens=_lowercase ,) self.assertIn('a_new_additional_special_token' ,tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] ,tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowercase ) _lowerCAmelCase : Any = tokenizer_class.from_pretrained(_lowercase ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_tokenizers(fast=_lowercase ,do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase : Optional[Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_string(_lowercase ) self.assertIsInstance(_lowercase ,_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase : Dict = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : int = tokenizer.convert_ids_to_tokens( _lowercase ,skip_special_tokens=_lowercase ) for attr in attributes_list: setattr(_lowercase ,attr + '_id' ,_lowercase ) self.assertEqual(getattr(_lowercase ,_lowercase ) ,_lowercase ) self.assertEqual(getattr(_lowercase ,attr + '_id' ) ,_lowercase ) setattr(_lowercase ,attr + '_id' ,_lowercase ) self.assertEqual(getattr(_lowercase ,_lowercase ) ,_lowercase ) self.assertEqual(getattr(_lowercase ,attr + '_id' ) ,_lowercase ) setattr(_lowercase ,'additional_special_tokens_ids' ,[] ) self.assertListEqual(getattr(_lowercase ,'additional_special_tokens' ) ,[] ) self.assertListEqual(getattr(_lowercase ,'additional_special_tokens_ids' ) ,[] ) setattr(_lowercase ,'additional_special_tokens_ids' ,[token_id_to_test_setters] ) self.assertListEqual(getattr(_lowercase ,'additional_special_tokens' ) ,[token_to_test_setters] ) self.assertListEqual(getattr(_lowercase ,'additional_special_tokens_ids' ) ,[token_id_to_test_setters] )
259
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = XLMRobertaTokenizer lowerCAmelCase__ : List[Any] = XLMRobertaTokenizerFast lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Optional[int] = True def _lowerCamelCase ( self : List[str] ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _lowercase : Optional[Any] = XLMRobertaTokenizer(_lowercase ,keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : List[Any] ) -> str: _lowercase : Dict = '<pad>' _lowercase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) ,_lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) ,_lowercase ) def _lowerCamelCase ( self : Union[str, Any] ) -> Tuple: _lowercase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'<mask>' ) self.assertEqual(len(_lowercase ) ,1002 ) def _lowerCamelCase ( self : Any ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size ,1002 ) def _lowerCamelCase ( self : Dict ) -> Optional[int]: _lowercase : int = XLMRobertaTokenizer(_lowercase ,keep_accents=_lowercase ) _lowercase : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(_lowercase ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) _lowercase : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _lowercase ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) _lowercase : str = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] ,) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def _lowerCamelCase ( self : int ) -> int: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowercase : str = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained(_lowercase ,**_lowercase ) _lowercase : Dict = self.tokenizer_class.from_pretrained(_lowercase ,**_lowercase ) _lowercase : Optional[int] = tempfile.mkdtemp() _lowercase : int = tokenizer_r.save_pretrained(_lowercase ) _lowercase : int = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowercase : List[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(_lowercase ,_lowercase ) # Checks everything loads correctly in the same way _lowercase : Optional[Any] = tokenizer_r.from_pretrained(_lowercase ) _lowercase : Dict = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase ,_lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True _lowercase : List[str] = tempfile.mkdtemp() _lowercase : Tuple = tokenizer_r.save_pretrained(_lowercase ,legacy_format=_lowercase ) _lowercase : Optional[Any] = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase ,_lowercase ) # Checks everything loads correctly in the same way _lowercase : Union[str, Any] = tokenizer_r.from_pretrained(_lowercase ) _lowercase : List[Any] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase ,_lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False _lowercase : Tuple = tempfile.mkdtemp() _lowercase : Tuple = tokenizer_r.save_pretrained(_lowercase ,legacy_format=_lowercase ) _lowercase : Dict = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowercase : Any = tokenizer_r.from_pretrained(_lowercase ) _lowercase : Tuple = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase ,_lowercase ) ) shutil.rmtree(_lowercase ) @cached_property def _lowerCamelCase ( self : Dict ) -> Optional[int]: return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def _lowerCamelCase ( self : List[Any] ) -> Dict: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_lowercase ,f.name ) _lowercase : Any = XLMRobertaTokenizer(f.name ,keep_accents=_lowercase ) _lowercase : Dict = pickle.dumps(_lowercase ) pickle.loads(_lowercase ) def _lowerCamelCase ( self : List[str] ) -> int: if not self.test_rust_tokenizer: return _lowercase : Tuple = self.get_tokenizer() _lowercase : Dict = self.get_rust_tokenizer() _lowercase : List[Any] = 'I was born in 92000, and this is falsé.' _lowercase : Union[str, Any] = tokenizer.tokenize(_lowercase ) _lowercase : Optional[int] = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) _lowercase : List[str] = tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) _lowercase : Any = rust_tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : Any = tokenizer.encode(_lowercase ) _lowercase : Union[str, Any] = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) @slow def _lowerCamelCase ( self : Optional[int] ) -> Tuple: _lowercase : int = 'Hello World!' _lowercase : Optional[Any] = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_lowercase ,self.big_tokenizer.encode(_lowercase ) ) @slow def _lowerCamelCase ( self : str ) -> Union[str, Any]: _lowercase : Dict = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _lowercase : Optional[Any] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_lowercase ,self.big_tokenizer.encode(_lowercase ) ) @slow def _lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: # fmt: off _lowercase : Dict = {'input_ids': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase ,model_name='xlm-roberta-base' ,revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' ,)
125
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
0
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=[30, 30] , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=None , lowerCAmelCase_=8 , lowerCAmelCase_=10 , ) -> Tuple: _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = scope _A = n_targets _A = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens _A = (image_size[1] // patch_size) * (image_size[0] // patch_size) _A = num_patches + 1 + self.num_detection_tokens def UpperCAmelCase ( self ) -> str: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) _A = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) _A = [] for i in range(self.batch_size ): _A = {} _A = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_lowercase ) _A = torch.rand(self.n_targets , 4 , device=_lowercase ) labels.append(_lowercase ) _A = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Tuple: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _A = YolosModel(config=_lowercase ) model.to(_lowercase ) model.eval() _A = model(_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _A = YolosForObjectDetection(_lowercase ) model.to(_lowercase ) model.eval() _A = model(pixel_values=_lowercase ) _A = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) _A = model(pixel_values=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :str = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase :Optional[Any] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase :List[Any] = False lowerCamelCase :Any = False lowerCamelCase :int = False lowerCamelCase :List[Any] = False def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[Any]: _A = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": _A = [] for i in range(self.model_tester.batch_size ): _A = {} _A = torch.ones( size=(self.model_tester.n_targets,) , device=_lowercase , dtype=torch.long ) _A = torch.ones( self.model_tester.n_targets , 4 , device=_lowercase , dtype=torch.float ) labels.append(_lowercase ) _A = labels return inputs_dict def UpperCAmelCase ( self ) -> Union[str, Any]: _A = YolosModelTester(self ) _A = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Optional[int]: # YOLOS does not use inputs_embeds pass def UpperCAmelCase ( self ) -> Tuple: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def UpperCAmelCase ( self ) -> int: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_lowercase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCAmelCase ( self ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self ) -> int: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True # in YOLOS, the seq_len is different _A = self.model_tester.expected_seq_len for model_class in self.all_model_classes: _A = True _A = False _A = True _A = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _A = outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A = True _A = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _A = outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _A = len(_lowercase ) # Check attention is always last and order is fine _A = True _A = True _A = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _A = 1 self.assertEqual(out_len + added_hidden_states , len(_lowercase ) ) _A = outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _A = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _A = outputs.hidden_states _A = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # YOLOS has a different seq_length _A = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase ( self ) -> List[str]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_lowercase ) @slow def UpperCAmelCase ( self ) -> Tuple: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = YolosModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def snake_case ( ) -> List[str]: _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> Dict: return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def UpperCAmelCase ( self ) -> Dict: _A = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(_lowercase ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) # forward pass with torch.no_grad(): _A = model(inputs.pixel_values ) # verify outputs _A = torch.Size((1, 1_00, 92) ) self.assertEqual(outputs.logits.shape , _lowercase ) _A = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_lowercase , ) _A = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowercase , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowercase , atol=1E-4 ) ) # verify postprocessing _A = image_processor.post_process_object_detection( _lowercase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] _A = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(_lowercase ) _A = [75, 75, 17, 63, 17] _A = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(_lowercase ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , _lowercase , atol=1E-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , _lowercase ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , _lowercase ) )
401
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : Tuple = 3 __SCREAMING_SNAKE_CASE : str = (32, 32) __SCREAMING_SNAKE_CASE : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image @property def __magic_name__( self :int ) -> List[str]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __magic_name__( self :List[str] ) -> str: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowercase ) @property def __magic_name__( self :str ) -> Optional[int]: def extract(*lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ): class _lowercase : '''simple docstring''' def __init__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = torch.ones([0] ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Tuple ) -> List[str]: self.pixel_values.to(_lowercase ) return self return Out() return extract def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[str] = self.dummy_cond_unet __SCREAMING_SNAKE_CASE : int = PNDMScheduler(skip_prk_steps=_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_vae __SCREAMING_SNAKE_CASE : str = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : Union[str, Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __SCREAMING_SNAKE_CASE : Dict = 77 __SCREAMING_SNAKE_CASE : int = self.dummy_image.to(_lowercase ) __SCREAMING_SNAKE_CASE : Any = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE : Optional[Any] = AltDiffusionImgaImgPipeline( unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , ) __SCREAMING_SNAKE_CASE : Optional[int] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) __SCREAMING_SNAKE_CASE : int = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : str = alt_pipe( [prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_lowercase , ) __SCREAMING_SNAKE_CASE : Any = output.images __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowercase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = alt_pipe( [prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_lowercase , return_dict=_lowercase , )[0] __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __magic_name__( self :int ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = self.dummy_cond_unet __SCREAMING_SNAKE_CASE : List[Any] = PNDMScheduler(skip_prk_steps=_lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_vae __SCREAMING_SNAKE_CASE : str = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = 77 __SCREAMING_SNAKE_CASE : Tuple = self.dummy_image.to(_lowercase ) # put models in fp16 __SCREAMING_SNAKE_CASE : Dict = unet.half() __SCREAMING_SNAKE_CASE : str = vae.half() __SCREAMING_SNAKE_CASE : Tuple = bert.half() # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE : Dict = AltDiffusionImgaImgPipeline( unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , ) __SCREAMING_SNAKE_CASE : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) __SCREAMING_SNAKE_CASE : List[str] = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = alt_pipe( [prompt] , generator=_lowercase , num_inference_steps=2 , output_type='''np''' , image=_lowercase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __magic_name__( self :Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : List[Any] = init_image.resize((760, 504) ) __SCREAMING_SNAKE_CASE : Any = '''BAAI/AltDiffusion''' __SCREAMING_SNAKE_CASE : Dict = AltDiffusionImgaImgPipeline.from_pretrained( _lowercase , safety_checker=_lowercase , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = '''A fantasy landscape, trending on artstation''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=_lowercase , image=_lowercase , strength=0.75 , guidance_scale=7.5 , generator=_lowercase , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : int = output.images[0] __SCREAMING_SNAKE_CASE : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) __SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Dict ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :Tuple ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __SCREAMING_SNAKE_CASE : str = init_image.resize((768, 512) ) __SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) __SCREAMING_SNAKE_CASE : List[Any] = '''BAAI/AltDiffusion''' __SCREAMING_SNAKE_CASE : Any = AltDiffusionImgaImgPipeline.from_pretrained( _lowercase , safety_checker=_lowercase , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Tuple = '''A fantasy landscape, trending on artstation''' __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe( prompt=_lowercase , image=_lowercase , strength=0.75 , guidance_scale=7.5 , generator=_lowercase , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : List[Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
696
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) ->Optional[int]: # Load configuration defined in the metadata file with open(snake_case_ ) as metadata_file: __lowercase = json.load(snake_case_ ) __lowercase = LukeConfig(use_entity_aware_attention=snake_case_ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __lowercase = torch.load(snake_case_ , map_location="cpu" ) # Load the entity vocab file __lowercase = load_entity_vocab(snake_case_ ) __lowercase = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __lowercase = AddedToken("<ent>" , lstrip=snake_case_ , rstrip=snake_case_ ) __lowercase = AddedToken("<ent2>" , lstrip=snake_case_ , rstrip=snake_case_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(snake_case_ ) with open(os.path.join(snake_case_ , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(snake_case_ , snake_case_ ) __lowercase = LukeTokenizer.from_pretrained(snake_case_ ) # Initialize the embeddings of the special tokens __lowercase = state_dict["embeddings.word_embeddings.weight"] __lowercase = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) __lowercase = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) __lowercase = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowercase = F'''encoder.layer.{layer_index}.attention.self.''' __lowercase = state_dict[prefix + matrix_name] __lowercase = state_dict[prefix + matrix_name] __lowercase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowercase = state_dict["entity_embeddings.entity_embeddings.weight"] __lowercase = entity_emb[entity_vocab["[MASK]"]] __lowercase = LukeModel(config=snake_case_ ).eval() __lowercase , __lowercase = model.load_state_dict(snake_case_ , strict=snake_case_ ) if not (len(snake_case_ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {', '.join(snake_case_ )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F''' {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}''' ) # Check outputs __lowercase = LukeTokenizer.from_pretrained(snake_case_ , task="entity_classification" ) __lowercase = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) __lowercase = (3_9, 4_2) __lowercase = tokenizer(snake_case_ , entity_spans=[span] , add_prefix_space=snake_case_ , return_tensors="pt" ) __lowercase = model(**snake_case_ ) # Verify word hidden states if model_size == "large": __lowercase = torch.Size((1, 4_2, 1_0_2_4) ) __lowercase = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base __lowercase = torch.Size((1, 4_2, 7_6_8) ) __lowercase = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __lowercase = torch.Size((1, 1, 1_0_2_4) ) __lowercase = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base __lowercase = torch.Size((1, 1, 7_6_8) ) __lowercase = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case_ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(snake_case_ ) ) model.save_pretrained(snake_case_ ) def lowerCAmelCase__ ( __magic_name__ ) ->Dict: __lowercase = {} with open(snake_case_ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(snake_case_ ): __lowercase , __lowercase = line.rstrip().split("\t" ) __lowercase = index return entity_vocab if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _lowercase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
118
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
0
import numpy class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : numpy.ndarray , UpperCamelCase : numpy.ndarray ): '''simple docstring''' _snake_case : Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _snake_case : Tuple = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _snake_case : Any = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _snake_case : Optional[int] = numpy.random.rand(3 , 1 ) # Real output values provided. _snake_case : Optional[Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _snake_case : str = numpy.zeros(output_array.shape ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _snake_case : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _snake_case : List[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Tuple = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _snake_case : Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _snake_case : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : numpy.ndarray , UpperCamelCase : int , UpperCamelCase : bool ): '''simple docstring''' for iteration in range(1 , iterations + 1 ): _snake_case : str = self.feedforward() self.back_propagation() if give_loss: _snake_case : Optional[Any] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : numpy.ndarray ): '''simple docstring''' _snake_case : Optional[int] = input_arr _snake_case : int = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _snake_case : Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _snake_case : int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCamelCase_ ( lowerCAmelCase: numpy.ndarray )-> int: return 1 / (1 + numpy.exp(-value )) def lowerCamelCase_ ( lowerCAmelCase: numpy.ndarray )-> Tuple: return (value) * (1 - (value)) def lowerCamelCase_ ( )-> Optional[int]: _snake_case : List[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _snake_case : Tuple = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _snake_case : Tuple = TwoHiddenLayerNeuralNetwork( input_array=snake_case_ , output_array=snake_case_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=snake_case_ , iterations=10 , give_loss=snake_case_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
411
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( _lowerCAmelCase ): UpperCAmelCase = (EulerDiscreteScheduler,) UpperCAmelCase = 10 def __UpperCamelCase ( self : List[Any] , **_a : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase ) return config def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase ) def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowercase ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.scheduler_classes[0] _SCREAMING_SNAKE_CASE =self.get_scheduler_config() _SCREAMING_SNAKE_CASE =scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =self.dummy_model() _SCREAMING_SNAKE_CASE =self.dummy_sample_deter * scheduler.init_noise_sigma _SCREAMING_SNAKE_CASE =sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE =scheduler.scale_model_input(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =model(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _SCREAMING_SNAKE_CASE =output.prev_sample _SCREAMING_SNAKE_CASE =torch.sum(torch.abs(_lowercase ) ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 10.08_07 ) < 1E-2 assert abs(result_mean.item() - 0.01_31 ) < 1E-3 def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.scheduler_classes[0] _SCREAMING_SNAKE_CASE =self.get_scheduler_config(prediction_type='''v_prediction''' ) _SCREAMING_SNAKE_CASE =scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =self.dummy_model() _SCREAMING_SNAKE_CASE =self.dummy_sample_deter * scheduler.init_noise_sigma _SCREAMING_SNAKE_CASE =sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE =scheduler.scale_model_input(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =model(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _SCREAMING_SNAKE_CASE =output.prev_sample _SCREAMING_SNAKE_CASE =torch.sum(torch.abs(_lowercase ) ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 0.00_02 ) < 1E-2 assert abs(result_mean.item() - 2.26_76E-06 ) < 1E-3 def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.scheduler_classes[0] _SCREAMING_SNAKE_CASE =self.get_scheduler_config() _SCREAMING_SNAKE_CASE =scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =self.dummy_model() _SCREAMING_SNAKE_CASE =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _SCREAMING_SNAKE_CASE =sample.to(_lowercase ) for t in scheduler.timesteps: _SCREAMING_SNAKE_CASE =scheduler.scale_model_input(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =model(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _SCREAMING_SNAKE_CASE =output.prev_sample _SCREAMING_SNAKE_CASE =torch.sum(torch.abs(_lowercase ) ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 10.08_07 ) < 1E-2 assert abs(result_mean.item() - 0.01_31 ) < 1E-3 def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.scheduler_classes[0] _SCREAMING_SNAKE_CASE =self.get_scheduler_config() _SCREAMING_SNAKE_CASE =scheduler_class(**_lowercase , use_karras_sigmas=_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =self.dummy_model() _SCREAMING_SNAKE_CASE =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _SCREAMING_SNAKE_CASE =sample.to(_lowercase ) for t in scheduler.timesteps: _SCREAMING_SNAKE_CASE =scheduler.scale_model_input(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =model(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) _SCREAMING_SNAKE_CASE =output.prev_sample _SCREAMING_SNAKE_CASE =torch.sum(torch.abs(_lowercase ) ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1_24.52_29_94_99_51_17_19 ) < 1E-2 assert abs(result_mean.item() - 0.1_62_13_93_26_33_39_99_63 ) < 1E-3
691
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class _lowerCAmelCase( _lowerCAmelCase ): """simple docstring""" a : Optional[Any] ="ibert" def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) UpperCamelCase_: Dict = vocab_size UpperCamelCase_: int = hidden_size UpperCamelCase_: Union[str, Any] = num_hidden_layers UpperCamelCase_: int = num_attention_heads UpperCamelCase_: Any = hidden_act UpperCamelCase_: str = intermediate_size UpperCamelCase_: Optional[Any] = hidden_dropout_prob UpperCamelCase_: Optional[int] = attention_probs_dropout_prob UpperCamelCase_: Any = max_position_embeddings UpperCamelCase_: Optional[Any] = type_vocab_size UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: int = layer_norm_eps UpperCamelCase_: List[str] = position_embedding_type UpperCamelCase_: Optional[int] = quant_mode UpperCamelCase_: Any = force_dequant class _lowerCAmelCase( _lowerCAmelCase ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
57
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a__ = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _lowercase : Union[str, Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowercase : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowercase : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowercase : str = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __magic_name__ ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = ZeroShotClassificationPipeline( model=_lowercase , tokenizer=_lowercase , candidate_labels=["""polics""", """health"""]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __magic_name__ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any]): '''simple docstring''' snake_case__ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""") self.assertEqual(_lowercase , {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase)], """scores""": [ANY(_lowercase)]}) # No kwarg snake_case__ = classifier("""Who are you voting for in 2020?""" , ["""politics"""]) self.assertEqual(_lowercase , {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase)], """scores""": [ANY(_lowercase)]}) snake_case__ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""]) self.assertEqual(_lowercase , {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase)], """scores""": [ANY(_lowercase)]}) snake_case__ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""") self.assertEqual( _lowercase , {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase), ANY(_lowercase)], """scores""": [ANY(_lowercase), ANY(_lowercase)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""])) , 1.0) snake_case__ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""]) self.assertEqual( _lowercase , {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase), ANY(_lowercase)], """scores""": [ANY(_lowercase), ANY(_lowercase)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""])) , 1.0) snake_case__ = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""") self.assertEqual(_lowercase , {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase)], """scores""": [ANY(_lowercase)]}) # https://github.com/huggingface/transformers/issues/13846 snake_case__ = classifier(["""I am happy"""] , ["""positive""", """negative"""]) self.assertEqual( _lowercase , [ {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase), ANY(_lowercase)], """scores""": [ANY(_lowercase), ANY(_lowercase)]} for i in range(1) ] , ) snake_case__ = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""]) self.assertEqual( _lowercase , [ {"""sequence""": ANY(_lowercase), """labels""": [ANY(_lowercase), ANY(_lowercase)], """scores""": [ANY(_lowercase), ANY(_lowercase)]} for i in range(2) ] , ) with self.assertRaises(_lowercase): classifier("""""" , candidate_labels="""politics""") with self.assertRaises(_lowercase): classifier(_lowercase , candidate_labels="""politics""") with self.assertRaises(_lowercase): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""") with self.assertRaises(_lowercase): classifier("""Who are you voting for in 2020?""" , candidate_labels=_lowercase) with self.assertRaises(_lowercase): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(_lowercase): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=_lowercase , ) self.run_entailment_id(_lowercase) def __magic_name__ ( self : Any , UpperCamelCase__ : Pipeline): '''simple docstring''' snake_case__ = zero_shot_classifier.model.config snake_case__ = config.labelaid snake_case__ = zero_shot_classifier.entailment_id snake_case__ = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1) snake_case__ = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0) snake_case__ = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0) snake_case__ = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2) snake_case__ = original_labelaid self.assertEqual(_lowercase , zero_shot_classifier.entailment_id) @require_torch def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 1_0_0 , candidate_labels=["""politics""", """public health""", """science"""]) @require_torch def __magic_name__ ( self : List[Any]): '''simple docstring''' snake_case__ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) snake_case__ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""]) self.assertEqual( nested_simplify(_lowercase) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) snake_case__ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""]) self.assertEqual( nested_simplify(_lowercase) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def __magic_name__ ( self : Tuple): '''simple docstring''' snake_case__ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""") snake_case__ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""]) self.assertEqual( nested_simplify(_lowercase) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_76, 0.0_15, 0.0_09], } , ) snake_case__ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=_lowercase , ) self.assertEqual( nested_simplify(_lowercase) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""") snake_case__ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""]) self.assertEqual( nested_simplify(_lowercase) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_76, 0.0_15, 0.0_09], } , ) snake_case__ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=_lowercase , ) self.assertEqual( nested_simplify(_lowercase) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
654
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Dict = 'Hello, World!' __UpperCamelCase : Optional[int] = 'en_XX' def _UpperCAmelCase ( UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : bool ): """simple docstring""" __lowerCamelCase : List[str] = Path("""data_bin""" ) __lowerCamelCase : List[str] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case_ ).parent ) , checkpoint_file=Path(snake_case_ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(snake_case_ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(snake_case_ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(snake_case_ ) __lowerCamelCase : int = xmod.model.encoder.sentence_encoder __lowerCamelCase : List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowerCamelCase : List[Any] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , snake_case_ ) __lowerCamelCase : Optional[Any] = XmodForSequenceClassification(snake_case_ ) if classification_head else XmodForMaskedLM(snake_case_ ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase : List[str] = xmod_sent_encoder.embed_tokens.weight __lowerCamelCase : Optional[int] = xmod_sent_encoder.embed_positions.weight __lowerCamelCase : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCamelCase : str = xmod_sent_encoder.layernorm_embedding.weight __lowerCamelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase : Any = model.roberta.encoder.layer[i] __lowerCamelCase : List[str] = xmod_sent_encoder.layers[i] # self attention __lowerCamelCase : Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) __lowerCamelCase : Optional[Any] = xmod_layer.self_attn.q_proj.weight __lowerCamelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias __lowerCamelCase : Optional[int] = xmod_layer.self_attn.k_proj.weight __lowerCamelCase : Optional[Any] = xmod_layer.self_attn.k_proj.bias __lowerCamelCase : Any = xmod_layer.self_attn.v_proj.weight __lowerCamelCase : Dict = xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase : Tuple = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) __lowerCamelCase : str = xmod_layer.self_attn.out_proj.weight __lowerCamelCase : str = xmod_layer.self_attn.out_proj.bias __lowerCamelCase : Tuple = xmod_layer.self_attn_layer_norm.weight __lowerCamelCase : Optional[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCamelCase : List[str] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) __lowerCamelCase : Union[str, Any] = xmod_layer.fca.weight __lowerCamelCase : Tuple = xmod_layer.fca.bias # output __lowerCamelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) __lowerCamelCase : Dict = xmod_layer.fca.weight __lowerCamelCase : Any = xmod_layer.fca.bias __lowerCamelCase : str = xmod_layer.final_layer_norm.weight __lowerCamelCase : Tuple = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCamelCase : Tuple = xmod_layer.adapter_layer_norm.weight __lowerCamelCase : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCamelCase : str = bert_output.adapter_modules[lang_code] __lowerCamelCase : Optional[int] = xmod_layer.adapter_modules[lang_code] __lowerCamelCase : str = from_adapter.fca.weight __lowerCamelCase : str = from_adapter.fca.bias __lowerCamelCase : Dict = from_adapter.fca.weight __lowerCamelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCamelCase : str = xmod_sent_encoder.layer_norm.weight __lowerCamelCase : str = xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCamelCase : int = xmod.model.classification_heads["""mnli"""].dense.weight __lowerCamelCase : int = xmod.model.classification_heads["""mnli"""].dense.bias __lowerCamelCase : Any = xmod.model.classification_heads["""mnli"""].out_proj.weight __lowerCamelCase : Optional[Any] = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __lowerCamelCase : Tuple = xmod.model.encoder.lm_head.dense.weight __lowerCamelCase : Optional[int] = xmod.model.encoder.lm_head.dense.bias __lowerCamelCase : Any = xmod.model.encoder.lm_head.layer_norm.weight __lowerCamelCase : Any = xmod.model.encoder.lm_head.layer_norm.bias __lowerCamelCase : Optional[Any] = xmod.model.encoder.lm_head.weight __lowerCamelCase : Optional[Any] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase : int = xmod.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case_ ) __lowerCamelCase : str = model(snake_case_ )[0] if classification_head: __lowerCamelCase : Any = xmod.model.classification_heads["""mnli"""](xmod.extract_features(snake_case_ ) ) else: __lowerCamelCase : Optional[Any] = xmod.model(snake_case_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowerCamelCase : int = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowerCamelCase : Tuple = torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
519
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __UpperCamelCase ( _lowerCAmelCase ): _UpperCAmelCase = 42 class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self ,_A = 3 ,_A = 3 ,_A = ("DownEncoderBlock2D",) ,_A = ("UpDecoderBlock2D",) ,_A = (64,) ,_A = 1 ,_A = "silu" ,_A = 3 ,_A = 32 ,_A = 256 ,_A = 32 ,_A = None ,_A = 0.1_8_2_1_5 ,_A = "group" ,): '''simple docstring''' super().__init__() # pass init params to Encoder _lowerCAmelCase : Optional[int] = Encoder( in_channels=_lowercase ,out_channels=_lowercase ,down_block_types=_lowercase ,block_out_channels=_lowercase ,layers_per_block=_lowercase ,act_fn=_lowercase ,norm_num_groups=_lowercase ,double_z=_lowercase ,) _lowerCAmelCase : int = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCAmelCase : Dict = nn.Convad(_lowercase ,_lowercase ,1 ) _lowerCAmelCase : Tuple = VectorQuantizer(_lowercase ,_lowercase ,beta=0.2_5 ,remap=_lowercase ,sane_index_shape=_lowercase ) _lowerCAmelCase : List[str] = nn.Convad(_lowercase ,_lowercase ,1 ) # pass init params to Decoder _lowerCAmelCase : str = Decoder( in_channels=_lowercase ,out_channels=_lowercase ,up_block_types=_lowercase ,block_out_channels=_lowercase ,layers_per_block=_lowercase ,act_fn=_lowercase ,norm_num_groups=_lowercase ,norm_type=_lowercase ,) @apply_forward_hook def __lowerCamelCase ( self ,_A ,_A = True ): '''simple docstring''' _lowerCAmelCase : Tuple = self.encoder(_lowercase ) _lowerCAmelCase : Optional[int] = self.quant_conv(_lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowercase ) @apply_forward_hook def __lowerCamelCase ( self ,_A ,_A = False ,_A = True ): '''simple docstring''' if not force_not_quantize: _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = self.quantize(_lowercase ) else: _lowerCAmelCase : int = h _lowerCAmelCase : Any = self.post_quant_conv(_lowercase ) _lowerCAmelCase : List[str] = self.decoder(_lowercase ,quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowercase ) def __lowerCamelCase ( self ,_A ,_A = True ): '''simple docstring''' _lowerCAmelCase : List[Any] = sample _lowerCAmelCase : Tuple = self.encode(_lowercase ).latents _lowerCAmelCase : Optional[Any] = self.decode(_lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowercase )
259
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
0
'''simple docstring''' from __future__ import annotations class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] ,UpperCamelCase : Optional[Any]=None ) -> str: _lowercase : Dict = data _lowercase : Dict = None def __repr__( self : Optional[Any] ) -> Optional[Any]: _lowercase : str = [] _lowercase : Optional[int] = self while temp: string_rep.append(F'''{temp.data}''' ) _lowercase : int = temp.next return "->".join(_lowercase ) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : list) -> List[Any]: '''simple docstring''' if not elements_list: raise Exception('The Elements List is empty') _lowercase : Union[str, Any] = Node(elements_list[0]) for i in range(1 , len(snake_case_)): _lowercase : str = Node(elements_list[i]) _lowercase : List[str] = current.next return head def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Node) -> Optional[Any]: '''simple docstring''' if head_node is not None and isinstance(snake_case_ , snake_case_): print_reverse(head_node.next) print(head_node.data) def SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' from doctest import testmod testmod() _lowercase : Optional[int] = make_linked_list([14, 52, 14, 12, 43]) print('Linked List:') print(snake_case_) print('Elements in Reverse:') print_reverse(snake_case_) if __name__ == "__main__": main()
125
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : """simple docstring""" @staticmethod def UpperCAmelCase ( *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: pass @is_pipeline_test @require_vision class a ( unittest.TestCase ): """simple docstring""" @require_torch def UpperCAmelCase ( self ) -> str: _A = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _A = image_classifier(_lowercase , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowercase ) , [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] , ) _A = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], ] , ) @require_tf def UpperCAmelCase ( self ) -> Optional[Any]: _A = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _A = image_classifier(_lowercase , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(_lowercase ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , ) _A = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], ] , ) @slow @require_torch def UpperCAmelCase ( self ) -> int: _A = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _A = image_classifier(_lowercase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(_lowercase ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase ( self ) -> Optional[Any]: _A = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _A = image_classifier(_lowercase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(_lowercase ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , )
401
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
0
from collections import defaultdict from math import gcd def __a ( A__ : int = 1500000 ): SCREAMING_SNAKE_CASE = defaultdict(snake_case_ ) SCREAMING_SNAKE_CASE = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , snake_case_ , 2 ): if gcd(snake_case_ , snake_case_ ) > 1: continue SCREAMING_SNAKE_CASE = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(snake_case_ , limit + 1 , snake_case_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'{solution() = }')
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
class _lowercase : '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Optional[Any]=None ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = data __SCREAMING_SNAKE_CASE : Optional[int] = previous __SCREAMING_SNAKE_CASE : Any = next_node def __str__( self :Optional[int] ) -> str: return f'''{self.data}''' def __magic_name__( self :Tuple ) -> Dict: return self.data def __magic_name__( self :Any ) -> Union[str, Any]: return self.next def __magic_name__( self :Any ) -> Optional[Any]: return self.previous class _lowercase : '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Any = head def __iter__( self :str ) -> List[Any]: return self def __magic_name__( self :Optional[int] ) -> Tuple: if not self.current: raise StopIteration else: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.current.get_data() __SCREAMING_SNAKE_CASE : Tuple = self.current.get_next() return value class _lowercase : '''simple docstring''' def __init__( self :int ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[Any] = None # First node in list __SCREAMING_SNAKE_CASE : Optional[int] = None # Last node in list def __str__( self :List[str] ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = self.head __SCREAMING_SNAKE_CASE : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __SCREAMING_SNAKE_CASE : int = current.get_next() return " ".join(str(_lowercase ) for node in nodes ) def __contains__( self :int , lowerCAmelCase__ :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.head while current: if current.get_data() == value: return True __SCREAMING_SNAKE_CASE : List[str] = current.get_next() return False def __iter__( self :Union[str, Any] ) -> str: return LinkedListIterator(self.head ) def __magic_name__( self :Optional[Any] ) -> str: if self.head: return self.head.get_data() return None def __magic_name__( self :Union[str, Any] ) -> List[str]: if self.tail: return self.tail.get_data() return None def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Node ) -> List[Any]: if self.head is None: __SCREAMING_SNAKE_CASE : Optional[int] = node __SCREAMING_SNAKE_CASE : Dict = node else: self.insert_before_node(self.head , _lowercase ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Node ) -> Optional[int]: if self.head is None: self.set_head(_lowercase ) else: self.insert_after_node(self.tail , _lowercase ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = Node(_lowercase ) if self.head is None: self.set_head(_lowercase ) else: self.set_tail(_lowercase ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Node , lowerCAmelCase__ :Node ) -> List[Any]: __SCREAMING_SNAKE_CASE : Any = node __SCREAMING_SNAKE_CASE : Union[str, Any] = node.previous if node.get_previous() is None: __SCREAMING_SNAKE_CASE : Optional[Any] = node_to_insert else: __SCREAMING_SNAKE_CASE : Union[str, Any] = node_to_insert __SCREAMING_SNAKE_CASE : Optional[int] = node_to_insert def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Node , lowerCAmelCase__ :Node ) -> str: __SCREAMING_SNAKE_CASE : Union[str, Any] = node __SCREAMING_SNAKE_CASE : Optional[int] = node.next if node.get_next() is None: __SCREAMING_SNAKE_CASE : int = node_to_insert else: __SCREAMING_SNAKE_CASE : List[str] = node_to_insert __SCREAMING_SNAKE_CASE : Dict = node_to_insert def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = Node(_lowercase ) __SCREAMING_SNAKE_CASE : str = self.head while node: if current_position == position: self.insert_before_node(_lowercase , _lowercase ) return current_position += 1 __SCREAMING_SNAKE_CASE : str = node.next self.insert_after_node(self.tail , _lowercase ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.head while node: if node.get_data() == item: return node __SCREAMING_SNAKE_CASE : str = node.get_next() raise Exception('''Node not found''' ) def __magic_name__( self :Any , lowerCAmelCase__ :str ) -> Union[str, Any]: if (node := self.get_node(_lowercase )) is not None: if node == self.head: __SCREAMING_SNAKE_CASE : int = self.head.get_next() if node == self.tail: __SCREAMING_SNAKE_CASE : List[str] = self.tail.get_previous() self.remove_node_pointers(_lowercase ) @staticmethod def __magic_name__( lowerCAmelCase__ :Node ) -> List[Any]: if node.get_next(): __SCREAMING_SNAKE_CASE : Any = node.previous if node.get_previous(): __SCREAMING_SNAKE_CASE : Any = node.next __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : int = None def __magic_name__( self :str ) -> Optional[Any]: return self.head is None def _UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
696
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
0
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __a : '''simple docstring''' def __init__( self ) -> Dict: '''simple docstring''' __lowercase = "" __lowercase = "" __lowercase = [] __lowercase = 0 __lowercase = 256 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = cva.imread(_lowercase , 0 ) __lowercase = copy.deepcopy(self.img ) __lowercase , __lowercase , __lowercase = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) __lowercase = np.sum(_lowercase ) for i in range(len(_lowercase ) ): __lowercase = x[i] / self.k self.sk += prk __lowercase = (self.L - 1) * self.sk if self.rem != 0: __lowercase = int(last % last ) __lowercase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_lowercase ) __lowercase = int(np.ma.count(self.img ) / self.img[1].size ) __lowercase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __lowercase = self.img[j][i] if num != self.last_list[num]: __lowercase = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": _lowercase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _lowercase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
118
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
0
def lowerCamelCase_ ( lowerCAmelCase: list )-> Optional[Any]: _snake_case : int = 0 while len(snake_case_ ) > 1: _snake_case : Any = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _snake_case : Dict = files.index(min(snake_case_ ) ) temp += files[min_index] files.pop(snake_case_ ) files.append(snake_case_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
411
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
0
def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =len(snake_case_) for i in range(length - 1): _SCREAMING_SNAKE_CASE =i for k in range(i + 1 ,snake_case_): if collection[k] < collection[least]: _SCREAMING_SNAKE_CASE =k if least != i: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =(collection[i], collection[least]) return collection if __name__ == "__main__": snake_case_ : Dict = input('''Enter numbers separated by a comma:\n''').strip() snake_case_ : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
691
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : Optional[int] = logging.get_logger(__name__) class _lowerCAmelCase( _lowerCAmelCase ): """simple docstring""" a : str =["pixel_values"] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = 1 / 2_5_5 , _lowerCamelCase = True , _lowerCamelCase = IMAGENET_DEFAULT_MEAN , _lowerCamelCase = IMAGENET_DEFAULT_STD , **_lowerCamelCase , ): super().__init__(**_lowercase ) UpperCamelCase_: List[str] = size if size is not None else {'shortest_edge': 2_2_4} UpperCamelCase_: Union[str, Any] = get_size_dict(_lowercase , default_to_square=_lowercase ) UpperCamelCase_: Union[str, Any] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCamelCase_: int = get_size_dict(_lowercase , param_name='crop_size' ) UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: Any = size UpperCamelCase_: List[Any] = resample UpperCamelCase_: Optional[Any] = do_center_crop UpperCamelCase_: int = crop_size UpperCamelCase_: str = do_rescale UpperCamelCase_: Optional[Any] = rescale_factor UpperCamelCase_: Any = do_normalize UpperCamelCase_: str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase_: List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: List[Any] = get_size_dict(_lowercase , default_to_square=_lowercase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: UpperCamelCase_: Optional[Any] = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) UpperCamelCase_: Union[str, Any] = get_resize_output_image_size(_lowercase , size=_lowercase , default_to_square=_lowercase ) UpperCamelCase_: str = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowercase , size=(size_dict['height'], size_dict['width']) , resample=_lowercase , data_format=_lowercase , **_lowercase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: str = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: Optional[int] = resample if resample is not None else self.resample UpperCamelCase_: List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_: Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_: List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_: List[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: List[Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase_: int = image_std if image_std is not None else self.image_std UpperCamelCase_: int = size if size is not None else self.size UpperCamelCase_: Optional[int] = get_size_dict(_lowercase , default_to_square=_lowercase ) UpperCamelCase_: int = crop_size if crop_size is not None else self.crop_size UpperCamelCase_: List[str] = get_size_dict(_lowercase , param_name='crop_size' ) UpperCamelCase_: Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: Optional[int] = [to_numpy_array(_lowercase ) for image in images] if do_resize: UpperCamelCase_: Tuple = [self.resize(_lowercase , _lowercase , _lowercase ) for image in images] if do_center_crop: UpperCamelCase_: Tuple = [self.center_crop(_lowercase , _lowercase ) for image in images] if do_rescale: UpperCamelCase_: Dict = [self.rescale(_lowercase , _lowercase ) for image in images] if do_normalize: UpperCamelCase_: int = [self.normalize(_lowercase , _lowercase , _lowercase ) for image in images] UpperCamelCase_: Tuple = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] UpperCamelCase_: Dict = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
57
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
0
def _UpperCAmelCase ( a : int = 5000_0000 ): snake_case__ = set() snake_case__ = int((limit - 24) ** (1 / 2) ) snake_case__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , snake_case_ ) ) ) for primea in primes: snake_case__ = primea * primea for primea in primes: snake_case__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: snake_case__ = primea * primea * primea * primea snake_case__ = square + cube + tetr if total >= limit: break ret.add(snake_case_ ) return len(snake_case_ ) if __name__ == "__main__": print(F'''{solution() = }''')
654
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
0
from __future__ import annotations def _UpperCAmelCase ( UpperCAmelCase : list , UpperCAmelCase : int ): """simple docstring""" if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def _UpperCAmelCase ( UpperCAmelCase : list , UpperCAmelCase : int ): """simple docstring""" if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowerCamelCase , __lowerCamelCase : List[Any] = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": __UpperCamelCase : Any = input('Enter integers separated by spaces: ') __UpperCamelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
519
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
0
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _lowerCAmelCase = logging.getLogger(__name__) class __UpperCamelCase : def __init__( self ): '''simple docstring''' _lowerCAmelCase : Any = False def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ): '''simple docstring''' if not self.initialized: _lowerCAmelCase : Optional[int] = RagRetriever( _lowercase ,question_encoder_tokenizer=_lowercase ,generator_tokenizer=_lowercase ,index=_lowercase ,init_retrieval=_lowercase ,) _lowerCAmelCase : Union[str, Any] = True def __lowerCamelCase ( self ): '''simple docstring''' self.retriever.index.init_index() def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.retriever._main_retrieve(_lowercase ,_lowercase ) return doc_ids, retrieved_doc_embeds class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self ,_A ,_A ,_A ,_A ,_A=None ): '''simple docstring''' if index is not None and index.is_initialized() and len(_lowercase ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( _lowercase ,question_encoder_tokenizer=_lowercase ,generator_tokenizer=_lowercase ,index=_lowercase ,init_retrieval=_lowercase ,) _lowerCAmelCase : Any = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_lowercase ,_lowercase ,_lowercase ,_lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ): '''simple docstring''' logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _lowerCAmelCase : Any = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] _lowerCAmelCase, _lowerCAmelCase : List[str] = ray.get(random_worker.retrieve.remote(_lowercase ,_lowercase ) ) else: _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self._main_retrieve(_lowercase ,_lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowercase ) @classmethod def __lowerCamelCase ( cls ,_A ,_A=None ,**_A ): '''simple docstring''' return super(_lowercase ,cls ).get_tokenizers(_lowercase ,_lowercase ,**_lowercase ) @classmethod def __lowerCamelCase ( cls ,_A ,_A ,_A=None ,**_A ): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('config' ,_lowercase ) or RagConfig.from_pretrained(_lowercase ,**_lowercase ) _lowerCAmelCase : Union[str, Any] = RagTokenizer.from_pretrained(_lowercase ,config=_lowercase ) _lowerCAmelCase : Tuple = rag_tokenizer.question_encoder _lowerCAmelCase : Optional[Any] = rag_tokenizer.generator if indexed_dataset is not None: _lowerCAmelCase : Any = 'custom' _lowerCAmelCase : Union[str, Any] = CustomHFIndex(config.retrieval_vector_size ,_lowercase ) else: _lowerCAmelCase : str = cls._build_index(_lowercase ) return cls( _lowercase ,question_encoder_tokenizer=_lowercase ,generator_tokenizer=_lowercase ,retrieval_workers=_lowercase ,index=_lowercase ,)
259
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['PoolFormerFeatureExtractor'] A = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
125
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
0
import math def snake_case ( snake_case__ :int) -> List[Any]: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( snake_case__ :float = 0.1) -> List[str]: _A = 3 _A = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(snake_case_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
401
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
def __a ( A__ : Dict ): # noqa: E741 SCREAMING_SNAKE_CASE = len(snake_case_ ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [0] * n SCREAMING_SNAKE_CASE = [False] * n SCREAMING_SNAKE_CASE = [False] * n def dfs(A__ : Tuple , A__ : Union[str, Any] , A__ : Any , A__ : int ): if parent == root: out_edge_count += 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = at for to in l[at]: if to == parent: pass elif not visited[to]: SCREAMING_SNAKE_CASE = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: SCREAMING_SNAKE_CASE = True # AP found via cycle if at == low[to]: SCREAMING_SNAKE_CASE = True else: SCREAMING_SNAKE_CASE = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) SCREAMING_SNAKE_CASE = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph __A : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
16
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
0
from math import sqrt def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = 0 for i in range(1 , int(sqrt(snake_case_ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case_ ): total += i + n // i elif i == sqrt(snake_case_ ): total += i return total - n def _UpperCamelCase ( lowercase__ = 10000 ): __SCREAMING_SNAKE_CASE : Tuple = sum( i for i in range(1 , snake_case_ ) if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
696
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class __a ( _lowerCAmelCase ): '''simple docstring''' _lowerCamelCase : List[str] = "data2vec-text" def __init__( self , _lowerCamelCase=30_522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3_072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout class __a ( _lowerCAmelCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowercase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
118
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): '''simple docstring''' self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Dict = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowercase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : int = None ops.enable_eager_execution_internal() _snake_case : Any = tf.config.list_physical_devices('CPU' ) if len(_lowercase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) _snake_case : List[Any] = tf.config.list_logical_devices(device_type='CPU' ) _snake_case : List[str] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): _snake_case : List[str] = GradientAccumulator() _snake_case : Union[str, Any] = tf.Variable([4.0, 3.0] ) _snake_case , _snake_case : List[str] = create_optimizer(5e-5 , 10 , 5 ) _snake_case : List[str] = tf.Variable([0.0, 0.0] , trainable=_lowercase ) def accumulate_on_replica(UpperCamelCase : Optional[int] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(UpperCamelCase : Dict , UpperCamelCase : Tuple ): with strategy.scope(): _snake_case : Dict = strategy.experimental_local_results(_lowercase ) local_variables[0].assign(_lowercase ) local_variables[1].assign(_lowercase ) strategy.run(_lowercase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowercase ) def _check_local_values(UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] ): _snake_case : List[str] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowercase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _lowercase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
411
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
0
def lowerCamelCase( a__ ,a__ ,a__): if principal <= 0: raise Exception('''Principal borrowed must be > 0''') if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''') if years_to_repay <= 0 or not isinstance(snake_case_ ,snake_case_): raise Exception('''Years to repay must be an integer > 0''') # Yearly rate is divided by 12 to get monthly rate _SCREAMING_SNAKE_CASE =rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _SCREAMING_SNAKE_CASE =years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
691
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" a : int =LEDTokenizer a : Optional[Any] =LEDTokenizerFast a : List[Any] =True def _a ( self ): super().setUp() UpperCamelCase_: Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCamelCase_: Tuple = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) UpperCamelCase_: str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase_: int = {'unk_token': '<unk>'} UpperCamelCase_: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowercase ) ) def _a ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def _a ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def _a ( self , _lowerCamelCase ): return "lower newer", "lower newer" @cached_property def _a ( self ): return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def _a ( self ): return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def _a ( self ): UpperCamelCase_: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] UpperCamelCase_: List[Any] = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: List[str] = tokenizer(_lowercase , max_length=len(_lowercase ) , padding=_lowercase , return_tensors='pt' ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(_lowercase , _lowercase ) @require_torch def _a ( self ): UpperCamelCase_: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: List[str] = tokenizer(_lowercase , padding=_lowercase , return_tensors='pt' ) self.assertIn('input_ids' , _lowercase ) self.assertIn('attention_mask' , _lowercase ) self.assertNotIn('labels' , _lowercase ) self.assertNotIn('decoder_attention_mask' , _lowercase ) @require_torch def _a ( self ): UpperCamelCase_: int = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: Optional[Any] = tokenizer(text_target=_lowercase , max_length=3_2 , padding='max_length' , return_tensors='pt' ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) @require_torch def _a ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: Any = tokenizer( ['I am a small frog' * 1_0_2_4, 'I am a small frog'] , padding=_lowercase , truncation=_lowercase , return_tensors='pt' ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def _a ( self ): UpperCamelCase_: int = ['A long paragraph for summarization.'] UpperCamelCase_: List[str] = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: Optional[int] = tokenizer(_lowercase , return_tensors='pt' ) UpperCamelCase_: List[Any] = tokenizer(text_target=_lowercase , return_tensors='pt' ) UpperCamelCase_: Optional[Any] = inputs['input_ids'] UpperCamelCase_: Tuple = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _a ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_: Tuple = ['Summary of the text.', 'Another summary.'] UpperCamelCase_: int = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCamelCase_: Tuple = tokenizer(_lowercase , padding=_lowercase ) UpperCamelCase_: str = [[0] * len(_lowercase ) for x in encoded_output['input_ids']] UpperCamelCase_: Union[str, Any] = tokenizer.pad(_lowercase ) self.assertSequenceEqual(outputs['global_attention_mask'] , _lowercase ) def _a ( self ): pass def _a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: Tuple = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) UpperCamelCase_: Any = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) UpperCamelCase_: Any = 'A, <mask> AllenNLP sentence.' UpperCamelCase_: Dict = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) UpperCamelCase_: List[str] = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) UpperCamelCase_: Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCamelCase_: Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( _lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
57
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _lowerCAmelCase ( _lowerCAmelCase ): """simple docstring""" _lowercase : Tuple = "camembert" def __init__( self : Union[str, Any] , UpperCamelCase__ : Any=3_0_5_2_2 , UpperCamelCase__ : Any=7_6_8 , UpperCamelCase__ : Union[str, Any]=1_2 , UpperCamelCase__ : List[str]=1_2 , UpperCamelCase__ : int=3_0_7_2 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=5_1_2 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1E-12 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : Optional[Any]=0 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : List[Any]="absolute" , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Dict=None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase) snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = hidden_act snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = position_embedding_type snake_case__ = use_cache snake_case__ = classifier_dropout class _lowerCAmelCase ( _lowerCAmelCase ): """simple docstring""" @property def __magic_name__ ( self : Tuple): '''simple docstring''' if self.task == "multiple-choice": snake_case__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
654
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
519
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
0
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): _UpperCAmelCase = MobileBertTokenizer _UpperCAmelCase = MobileBertTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = filter_non_english _UpperCAmelCase = "google/mobilebert-uncased" def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _lowerCAmelCase : str = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = 'UNwant\u00E9d,running' _lowerCAmelCase : Union[str, Any] = 'unwanted, running' return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase : Tuple = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_lowercase ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) ,[9, 6, 7, 12, 10, 11] ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() _lowerCAmelCase : Optional[int] = 'UNwant\u00E9d,running' _lowerCAmelCase : List[Any] = tokenizer.tokenize(_lowercase ) _lowerCAmelCase : List[Any] = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) _lowerCAmelCase : List[str] = rust_tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Tuple = tokenizer.encode(_lowercase ) _lowerCAmelCase : Dict = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) # With lower casing _lowerCAmelCase : Optional[int] = self.get_tokenizer(do_lower_case=_lowercase ) _lowerCAmelCase : Any = self.get_rust_tokenizer(do_lower_case=_lowercase ) _lowerCAmelCase : Tuple = 'UNwant\u00E9d,running' _lowerCAmelCase : Any = tokenizer.tokenize(_lowercase ) _lowerCAmelCase : List[Any] = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) _lowerCAmelCase : List[str] = tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) _lowerCAmelCase : Any = rust_tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Union[str, Any] = tokenizer.encode(_lowercase ) _lowerCAmelCase : List[str] = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = BasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=_lowercase ,strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=_lowercase ,strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = BasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = BasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=_lowercase ,strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = BasicTokenizer(do_lower_case=_lowercase ,strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=_lowercase ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _lowerCAmelCase : Tuple = {} for i, token in enumerate(_lowercase ): _lowerCAmelCase : Union[str, Any] = i _lowerCAmelCase : int = WordpieceTokenizer(vocab=_lowercase ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : int = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowercase ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(_lowercase ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained('google/mobilebert-uncased' ) _lowerCAmelCase : Optional[int] = tokenizer.encode('sequence builders' ,add_special_tokens=_lowercase ) _lowerCAmelCase : int = tokenizer.encode('multi-sequence build' ,add_special_tokens=_lowercase ) _lowerCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(_lowercase ) _lowerCAmelCase : str = tokenizer.build_inputs_with_special_tokens(_lowercase ,_lowercase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __lowerCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_lowercase ,**_lowercase ) _lowerCAmelCase : Any = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _lowerCAmelCase : Optional[Any] = tokenizer_r.encode_plus( _lowercase ,return_attention_mask=_lowercase ,return_token_type_ids=_lowercase ,return_offsets_mapping=_lowercase ,add_special_tokens=_lowercase ,) _lowerCAmelCase : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_lowercase ,'do_lower_case' ) else False _lowerCAmelCase : Union[str, Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['offset_mapping'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ['的', '人', '有'] _lowerCAmelCase : List[str] = ''.join(_lowercase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase : Tuple = True _lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(_lowercase ,**_lowercase ) _lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(_lowercase ,**_lowercase ) _lowerCAmelCase : int = tokenizer_p.encode(_lowercase ,add_special_tokens=_lowercase ) _lowerCAmelCase : str = tokenizer_r.encode(_lowercase ,add_special_tokens=_lowercase ) _lowerCAmelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_lowercase ) _lowerCAmelCase : Dict = tokenizer_p.convert_ids_to_tokens(_lowercase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowercase ,_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) _lowerCAmelCase : str = False _lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(_lowercase ,**_lowercase ) _lowerCAmelCase : str = self.tokenizer_class.from_pretrained(_lowercase ,**_lowercase ) _lowerCAmelCase : int = tokenizer_r.encode(_lowercase ,add_special_tokens=_lowercase ) _lowerCAmelCase : Optional[int] = tokenizer_p.encode(_lowercase ,add_special_tokens=_lowercase ) _lowerCAmelCase : Optional[int] = tokenizer_r.convert_ids_to_tokens(_lowercase ) _lowerCAmelCase : str = tokenizer_p.convert_ids_to_tokens(_lowercase ) # it is expected that only the first Chinese character is not preceded by "##". _lowerCAmelCase : Dict = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_lowercase ) ] self.assertListEqual(_lowercase ,_lowercase ) self.assertListEqual(_lowercase ,_lowercase )
259
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : int ,UpperCamelCase : int ,UpperCamelCase : int ) -> Union[str, Any]: _lowercase : List[Any] = jnp.ones((batch_size, length) ) / length return scores def _lowerCamelCase ( self : str ) -> Any: _lowercase : Dict = None _lowercase : List[Any] = 20 _lowercase : List[str] = self._get_uniform_logits(batch_size=2 ,length=_lowercase ) # tweak scores to not be uniform anymore _lowercase : Tuple = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _lowercase : List[str] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _lowercase : Optional[Any] = jax.nn.softmax(_lowercase ,axis=-1 ) _lowercase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowercase : int = FlaxTemperatureLogitsWarper(temperature=1.3 ) _lowercase : Any = jax.nn.softmax(temp_dist_warper_sharper(_lowercase ,scores.copy() ,cur_len=_lowercase ) ,axis=-1 ) _lowercase : Dict = jax.nn.softmax(temp_dist_warper_smoother(_lowercase ,scores.copy() ,cur_len=_lowercase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def _lowerCamelCase ( self : List[Any] ) -> List[str]: _lowercase : List[str] = None _lowercase : str = 10 _lowercase : List[str] = 2 # create ramp distribution _lowercase : int = np.broadcast_to(np.arange(_lowercase )[None, :] ,(batch_size, vocab_size) ).copy() _lowercase : List[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size _lowercase : List[str] = FlaxTopKLogitsWarper(3 ) _lowercase : Optional[int] = top_k_warp(_lowercase ,_lowercase ,cur_len=_lowercase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case _lowercase : List[Any] = 5 _lowercase : List[Any] = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) _lowercase : Optional[Any] = np.broadcast_to(np.arange(_lowercase )[None, :] ,(batch_size, length) ).copy() _lowercase : Any = top_k_warp_safety_check(_lowercase ,_lowercase ,cur_len=_lowercase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def _lowerCamelCase ( self : str ) -> Optional[Any]: _lowercase : Optional[int] = None _lowercase : List[Any] = 10 _lowercase : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _lowercase : Any = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) _lowercase : Dict = FlaxTopPLogitsWarper(0.8 ) _lowercase : Union[str, Any] = np.exp(top_p_warp(_lowercase ,_lowercase ,cur_len=_lowercase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _lowercase : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_lowercase ,_lowercase ,atol=1e-3 ) ) # check edge cases with negative and extreme logits _lowercase : Tuple = np.broadcast_to(np.arange(_lowercase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _lowercase : Tuple = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept _lowercase : str = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) _lowercase : Tuple = top_p_warp(_lowercase ,_lowercase ,cur_len=_lowercase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def _lowerCamelCase ( self : List[str] ) -> Any: _lowercase : Optional[int] = 20 _lowercase : Union[str, Any] = 4 _lowercase : Dict = 0 _lowercase : int = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowercase ) # check that min length is applied at length 5 _lowercase : Dict = ids_tensor((batch_size, 20) ,vocab_size=20 ) _lowercase : List[Any] = 5 _lowercase : Tuple = self._get_uniform_logits(_lowercase ,_lowercase ) _lowercase : List[str] = min_dist_processor(_lowercase ,_lowercase ,cur_len=_lowercase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 _lowercase : Dict = self._get_uniform_logits(_lowercase ,_lowercase ) _lowercase : Union[str, Any] = 15 _lowercase : Dict = min_dist_processor(_lowercase ,_lowercase ,cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def _lowerCamelCase ( self : List[Any] ) -> List[str]: _lowercase : Union[str, Any] = 20 _lowercase : Optional[int] = 4 _lowercase : List[str] = 0 _lowercase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) # check that all scores are -inf except the bos_token_id score _lowercase : Dict = ids_tensor((batch_size, 1) ,vocab_size=20 ) _lowercase : Dict = 1 _lowercase : Optional[Any] = self._get_uniform_logits(_lowercase ,_lowercase ) _lowercase : str = logits_processor(_lowercase ,_lowercase ,cur_len=_lowercase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _lowercase : List[Any] = 3 _lowercase : List[Any] = self._get_uniform_logits(_lowercase ,_lowercase ) _lowercase : str = logits_processor(_lowercase ,_lowercase ,cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def _lowerCamelCase ( self : Optional[int] ) -> Dict: _lowercase : List[str] = 20 _lowercase : Any = 4 _lowercase : str = 0 _lowercase : List[str] = 5 _lowercase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase ,eos_token_id=_lowercase ) # check that all scores are -inf except the eos_token_id when max_length is reached _lowercase : Optional[Any] = ids_tensor((batch_size, 4) ,vocab_size=20 ) _lowercase : List[Any] = 4 _lowercase : Union[str, Any] = self._get_uniform_logits(_lowercase ,_lowercase ) _lowercase : Union[str, Any] = logits_processor(_lowercase ,_lowercase ,cur_len=_lowercase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _lowercase : int = 3 _lowercase : Tuple = self._get_uniform_logits(_lowercase ,_lowercase ) _lowercase : Dict = logits_processor(_lowercase ,_lowercase ,cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def _lowerCamelCase ( self : Any ) -> List[str]: _lowercase : Union[str, Any] = 4 _lowercase : int = 10 _lowercase : List[str] = 15 _lowercase : int = 2 _lowercase : List[Any] = 1 _lowercase : Optional[Any] = 15 # dummy input_ids and scores _lowercase : str = ids_tensor((batch_size, sequence_length) ,_lowercase ) _lowercase : int = input_ids.copy() _lowercase : List[Any] = self._get_uniform_logits(_lowercase ,_lowercase ) _lowercase : str = scores.copy() # instantiate all dist processors _lowercase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowercase : List[str] = FlaxTopKLogitsWarper(3 ) _lowercase : List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowercase : int = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowercase ) _lowercase : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) _lowercase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase ,eos_token_id=_lowercase ) _lowercase : List[Any] = 10 # no processor list _lowercase : Optional[int] = temp_dist_warp(_lowercase ,_lowercase ,cur_len=_lowercase ) _lowercase : List[Any] = top_k_warp(_lowercase ,_lowercase ,cur_len=_lowercase ) _lowercase : Union[str, Any] = top_p_warp(_lowercase ,_lowercase ,cur_len=_lowercase ) _lowercase : Tuple = min_dist_proc(_lowercase ,_lowercase ,cur_len=_lowercase ) _lowercase : Optional[Any] = bos_dist_proc(_lowercase ,_lowercase ,cur_len=_lowercase ) _lowercase : Optional[Any] = eos_dist_proc(_lowercase ,_lowercase ,cur_len=_lowercase ) # with processor list _lowercase : Dict = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowercase : Any = processor(_lowercase ,_lowercase ,cur_len=_lowercase ) # scores should be equal self.assertTrue(jnp.allclose(_lowercase ,_lowercase ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def _lowerCamelCase ( self : int ) -> List[Any]: _lowercase : List[Any] = 4 _lowercase : Optional[int] = 10 _lowercase : Optional[Any] = 15 _lowercase : Optional[Any] = 2 _lowercase : List[str] = 1 _lowercase : int = 15 # dummy input_ids and scores _lowercase : str = ids_tensor((batch_size, sequence_length) ,_lowercase ) _lowercase : str = input_ids.copy() _lowercase : List[Any] = self._get_uniform_logits(_lowercase ,_lowercase ) _lowercase : Optional[int] = scores.copy() # instantiate all dist processors _lowercase : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowercase : Any = FlaxTopKLogitsWarper(3 ) _lowercase : Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowercase : str = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowercase ) _lowercase : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) _lowercase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase ,eos_token_id=_lowercase ) _lowercase : List[str] = 10 # no processor list def run_no_processor_list(UpperCamelCase : List[str] ,UpperCamelCase : Optional[Any] ,UpperCamelCase : List[Any] ): _lowercase : int = temp_dist_warp(_lowercase ,_lowercase ,cur_len=_lowercase ) _lowercase : List[Any] = top_k_warp(_lowercase ,_lowercase ,cur_len=_lowercase ) _lowercase : Tuple = top_p_warp(_lowercase ,_lowercase ,cur_len=_lowercase ) _lowercase : Dict = min_dist_proc(_lowercase ,_lowercase ,cur_len=_lowercase ) _lowercase : Dict = bos_dist_proc(_lowercase ,_lowercase ,cur_len=_lowercase ) _lowercase : List[Any] = eos_dist_proc(_lowercase ,_lowercase ,cur_len=_lowercase ) return scores # with processor list def run_processor_list(UpperCamelCase : Union[str, Any] ,UpperCamelCase : Tuple ,UpperCamelCase : int ): _lowercase : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowercase : List[Any] = processor(_lowercase ,_lowercase ,cur_len=_lowercase ) return scores _lowercase : List[str] = jax.jit(_lowercase ) _lowercase : Optional[int] = jax.jit(_lowercase ) _lowercase : Any = jitted_run_no_processor_list(_lowercase ,_lowercase ,_lowercase ) _lowercase : Optional[Any] = jitted_run_processor_list(_lowercase ,_lowercase ,_lowercase ) # scores should be equal self.assertTrue(jnp.allclose(_lowercase ,_lowercase ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
125
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class a : """simple docstring""" pass
401
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = args.pruning_method SCREAMING_SNAKE_CASE = args.threshold SCREAMING_SNAKE_CASE = args.model_name_or_path.rstrip("/" ) SCREAMING_SNAKE_CASE = args.target_model_path print(F"Load fine-pruned model from {model_name_or_path}" ) SCREAMING_SNAKE_CASE = torch.load(os.path.join(snake_case_ , "pytorch_model.bin" ) ) SCREAMING_SNAKE_CASE = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: SCREAMING_SNAKE_CASE = tensor print(F"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: SCREAMING_SNAKE_CASE = tensor print(F"Copied layer {name}" ) elif "bias" in name: SCREAMING_SNAKE_CASE = tensor print(F"Copied layer {name}" ) else: if pruning_method == "magnitude": SCREAMING_SNAKE_CASE = MagnitudeBinarizer.apply(inputs=snake_case_ , threshold=snake_case_ ) SCREAMING_SNAKE_CASE = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE = name[:-6] SCREAMING_SNAKE_CASE = model[F"{prefix_}mask_scores"] SCREAMING_SNAKE_CASE = TopKBinarizer.apply(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE = name[:-6] SCREAMING_SNAKE_CASE = model[F"{prefix_}mask_scores"] SCREAMING_SNAKE_CASE = ThresholdBinarizer.apply(snake_case_ , snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE = name[:-6] SCREAMING_SNAKE_CASE = model[F"{prefix_}mask_scores"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -0.1, 1.1 SCREAMING_SNAKE_CASE = torch.sigmoid(snake_case_ ) SCREAMING_SNAKE_CASE = s * (r - l) + l SCREAMING_SNAKE_CASE = s_bar.clamp(min=0.0 , max=1.0 ) SCREAMING_SNAKE_CASE = tensor * mask print(F"Pruned layer {name}" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: SCREAMING_SNAKE_CASE = os.path.join( os.path.dirname(snake_case_ ) , F"bertarized_{os.path.basename(snake_case_ )}" ) if not os.path.isdir(snake_case_ ): shutil.copytree(snake_case_ , snake_case_ ) print(F"\nCreated folder {target_model_path}" ) torch.save(snake_case_ , os.path.join(snake_case_ , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) __A : str = parser.parse_args() main(args)
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _lowercase ( _lowerCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :str , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Dict=("DownEncoderBlock2D",) , lowerCAmelCase__ :Dict=(64,) , lowerCAmelCase__ :Union[str, Any]=2 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :List[str]="silu" , lowerCAmelCase__ :Optional[int]=True , ) -> Any: super().__init__() __SCREAMING_SNAKE_CASE : List[str] = layers_per_block __SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.Convad( _lowercase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : int = nn.ModuleList([] ) # down __SCREAMING_SNAKE_CASE : Any = block_out_channels[0] for i, down_block_type in enumerate(_lowercase ): __SCREAMING_SNAKE_CASE : List[Any] = output_channel __SCREAMING_SNAKE_CASE : Union[str, Any] = block_out_channels[i] __SCREAMING_SNAKE_CASE : Any = i == len(_lowercase ) - 1 __SCREAMING_SNAKE_CASE : Dict = get_down_block( _lowercase , num_layers=self.layers_per_block , in_channels=_lowercase , out_channels=_lowercase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=_lowercase , resnet_groups=_lowercase , attention_head_dim=_lowercase , temb_channels=_lowercase , ) self.down_blocks.append(_lowercase ) # mid __SCREAMING_SNAKE_CASE : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowercase , temb_channels=_lowercase , ) # out __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_lowercase , eps=1E-6 ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.SiLU() __SCREAMING_SNAKE_CASE : List[Any] = 2 * out_channels if double_z else out_channels __SCREAMING_SNAKE_CASE : Dict = nn.Convad(block_out_channels[-1] , _lowercase , 3 , padding=1 ) __SCREAMING_SNAKE_CASE : int = False def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = x __SCREAMING_SNAKE_CASE : Any = self.conv_in(_lowercase ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase__ :Dict ): def custom_forward(*lowerCAmelCase__ :Any ): return module(*_lowercase ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: __SCREAMING_SNAKE_CASE : int = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowercase ) , _lowercase , use_reentrant=_lowercase ) # middle __SCREAMING_SNAKE_CASE : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowercase , use_reentrant=_lowercase ) else: for down_block in self.down_blocks: __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowercase ) , _lowercase ) # middle __SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _lowercase ) else: # down for down_block in self.down_blocks: __SCREAMING_SNAKE_CASE : Dict = down_block(_lowercase ) # middle __SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowercase ) # post-process __SCREAMING_SNAKE_CASE : List[str] = self.conv_norm_out(_lowercase ) __SCREAMING_SNAKE_CASE : int = self.conv_act(_lowercase ) __SCREAMING_SNAKE_CASE : List[str] = self.conv_out(_lowercase ) return sample class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Dict , lowerCAmelCase__ :Any=3 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :List[str]=("UpDecoderBlock2D",) , lowerCAmelCase__ :List[str]=(64,) , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Optional[Any]="silu" , lowerCAmelCase__ :List[Any]="group" , ) -> int: super().__init__() __SCREAMING_SNAKE_CASE : Dict = layers_per_block __SCREAMING_SNAKE_CASE : Optional[int] = nn.Convad( _lowercase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] ) __SCREAMING_SNAKE_CASE : Any = in_channels if norm_type == '''spatial''' else None # mid __SCREAMING_SNAKE_CASE : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowercase , temb_channels=_lowercase , ) # up __SCREAMING_SNAKE_CASE : List[Any] = list(reversed(_lowercase ) ) __SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(_lowercase ): __SCREAMING_SNAKE_CASE : List[Any] = output_channel __SCREAMING_SNAKE_CASE : Optional[int] = reversed_block_out_channels[i] __SCREAMING_SNAKE_CASE : Dict = i == len(_lowercase ) - 1 __SCREAMING_SNAKE_CASE : Tuple = get_up_block( _lowercase , num_layers=self.layers_per_block + 1 , in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=_lowercase , resnet_groups=_lowercase , attention_head_dim=_lowercase , temb_channels=_lowercase , resnet_time_scale_shift=_lowercase , ) self.up_blocks.append(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = output_channel # out if norm_type == "spatial": __SCREAMING_SNAKE_CASE : Dict = SpatialNorm(block_out_channels[0] , _lowercase ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_lowercase , eps=1E-6 ) __SCREAMING_SNAKE_CASE : Tuple = nn.SiLU() __SCREAMING_SNAKE_CASE : Dict = nn.Convad(block_out_channels[0] , _lowercase , 3 , padding=1 ) __SCREAMING_SNAKE_CASE : Tuple = False def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any]=None ) -> int: __SCREAMING_SNAKE_CASE : int = z __SCREAMING_SNAKE_CASE : str = self.conv_in(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCAmelCase__ :Optional[Any] ): def custom_forward(*lowerCAmelCase__ :Optional[int] ): return module(*_lowercase ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle __SCREAMING_SNAKE_CASE : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowercase , _lowercase , use_reentrant=_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = sample.to(_lowercase ) # up for up_block in self.up_blocks: __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowercase ) , _lowercase , _lowercase , use_reentrant=_lowercase ) else: # middle __SCREAMING_SNAKE_CASE : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowercase , _lowercase ) __SCREAMING_SNAKE_CASE : int = sample.to(_lowercase ) # up for up_block in self.up_blocks: __SCREAMING_SNAKE_CASE : List[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowercase ) , _lowercase , _lowercase ) else: # middle __SCREAMING_SNAKE_CASE : List[str] = self.mid_block(_lowercase , _lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(_lowercase ) # up for up_block in self.up_blocks: __SCREAMING_SNAKE_CASE : Union[str, Any] = up_block(_lowercase , _lowercase ) # post-process if latent_embeds is None: __SCREAMING_SNAKE_CASE : List[str] = self.conv_norm_out(_lowercase ) else: __SCREAMING_SNAKE_CASE : Dict = self.conv_norm_out(_lowercase , _lowercase ) __SCREAMING_SNAKE_CASE : Tuple = self.conv_act(_lowercase ) __SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowercase ) return sample class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Optional[Any]="random" , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :Optional[Any]=True ) -> Dict: super().__init__() __SCREAMING_SNAKE_CASE : List[Any] = n_e __SCREAMING_SNAKE_CASE : Dict = vq_embed_dim __SCREAMING_SNAKE_CASE : Tuple = beta __SCREAMING_SNAKE_CASE : List[Any] = legacy __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __SCREAMING_SNAKE_CASE : Optional[int] = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) __SCREAMING_SNAKE_CASE : List[Any] = self.used.shape[0] __SCREAMING_SNAKE_CASE : Optional[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __SCREAMING_SNAKE_CASE : Dict = self.re_embed __SCREAMING_SNAKE_CASE : int = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: __SCREAMING_SNAKE_CASE : Optional[int] = n_e __SCREAMING_SNAKE_CASE : Tuple = sane_index_shape def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape assert len(_lowercase ) > 1 __SCREAMING_SNAKE_CASE : Optional[int] = inds.reshape(ishape[0] , -1 ) __SCREAMING_SNAKE_CASE : int = self.used.to(_lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() __SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 ) __SCREAMING_SNAKE_CASE : str = match.sum(2 ) < 1 if self.unknown_index == "random": __SCREAMING_SNAKE_CASE : Any = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unknown_index return new.reshape(_lowercase ) def __magic_name__( self :Any , lowerCAmelCase__ :Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE : str = inds.shape assert len(_lowercase ) > 1 __SCREAMING_SNAKE_CASE : Dict = inds.reshape(ishape[0] , -1 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.used.to(_lowercase ) if self.re_embed > self.used.shape[0]: # extra token __SCREAMING_SNAKE_CASE : Optional[int] = 0 # simply set to zero __SCREAMING_SNAKE_CASE : Optional[int] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _lowercase ) return back.reshape(_lowercase ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[str] ) -> List[Any]: # reshape z -> (batch, height, width, channel) and flatten __SCREAMING_SNAKE_CASE : str = z.permute(0 , 2 , 3 , 1 ).contiguous() __SCREAMING_SNAKE_CASE : Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(_lowercase , self.embedding.weight ) , dim=1 ) __SCREAMING_SNAKE_CASE : Dict = self.embedding(_lowercase ).view(z.shape ) __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Optional[int] = None # compute loss for embedding if not self.legacy: __SCREAMING_SNAKE_CASE : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __SCREAMING_SNAKE_CASE : str = z + (z_q - z).detach() # reshape back to match original input shape __SCREAMING_SNAKE_CASE : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __SCREAMING_SNAKE_CASE : Optional[int] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(_lowercase ) __SCREAMING_SNAKE_CASE : Any = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __SCREAMING_SNAKE_CASE : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] ) -> int: # shape specifying (batch, height, width, channel) if self.remap is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis __SCREAMING_SNAKE_CASE : Any = self.unmap_to_all(_lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors __SCREAMING_SNAKE_CASE : str = self.embedding(_lowercase ) if shape is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = z_q.view(_lowercase ) # reshape back to match original input shape __SCREAMING_SNAKE_CASE : Dict = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _lowercase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict=False ) -> List[str]: __SCREAMING_SNAKE_CASE : Dict = parameters __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = torch.chunk(_lowercase , 2 , dim=1 ) __SCREAMING_SNAKE_CASE : List[Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) __SCREAMING_SNAKE_CASE : List[Any] = deterministic __SCREAMING_SNAKE_CASE : Optional[int] = torch.exp(0.5 * self.logvar ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.exp(self.logvar ) if self.deterministic: __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Optional[torch.Generator] = None ) -> List[str]: # make sure sample is on the same device as the parameters and has same dtype __SCREAMING_SNAKE_CASE : str = randn_tensor( self.mean.shape , generator=_lowercase , device=self.parameters.device , dtype=self.parameters.dtype ) __SCREAMING_SNAKE_CASE : Optional[int] = self.mean + self.std * sample return x def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Tuple=None ) -> Tuple: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __magic_name__( self :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :str=[1, 2, 3] ) -> Optional[int]: if self.deterministic: return torch.Tensor([0.0] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_lowercase ) def __magic_name__( self :List[str] ) -> Any: return self.mean
696
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' a_ : List[str] =MODEL_FOR_CAUSAL_LM_MAPPING a_ : Optional[int] =TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[str] = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output _snake_case : Optional[int] = text_generator('This is a test' , do_sample=_lowercase ) self.assertEqual( _lowercase , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) _snake_case : Any = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( _lowercase , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) _snake_case : List[Any] = text_generator('This is a test' , do_sample=_lowercase , num_return_sequences=2 , return_tensors=_lowercase ) self.assertEqual( _lowercase , [ {'generated_token_ids': ANY(_lowercase )}, {'generated_token_ids': ANY(_lowercase )}, ] , ) _snake_case : Tuple = text_generator.model.config.eos_token_id _snake_case : Tuple = '<pad>' _snake_case : Tuple = text_generator( ['This is a test', 'This is a second test'] , do_sample=_lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowercase , ) self.assertEqual( _lowercase , [ [ {'generated_token_ids': ANY(_lowercase )}, {'generated_token_ids': ANY(_lowercase )}, ], [ {'generated_token_ids': ANY(_lowercase )}, {'generated_token_ids': ANY(_lowercase )}, ], ] , ) @require_tf def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[Any] = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output _snake_case : Optional[int] = text_generator('This is a test' , do_sample=_lowercase ) self.assertEqual( _lowercase , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) _snake_case : str = text_generator(['This is a test', 'This is a second test'] , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def UpperCamelCase_ ( self : Any , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[int] = TextGenerationPipeline(model=_lowercase , tokenizer=_lowercase ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Any = 'Hello I believe in' _snake_case : Tuple = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) _snake_case : List[Any] = text_generator(_lowercase ) self.assertEqual( _lowercase , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) _snake_case : int = text_generator(_lowercase , stop_sequence=' fe' ) self.assertEqual(_lowercase , [{'generated_text': 'Hello I believe in fe'}] ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str ): '''simple docstring''' _snake_case : str = text_generator.model _snake_case : List[str] = text_generator.tokenizer _snake_case : Optional[Any] = text_generator('This is a test' ) self.assertEqual(_lowercase , [{'generated_text': ANY(_lowercase )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) _snake_case : Union[str, Any] = text_generator('This is a test' , return_full_text=_lowercase ) self.assertEqual(_lowercase , [{'generated_text': ANY(_lowercase )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) _snake_case : Optional[int] = pipeline(task='text-generation' , model=_lowercase , tokenizer=_lowercase , return_full_text=_lowercase ) _snake_case : Union[str, Any] = text_generator('This is a test' ) self.assertEqual(_lowercase , [{'generated_text': ANY(_lowercase )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) _snake_case : Optional[Any] = text_generator('This is a test' , return_full_text=_lowercase ) self.assertEqual(_lowercase , [{'generated_text': ANY(_lowercase )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) _snake_case : Any = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [{'generated_text': ANY(_lowercase )}, {'generated_text': ANY(_lowercase )}], [{'generated_text': ANY(_lowercase )}, {'generated_text': ANY(_lowercase )}], ] , ) if text_generator.tokenizer.pad_token is not None: _snake_case : Optional[int] = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [{'generated_text': ANY(_lowercase )}, {'generated_text': ANY(_lowercase )}], [{'generated_text': ANY(_lowercase )}, {'generated_text': ANY(_lowercase )}], ] , ) with self.assertRaises(_lowercase ): _snake_case : int = text_generator('test' , return_full_text=_lowercase , return_text=_lowercase ) with self.assertRaises(_lowercase ): _snake_case : Dict = text_generator('test' , return_full_text=_lowercase , return_tensors=_lowercase ) with self.assertRaises(_lowercase ): _snake_case : int = text_generator('test' , return_text=_lowercase , return_tensors=_lowercase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _snake_case : Tuple = text_generator('' ) self.assertEqual(_lowercase , [{'generated_text': ANY(_lowercase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _snake_case : List[str] = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _snake_case : Union[str, Any] = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 5_00 , max_new_tokens=20 ) _snake_case : Dict = text_generator('This is a test' * 5_00 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_lowercase ): text_generator( 'This is a test' * 5_00 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' import torch # Classic `model_kwargs` _snake_case : Tuple = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _snake_case : Optional[Any] = pipe('This is a test' ) self.assertEqual( _lowercase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _snake_case : Optional[int] = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _snake_case : str = pipe('This is a test' ) self.assertEqual( _lowercase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _snake_case : Dict = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _snake_case : List[Any] = pipe('This is a test' ) self.assertEqual( _lowercase , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' import torch _snake_case : Tuple = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : int ): '''simple docstring''' import torch _snake_case : str = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=_lowercase , top_p=0.5 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[Any] = 'Hello world' _snake_case : List[str] = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": _snake_case : Union[str, Any] = logging.get_logger('transformers.generation.tf_utils' ) else: _snake_case : Dict = logging.get_logger('transformers.generation.utils' ) _snake_case : Optional[int] = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_lowercase ) as cl: _snake_case : Union[str, Any] = text_generator(_lowercase , max_length=10 , max_new_tokens=1 ) self.assertIn(_lowercase , cl.out ) # The user only sets one -> no warning with CaptureLogger(_lowercase ) as cl: _snake_case : List[str] = text_generator(_lowercase , max_new_tokens=1 ) self.assertNotIn(_lowercase , cl.out ) with CaptureLogger(_lowercase ) as cl: _snake_case : List[str] = text_generator(_lowercase , max_length=10 ) self.assertNotIn(_lowercase , cl.out )
411
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed snake_case_ : List[Any] = logging.getLogger(__name__) def lowerCamelCase( a__=2 ,a__=3 ,a__=16 ,a__ = 10 ,a__ = 2): def get_dataset(a__): _SCREAMING_SNAKE_CASE =torch.randn(batch_size * n_batches ,1) return TensorDataset(snake_case_ ,a * x + b + 0.1 * torch.randn(batch_size * n_batches ,1)) _SCREAMING_SNAKE_CASE =get_dataset(snake_case_) _SCREAMING_SNAKE_CASE =get_dataset(snake_case_) _SCREAMING_SNAKE_CASE =DataLoader(snake_case_ ,shuffle=snake_case_ ,batch_size=snake_case_ ,num_workers=4) _SCREAMING_SNAKE_CASE =DataLoader(snake_case_ ,shuffle=snake_case_ ,batch_size=snake_case_ ,num_workers=4) return (train_dataloader, valid_dataloader) def lowerCamelCase( a__ ,a__ ,a__ ,a__ ,a__ ,a__=None): _SCREAMING_SNAKE_CASE =[] for epoch in range(snake_case_): # Train quickly model.train() for batch in dataloader: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =batch _SCREAMING_SNAKE_CASE =model(snake_case_) _SCREAMING_SNAKE_CASE =torch.nn.functional.mse_loss(snake_case_ ,snake_case_) accelerator.backward(snake_case_) optimizer.step() optimizer.zero_grad() rands.append(random.random()) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class A__ ( nn.Module ): def __init__( self : int ) -> List[str]: """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE =nn.Parameter(torch.randn(1 ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(torch.randn(1 ) ) def __UpperCamelCase ( self : Dict , _a : List[Any] ) -> Any: """simple docstring""" return x * self.a + self.b class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _SCREAMING_SNAKE_CASE =DummyModel() _SCREAMING_SNAKE_CASE =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =dummy_dataloaders() _SCREAMING_SNAKE_CASE =ProjectConfiguration(total_limit=1 , project_dir=_lowercase , automatic_checkpoint_naming=_lowercase ) # Train baseline _SCREAMING_SNAKE_CASE =Accelerator(project_config=_lowercase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _SCREAMING_SNAKE_CASE =DummyModel() _SCREAMING_SNAKE_CASE =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =dummy_dataloaders() # Train baseline _SCREAMING_SNAKE_CASE =Accelerator() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase ) # Save initial _SCREAMING_SNAKE_CASE =os.path.join(_lowercase , '''initial''' ) accelerator.save_state(_lowercase ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE =optimizer.state_dict() _SCREAMING_SNAKE_CASE =train(3 , _lowercase , _lowercase , _lowercase , _lowercase ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE =optimizer.state_dict() # Train partially set_seed(42 ) _SCREAMING_SNAKE_CASE =DummyModel() _SCREAMING_SNAKE_CASE =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =dummy_dataloaders() _SCREAMING_SNAKE_CASE =Accelerator() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase ) accelerator.load_state(_lowercase ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE =optimizer.state_dict() self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =train(2 , _lowercase , _lowercase , _lowercase , _lowercase ) # Save everything _SCREAMING_SNAKE_CASE =os.path.join(_lowercase , '''checkpoint''' ) accelerator.save_state(_lowercase ) # Load everything back in and make sure all states work accelerator.load_state(_lowercase ) test_rands += train(1 , _lowercase , _lowercase , _lowercase , _lowercase ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE =optimizer.state_dict() self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _SCREAMING_SNAKE_CASE =DummyModel() _SCREAMING_SNAKE_CASE =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =dummy_dataloaders() _SCREAMING_SNAKE_CASE =ProjectConfiguration(automatic_checkpoint_naming=_lowercase ) # Train baseline _SCREAMING_SNAKE_CASE =Accelerator(project_dir=_lowercase , project_config=_lowercase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase ) # Save initial accelerator.save_state() ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE =optimizer.state_dict() _SCREAMING_SNAKE_CASE =train(3 , _lowercase , _lowercase , _lowercase , _lowercase ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE =optimizer.state_dict() # Train partially set_seed(42 ) _SCREAMING_SNAKE_CASE =DummyModel() _SCREAMING_SNAKE_CASE =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =dummy_dataloaders() _SCREAMING_SNAKE_CASE =ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_lowercase ) _SCREAMING_SNAKE_CASE =Accelerator(project_dir=_lowercase , project_config=_lowercase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase ) accelerator.load_state(os.path.join(_lowercase , '''checkpoints''' , '''checkpoint_0''' ) ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE =optimizer.state_dict() self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =train(2 , _lowercase , _lowercase , _lowercase , _lowercase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowercase , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , _lowercase , _lowercase , _lowercase , _lowercase ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE =optimizer.state_dict() self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.tensor([1, 2, 3] ) _SCREAMING_SNAKE_CASE =torch.tensor([2, 3, 4] ) _SCREAMING_SNAKE_CASE =DummyModel() _SCREAMING_SNAKE_CASE =torch.optim.Adam(net.parameters() ) _SCREAMING_SNAKE_CASE =Accelerator() with self.assertRaises(_lowercase ) as ve: accelerator.register_for_checkpointing(_lowercase , _lowercase , _lowercase , _lowercase ) _SCREAMING_SNAKE_CASE =str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _SCREAMING_SNAKE_CASE =DummyModel() _SCREAMING_SNAKE_CASE =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _SCREAMING_SNAKE_CASE =torch.optim.lr_scheduler.StepLR(_lowercase , step_size=1 , gamma=0.99 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =dummy_dataloaders() _SCREAMING_SNAKE_CASE =ProjectConfiguration(automatic_checkpoint_naming=_lowercase ) # Train baseline _SCREAMING_SNAKE_CASE =Accelerator(project_dir=_lowercase , project_config=_lowercase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Save initial accelerator.save_state() _SCREAMING_SNAKE_CASE =scheduler.state_dict() train(3 , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) self.assertNotEqual(_lowercase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowercase , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(_lowercase , scheduler.state_dict() ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _SCREAMING_SNAKE_CASE =DummyModel() _SCREAMING_SNAKE_CASE =ProjectConfiguration(automatic_checkpoint_naming=_lowercase , total_limit=2 ) # Train baseline _SCREAMING_SNAKE_CASE =Accelerator(project_dir=_lowercase , project_config=_lowercase ) _SCREAMING_SNAKE_CASE =accelerator.prepare(_lowercase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_lowercase , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowercase , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_lowercase , env=os.environ.copy() ) if __name__ == "__main__": snake_case_ : Union[str, Any] = '/tmp/accelerate/state_checkpointing' snake_case_ : int = DummyModel() snake_case_ : str = torch.optim.Adam(params=model.parameters(), lr=1e-3) snake_case_ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) snake_case_ : Optional[int] = dummy_dataloaders() snake_case_ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline snake_case_ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) snake_case_ : int = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) snake_case_ : Optional[int] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: snake_case_ : List[str] = group['params'][0].device break assert param_device.type == accelerator.device.type snake_case_ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: snake_case_ : Union[str, Any] = group['params'][0].device break assert ( param_device.type == torch.device('''cpu''').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: snake_case_ : int = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
691
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer A_ : int = logging.get_logger(__name__) A_ : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A_ : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } A_ : int = { 'yjernite/retribert-base-uncased': 512, } A_ : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _lowerCAmelCase( _lowerCAmelCase ): """simple docstring""" a : str =VOCAB_FILES_NAMES a : Dict =PRETRAINED_VOCAB_FILES_MAP a : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : str =PRETRAINED_INIT_CONFIGURATION a : Optional[Any] =RetriBertTokenizer a : List[Any] =["input_ids", "attention_mask"] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) UpperCamelCase_: List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): UpperCamelCase_: Optional[int] = getattr(_lowercase , normalizer_state.pop('type' ) ) UpperCamelCase_: List[Any] = do_lower_case UpperCamelCase_: Optional[Any] = strip_accents UpperCamelCase_: Tuple = tokenize_chinese_chars UpperCamelCase_: Union[str, Any] = normalizer_class(**_lowercase ) UpperCamelCase_: List[Any] = do_lower_case def _a ( self , _lowerCamelCase , _lowerCamelCase=None ): UpperCamelCase_: str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: Optional[Any] = [self.sep_token_id] UpperCamelCase_: Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: str = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
57
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _UpperCAmelCase ( a : Dict=32 , a : Dict=10 , a : Union[str, Any]=100 , a : Union[str, Any]=1026 , a : str=True , a : List[str]="data/tokenized_stories_train_wikitext103.jbl" , a : List[str]="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set snake_case__ , snake_case__ = generate_datasets( snake_case_ , snake_case_ , number=snake_case_ , min_len=1026 , trim=snake_case_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? snake_case__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model snake_case__ = load_gpta("""gpt2""" ).to(snake_case_ ) print("""computing perplexity on objective set""" ) snake_case__ = compute_perplexity(snake_case_ , snake_case_ , snake_case_ ).item() print("""perplexity on objective set:""" , snake_case_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _UpperCAmelCase ( a : Dict , a : List[Any]=15 , a : Any=128 , a : int=100 , a : List[str]="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model snake_case__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model snake_case__ = SecondaryLearner(snake_case_ ) # Train secondary learner snake_case__ = train_secondary_learner( snake_case_ , snake_case_ , max_epochs=snake_case_ , batch_size=snake_case_ , eval_freq=100 , igf_model_path=snake_case_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _UpperCAmelCase ( a : str , a : int , a : str , a : List[str]=32 , a : Optional[Any]=1000 , a : Optional[Any]=16 , a : List[str]=1.0 , a : List[Any]=recopy_gpta , a : Optional[int]=None , a : Optional[int]=10 , a : Tuple="gpt2_finetuned.pt" , ): snake_case__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) snake_case__ = RandomSampler(snake_case_ ) snake_case__ = DataLoader(snake_case_ , sampler=snake_case_ ) snake_case__ = max_steps // (len(snake_case_ )) + 1 snake_case__ = 0 snake_case__ = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case_ ) snake_case__ , snake_case__ , snake_case__ = recopy_model(snake_case_ , snake_case_ , snake_case_ ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case_ ) secondary_learner.eval() snake_case__ = [] snake_case__ = 0 snake_case__ = [] snake_case__ = [] # Compute the performance of the transformer model at the beginning snake_case__ = compute_perplexity(snake_case_ , snake_case_ , snake_case_ ) test_perps.append(snake_case_ ) print("""Test perplexity, step""" , snake_case_ , """:""" , snake_case_ ) for epoch in range(int(snake_case_ ) ): for step, example in enumerate(snake_case_ ): torch.cuda.empty_cache() snake_case__ = random.randint(0 , example.size(2 ) - context_len - 1 ) snake_case__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() snake_case__ = model(snake_case_ , labels=snake_case_ ) snake_case__ = True if secondary_learner is not None: snake_case__ = secondary_learner.forward( torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: snake_case__ = -1 if predicted_q < threshold: snake_case__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) snake_case__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() snake_case__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: snake_case__ = compute_perplexity(snake_case_ , snake_case_ , snake_case_ ) test_perps.append(snake_case_ ) print("""Test perplexity, step""" , snake_case_ , """:""" , snake_case_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _UpperCAmelCase ( ): snake_case__ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=snake_case_ , type=snake_case_ , required=snake_case_ , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=snake_case_ , type=snake_case_ , required=snake_case_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=snake_case_ , default=snake_case_ , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=snake_case_ , default=snake_case_ , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=snake_case_ , type=snake_case_ , required=snake_case_ , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=snake_case_ , type=snake_case_ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=snake_case_ , default=snake_case_ , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=snake_case_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=snake_case_ , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=snake_case_ , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1000 , type=snake_case_ , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=snake_case_ , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=snake_case_ , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=snake_case_ , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=snake_case_ , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1026 , type=snake_case_ , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=snake_case_ , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=snake_case_ , type=snake_case_ , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=snake_case_ , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=snake_case_ , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=snake_case_ , type=snake_case_ , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=snake_case_ , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner snake_case__ = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner snake_case__ = training_secondary_learner( snake_case_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model snake_case__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model snake_case__ , snake_case__ = generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=snake_case_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case_ , snake_case_ , snake_case_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=snake_case_ , secondary_learner=snake_case_ , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
654
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def _UpperCAmelCase ( UpperCAmelCase : Dict ): """simple docstring""" __lowerCamelCase : Tuple = {} __lowerCamelCase : List[Any] = job["""started_at"""] __lowerCamelCase : List[str] = job["""completed_at"""] __lowerCamelCase : int = date_parser.parse(snake_case_ ) __lowerCamelCase : List[str] = date_parser.parse(snake_case_ ) __lowerCamelCase : Tuple = round((end_datetime - start_datetime).total_seconds() / 6_0.0 ) __lowerCamelCase : Any = start __lowerCamelCase : Optional[int] = end __lowerCamelCase : int = duration_in_min return job_info def _UpperCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=None ): """simple docstring""" __lowerCamelCase : Optional[Any] = None if token is not None: __lowerCamelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} __lowerCamelCase : List[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __lowerCamelCase : str = requests.get(snake_case_ , headers=snake_case_ ).json() __lowerCamelCase : Optional[Any] = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(snake_case_ ) for job in result["""jobs"""]} ) __lowerCamelCase : Union[str, Any] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): __lowerCamelCase : int = requests.get(url + f"""&page={i + 2}""" , headers=snake_case_ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(snake_case_ ) for job in result["""jobs"""]} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : List[str] = get_job_time(args.workflow_run_id) __UpperCamelCase : List[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
519
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : int = str(snake_case_ ) while len(snake_case_ ) != 1: _lowerCAmelCase : Optional[int] = [int(snake_case_ ) for i in num_string] _lowerCAmelCase : List[Any] = 1 for i in range(0 , len(snake_case_ ) ): total *= numbers[i] _lowerCAmelCase : List[Any] = str(snake_case_ ) steps += 1 return steps def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Tuple = str(snake_case_ ) while len(snake_case_ ) != 1: _lowerCAmelCase : int = [int(snake_case_ ) for i in num_string] _lowerCAmelCase : Optional[int] = 0 for i in range(0 , len(snake_case_ ) ): total += numbers[i] _lowerCAmelCase : Optional[Any] = str(snake_case_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
259
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
'''simple docstring''' A = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : float) -> int: '''simple docstring''' assert type(snake_case_) in (int, float) and decimal == int(snake_case_) _lowercase : List[str] = int(snake_case_) _lowercase : str = '' _lowercase : Union[str, Any] = False if decimal < 0: _lowercase : Optional[int] = True decimal *= -1 while decimal > 0: _lowercase , _lowercase : str = divmod(snake_case_ , 16) _lowercase : Tuple = values[remainder] + hexadecimal _lowercase : Any = '0x' + hexadecimal if negative: _lowercase : List[Any] = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
125
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
401
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = None lowerCamelCase__ = None @property def _snake_case ( self : Dict ): return self.feat_extract_tester.prepare_feat_extract_dict() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowercase , "feature_size" ) ) self.assertTrue(hasattr(_lowercase , "sampling_rate" ) ) self.assertTrue(hasattr(_lowercase , "padding_value" ) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowercase ) == len(_lowercase ) for x, y in zip(_lowercase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowercase ) SCREAMING_SNAKE_CASE = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) SCREAMING_SNAKE_CASE = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowercase ) SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) SCREAMING_SNAKE_CASE = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowercase ) SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) SCREAMING_SNAKE_CASE = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _snake_case ( self : Tuple , __lowerCamelCase : Dict=False ): def _inputs_have_equal_length(__lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = len(input[0] ) for input_slice in input[1:]: if len(_lowercase ) != length: return False return True def _inputs_are_equal(__lowerCamelCase : Any , __lowerCamelCase : int ): if len(_lowercase ) != len(_lowercase ): return False for input_slice_a, input_slice_a in zip(_lowercase , _lowercase ): if not np.allclose(np.asarray(_lowercase ) , np.asarray(_lowercase ) , atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowercase ) SCREAMING_SNAKE_CASE = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE = self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE = self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE = self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE = self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE = self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding=_lowercase ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding="longest" ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding="max_length" , max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding="longest" , return_tensors="np" ) SCREAMING_SNAKE_CASE = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_lowercase ): feat_extract.pad(_lowercase , padding="max_length" )[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , max_length=_lowercase , return_tensors="np" ) SCREAMING_SNAKE_CASE = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(_inputs_are_equal(_lowercase , _lowercase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding="longest" , pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , pad_to_multiple_of=10 , max_length=_lowercase ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , pad_to_multiple_of=10 , max_length=_lowercase , return_tensors="np" , ) SCREAMING_SNAKE_CASE = input_a[input_name] self.assertTrue(all(len(_lowercase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_lowercase , _lowercase ) ) SCREAMING_SNAKE_CASE = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_lowercase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str]=False ): def _inputs_have_equal_length(__lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = len(input[0] ) for input_slice in input[1:]: if len(_lowercase ) != length: return False return True def _inputs_are_equal(__lowerCamelCase : Any , __lowerCamelCase : Any ): if len(_lowercase ) != len(_lowercase ): return False for input_slice_a, input_slice_a in zip(_lowercase , _lowercase ): if not np.allclose(np.asarray(_lowercase ) , np.asarray(_lowercase ) , atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowercase ) SCREAMING_SNAKE_CASE = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE = BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=_lowercase ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding="max_length" , max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertFalse(_inputs_have_equal_length(_lowercase ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=_lowercase , ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) SCREAMING_SNAKE_CASE = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowercase ) ) # truncate to middle SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=_lowercase , return_tensors="np" , ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=_lowercase ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) SCREAMING_SNAKE_CASE = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(_inputs_are_equal(_lowercase , _lowercase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowercase ): feat_extract.pad(_lowercase , truncation=_lowercase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowercase ): feat_extract.pad(_lowercase , padding="longest" , truncation=_lowercase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowercase ): feat_extract.pad(_lowercase , padding="longest" , truncation=_lowercase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_lowercase ): feat_extract.pad(_lowercase , padding="max_length" , truncation=_lowercase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowercase , truncation=_lowercase , ) SCREAMING_SNAKE_CASE = input_a[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowercase , ) SCREAMING_SNAKE_CASE = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertFalse(_inputs_have_equal_length(_lowercase ) ) def _snake_case ( self : str ): self._check_padding(numpify=_lowercase ) def _snake_case ( self : Optional[int] ): self._check_padding(numpify=_lowercase ) def _snake_case ( self : List[Any] ): self._check_truncation(numpify=_lowercase ) def _snake_case ( self : Dict ): self._check_truncation(numpify=_lowercase ) @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding="longest" , return_tensors="np" )[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding="longest" , return_tensors="np" )[input_name] SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.feat_extract_dict SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.feature_extraction_class(**_lowercase ) SCREAMING_SNAKE_CASE = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE = [len(_lowercase ) for x in speech_inputs] SCREAMING_SNAKE_CASE = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE = feat_extract.pad(_lowercase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , _lowercase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowercase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.feat_extract_dict SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.feature_extraction_class(**_lowercase ) SCREAMING_SNAKE_CASE = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE = [len(_lowercase ) for x in speech_inputs] SCREAMING_SNAKE_CASE = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE = min(_lowercase ) SCREAMING_SNAKE_CASE = feat_extract.pad( _lowercase , padding="max_length" , max_length=_lowercase , truncation=_lowercase , return_tensors="np" ) self.assertIn("attention_mask" , _lowercase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
16
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
0
from __future__ import annotations def _UpperCamelCase ( lowercase__ , lowercase__ ): if nth_term == "": return [""] __SCREAMING_SNAKE_CASE : List[Any] = int(snake_case_ ) __SCREAMING_SNAKE_CASE : List[Any] = int(snake_case_ ) __SCREAMING_SNAKE_CASE : List[Any] = [] for temp in range(int(snake_case_ ) ): series.append(F'''1 / {pow(temp + 1 , int(snake_case_ ) )}''' if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =int(input('Enter the last number (nth term) of the P-Series')) __lowerCAmelCase : Dict =int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
696
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase : Optional[Any] = StableDiffusionXLImgaImgPipeline _lowerCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} _lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {"latents"} _lowerCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=_lowercase , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __lowercase = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=32 , ) __lowercase = CLIPTextModel(_lowercase ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_lowercase ) __lowercase = CLIPTextModelWithProjection(_lowercase ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_lowercase ) __lowercase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase=0 ) -> int: '''simple docstring''' __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __lowercase = image / 2 + 0.5 if str(_lowercase ).startswith("mps" ): __lowercase = torch.manual_seed(_lowercase ) else: __lowercase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableDiffusionXLImgaImgPipeline(**_lowercase ) __lowercase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) __lowercase = self.get_dummy_inputs(_lowercase ) __lowercase = sd_pipe(**_lowercase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = StableDiffusionXLImgaImgPipeline(**_lowercase ) __lowercase = sd_pipe.to(_lowercase ) __lowercase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) # forward without prompt embeds __lowercase = self.get_dummy_inputs(_lowercase ) __lowercase = 3 * ["this is a negative prompt"] __lowercase = negative_prompt __lowercase = 3 * [inputs["prompt"]] __lowercase = sd_pipe(**_lowercase ) __lowercase = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowercase = self.get_dummy_inputs(_lowercase ) __lowercase = 3 * ["this is a negative prompt"] __lowercase = 3 * [inputs.pop("prompt" )] ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = sd_pipe.encode_prompt(_lowercase , negative_prompt=_lowercase ) __lowercase = sd_pipe( **_lowercase , prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , pooled_prompt_embeds=_lowercase , negative_pooled_prompt_embeds=_lowercase , ) __lowercase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class __a ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=0 ) -> List[Any]: '''simple docstring''' __lowercase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __lowercase = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) ) __lowercase = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) __lowercase = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __lowercase = self.get_inputs(_lowercase ) __lowercase = pipe(**_lowercase ).images __lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
118
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str]=13 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : List[Any]=True , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Optional[Any]=99 , UpperCamelCase : Union[str, Any]=64 , UpperCamelCase : int=32 , UpperCamelCase : Optional[Any]=5 , UpperCamelCase : List[str]=4 , UpperCamelCase : Optional[Any]=37 , UpperCamelCase : List[str]="gelu" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Any=5_12 , UpperCamelCase : Tuple=16 , UpperCamelCase : List[str]=2 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : Tuple=3 , UpperCamelCase : Any=4 , UpperCamelCase : List[str]=None , ): '''simple docstring''' _snake_case : Union[str, Any] = parent _snake_case : Optional[Any] = batch_size _snake_case : Dict = seq_length _snake_case : Tuple = is_training _snake_case : int = use_input_mask _snake_case : List[Any] = use_token_type_ids _snake_case : int = use_labels _snake_case : List[str] = vocab_size _snake_case : int = hidden_size _snake_case : Dict = embedding_size _snake_case : List[str] = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : int = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Dict = type_vocab_size _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Optional[int] = initializer_range _snake_case : int = num_labels _snake_case : int = num_choices _snake_case : Optional[int] = scope def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : Any = None if self.use_input_mask: _snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : List[Any] = None if self.use_token_type_ids: _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : List[str] = None _snake_case : Any = None _snake_case : str = None if self.use_labels: _snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : int = MegatronBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : Tuple = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) _snake_case : List[Any] = model(_lowercase , token_type_ids=_lowercase ) _snake_case : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : str = MegatronBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : Optional[Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : str , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Any = MegatronBertForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : int = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Any ): '''simple docstring''' _snake_case : List[Any] = MegatronBertForNextSentencePrediction(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : List[str] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : Optional[int] = MegatronBertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : int = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , next_sentence_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : int = MegatronBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : Any = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : int , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : int = self.num_labels _snake_case : Any = MegatronBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() _snake_case : Union[str, Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = self.num_labels _snake_case : int = MegatronBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : int = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = self.num_choices _snake_case : Optional[int] = MegatronBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Optional[Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Any = config_and_inputs _snake_case : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' a_ : List[str] =( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a_ : Union[str, Any] =( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a_ : Optional[Any] =True # test_resize_embeddings = False a_ : Dict =False def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str]=False ): '''simple docstring''' _snake_case : List[str] = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): _snake_case : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) _snake_case : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Tuple = MegatronBertModelTester(self ) _snake_case : Any = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowercase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowercase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowercase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowercase ) def lowerCamelCase_ ( lowerCAmelCase: int )-> int: return torch.tensor( snake_case_ , dtype=torch.long , device=snake_case_ , ) lowerCAmelCase_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('Model is not available.' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _snake_case : List[str] = os.path.join(os.environ['MYDIR'] , _lowercase ) _snake_case : List[Any] = MegatronBertModel.from_pretrained(_lowercase ) model.to(_lowercase ) model.half() _snake_case : Optional[int] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): _snake_case : Optional[Any] = model(_lowercase )[0] _snake_case : Dict = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , _lowercase ) _snake_case : str = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): _snake_case : List[Any] = output[0, ii, jj] _snake_case : Optional[int] = expected[3 * ii + jj] _snake_case : Dict = 'ii={} jj={} a={} b={}'.format(_lowercase , _lowercase , _lowercase , _lowercase ) self.assertTrue(math.isclose(_lowercase , _lowercase , rel_tol=_lowercase , abs_tol=_lowercase ) , msg=_lowercase )
411
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( _lowerCAmelCase , unittest.TestCase ): UpperCAmelCase = KandinskyInpaintPipeline UpperCAmelCase = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase = False @property def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" return 32 @property def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.time_input_dim @property def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return 100 @property def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _SCREAMING_SNAKE_CASE =MultilingualCLIP(_lowercase ) _SCREAMING_SNAKE_CASE =text_encoder.eval() return text_encoder @property def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE ={ '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _SCREAMING_SNAKE_CASE =UNetaDConditionModel(**_lowercase ) return model @property def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.dummy_text_encoder _SCREAMING_SNAKE_CASE =self.dummy_tokenizer _SCREAMING_SNAKE_CASE =self.dummy_unet _SCREAMING_SNAKE_CASE =self.dummy_movq _SCREAMING_SNAKE_CASE =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_lowercase , ) _SCREAMING_SNAKE_CASE ={ '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self : Union[str, Any] , _a : List[Any] , _a : Tuple=0 ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowercase ) ).to(_lowercase ) _SCREAMING_SNAKE_CASE =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowercase ) # create init_image _SCREAMING_SNAKE_CASE =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) _SCREAMING_SNAKE_CASE =image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(_lowercase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask _SCREAMING_SNAKE_CASE =np.ones((64, 64) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =0 if str(_lowercase ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_lowercase ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**_lowercase ) _SCREAMING_SNAKE_CASE =pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs(_lowercase ) ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _SCREAMING_SNAKE_CASE =np.ones((768, 768) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE ='''a hat''' _SCREAMING_SNAKE_CASE =KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) _SCREAMING_SNAKE_CASE =KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE =pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) _SCREAMING_SNAKE_CASE =torch.Generator(device='''cpu''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _SCREAMING_SNAKE_CASE =pipeline( _lowercase , image=_lowercase , mask_image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
691
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A_ : Optional[int] = 'src/transformers' A_ : List[Any] = 'docs/source/en/tasks' def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: with open(snake_case_ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase_: Optional[Any] = f.readlines() # Find the start prompt. UpperCamelCase_: Optional[Any] = 0 while not lines[start_index].startswith(snake_case_ ): start_index += 1 start_index += 1 UpperCamelCase_: List[Any] = start_index while not lines[end_index].startswith(snake_case_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A_ : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) A_ : List[Any] = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A_ : int = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: UpperCamelCase_: Any = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase_: List[Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case_ , set() ) UpperCamelCase_: List[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def snake_case (UpperCAmelCase__ , UpperCAmelCase__=False ) -> Any: UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = _find_text_in_file( filename=os.path.join(snake_case_ , snake_case_ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase_: Dict = get_model_list_for_task(snake_case_ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case_ , snake_case_ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A_ : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
57
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _lowerCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = tempfile.mkdtemp() snake_case__ = 8 # DPR tok snake_case__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case__ = os.path.join(self.tmpdirname , """dpr_tokenizer""") os.makedirs(_lowercase , exist_ok=_lowercase) snake_case__ = os.path.join(_lowercase , DPR_VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) # BART tok snake_case__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ = dict(zip(_lowercase , range(len(_lowercase)))) snake_case__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ = {"""unk_token""": """<unk>"""} snake_case__ = os.path.join(self.tmpdirname , """bart_tokenizer""") os.makedirs(_lowercase , exist_ok=_lowercase) snake_case__ = os.path.join(_lowercase , BART_VOCAB_FILES_NAMES["""vocab_file"""]) snake_case__ = os.path.join(_lowercase , BART_VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_lowercase) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(_lowercase)) def __magic_name__ ( self : str): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""")) def __magic_name__ ( self : Tuple): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""")) def __magic_name__ ( self : int): '''simple docstring''' shutil.rmtree(self.tmpdirname) @require_tokenizers def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = os.path.join(self.tmpdirname , """rag_tokenizer""") snake_case__ = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict()) snake_case__ = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer()) rag_config.save_pretrained(_lowercase) rag_tokenizer.save_pretrained(_lowercase) snake_case__ = RagTokenizer.from_pretrained(_lowercase , config=_lowercase) self.assertIsInstance(new_rag_tokenizer.question_encoder , _lowercase) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab()) self.assertIsInstance(new_rag_tokenizer.generator , _lowercase) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab()) @slow def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = RagTokenizer.from_pretrained("""facebook/rag-token-nq""") snake_case__ = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] snake_case__ = tokenizer(_lowercase) self.assertIsNotNone(_lowercase) @slow def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""") snake_case__ = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] snake_case__ = tokenizer(_lowercase) self.assertIsNotNone(_lowercase)
654
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : str=3_2 , _lowerCamelCase : List[str]=3 , _lowerCamelCase : str=1_0 , _lowerCamelCase : Optional[int]=[1_0, 2_0, 3_0, 4_0] , _lowerCamelCase : Optional[Any]=[1, 1, 2, 1] , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : List[str]=True , _lowerCamelCase : Union[str, Any]="relu" , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Tuple=None , ): '''simple docstring''' __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : Tuple = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[str] = num_channels __lowerCamelCase : str = embeddings_size __lowerCamelCase : Optional[Any] = hidden_sizes __lowerCamelCase : Union[str, Any] = depths __lowerCamelCase : List[str] = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : int = hidden_act __lowerCamelCase : Any = num_labels __lowerCamelCase : Optional[int] = scope __lowerCamelCase : Optional[int] = len(_lowercase ) def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : int = None if self.use_labels: __lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase : Any = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _snake_case ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = TFResNetModel(config=_lowercase ) __lowerCamelCase : Tuple = model(_lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _snake_case ( self : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.num_labels __lowerCamelCase : Tuple = TFResNetForImageClassification(_lowercase ) __lowerCamelCase : Union[str, Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = config_and_inputs __lowerCamelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( _lowerCAmelCase,_lowerCAmelCase,unittest.TestCase ): '''simple docstring''' a_ : str = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a_ : Optional[Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a_ : str = False a_ : int = False a_ : Union[str, Any] = False a_ : Optional[int] = False a_ : List[str] = False def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Any = TFResNetModelTester(self ) __lowerCamelCase : int = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def _snake_case ( self : Tuple ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : int ): '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def _snake_case ( self : Tuple ): '''simple docstring''' pass def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : int = model_class(_lowercase ) __lowerCamelCase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' def check_hidden_states_output(_lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int ): __lowerCamelCase : Tuple = model_class(_lowercase ) __lowerCamelCase : Union[str, Any] = model(**self._prepare_for_class(_lowercase , _lowercase ) ) __lowerCamelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase : int = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCamelCase : Union[str, Any] = layer_type __lowerCamelCase : List[str] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def _snake_case ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Union[str, Any] = TFResNetModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : Dict = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCamelCase : List[str] = self.default_image_processor __lowerCamelCase : List[Any] = prepare_img() __lowerCamelCase : str = image_processor(images=_lowercase , return_tensors="""tf""" ) # forward pass __lowerCamelCase : Any = model(**_lowercase ) # verify the logits __lowerCamelCase : List[Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowercase ) __lowerCamelCase : Union[str, Any] = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowercase , atol=1E-4 ) )
519
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _lowerCAmelCase = { 'gpt-neox-20b': 2_0_4_8, } class __UpperCamelCase ( _lowerCAmelCase ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A=None ,_A=None ,_A=None ,_A="<|endoftext|>" ,_A="<|endoftext|>" ,_A="<|endoftext|>" ,_A=False ,**_A ,): '''simple docstring''' super().__init__( _lowercase ,_lowercase ,tokenizer_file=_lowercase ,unk_token=_lowercase ,bos_token=_lowercase ,eos_token=_lowercase ,add_prefix_space=_lowercase ,**_lowercase ,) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,_lowercase ) != add_prefix_space: _lowerCAmelCase : int = getattr(_lowercase ,pre_tok_state.pop('type' ) ) _lowerCAmelCase : str = add_prefix_space _lowerCAmelCase : int = pre_tok_class(**_lowercase ) _lowerCAmelCase : Optional[Any] = add_prefix_space def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_lowercase ,name=_lowercase ) return tuple(_lowercase ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowercase ,add_special_tokens=_lowercase ) + [self.eos_token_id] ) if len(_lowercase ) > self.model_max_length: _lowerCAmelCase : List[Any] = input_ids[-self.model_max_length :] return input_ids
259
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
0
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Any = StableUnCLIPPipeline lowerCAmelCase__ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCAmelCase__ : Optional[int] = False def _lowerCamelCase ( self : List[str] ) -> List[str]: _lowercase : str = 32 _lowercase : List[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) _lowercase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _lowercase : str = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=_lowercase ,projection_dim=_lowercase ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) ) torch.manual_seed(0 ) _lowercase : Optional[int] = PriorTransformer( num_attention_heads=2 ,attention_head_dim=12 ,embedding_dim=_lowercase ,num_layers=1 ,) torch.manual_seed(0 ) _lowercase : Any = DDPMScheduler( variance_type='fixed_small_log' ,prediction_type='sample' ,num_train_timesteps=1000 ,clip_sample=_lowercase ,clip_sample_range=5.0 ,beta_schedule='squaredcos_cap_v2' ,) # regular denoising components torch.manual_seed(0 ) _lowercase : List[Any] = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) _lowercase : Tuple = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) _lowercase : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _lowercase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=_lowercase ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) ) torch.manual_seed(0 ) _lowercase : Any = UNetaDConditionModel( sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') ,block_out_channels=(32, 64) ,attention_head_dim=(2, 4) ,class_embed_type='projection' ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=_lowercase ,layers_per_block=1 ,upcast_attention=_lowercase ,use_linear_projection=_lowercase ,) torch.manual_seed(0 ) _lowercase : str = DDIMScheduler( beta_schedule='scaled_linear' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,prediction_type='v_prediction' ,set_alpha_to_one=_lowercase ,steps_offset=1 ,) torch.manual_seed(0 ) _lowercase : Optional[Any] = AutoencoderKL() _lowercase : str = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def _lowerCamelCase ( self : str ,UpperCamelCase : Dict ,UpperCamelCase : List[str]=0 ) -> Optional[int]: if str(_lowercase ).startswith('mps' ): _lowercase : Tuple = torch.manual_seed(_lowercase ) else: _lowercase : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowercase : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : Any ) -> Dict: _lowercase : Optional[int] = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def _lowerCamelCase ( self : int ) -> Optional[Any]: _lowercase : Dict = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Any ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Any ) -> Union[str, Any]: _lowercase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) _lowercase : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' ,torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowercase : str = pipe('anime turle' ,generator=_lowercase ,output_type='np' ) _lowercase : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase ,_lowercase ) def _lowerCamelCase ( self : Any ) -> str: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowercase : str = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' ,torch_dtype=torch.floataa ) _lowercase : List[Any] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase : List[Any] = pipe( 'anime turtle' ,prior_num_inference_steps=2 ,num_inference_steps=2 ,output_type='np' ,) _lowercase : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
125
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['LayoutLMv2FeatureExtractor'] _SCREAMING_SNAKE_CASE = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
401
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __A : Dict = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str=1 ): SCREAMING_SNAKE_CASE = tokenizer SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = len(_lowercase ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE = n_copies def __iter__( self : int ): SCREAMING_SNAKE_CASE = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) SCREAMING_SNAKE_CASE = self.tokenizer(_lowercase , padding=_lowercase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = start_length SCREAMING_SNAKE_CASE = eof_strings SCREAMING_SNAKE_CASE = tokenizer def __call__( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_lowercase ) def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = re.split("(%s)" % "|".join(snake_case_ ) , snake_case_ ) # last string should be "" return "".join(string_list[:-2] ) def __a ( A__ : Optional[int] , A__ : Any , A__ : str , A__ : List[str] , A__ : Any , A__ : Tuple=20 , **A__ : int ): SCREAMING_SNAKE_CASE = defaultdict(snake_case_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(snake_case_ ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE = batch["ids"].shape[-1] SCREAMING_SNAKE_CASE = accelerator.unwrap_model(snake_case_ ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=snake_case_ , **snake_case_ ) # each task is generated batch_size times SCREAMING_SNAKE_CASE = batch["task_id"].repeat(snake_case_ ) SCREAMING_SNAKE_CASE = accelerator.pad_across_processes( snake_case_ , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE = generated_tasks.cpu().numpy() for task, generated_tokens in zip(snake_case_ , snake_case_ ): gen_token_dict[task].append(snake_case_ ) SCREAMING_SNAKE_CASE = [[] for _ in range(snake_case_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) code_gens[task].append(remove_last_block(snake_case_ ) ) return code_gens def __a ( ): # Setup configuration SCREAMING_SNAKE_CASE = HfArgumentParser(snake_case_ ) SCREAMING_SNAKE_CASE = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE = "false" if args.num_workers is None: SCREAMING_SNAKE_CASE = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE = Accelerator() set_seed(args.seed , device_specific=snake_case_ ) # Load model and tokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE = tokenizer.eos_token SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , snake_case_ , snake_case_ )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE = load_dataset("openai_humaneval" ) SCREAMING_SNAKE_CASE = load_metric("code_eval" ) SCREAMING_SNAKE_CASE = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) SCREAMING_SNAKE_CASE = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE = TokenizedDataset(snake_case_ , human_eval["test"] , n_copies=snake_case_ , n_tasks=snake_case_ ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE = DataLoader(snake_case_ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE = complete_code( snake_case_ , snake_case_ , snake_case_ , snake_case_ , n_tasks=snake_case_ , batch_size=args.batch_size , **snake_case_ , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE = [] for task in tqdm(range(snake_case_ ) ): SCREAMING_SNAKE_CASE = human_eval["test"][task]["test"] SCREAMING_SNAKE_CASE = F"check({human_eval['test'][task]['entry_point']})" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = code_eval_metric.compute( references=snake_case_ , predictions=snake_case_ , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(snake_case_ , snake_case_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __SCREAMING_SNAKE_CASE : str = (low + high) // 2 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = max_subarray(snake_case_ , snake_case_ , snake_case_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = max_subarray(snake_case_ , mid + 1 , snake_case_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = max_cross_sum(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = float('''-inf''' ), -1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = float('''-inf''' ), -1 __SCREAMING_SNAKE_CASE : Any = 0 for i in range(snake_case_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __SCREAMING_SNAKE_CASE : int = summ __SCREAMING_SNAKE_CASE : int = i __SCREAMING_SNAKE_CASE : int = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __SCREAMING_SNAKE_CASE : List[str] = summ __SCREAMING_SNAKE_CASE : Tuple = i return max_left, max_right, (left_sum + right_sum) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : str = [randint(1 , snake_case_ ) for _ in range(snake_case_ )] __SCREAMING_SNAKE_CASE : int = time.time() max_subarray(snake_case_ , 0 , input_size - 1 ) __SCREAMING_SNAKE_CASE : Tuple = time.time() return end - start def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] __SCREAMING_SNAKE_CASE : Any = [time_max_subarray(snake_case_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(snake_case_ , snake_case_ ): print(snake_case_ , '''\t\t''' , snake_case_ ) plt.plot(snake_case_ , snake_case_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
696
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
0
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class __a : '''simple docstring''' def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' if len(_lowercase ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) __lowercase = list(_lowercase ) __lowercase = degree def __add__( self , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if self.degree > polynomial_a.degree: __lowercase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _lowercase ) else: __lowercase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _lowercase ) def __sub__( self , _lowerCamelCase ) -> Any: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Any: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , _lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _lowercase ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> Optional[int]: '''simple docstring''' __lowercase = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_lowercase ) return polynomial def __repr__( self ) -> Optional[int]: '''simple docstring''' return self.__str__() def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = [0] * self.degree for i in range(self.degree ): __lowercase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _lowercase ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase = 0 ) -> List[str]: '''simple docstring''' __lowercase = [0] * (self.degree + 2) __lowercase = constant for i in range(self.degree + 1 ): __lowercase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _lowercase ) def __eq__( self , _lowerCamelCase ) -> List[Any]: '''simple docstring''' if not isinstance(_lowercase , _lowercase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , _lowerCamelCase ) -> List[Any]: '''simple docstring''' return not self.__eq__(_lowercase )
118
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' a_ : str =DebertaTokenizer a_ : Any =True a_ : Union[str, Any] =DebertaTokenizerFast def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] _snake_case : Union[str, Any] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) _snake_case : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case : Dict = {'unk_token': '[UNK]'} _snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowercase ) ) def UpperCamelCase_ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : List[Any] = 'lower newer' _snake_case : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : Optional[Any] = 'lower newer' _snake_case : List[Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) _snake_case : Tuple = tokens + [tokenizer.unk_token] _snake_case : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Dict = self.get_tokenizer() _snake_case : Dict = tokenizer('Hello' , 'World' ) _snake_case : Dict = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , _lowercase ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) _snake_case : int = tokenizer.encode('sequence builders' , add_special_tokens=_lowercase ) _snake_case : Any = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowercase ) _snake_case : Tuple = tokenizer.encode( 'sequence builders' , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) _snake_case : Tuple = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) _snake_case : int = tokenizer.build_inputs_with_special_tokens(_lowercase ) _snake_case : Dict = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _snake_case : str = tokenizer_class.from_pretrained('microsoft/deberta-base' ) _snake_case : Optional[Any] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] _snake_case : Optional[int] = tokenizer(_lowercase , padding=_lowercase ) _snake_case : Dict = [tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) for seq in encoding['input_ids']] # fmt: off _snake_case : Optional[int] = { 'input_ids': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _snake_case : List[Any] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , _lowercase ) for expected, decoded in zip(_lowercase , _lowercase ): self.assertEqual(_lowercase , _lowercase )
411
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline snake_case_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( _lowerCAmelCase ): def __init__( self : List[Any] , _a : List[str] , _a : Optional[Any] ) -> Any: """simple docstring""" super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self : Any , _a : int = 1 , _a : int = 100 , _a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a : Optional[float] = None , _a : bool = True , ) -> int: """simple docstring""" if audio_length_in_s is None: _SCREAMING_SNAKE_CASE =self.unet.config.sample_size / self.unet.config.sample_rate _SCREAMING_SNAKE_CASE =audio_length_in_s * self.unet.config.sample_rate _SCREAMING_SNAKE_CASE =2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"{audio_length_in_s} is too small. Make sure it\'s bigger or equal to" f" {3 * down_scale_factor / self.unet.config.sample_rate}." ) _SCREAMING_SNAKE_CASE =int(_lowercase ) if sample_size % down_scale_factor != 0: _SCREAMING_SNAKE_CASE =( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" ''' process.''' ) _SCREAMING_SNAKE_CASE =int(_lowercase ) _SCREAMING_SNAKE_CASE =next(iter(self.unet.parameters() ) ).dtype _SCREAMING_SNAKE_CASE =(batch_size, self.unet.config.in_channels, sample_size) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _SCREAMING_SNAKE_CASE =randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=_lowercase ) # set step values self.scheduler.set_timesteps(_lowercase , device=audio.device ) _SCREAMING_SNAKE_CASE =self.scheduler.timesteps.to(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _SCREAMING_SNAKE_CASE =self.unet(_lowercase , _lowercase ).sample # 2. compute previous image: x_t -> t_t-1 _SCREAMING_SNAKE_CASE =self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample _SCREAMING_SNAKE_CASE =audio.clamp(-1 , 1 ).float().cpu().numpy() _SCREAMING_SNAKE_CASE =audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_lowercase )
691
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
0
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Optional[int] = int(snake_case_ ) # Initialize Result UpperCamelCase_: List[Any] = [] # Traverse through all denomination for denomination in reversed(snake_case_ ): # Find denominations while int(snake_case_ ) >= int(snake_case_ ): total_value -= int(snake_case_ ) answer.append(snake_case_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A_ : str = [] A_ : Union[str, Any] = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): A_ : List[Any] = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) A_ : Optional[Any] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter A_ : List[Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] A_ : List[str] = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F'''Following is minimal change for {value}: ''') A_ : Optional[int] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
57
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
0
def _UpperCAmelCase ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] a__ = generate_large_matrix() a__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _UpperCAmelCase ( a : list[list[int]] ): assert all(row == sorted(snake_case_ , reverse=snake_case_ ) for row in grid ) assert all(list(snake_case_ ) == sorted(snake_case_ , reverse=snake_case_ ) for col in zip(*snake_case_ ) ) def _UpperCAmelCase ( a : list[int] ): snake_case__ = 0 snake_case__ = len(snake_case_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case__ = (left + right) // 2 snake_case__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case__ = mid + 1 else: snake_case__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case_ ) def _UpperCAmelCase ( a : list[list[int]] ): snake_case__ = 0 snake_case__ = len(grid[0] ) for i in range(len(snake_case_ ) ): snake_case__ = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case_ ) * len(grid[0] )) - total def _UpperCAmelCase ( a : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def _UpperCAmelCase ( a : list[list[int]] ): snake_case__ = 0 for row in grid: for i, number in enumerate(snake_case_ ): if number < 0: total += len(snake_case_ ) - i break return total def _UpperCAmelCase ( ): from timeit import timeit print("""Running benchmarks""" ) snake_case__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case__ = timeit(F'''{func}(grid=grid)''' , setup=snake_case_ , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
654
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class _UpperCamelCase : '''simple docstring''' a_ : str a_ : str = None @staticmethod def _snake_case ( ): '''simple docstring''' raise NotImplementedError def _snake_case ( self : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : str , **_lowerCamelCase : Optional[int] ): '''simple docstring''' raise NotImplementedError def _snake_case ( self : Tuple , _lowerCamelCase : List[str] ): '''simple docstring''' raise NotImplementedError def _snake_case ( self : Any ): '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def _snake_case ( cls : Optional[int] ): '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _UpperCamelCase ( _lowerCAmelCase ): '''simple docstring''' a_ : Optional[Any] = "optuna" @staticmethod def _snake_case ( ): '''simple docstring''' return is_optuna_available() def _snake_case ( self : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : str , **_lowerCamelCase : Any ): '''simple docstring''' return run_hp_search_optuna(_lowercase , _lowercase , _lowercase , **_lowercase ) def _snake_case ( self : Dict , _lowerCamelCase : str ): '''simple docstring''' return default_hp_space_optuna(_lowercase ) class _UpperCamelCase ( _lowerCAmelCase ): '''simple docstring''' a_ : Optional[int] = "ray" a_ : Union[str, Any] = "'ray[tune]'" @staticmethod def _snake_case ( ): '''simple docstring''' return is_ray_available() def _snake_case ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : str , **_lowerCamelCase : int ): '''simple docstring''' return run_hp_search_ray(_lowercase , _lowercase , _lowercase , **_lowercase ) def _snake_case ( self : Optional[int] , _lowerCamelCase : Optional[Any] ): '''simple docstring''' return default_hp_space_ray(_lowercase ) class _UpperCamelCase ( _lowerCAmelCase ): '''simple docstring''' a_ : List[str] = "sigopt" @staticmethod def _snake_case ( ): '''simple docstring''' return is_sigopt_available() def _snake_case ( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : str , **_lowerCamelCase : Optional[int] ): '''simple docstring''' return run_hp_search_sigopt(_lowercase , _lowercase , _lowercase , **_lowercase ) def _snake_case ( self : Dict , _lowerCamelCase : List[Any] ): '''simple docstring''' return default_hp_space_sigopt(_lowercase ) class _UpperCamelCase ( _lowerCAmelCase ): '''simple docstring''' a_ : Optional[int] = "wandb" @staticmethod def _snake_case ( ): '''simple docstring''' return is_wandb_available() def _snake_case ( self : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : str , **_lowerCamelCase : Optional[int] ): '''simple docstring''' return run_hp_search_wandb(_lowercase , _lowercase , _lowercase , **_lowercase ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : List[str] ): '''simple docstring''' return default_hp_space_wandb(_lowercase ) __UpperCamelCase : str = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Dict = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case_ ) > 0: __lowerCamelCase : Dict = available_backends[0].name if len(snake_case_ ) > 1: logger.info( f"""{len(snake_case_ )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
519
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self ,_A ,_A=7 ,_A=3 ,_A=30 ,_A=400 ,_A=True ,_A=None ,_A=0.9 ,_A=None ,_A=True ,_A=[0.5, 0.5, 0.5] ,_A=[0.5, 0.5, 0.5] ,): '''simple docstring''' _lowerCAmelCase : List[Any] = size if size is not None else {'shortest_edge': 30} _lowerCAmelCase : List[str] = crop_size if crop_size is not None else {'height': 30, 'width': 30} _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : Union[str, Any] = min_resolution _lowerCAmelCase : int = max_resolution _lowerCAmelCase : Dict = do_resize_and_center_crop _lowerCAmelCase : Optional[Any] = size _lowerCAmelCase : List[str] = crop_pct _lowerCAmelCase : List[str] = crop_size _lowerCAmelCase : Optional[Any] = do_normalize _lowerCAmelCase : Dict = image_mean _lowerCAmelCase : List[Any] = image_std def __lowerCamelCase ( self ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): _UpperCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = PoolFormerImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase ,'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_lowercase ,'size' ) ) self.assertTrue(hasattr(_lowercase ,'crop_pct' ) ) self.assertTrue(hasattr(_lowercase ,'do_normalize' ) ) self.assertTrue(hasattr(_lowercase ,'image_mean' ) ) self.assertTrue(hasattr(_lowercase ,'image_std' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size ,{'height': 30, 'width': 30} ) _lowerCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase ,Image.Image ) # Test not batched input _lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(_lowercase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowercase ,numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase ,np.ndarray ) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : int = image_processing(_lowercase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowercase ,torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase ,torch.Tensor ) # Test not batched input _lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Optional[int] = image_processing(_lowercase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
259
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP A = False try: A = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] ,UpperCamelCase : str = None ,UpperCamelCase : list = [] ) -> Optional[int]: _lowercase : Any = 0 _lowercase : Optional[int] = choices _lowercase : Optional[int] = prompt if sys.platform == "win32": _lowercase : Optional[int] = '*' else: _lowercase : Optional[int] = '➔ ' def _lowerCamelCase ( self : Dict ,UpperCamelCase : Dict ,UpperCamelCase : str = "" ) -> int: if sys.platform != "win32": writeColor(self.choices[index] ,32 ,_lowercase ) else: forceWrite(self.choices[index] ,_lowercase ) def _lowerCamelCase ( self : List[str] ,UpperCamelCase : int ) -> Dict: if index == self.position: forceWrite(F''' {self.arrow_char} ''' ) self.write_choice(_lowercase ) else: forceWrite(F''' {self.choices[index]}''' ) reset_cursor() def _lowerCamelCase ( self : List[Any] ,UpperCamelCase : Direction ,UpperCamelCase : int = 1 ) -> List[Any]: _lowercase : Dict = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def _lowerCamelCase ( self : Any ) -> str: self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def _lowerCamelCase ( self : Any ) -> str: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def _lowerCamelCase ( self : str ) -> Dict: move_cursor(len(self.choices ) - self.position ,'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def _lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: move_cursor(len(self.choices ) - self.position ,'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowerCamelCase ( self : Tuple ) -> Union[str, Any]: _lowercase : Optional[int] = int(chr(self.current_selection ) ) _lowercase : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,_lowercase ) else: return else: return def _lowerCamelCase ( self : str ,UpperCamelCase : int = 0 ) -> Optional[int]: if self.prompt: linebreak() forceWrite(self.prompt ,'\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' ,'\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' ,'\n' ) _lowercase : Any = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position ,'UP' ) with cursor.hide(): while True: if in_colab: try: _lowercase : Optional[int] = int(builtins.input() ) except ValueError: _lowercase : Dict = default_choice else: _lowercase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,'UP' ) clear_line() self.write_choice(_lowercase ,'\n' ) return choice
125
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
0
def snake_case ( snake_case__ :float) -> Union[str, Any]: return 10 - x * x def snake_case ( snake_case__ :float , snake_case__ :float) -> int: # Bolzano theory in order to find if there is a root between a and b if equation(snake_case_) * equation(snake_case_) >= 0: raise ValueError("""Wrong space!""") _A = a while (b - a) >= 0.01: # Find middle point _A = (a + b) / 2 # Check if middle point is root if equation(snake_case_) == 0.0: break # Decide the side to repeat the steps if equation(snake_case_) * equation(snake_case_) < 0: _A = c else: _A = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
401
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __UpperCAmelCase = True for i in range(snake_case_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __UpperCAmelCase = True if a[i].islower(): __UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
from __future__ import annotations from random import random from typing import Generic, TypeVar __A : Optional[int] = TypeVar('KT') __A : Optional[int] = TypeVar('VT') class _SCREAMING_SNAKE_CASE ( Generic[KT, VT] ): '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : KT | str = "root" , __lowerCamelCase : VT | None = None ): SCREAMING_SNAKE_CASE = key SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = [] def __repr__( self : str ): return f"Node({self.key}: {self.value})" @property def _snake_case ( self : Union[str, Any] ): return len(self.forward ) class _SCREAMING_SNAKE_CASE ( Generic[KT, VT] ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : float = 0.5 , __lowerCamelCase : int = 16 ): SCREAMING_SNAKE_CASE = Node[KT, VT]() SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = p SCREAMING_SNAKE_CASE = max_level def __str__( self : Dict ): SCREAMING_SNAKE_CASE = list(self ) if len(_lowercase ) == 0: return f"SkipList(level={self.level})" SCREAMING_SNAKE_CASE = max((len(str(_lowercase ) ) for item in items) , default=4 ) SCREAMING_SNAKE_CASE = max(_lowercase , 4 ) + 4 SCREAMING_SNAKE_CASE = self.head SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = node.forward.copy() lines.append(f"[{node.key}]".ljust(_lowercase , "-" ) + "* " * len(_lowercase ) ) lines.append(" " * label_size + "| " * len(_lowercase ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE = node.forward[0] lines.append( f"[{node.key}]".ljust(_lowercase , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(_lowercase ) ) SCREAMING_SNAKE_CASE = node.forward lines.append("None".ljust(_lowercase ) + "* " * len(_lowercase ) ) return f"SkipList(level={self.level})\n" + "\n".join(_lowercase ) def __iter__( self : int ): SCREAMING_SNAKE_CASE = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE = node.forward[0] def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = 1 while random() < self.p and level < self.max_level: level += 1 return level def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_lowercase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _snake_case ( self : Optional[Any] , __lowerCamelCase : KT ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._locate_node(_lowercase ) if node is not None: for i, update_node in enumerate(_lowercase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE = node.forward[i] else: SCREAMING_SNAKE_CASE = update_node.forward[:i] def _snake_case ( self : Union[str, Any] , __lowerCamelCase : KT , __lowerCamelCase : VT ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._locate_node(_lowercase ) if node is not None: SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _lowercase ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE = level SCREAMING_SNAKE_CASE = Node(_lowercase , _lowercase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_lowercase ) else: SCREAMING_SNAKE_CASE = new_node def _snake_case ( self : List[Any] , __lowerCamelCase : VT ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._locate_node(_lowercase ) if node is not None: return node.value return None def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 12 ) skip_list.insert("Key3" , 41 ) skip_list.insert("Key4" , -19 ) SCREAMING_SNAKE_CASE = skip_list.head SCREAMING_SNAKE_CASE = {} while node.level != 0: SCREAMING_SNAKE_CASE = node.forward[0] SCREAMING_SNAKE_CASE = node.value assert len(snake_case_ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key1" , 10 ) skip_list.insert("Key1" , 12 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 10 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 10 ) SCREAMING_SNAKE_CASE = skip_list.head SCREAMING_SNAKE_CASE = {} while node.level != 0: SCREAMING_SNAKE_CASE = node.forward[0] SCREAMING_SNAKE_CASE = node.value if len(snake_case_ ) != 4: print() assert len(snake_case_ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __a ( ): SCREAMING_SNAKE_CASE = SkipList() assert skip_list.find("Some key" ) is None def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key2" , 20 ) assert skip_list.find("Key2" ) == 20 skip_list.insert("Some Key" , 10 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 13 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 10 assert skip_list.find("V" ) == 13 def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 14 assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 15 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 142 ) skip_list.insert("Key2" , 15 ) skip_list.delete("X" ) def traverse_keys(A__ : int ): yield node.key for forward_node in node.forward: yield from traverse_keys(snake_case_ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __a ( ): def is_sorted(A__ : Union[str, Any] ): return all(next_item >= item for item, next_item in zip(snake_case_ , lst[1:] ) ) SCREAMING_SNAKE_CASE = SkipList() for i in range(10 ): skip_list.insert(snake_case_ , snake_case_ ) assert is_sorted(list(snake_case_ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(snake_case_ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(snake_case_ ) ) def __a ( ): for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
16
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Tuple = inspect.getfile(accelerate.test_utils ) __SCREAMING_SNAKE_CASE : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __SCREAMING_SNAKE_CASE : Optional[Any] = test_metrics @require_cpu def __magic_name__( self :Union[str, Any] ) -> str: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __magic_name__( self :Dict ) -> int: debug_launcher(self.test_metrics.main ) @require_single_gpu def __magic_name__( self :int ) -> Optional[int]: self.test_metrics.main() @require_multi_gpu def __magic_name__( self :Tuple ) -> List[str]: print(f'''Found {torch.cuda.device_count()} devices.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowercase , env=os.environ.copy() )
696
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowercase = logging.get_logger(__name__) _lowercase = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class __a ( _lowerCAmelCase ): '''simple docstring''' _lowerCamelCase : Dict = "longformer" def __init__( self , _lowerCamelCase = 512 , _lowerCamelCase = 2 , _lowerCamelCase = 1 , _lowerCamelCase = 0 , _lowerCamelCase = 2 , _lowerCamelCase = 30_522 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = 3_072 , _lowerCamelCase = "gelu" , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 512 , _lowerCamelCase = 2 , _lowerCamelCase = 0.02 , _lowerCamelCase = 1e-12 , _lowerCamelCase = False , **_lowerCamelCase , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=_lowercase , **_lowercase ) __lowercase = attention_window __lowercase = sep_token_id __lowercase = bos_token_id __lowercase = eos_token_id __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = onnx_export class __a ( _lowerCAmelCase ): '''simple docstring''' def __init__( self , _lowerCamelCase , _lowerCamelCase = "default" , _lowerCamelCase = None ) -> Dict: '''simple docstring''' super().__init__(_lowercase , _lowercase , _lowercase ) __lowercase = True @property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowercase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = super().outputs if self.task == "default": __lowercase = {0: "batch"} return outputs @property def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Tuple: '''simple docstring''' __lowercase = super().generate_dummy_inputs( preprocessor=_lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __lowercase = torch.zeros_like(inputs["input_ids"] ) # make every second token global __lowercase = 1 return inputs
118
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: Dict )-> List[str]: monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> List[str]: class _lowerCAmelCase : '''simple docstring''' def __init__( self : Any , UpperCamelCase : str ): '''simple docstring''' _snake_case : Any = metric_id class _lowerCAmelCase : '''simple docstring''' a_ : int =[MetricMock(_lowerCAmelCase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def UpperCamelCase_ ( self : int ): '''simple docstring''' return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: str , lowerCAmelCase: Any , lowerCAmelCase: List[str] )-> Tuple: if "tmp_path" in args: _snake_case : List[Any] = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(snake_case_ , match='https://huggingface.co/docs/evaluate' ): func(*snake_case_ )
411
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE ={ '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowercase , _lowercase ) def __UpperCamelCase ( self : Optional[int] , **_a : List[str] ) -> Optional[int]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def __UpperCamelCase ( self : Optional[int] , **_a : List[str] ) -> Any: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_lowercase , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase ) _SCREAMING_SNAKE_CASE ='''lower newer''' _SCREAMING_SNAKE_CASE =processor(text=_lowercase ) _SCREAMING_SNAKE_CASE =tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase ) _SCREAMING_SNAKE_CASE ='''lower newer''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_lowercase ): processor() def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.batch_decode(_lowercase ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =VisionTextDualEncoderProcessor(tokenizer=_lowercase , image_processor=_lowercase ) _SCREAMING_SNAKE_CASE ='''lower newer''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
691
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
49
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A_ : Union[str, Any] = logging.getLogger(__name__) A_ : Optional[Any] = 'Hello world! cécé herlolip' A_ : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: UpperCamelCase_: int = BertAbsConfig( temp_dir='.' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='bert' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCamelCase_: Union[str, Any] = torch.load(snake_case_ , lambda UpperCAmelCase__ , UpperCAmelCase__ : storage ) UpperCamelCase_: Tuple = AbsSummarizer(snake_case_ , torch.device('cpu' ) , snake_case_ ) original.eval() UpperCamelCase_: Optional[Any] = BertAbsSummarizer(snake_case_ , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) UpperCamelCase_: str = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs UpperCamelCase_: Union[str, Any] = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(snake_case_ )) ) UpperCamelCase_: Any = torch.tensor(snake_case_ ).unsqueeze(0 ) UpperCamelCase_: str = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(snake_case_ )) ) UpperCamelCase_: int = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCamelCase_: str = encoder_input_ids UpperCamelCase_: Dict = decoder_input_ids UpperCamelCase_: List[str] = None UpperCamelCase_: Tuple = None UpperCamelCase_: Optional[int] = None UpperCamelCase_: int = None UpperCamelCase_: List[Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCamelCase_: int = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] UpperCamelCase_: Tuple = original.generator(snake_case_ ) UpperCamelCase_: int = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] UpperCamelCase_: str = new_model.generator(snake_case_ ) UpperCamelCase_: Union[str, Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(snake_case_ ) ) UpperCamelCase_: str = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(snake_case_ ) ) UpperCamelCase_: Union[str, Any] = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) A_ : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
57
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : str = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _lowercase : int = { 'yjernite/retribert-base-uncased': 5_12, } _lowercase : Any = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = PRETRAINED_INIT_CONFIGURATION a__ : Optional[Any] = RetriBertTokenizer a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowercase : str=None , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : Any="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : List[Any]=None , **_lowercase : str , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): __UpperCAmelCase = getattr(_lowercase , normalizer_state.pop('''type''' ) ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = strip_accents __UpperCAmelCase = tokenize_chinese_chars __UpperCAmelCase = normalizer_class(**_lowercase ) __UpperCAmelCase = do_lower_case def a ( self : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any]=None ): __UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
49
0
def _UpperCAmelCase ( a : int , a : int ): while second != 0: snake_case__ = first & second first ^= second snake_case__ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() a__ = int(input("""Enter the first number: """).strip()) a__ = int(input("""Enter the second number: """).strip()) print(F'''{add(first, second) = }''')
654
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Dict = 'bart' _lowercase : Dict = True @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __UpperCAmelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __UpperCAmelCase = qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = (None, None) if MODEL_TYPE == "bart": __UpperCAmelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __UpperCAmelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __UpperCAmelCase = sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): if LOAD_DENSE_INDEX: __UpperCAmelCase = faiss.StandardGpuResources() __UpperCAmelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __UpperCAmelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) __UpperCAmelCase = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase = (None, None) __UpperCAmelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def lowercase__ ( ): __UpperCAmelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __UpperCAmelCase = elia['''train_eli5'''] __UpperCAmelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _lowercase ,_lowercase ,_lowercase : Dict = load_indexes() _lowercase ,_lowercase ,_lowercase ,_lowercase : Dict = load_models() _lowercase ,_lowercase : Tuple = load_train_data() def lowercase__ ( snake_case_ :Tuple , snake_case_ :Any=10 ): __UpperCAmelCase = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) __UpperCAmelCase , __UpperCAmelCase = eli5_train_q_index.search(snake_case_ , snake_case_ ) __UpperCAmelCase = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def lowercase__ ( snake_case_ :Any , snake_case_ :Dict="wiki40b" , snake_case_ :str="dense" , snake_case_ :Union[str, Any]=10 ): if source == "none": __UpperCAmelCase , __UpperCAmelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __UpperCAmelCase , __UpperCAmelCase = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) __UpperCAmelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __UpperCAmelCase = '''question: {} context: {}'''.format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[Any]=64 , snake_case_ :Optional[int]=256 , snake_case_ :List[Any]=False , snake_case_ :Optional[Any]=2 , snake_case_ :Optional[Any]=0.95 , snake_case_ :List[Any]=0.8 ): with torch.no_grad(): __UpperCAmelCase = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _lowercase : Dict = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _lowercase : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : int = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _lowercase : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: _lowercase : Tuple = st.sidebar.selectbox( '', action_list, index=3, ) _lowercase : List[str] = action_list.index(action_st) _lowercase : str = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _lowercase : int = show_type == 'Show full text of passages' else: _lowercase : str = 3 _lowercase : List[Any] = True _lowercase : Optional[int] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _lowercase : Any = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _lowercase : List[str] = 'wiki40b' _lowercase : Optional[int] = 'dense' _lowercase : List[Any] = 'beam' _lowercase : str = 2 _lowercase : Optional[int] = 64 _lowercase : Union[str, Any] = 2_56 _lowercase : List[str] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: _lowercase : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _lowercase : Optional[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _lowercase : Optional[int] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _lowercase : Optional[Any] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _lowercase : str = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase : Dict = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase : Union[str, Any] = None # start main text _lowercase : Optional[int] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Optional[Any] = st.text_input('Enter your question here:', '') else: _lowercase : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _lowercase ,_lowercase : Any = make_support(question, source=wiki_source, method='dense', n_results=10) _lowercase ,_lowercase : Union[str, Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : Any = support_list[:10] _lowercase : Tuple = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _lowercase ,_lowercase : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase ,_lowercase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _lowercase : int = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _lowercase : Any = res[1].strip() if sec_titles == "": _lowercase : Dict = '[{}]({})'.format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(' & ') _lowercase : int = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _lowercase : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _lowercase : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : List[Any] = torch.nn.Linear(1_0 , 1_0 ) __lowerCamelCase : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) __lowerCamelCase : Optional[Any] = Accelerator() __lowerCamelCase : int = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
519
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = CycleDiffusionPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self : Optional[int] ): torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase = CLIPTextModel(_lowercase ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ): __UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def a ( self : Optional[int] ): __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): __UpperCAmelCase = module.half() __UpperCAmelCase = CycleDiffusionPipeline(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase = pipe(**_lowercase ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a ( self : Tuple ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def a ( self : List[str] ): return super().test_inference_batch_single_identical() @skip_mps def a ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self : str ): return super().test_save_load_optional_components() @skip_mps def a ( self : int ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a ( self : Optional[Any] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __UpperCAmelCase = init_image.resize((5_12, 5_12) ) __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' __UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) __UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() __UpperCAmelCase = '''A black colored car''' __UpperCAmelCase = '''A blue colored car''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
49
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _lowerCAmelCase = imread(r"""digital_image_processing/image_data/lena_small.jpg""") _lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = cn.convert_to_negative(snake_case_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase__ ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(snake_case_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCAmelCase : str = canny.canny(snake_case_ ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase__ ( ): '''simple docstring''' assert gg.gaussian_filter(snake_case_ , 5 , sigma=0.9 ).all() def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCAmelCase : Any = conv.img_convolve(snake_case_ , snake_case_ ).astype(snake_case_ ) assert res.any() def lowerCamelCase__ ( ): '''simple docstring''' assert med.median_filter(snake_case_ , 3 ).any() def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = sob.sobel_filter(snake_case_ ) assert grad.any() and theta.any() def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Dict = sp.make_sepia(snake_case_ , 20 ) assert sepia.all() def lowerCamelCase__ ( _lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' _lowerCAmelCase : Optional[int] = bs.Burkes(imread(snake_case_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase__ ( _lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' _lowerCAmelCase : List[Any] = rs.NearestNeighbour(imread(snake_case_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. _lowerCAmelCase : Any = imread(snake_case_ , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Any = image[x_coordinate][y_coordinate] _lowerCAmelCase : Optional[int] = lbp.get_neighbors_pixel( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCAmelCase : Dict = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCAmelCase : Optional[Any] = lbp.local_binary_value(snake_case_ , snake_case_ , snake_case_ ) assert lbp_image.any()
259
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'sentencepiece.model'} _lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowercase : List[str] = { 'google/rembert': 2_56, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Tuple=True , _lowercase : str=True , _lowercase : str="[CLS]" , _lowercase : Dict="[SEP]" , _lowercase : Union[str, Any]="[UNK]" , _lowercase : Any="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Tuple="[CLS]" , _lowercase : Optional[Any]="[MASK]" , **_lowercase : str , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) __UpperCAmelCase = do_lower_case __UpperCAmelCase = remove_space __UpperCAmelCase = keep_accents __UpperCAmelCase = vocab_file __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def a ( self : int ): return len(self.sp_model ) def a ( self : Tuple ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : Tuple , _lowercase : str ): __UpperCAmelCase = d __UpperCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=False ): __UpperCAmelCase = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def a ( self : int , _lowercase : List[str] ): return self.sp_model.PieceToId(_lowercase ) def a ( self : List[str] , _lowercase : str ): return self.sp_model.IdToPiece(_lowercase ) def a ( self : Any , _lowercase : Dict ): __UpperCAmelCase = self.sp_model.decode_pieces(_lowercase ) return out_string def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowercase ) ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
49
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : int = 4_00_00_00) -> Dict: '''simple docstring''' _lowercase : int = [0, 1] _lowercase : str = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 _lowercase : Optional[Any] = 0 for j in range(len(snake_case_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
125
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=10 , lowerCAmelCase_=3 , lowerCAmelCase_=2 , lowerCAmelCase_=2 , lowerCAmelCase_=2 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_=0.9 , lowerCAmelCase_=None , ) -> int: _A = parent _A = batch_size _A = image_size _A = num_channels _A = patch_size _A = tubelet_size _A = num_frames _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = mask_ratio _A = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _A = (image_size // patch_size) ** 2 _A = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _A = int(mask_ratio * self.seq_length ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Union[str, Any]: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _A = VideoMAEModel(config=_lowercase ) model.to(_lowercase ) model.eval() _A = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _A = VideoMAEForPreTraining(_lowercase ) model.to(_lowercase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _A = torch.ones((self.num_masks,) ) _A = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _A = mask.expand(self.batch_size , -1 ).bool() _A = model(_lowercase , _lowercase ) # model only returns predictions for masked patches _A = mask.sum().item() _A = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase :Dict = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase :Any = False lowerCamelCase :int = False lowerCamelCase :int = False lowerCamelCase :Tuple = False def UpperCAmelCase ( self ) -> Tuple: _A = VideoMAEModelTester(self ) _A = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[Any]: _A = copy.deepcopy(_lowercase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _A = torch.ones((self.model_tester.num_masks,) ) _A = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _A = mask.expand(self.model_tester.batch_size , -1 ).bool() _A = bool_masked_pos.to(_lowercase ) if return_labels: if model_class in [ *get_values(_lowercase ), ]: _A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> Tuple: pass def UpperCAmelCase ( self ) -> Union[str, Any]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def UpperCAmelCase ( self ) -> int: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_lowercase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self ) -> Any: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase ) @slow def UpperCAmelCase ( self ) -> Any: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = VideoMAEModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase ( self ) -> Tuple: if not self.has_attentions: pass else: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True for model_class in self.all_model_classes: _A = self.model_tester.seq_length - self.model_tester.num_masks _A = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _A = True _A = False _A = True _A = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _A = outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A = True _A = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _A = outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _A = len(_lowercase ) # Check attention is always last and order is fine _A = True _A = True _A = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + 1 , len(_lowercase ) ) _A = outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _A = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _A = outputs.hidden_states _A = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowercase ) , _lowercase ) _A = self.model_tester.seq_length - self.model_tester.num_masks _A = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase ( self ) -> str: pass def snake_case ( ) -> Optional[int]: _A = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""") _A = np.load(snake_case_) return list(snake_case_) @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ) -> List[str]: _A = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( _lowercase ) _A = self.default_image_processor _A = prepare_video() _A = image_processor(_lowercase , return_tensors="""pt""" ).to(_lowercase ) # forward pass with torch.no_grad(): _A = model(**_lowercase ) # verify the logits _A = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , _lowercase ) _A = torch.tensor([0.3669, -0.0688, -0.2421] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ) -> str: _A = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(_lowercase ) _A = self.default_image_processor _A = prepare_video() _A = image_processor(_lowercase , return_tensors="""pt""" ).to(_lowercase ) # add boolean mask, indicating which patches to mask _A = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) _A = torch.load(_lowercase ) # forward pass with torch.no_grad(): _A = model(**_lowercase ) # verify the logits _A = torch.Size([1, 14_08, 15_36] ) _A = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=_lowercase ) self.assertEqual(outputs.logits.shape , _lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowercase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _A = torch.tensor([0.5142] , device=_lowercase ) self.assertTrue(torch.allclose(outputs.loss , _lowercase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _A = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=_lowercase ).to( _lowercase ) with torch.no_grad(): _A = model(**_lowercase ) _A = torch.tensor(torch.tensor([0.6469] ) , device=_lowercase ) self.assertTrue(torch.allclose(outputs.loss , _lowercase , atol=1E-4 ) )
401
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] __A : Union[str, Any] = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _lowercase ( _lowerCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = "EncodecFeatureExtractor" SCREAMING_SNAKE_CASE__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :str ) -> int: super().__init__(_lowercase , _lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extractor __SCREAMING_SNAKE_CASE : List[str] = False def __magic_name__( self :List[str] , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :Any=True ) -> Optional[int]: return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self :Any , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Union[str, Any] ) -> Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''audio''' , _lowercase ) __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''sampling_rate''' , _lowercase ) __SCREAMING_SNAKE_CASE : int = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __SCREAMING_SNAKE_CASE : int = args[0] __SCREAMING_SNAKE_CASE : str = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __SCREAMING_SNAKE_CASE : List[str] = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __SCREAMING_SNAKE_CASE : Optional[Any] = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __SCREAMING_SNAKE_CASE : Optional[Any] = audio_inputs['''padding_mask'''] return inputs def __magic_name__( self :str , *lowerCAmelCase__ :Dict , **lowerCAmelCase__ :List[str] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('''audio''' , _lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __SCREAMING_SNAKE_CASE : List[str] = args[0] __SCREAMING_SNAKE_CASE : List[str] = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def __magic_name__( self :Union[str, Any] , *lowerCAmelCase__ :int , **lowerCAmelCase__ :List[str] ) -> List[str]: return self.tokenizer.decode(*_lowercase , **_lowercase ) def __magic_name__( self :List[str] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional = None ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = to_numpy(_lowercase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = audio_values.shape if padding_mask is None: return list(_lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __SCREAMING_SNAKE_CASE : List[str] = seq_len - padding_mask.shape[-1] __SCREAMING_SNAKE_CASE : Any = 1 - self.feature_extractor.padding_value __SCREAMING_SNAKE_CASE : List[str] = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __SCREAMING_SNAKE_CASE : Dict = audio_values.tolist() for i in range(_lowercase ): __SCREAMING_SNAKE_CASE : List[str] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __SCREAMING_SNAKE_CASE : int = sliced_audio.reshape(_lowercase , -1 ) return audio_values
696
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
0
"""simple docstring""" def lowerCAmelCase__ ( __magic_name__ = "The quick brown fox jumps over the lazy dog" , ) ->Union[str, Any]: __lowercase = set() # Replace all the whitespace in our sentence __lowercase = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(snake_case_ ) == 2_6 def lowerCAmelCase__ ( __magic_name__ = "The quick brown fox jumps over the lazy dog" , ) ->int: __lowercase = [False] * 2_6 for char in input_str: if char.islower(): __lowercase = True elif char.isupper(): __lowercase = True return all(snake_case_ ) def lowerCAmelCase__ ( __magic_name__ = "The quick brown fox jumps over the lazy dog" , ) ->Union[str, Any]: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def lowerCAmelCase__ ( ) ->Optional[Any]: from timeit import timeit __lowercase = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=snake_case_ ) ) print(timeit("is_pangram_faster()" , setup=snake_case_ ) ) print(timeit("is_pangram_fastest()" , setup=snake_case_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
118
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def a ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self : Dict ): __UpperCAmelCase = ort.SessionOptions() __UpperCAmelCase = False return options def a ( self : Any ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self : Optional[int] ): __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __UpperCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''A red cat sitting on a park bench''' __UpperCAmelCase = np.random.RandomState(0 ) __UpperCAmelCase = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type='''np''' , ) __UpperCAmelCase = output.images __UpperCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
49
0
lowerCAmelCase_ = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
411
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A__ ( _lowerCAmelCase ): def __init__( self : Tuple , _a : Distribution , _a : List[str]=None , _a : str=None , _a : Tuple=0 ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1.0 if scale is None else scale _SCREAMING_SNAKE_CASE =0.0 if loc is None else loc super().__init__(_lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowercase )] ) @property def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.variance.sqrt() class A__ ( nn.Module ): def __init__( self : List[str] , _a : int , _a : Dict[str, int] , _a : Callable[..., Tuple[torch.Tensor]] , **_a : Tuple ) -> int: """simple docstring""" super().__init__(**_lowercase ) _SCREAMING_SNAKE_CASE =args_dim _SCREAMING_SNAKE_CASE =nn.ModuleList([nn.Linear(_lowercase , _lowercase ) for dim in args_dim.values()] ) _SCREAMING_SNAKE_CASE =domain_map def __UpperCamelCase ( self : int , _a : torch.Tensor ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[proj(_lowercase ) for proj in self.proj] return self.domain_map(*_lowercase ) class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _a : List[str] ) -> Union[str, Any]: """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE =function def __UpperCamelCase ( self : Union[str, Any] , _a : Tuple , *_a : Optional[Any] ) -> Tuple: """simple docstring""" return self.function(_lowercase , *_lowercase ) class A__ : UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 def __init__( self : List[str] , _a : int = 1 ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =dim _SCREAMING_SNAKE_CASE ={k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCamelCase ( self : List[str] , _a : Optional[Any] ) -> Any: """simple docstring""" if self.dim == 1: return self.distribution_class(*_lowercase ) else: return Independent(self.distribution_class(*_lowercase ) , 1 ) def __UpperCamelCase ( self : Optional[int] , _a : str , _a : Optional[torch.Tensor] = None , _a : Optional[torch.Tensor] = None , ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self._base_distribution(_lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowercase , loc=_lowercase , scale=_lowercase , event_dim=self.event_dim ) @property def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" return len(self.event_shape ) @property def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" return 0.0 def __UpperCamelCase ( self : Dict , _a : int ) -> Tuple: """simple docstring""" return ParameterProjection( in_features=_lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCamelCase ( self : List[str] , *_a : torch.Tensor ) -> Optional[int]: """simple docstring""" raise NotImplementedError() @staticmethod def __UpperCamelCase ( _a : torch.Tensor ) -> Dict: """simple docstring""" return (x + torch.sqrt(torch.square(_lowercase ) + 4.0 )) / 2.0 class A__ ( _lowerCAmelCase ): UpperCAmelCase = {"df": 1, "loc": 1, "scale": 1} UpperCAmelCase = StudentT @classmethod def __UpperCamelCase ( cls : Optional[Any] , _a : torch.Tensor , _a : torch.Tensor , _a : torch.Tensor ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) _SCREAMING_SNAKE_CASE =2.0 + cls.squareplus(_lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( _lowerCAmelCase ): UpperCAmelCase = {"loc": 1, "scale": 1} UpperCAmelCase = Normal @classmethod def __UpperCamelCase ( cls : Optional[int] , _a : torch.Tensor , _a : torch.Tensor ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( _lowerCAmelCase ): UpperCAmelCase = {"total_count": 1, "logits": 1} UpperCAmelCase = NegativeBinomial @classmethod def __UpperCamelCase ( cls : Tuple , _a : torch.Tensor , _a : torch.Tensor ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =cls.squareplus(_lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCamelCase ( self : Optional[Any] , _a : Any ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =distr_args if self.dim == 1: return self.distribution_class(total_count=_lowercase , logits=_lowercase ) else: return Independent(self.distribution_class(total_count=_lowercase , logits=_lowercase ) , 1 ) def __UpperCamelCase ( self : Optional[int] , _a : Union[str, Any] , _a : Optional[torch.Tensor] = None , _a : Optional[torch.Tensor] = None ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
691
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) __UpperCAmelCase = TextIteratorStreamer(_lowercase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowercase , _lowercase ) def a ( self : str ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase ) __UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] __UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_prompt=_lowercase ) model.generate(_lowercase , max_new_tokens=10 , do_sample=_lowercase , streamer=_lowercase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCAmelCase = cs.out[:-1] self.assertEqual(_lowercase , _lowercase ) def a ( self : Tuple ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = torch.ones((1, 5) , device=_lowercase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCAmelCase = TextStreamer(_lowercase , skip_special_tokens=_lowercase ) model.generate(_lowercase , max_new_tokens=1 , do_sample=_lowercase , streamer=_lowercase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCAmelCase = cs.out[:-1] # Remove the final "\n" __UpperCAmelCase = tokenizer(_lowercase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : Tuple ): __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowercase ) __UpperCAmelCase = -1 __UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowercase ) __UpperCAmelCase = TextIteratorStreamer(_lowercase , timeout=0.001 ) __UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __UpperCAmelCase = Thread(target=model.generate , kwargs=_lowercase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowercase ): __UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
49
0
from __future__ import annotations import math def snake_case (UpperCAmelCase__ ) -> Any: if num <= 0: UpperCamelCase_: str = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(snake_case_ ) UpperCamelCase_: List[Any] = [True] * (num + 1) UpperCamelCase_: List[Any] = [] UpperCamelCase_: int = 2 UpperCamelCase_: List[str] = int(math.sqrt(snake_case_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case_ ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case_ ): if sieve[i] is True: UpperCamelCase_: Optional[int] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
57
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
0