code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ):
return [sentence[i : i + ngram_size] for i in range(len(__lowerCAmelCase ) - ngram_size + 1 )]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 50 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ):
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Any = {
'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json',
'Salesforce/blip-vqa-capfit-large': (
'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json'
),
'Salesforce/blip-image-captioning-base': (
'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json'
),
'Salesforce/blip-image-captioning-large': (
'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json'
),
'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json',
'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json',
'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json',
'Salesforce/blip-itm-large-flikr': (
'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json'
),
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'blip_text_model'
def __init__( self ,_lowerCAmelCase=3_05_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=8 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=1E-12 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3_05_22 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0 ,_lowerCAmelCase=1_02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
super().__init__(
pad_token_id=_lowerCAmelCase ,bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,sep_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = vocab_size
lowerCamelCase__ = hidden_size
lowerCamelCase__ = encoder_hidden_size
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = projection_dim
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = max_position_embeddings
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = hidden_act
lowerCamelCase__ = initializer_range
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = is_decoder
lowerCamelCase__ = use_cache
@classmethod
def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ):
cls._set_token_in_kwargs(_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_lowerCAmelCase ,**_lowerCAmelCase )
# get the text config dict if we are loading from BlipConfig
if config_dict.get("""model_type""" ) == "blip":
lowerCamelCase__ = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_lowerCAmelCase ,**_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'blip_vision_model'
def __init__( self ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=3_84 ,_lowerCAmelCase=16 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-10 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = hidden_size
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = projection_dim
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = patch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = attention_dropout
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = hidden_act
@classmethod
def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ):
cls._set_token_in_kwargs(_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_lowerCAmelCase ,**_lowerCAmelCase )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get("""model_type""" ) == "blip":
lowerCamelCase__ = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_lowerCAmelCase ,**_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'blip'
_UpperCamelCase = True
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=2.6592 ,_lowerCAmelCase=2_56 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
if text_config is None:
lowerCamelCase__ = {}
logger.info("""`text_config` is `None`. Initializing the `BlipTextConfig` with default values.""" )
if vision_config is None:
lowerCamelCase__ = {}
logger.info("""`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.""" )
lowerCamelCase__ = BlipTextConfig(**_lowerCAmelCase )
lowerCamelCase__ = BlipVisionConfig(**_lowerCAmelCase )
lowerCamelCase__ = self.vision_config.hidden_size
lowerCamelCase__ = projection_dim
lowerCamelCase__ = logit_scale_init_value
lowerCamelCase__ = 1.0
lowerCamelCase__ = 0.02
lowerCamelCase__ = image_text_hidden_size
@classmethod
def UpperCamelCase_ ( cls ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ):
return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = copy.deepcopy(self.__dict__ )
lowerCamelCase__ = self.text_config.to_dict()
lowerCamelCase__ = self.vision_config.to_dict()
lowerCamelCase__ = self.__class__.model_type
return output
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Union[str, Any] = {
'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'],
'tokenization_canine': ['CanineTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Any = [
'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST',
'CanineForMultipleChoice',
'CanineForQuestionAnswering',
'CanineForSequenceClassification',
'CanineForTokenClassification',
'CanineLayer',
'CanineModel',
'CaninePreTrainedModel',
'load_tf_weights_in_canine',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=5 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCamelCase__ = (image_size // patch_size) ** 2
lowerCamelCase__ = num_patches + 1
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return ViTMSNConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = ViTMSNModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.type_sequence_label_size
lowerCamelCase__ = ViTMSNForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase )
print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" )
print("""Labels: {labels}""" )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCamelCase__ = 1
lowerCamelCase__ = ViTMSNForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_UpperCamelCase = (
{'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ViTMSNModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMSN does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,nn.Linear ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = ViTMSNModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
torch.manual_seed(2 )
lowerCamelCase__ = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_lowerCAmelCase )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
| 50 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase : int = '3'
print('Python version:', sys.version)
print('transformers version:', transformers.__version__)
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
print('NCCL version:', torch.cuda.nccl.version())
except ImportError:
print('Torch version:', None)
try:
import deepspeed
print('DeepSpeed version:', deepspeed.__version__)
except ImportError:
print('DeepSpeed version:', None)
try:
import tensorflow as tf
print('TensorFlow version:', tf.__version__)
print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))
print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))
except ImportError:
print('TensorFlow version:', None)
| 50 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = ['input_features', 'attention_mask']
def __init__( self ,_lowerCAmelCase=80 ,_lowerCAmelCase=1_60_00 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=10 ,_lowerCAmelCase=25 ,_lowerCAmelCase="hamming_window" ,_lowerCAmelCase=3_2768.0 ,_lowerCAmelCase=0.97 ,_lowerCAmelCase=1.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,**_lowerCAmelCase ,):
super().__init__(feature_size=_lowerCAmelCase ,sampling_rate=_lowerCAmelCase ,padding_value=_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = feature_size
lowerCamelCase__ = sampling_rate
lowerCamelCase__ = padding_value
lowerCamelCase__ = hop_length
lowerCamelCase__ = win_length
lowerCamelCase__ = frame_signal_scale
lowerCamelCase__ = preemphasis_coeff
lowerCamelCase__ = mel_floor
lowerCamelCase__ = normalize_means
lowerCamelCase__ = normalize_vars
lowerCamelCase__ = win_function
lowerCamelCase__ = return_attention_mask
lowerCamelCase__ = win_length * sampling_rate // 10_00
lowerCamelCase__ = hop_length * sampling_rate // 10_00
lowerCamelCase__ = optimal_fft_length(self.sample_size )
lowerCamelCase__ = (self.n_fft // 2) + 1
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if self.win_function == "hamming_window":
lowerCamelCase__ = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=_lowerCAmelCase )
else:
lowerCamelCase__ = window_function(window_length=self.sample_size ,name=self.win_function )
lowerCamelCase__ = mel_filter_bank(
num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,)
lowerCamelCase__ = spectrogram(
one_waveform * self.frame_signal_scale ,window=_lowerCAmelCase ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=_lowerCAmelCase ,preemphasis=self.preemphasis_coeff ,mel_filters=_lowerCAmelCase ,mel_floor=self.mel_floor ,log_mel="""log""" ,)
return msfc_features.T
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
# make sure we normalize float32 arrays
if self.normalize_means:
lowerCamelCase__ = x[:input_length].mean(axis=0 )
lowerCamelCase__ = np.subtract(_lowerCAmelCase ,_lowerCAmelCase )
if self.normalize_vars:
lowerCamelCase__ = x[:input_length].std(axis=0 )
lowerCamelCase__ = np.divide(_lowerCAmelCase ,_lowerCAmelCase )
if input_length < x.shape[0]:
lowerCamelCase__ = padding_value
# make sure array is in float32
lowerCamelCase__ = x.astype(np.floataa )
return x
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(_lowerCAmelCase ,_lowerCAmelCase ,self.padding_value ) for x, n in zip(_lowerCAmelCase ,_lowerCAmelCase )]
def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"""It is strongly recommended to pass the ``sampling_rate`` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
lowerCamelCase__ = isinstance(_lowerCAmelCase ,np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowerCamelCase__ = is_batched_numpy or (
isinstance(_lowerCAmelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) ))
)
if is_batched:
lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_lowerCAmelCase ,np.ndarray ):
lowerCamelCase__ = np.asarray(_lowerCAmelCase ,dtype=np.floataa )
elif isinstance(_lowerCAmelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCamelCase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCamelCase__ = [raw_speech]
# extract fbank features
lowerCamelCase__ = [self._extract_mfsc_features(_lowerCAmelCase ) for one_waveform in raw_speech]
# convert into correct format for padding
lowerCamelCase__ = BatchFeature({"""input_features""": features} )
lowerCamelCase__ = self.pad(
_lowerCAmelCase ,padding=_lowerCAmelCase ,max_length=_lowerCAmelCase ,truncation=_lowerCAmelCase ,pad_to_multiple_of=_lowerCAmelCase ,return_attention_mask=_lowerCAmelCase ,**_lowerCAmelCase ,)
# make sure list is in array format
lowerCamelCase__ = padded_inputs.get("""input_features""" )
if isinstance(input_features[0] ,_lowerCAmelCase ):
lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.floataa ) for feature in input_features]
lowerCamelCase__ = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
lowerCamelCase__ = (
np.array(_lowerCAmelCase ,dtype=np.intaa )
if self._get_padding_strategies(_lowerCAmelCase ,max_length=_lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
lowerCamelCase__ = self.normalize(
padded_inputs["""input_features"""] ,attention_mask=_lowerCAmelCase )
if return_tensors is not None:
lowerCamelCase__ = padded_inputs.convert_to_tensors(_lowerCAmelCase )
return padded_inputs
| 50 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'gpt_bigcode'
_UpperCamelCase = ['past_key_values']
_UpperCamelCase = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scale_attn_weights
lowerCamelCase__ = use_cache
lowerCamelCase__ = attention_softmax_in_fpaa
lowerCamelCase__ = scale_attention_softmax_in_fpaa
lowerCamelCase__ = multi_query
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : str ):
assert column_title.isupper()
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
lowerCamelCase__ = 0
while index >= 0:
lowerCamelCase__ = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 50 |
'''simple docstring'''
from PIL import Image
def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ):
def brightness(__lowerCAmelCase : int ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(__lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 50 | 1 |
'''simple docstring'''
from sklearn.metrics import fa_score
import datasets
UpperCamelCase : Tuple = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n'
UpperCamelCase : str = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n'
UpperCamelCase : Union[str, Any] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCamelCase__ (datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""int32""" ) ),
"""references""": datasets.Sequence(datasets.Value("""int32""" ) ),
}
if self.config_name == """multilabel"""
else {
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) ,reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=1 ,_lowerCAmelCase="binary" ,_lowerCAmelCase=None ):
lowerCamelCase__ = fa_score(
_lowerCAmelCase ,_lowerCAmelCase ,labels=_lowerCAmelCase ,pos_label=_lowerCAmelCase ,average=_lowerCAmelCase ,sample_weight=_lowerCAmelCase )
return {"f1": float(_lowerCAmelCase ) if score.size == 1 else score}
| 50 |
'''simple docstring'''
def A__ ( ):
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
UpperCamelCase : Dict = generate_large_matrix()
UpperCamelCase : Any = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A__ ( __lowerCAmelCase : list[list[int]] ):
assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid )
assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowerCamelCase__ = (left + right) // 2
lowerCamelCase__ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowerCamelCase__ = mid + 1
else:
lowerCamelCase__ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(grid[0] )
for i in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__lowerCAmelCase ) * len(grid[0] )) - total
def A__ ( __lowerCAmelCase : list[list[int]] ):
return len([number for row in grid for number in row if number < 0] )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
for row in grid:
for i, number in enumerate(__lowerCAmelCase ):
if number < 0:
total += len(__lowerCAmelCase ) - i
break
return total
def A__ ( ):
from timeit import timeit
print("""Running benchmarks""" )
lowerCamelCase__ = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 )
print(F'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 50 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : int = {
'configuration_xmod': [
'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XmodConfig',
'XmodOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Tuple = [
'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST',
'XmodForCausalLM',
'XmodForMaskedLM',
'XmodForMultipleChoice',
'XmodForQuestionAnswering',
'XmodForSequenceClassification',
'XmodForTokenClassification',
'XmodModel',
'XmodPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase : List[Any] = 'examples/'
UpperCamelCase : int = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
UpperCamelCase : Any = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
UpperCamelCase : Any = 'README.md'
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern]
lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase )
lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : str ):
for folder, directories, fnames in os.walk(__lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" )
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if not patch:
update_version_in_examples(__lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = """🤗 Transformers currently provides the following architectures"""
lowerCamelCase__ = """1. Want to contribute a new model?"""
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Find the start of the list.
lowerCamelCase__ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCamelCase__ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
lowerCamelCase__ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__lowerCAmelCase )
def A__ ( ):
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0]
return packaging.version.parse(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Union[str, Any]=False ):
lowerCamelCase__ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
lowerCamelCase__ = default_version.base_version
elif patch:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = default_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def A__ ( ):
lowerCamelCase__ = get_version()
lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
lowerCamelCase__ = current_version.base_version
# Check with the user we got that right.
lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
UpperCamelCase : Any = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 50 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int = 1000 ):
return sum(e for e in range(3 , __lowerCAmelCase ) if e % 3 == 0 or e % 5 == 0 )
if __name__ == "__main__":
print(F'{solution() = }')
| 50 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCamelCase : int = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase : Tuple = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
UpperCamelCase : Dict = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = SqueezeBertTokenizer
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
super().__init__(
_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars
):
lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) )
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = strip_accents
lowerCamelCase__ = tokenize_chinese_chars
lowerCamelCase__ = normalizer_class(**_lowerCAmelCase )
lowerCamelCase__ = do_lower_case
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ):
lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
from math import sqrt
def A__ ( __lowerCAmelCase : int = 100_0000 ):
lowerCamelCase__ = 0
lowerCamelCase__ = 0
lowerCamelCase__ = 42
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(__lowerCAmelCase , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(F'{solution() = }')
| 50 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A__ ( __lowerCAmelCase : Any ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f)
or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) #
or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) #
or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) #
or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) #
or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) #
or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f)
or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) #
): #
return True
return False
def A__ ( __lowerCAmelCase : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCamelCase__ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = set()
for token in tokens:
lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowerCamelCase__ = list(__lowerCAmelCase )
return word_list
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ):
if not chinese_word_set:
return bert_tokens
lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowerCamelCase__ = bert_tokens
lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase )
while start < end:
lowerCamelCase__ = True
if is_chinese(bert_word[start] ):
lowerCamelCase__ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowerCamelCase__ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCamelCase__ = """##""" + bert_word[j]
lowerCamelCase__ = start + i
lowerCamelCase__ = False
break
if single_word:
start += 1
return bert_word
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ):
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = []
for id in input_ids:
lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowerCamelCase__ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def A__ ( __lowerCAmelCase : Optional[int] ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device
lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert )
lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
UpperCamelCase : Any = parser.parse_args()
main(args)
| 50 | 1 |
'''simple docstring'''
from PIL import Image
def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ):
def brightness(__lowerCAmelCase : int ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(__lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 50 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : Tuple = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
lowerCamelCase__ = 1024
lowerCamelCase__ = 4096
lowerCamelCase__ = 24
lowerCamelCase__ = 16
lowerCamelCase__ = [5, 11, 17, 23]
lowerCamelCase__ = [256, 512, 1024, 1024]
lowerCamelCase__ = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = [256, 512, 768, 768]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = (1, 384, 384)
lowerCamelCase__ = False
lowerCamelCase__ = """project"""
if "ade" in checkpoint_url:
lowerCamelCase__ = True
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = """huggingface/label-files"""
lowerCamelCase__ = """ade20k-id2label.json"""
lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowerCamelCase__ = idalabel
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
lowerCamelCase__ = [1, 150, 480, 480]
return config, expected_shape
def A__ ( __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : List[Any] ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
lowerCamelCase__ = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
lowerCamelCase__ = name.replace("""proj""" , """projection""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
lowerCamelCase__ = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
lowerCamelCase__ = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
lowerCamelCase__ = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
lowerCamelCase__ = name.replace("""..""" , """.""" )
if "stem.conv" in name:
lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[: config.hidden_size, :]
lowerCamelCase__ = in_proj_bias[: config.hidden_size]
lowerCamelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase__ = in_proj_bias[-config.hidden_size :]
def A__ ( ):
lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ):
lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(__lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
lowerCamelCase__ = val
# read in qkv matrices
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
# Check outputs on an image
lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384
lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth
if show_prediction:
lowerCamelCase__ = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
UpperCamelCase : List[str] = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 50 | 1 |
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = (DEISMultistepScheduler,)
_UpperCamelCase = (('num_inference_steps', 25),)
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
lowerCamelCase__ = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""solver_order""": 2,
}
config.update(**_lowerCAmelCase )
return config
def UpperCamelCase_ ( self ,_lowerCAmelCase=0 ,**_lowerCAmelCase ):
lowerCamelCase__ = dict(self.forward_default_kwargs )
lowerCamelCase__ = kwargs.pop("""num_inference_steps""" ,_lowerCAmelCase )
lowerCamelCase__ = self.dummy_sample
lowerCamelCase__ = 0.1 * sample
lowerCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
lowerCamelCase__ = self.get_scheduler_config(**_lowerCAmelCase )
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
lowerCamelCase__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
lowerCamelCase__ = scheduler_class.from_pretrained(_lowerCAmelCase )
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
lowerCamelCase__ = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCamelCase__ , lowerCamelCase__ = sample, sample
for t in range(_lowerCAmelCase ,time_step + scheduler.config.solver_order + 1 ):
lowerCamelCase__ = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample
lowerCamelCase__ = new_scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ,_lowerCAmelCase=0 ,**_lowerCAmelCase ):
lowerCamelCase__ = dict(self.forward_default_kwargs )
lowerCamelCase__ = kwargs.pop("""num_inference_steps""" ,_lowerCAmelCase )
lowerCamelCase__ = self.dummy_sample
lowerCamelCase__ = 0.1 * sample
lowerCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
lowerCamelCase__ = self.get_scheduler_config()
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowerCamelCase__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
lowerCamelCase__ = scheduler_class.from_pretrained(_lowerCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
lowerCamelCase__ = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCamelCase__ = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample
lowerCamelCase__ = new_scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ):
if scheduler is None:
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config(**_lowerCAmelCase )
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config(**_lowerCAmelCase )
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
lowerCamelCase__ = 10
lowerCamelCase__ = self.dummy_model()
lowerCamelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ).prev_sample
return sample
def UpperCamelCase_ ( self ):
lowerCamelCase__ = dict(self.forward_default_kwargs )
lowerCamelCase__ = kwargs.pop("""num_inference_steps""" ,_lowerCAmelCase )
for scheduler_class in self.scheduler_classes:
lowerCamelCase__ = self.get_scheduler_config()
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
lowerCamelCase__ = self.dummy_sample
lowerCamelCase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_lowerCAmelCase ,"""set_timesteps""" ):
scheduler.set_timesteps(_lowerCAmelCase )
elif num_inference_steps is not None and not hasattr(_lowerCAmelCase ,"""set_timesteps""" ):
lowerCamelCase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowerCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.10]
lowerCamelCase__ = dummy_past_residuals[: scheduler.config.solver_order]
lowerCamelCase__ = scheduler.timesteps[5]
lowerCamelCase__ = scheduler.timesteps[6]
lowerCamelCase__ = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample
lowerCamelCase__ = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
def UpperCamelCase_ ( self ):
# make sure that iterating over schedulers with same config names gives same results
# for defaults
lowerCamelCase__ = DEISMultistepScheduler(**self.get_scheduler_config() )
lowerCamelCase__ = self.full_loop(scheduler=_lowerCAmelCase )
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2_3916 ) < 1E-3
lowerCamelCase__ = DPMSolverSinglestepScheduler.from_config(scheduler.config )
lowerCamelCase__ = DPMSolverMultistepScheduler.from_config(scheduler.config )
lowerCamelCase__ = UniPCMultistepScheduler.from_config(scheduler.config )
lowerCamelCase__ = DEISMultistepScheduler.from_config(scheduler.config )
lowerCamelCase__ = self.full_loop(scheduler=_lowerCAmelCase )
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2_3916 ) < 1E-3
def UpperCamelCase_ ( self ):
for timesteps in [25, 50, 1_00, 9_99, 10_00]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
self.check_over_configs(thresholding=_lowerCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_lowerCAmelCase ,prediction_type=_lowerCAmelCase ,sample_max_value=_lowerCAmelCase ,algorithm_type="""deis""" ,solver_order=_lowerCAmelCase ,solver_type=_lowerCAmelCase ,)
def UpperCamelCase_ ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_lowerCAmelCase ,solver_type=_lowerCAmelCase ,prediction_type=_lowerCAmelCase ,algorithm_type=_lowerCAmelCase ,)
lowerCamelCase__ = self.full_loop(
solver_order=_lowerCAmelCase ,solver_type=_lowerCAmelCase ,prediction_type=_lowerCAmelCase ,algorithm_type=_lowerCAmelCase ,)
assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers"
def UpperCamelCase_ ( self ):
self.check_over_configs(lower_order_final=_lowerCAmelCase )
self.check_over_configs(lower_order_final=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]:
self.check_over_forward(num_inference_steps=_lowerCAmelCase ,time_step=0 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.full_loop()
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2_3916 ) < 1E-3
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.full_loop(prediction_type="""v_prediction""" )
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.091 ) < 1E-3
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config(thresholding=_lowerCAmelCase ,dynamic_thresholding_ratio=0 )
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
lowerCamelCase__ = 10
lowerCamelCase__ = self.dummy_model()
lowerCamelCase__ = self.dummy_sample_deter.half()
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Tuple = {
'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'],
'tokenization_mvp': ['MvpTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : str = ['MvpTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[int] = [
'MVP_PRETRAINED_MODEL_ARCHIVE_LIST',
'MvpForCausalLM',
'MvpForConditionalGeneration',
'MvpForQuestionAnswering',
'MvpForSequenceClassification',
'MvpModel',
'MvpPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
lowerCamelCase__ = (boundary[1] - boundary[0]) / steps
lowerCamelCase__ = boundary[0]
lowerCamelCase__ = boundary[1]
lowerCamelCase__ = make_points(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = 0.0
y += (h / 2.0) * f(__lowerCAmelCase )
for i in x_i:
# print(i)
y += h * f(__lowerCAmelCase )
y += (h / 2.0) * f(__lowerCAmelCase )
return y
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str ):
lowerCamelCase__ = a + h
while x < (b - h):
yield x
lowerCamelCase__ = x + h
def A__ ( __lowerCAmelCase : Dict ): # enter your function here
lowerCamelCase__ = (x - 0) * (x - 0)
return y
def A__ ( ):
lowerCamelCase__ = 0.0 # Lower bound of integration
lowerCamelCase__ = 1.0 # Upper bound of integration
lowerCamelCase__ = 10.0 # define number of steps or resolution
lowerCamelCase__ = [a, b] # define boundary of integration
lowerCamelCase__ = method_a(__lowerCAmelCase , __lowerCAmelCase )
print(F'''y = {y}''' )
if __name__ == "__main__":
main()
| 50 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Dict = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'codegen'
_UpperCamelCase = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_ctx
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = rotary_dim
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = use_cache
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(
bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,):
super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase )
if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ):
# TODO: how to do that better?
lowerCamelCase__ = 0
@property
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" )
lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCamelCase__ = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def UpperCamelCase_ ( self ):
return self._config.n_layer
@property
def UpperCamelCase_ ( self ):
return self._config.n_head
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCamelCase__ = seqlen + 2
lowerCamelCase__ = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCamelCase__ = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers )
]
lowerCamelCase__ = common_inputs["""attention_mask"""]
if self.use_past:
lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype
lowerCamelCase__ = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 )
return ordered_inputs
@property
def UpperCamelCase_ ( self ):
return 13
| 50 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int ):
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
lowerCamelCase__ = 1
lowerCamelCase__ = 1
while repunit:
lowerCamelCase__ = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def A__ ( __lowerCAmelCase : int = 100_0000 ):
lowerCamelCase__ = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__lowerCAmelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F'{solution() = }')
| 50 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : int = {
'configuration_xmod': [
'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XmodConfig',
'XmodOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Tuple = [
'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST',
'XmodForCausalLM',
'XmodForMaskedLM',
'XmodForMultipleChoice',
'XmodForQuestionAnswering',
'XmodForSequenceClassification',
'XmodForTokenClassification',
'XmodModel',
'XmodPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = []
for line in lines:
lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments
if line:
filtered_lines.append(__lowerCAmelCase )
lowerCamelCase__ = """\n""".join(__lowerCAmelCase )
# Make a hash from all this code
lowerCamelCase__ = full_str.encode("""utf-8""" )
return shaaaa(__lowerCAmelCase ).hexdigest()
# get importable module names and hash for caching
UpperCamelCase : Dict = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
UpperCamelCase : str = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
UpperCamelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('.zip')
_MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
| 50 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCAmelCase , torch.Tensor ):
raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" )
lowerCamelCase__ = v.half()
if save_path is None: # overwrite src_path
lowerCamelCase__ = src_path
torch.save(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 50 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase : Optional[int] = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
'microsoft/beit-base-patch16-224-pt22k': (
'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json'
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'beit'
def __init__( self ,_lowerCAmelCase=81_92 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-12 ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=16 ,_lowerCAmelCase=3 ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=True ,_lowerCAmelCase=[3, 5, 7, 11] ,_lowerCAmelCase=[1, 2, 3, 6] ,_lowerCAmelCase=True ,_lowerCAmelCase=0.4 ,_lowerCAmelCase=2_56 ,_lowerCAmelCase=1 ,_lowerCAmelCase=False ,_lowerCAmelCase=2_55 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = vocab_size
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = initializer_range
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = use_mask_token
lowerCamelCase__ = use_absolute_position_embeddings
lowerCamelCase__ = use_relative_position_bias
lowerCamelCase__ = use_shared_relative_position_bias
lowerCamelCase__ = layer_scale_init_value
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = use_mean_pooling
# decode head attributes (semantic segmentation)
lowerCamelCase__ = out_indices
lowerCamelCase__ = pool_scales
# auxiliary head attributes (semantic segmentation)
lowerCamelCase__ = use_auxiliary_head
lowerCamelCase__ = auxiliary_loss_weight
lowerCamelCase__ = auxiliary_channels
lowerCamelCase__ = auxiliary_num_convs
lowerCamelCase__ = auxiliary_concat_input
lowerCamelCase__ = semantic_loss_ignore_index
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = version.parse('1.11' )
@property
def UpperCamelCase_ ( self ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def UpperCamelCase_ ( self ):
return 1E-4
| 50 |
'''simple docstring'''
import os
from pathlib import Path
def A__ ( ):
from torch.utils.cpp_extension import load
lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
lowerCamelCase__ = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 50 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['note_seq']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""note_seq"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""note_seq"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""note_seq"""] )
| 50 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ):
lowerCamelCase__ = len(__lowerCAmelCase )
print("""The following activities are selected:""" )
# The first activity is always selected
lowerCamelCase__ = 0
print(__lowerCAmelCase , end=""",""" )
# Consider rest of the activities
for j in range(__lowerCAmelCase ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(__lowerCAmelCase , end=""",""" )
lowerCamelCase__ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase : Union[str, Any] = [1, 3, 0, 5, 8, 5]
UpperCamelCase : int = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 50 | 1 |
'''simple docstring'''
from __future__ import annotations
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : list[str] | None = None ):
lowerCamelCase__ = word_bank or []
# create a table
lowerCamelCase__ = len(__lowerCAmelCase ) + 1
lowerCamelCase__ = []
for _ in range(__lowerCAmelCase ):
table.append([] )
# seed value
lowerCamelCase__ = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(__lowerCAmelCase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(__lowerCAmelCase )] == word:
lowerCamelCase__ = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(__lowerCAmelCase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(__lowerCAmelCase )]:
combination.reverse()
return table[len(__lowerCAmelCase )]
if __name__ == "__main__":
print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa']))
print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't']))
print(
all_construct(
'hexagonosaurus',
['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'],
)
)
| 50 |
'''simple docstring'''
import warnings
from ..trainer import Trainer
from ..utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ):
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" ,_lowerCAmelCase ,)
super().__init__(args=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : int = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'mra'
def __init__( self ,_lowerCAmelCase=5_02_65 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=1 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase="absolute" ,_lowerCAmelCase=4 ,_lowerCAmelCase="full" ,_lowerCAmelCase=0 ,_lowerCAmelCase=0 ,_lowerCAmelCase=1 ,_lowerCAmelCase=0 ,_lowerCAmelCase=2 ,**_lowerCAmelCase ,):
super().__init__(pad_token_id=_lowerCAmelCase ,bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = vocab_size
lowerCamelCase__ = max_position_embeddings
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = initializer_range
lowerCamelCase__ = type_vocab_size
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = position_embedding_type
lowerCamelCase__ = block_per_row
lowerCamelCase__ = approx_mode
lowerCamelCase__ = initial_prior_first_n_blocks
lowerCamelCase__ = initial_prior_diagonal_n_blocks
| 50 |
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = []
for line in lines:
lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments
if line:
filtered_lines.append(__lowerCAmelCase )
lowerCamelCase__ = """\n""".join(__lowerCAmelCase )
# Make a hash from all this code
lowerCamelCase__ = full_str.encode("""utf-8""" )
return shaaaa(__lowerCAmelCase ).hexdigest()
# get importable module names and hash for caching
UpperCamelCase : Dict = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
UpperCamelCase : str = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
UpperCamelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('.zip')
_MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
| 50 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
UpperCamelCase : Dict = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = ['pixel_values']
def __init__( self ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = PILImageResampling.BILINEAR ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = True ,_lowerCAmelCase = 1 / 2_55 ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 2_56}
lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase )
lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,param_name="""crop_size""" )
lowerCamelCase__ = do_resize
lowerCamelCase__ = size
lowerCamelCase__ = resample
lowerCamelCase__ = do_center_crop
lowerCamelCase__ = crop_size
lowerCamelCase__ = do_rescale
lowerCamelCase__ = rescale_factor
lowerCamelCase__ = do_normalize
lowerCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = PILImageResampling.BICUBIC ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
lowerCamelCase__ = get_resize_output_image_size(_lowerCAmelCase ,size=size["""shortest_edge"""] ,default_to_square=_lowerCAmelCase )
return resize(_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
lowerCamelCase__ = get_size_dict(_lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' )
return center_crop(_lowerCAmelCase ,size=(size["""height"""], size["""width"""]) ,data_format=_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,**_lowerCAmelCase ):
return rescale(_lowerCAmelCase ,scale=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
return normalize(_lowerCAmelCase ,mean=_lowerCAmelCase ,std=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = ChannelDimension.FIRST ,**_lowerCAmelCase ,):
lowerCamelCase__ = do_resize if do_resize is not None else self.do_resize
lowerCamelCase__ = size if size is not None else self.size
lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase )
lowerCamelCase__ = resample if resample is not None else self.resample
lowerCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCamelCase__ = crop_size if crop_size is not None else self.crop_size
lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,param_name="""crop_size""" )
lowerCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase__ = image_mean if image_mean is not None else self.image_mean
lowerCamelCase__ = image_std if image_std is not None else self.image_std
lowerCamelCase__ = make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
lowerCamelCase__ = [to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
lowerCamelCase__ = [self.resize(image=_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ) for image in images]
if do_center_crop:
lowerCamelCase__ = [self.center_crop(image=_lowerCAmelCase ,size=_lowerCAmelCase ) for image in images]
if do_rescale:
lowerCamelCase__ = [self.rescale(image=_lowerCAmelCase ,scale=_lowerCAmelCase ) for image in images]
if do_normalize:
lowerCamelCase__ = [self.normalize(image=_lowerCAmelCase ,mean=_lowerCAmelCase ,std=_lowerCAmelCase ) for image in images]
lowerCamelCase__ = [to_channel_dimension_format(_lowerCAmelCase ,_lowerCAmelCase ) for image in images]
lowerCamelCase__ = {"""pixel_values""": images}
return BatchFeature(data=_lowerCAmelCase ,tensor_type=_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_lowerCAmelCase ) != len(_lowerCAmelCase ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(_lowerCAmelCase ):
lowerCamelCase__ = target_sizes.numpy()
lowerCamelCase__ = []
for idx in range(len(_lowerCAmelCase ) ):
lowerCamelCase__ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=_lowerCAmelCase )
lowerCamelCase__ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_lowerCAmelCase )
else:
lowerCamelCase__ = logits.argmax(dim=1 )
lowerCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 50 |
'''simple docstring'''
import operator
def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ):
lowerCamelCase__ = operator.lt if reverse else operator.gt
lowerCamelCase__ = solution or []
if not arr:
return solution
lowerCamelCase__ = [arr.pop(0 )]
for i, item in enumerate(__lowerCAmelCase ):
if _operator(__lowerCAmelCase , sublist[-1] ):
sublist.append(__lowerCAmelCase )
arr.pop(__lowerCAmelCase )
# merging sublist into solution list
if not solution:
solution.extend(__lowerCAmelCase )
else:
while sublist:
lowerCamelCase__ = sublist.pop(0 )
for i, xx in enumerate(__lowerCAmelCase ):
if not _operator(__lowerCAmelCase , __lowerCAmelCase ):
solution.insert(__lowerCAmelCase , __lowerCAmelCase )
break
else:
solution.append(__lowerCAmelCase )
strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 50 | 1 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A__ ( __lowerCAmelCase : Any ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f)
or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) #
or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) #
or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) #
or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) #
or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) #
or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f)
or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) #
): #
return True
return False
def A__ ( __lowerCAmelCase : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCamelCase__ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = set()
for token in tokens:
lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowerCamelCase__ = list(__lowerCAmelCase )
return word_list
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ):
if not chinese_word_set:
return bert_tokens
lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowerCamelCase__ = bert_tokens
lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase )
while start < end:
lowerCamelCase__ = True
if is_chinese(bert_word[start] ):
lowerCamelCase__ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowerCamelCase__ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCamelCase__ = """##""" + bert_word[j]
lowerCamelCase__ = start + i
lowerCamelCase__ = False
break
if single_word:
start += 1
return bert_word
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ):
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = []
for id in input_ids:
lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowerCamelCase__ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def A__ ( __lowerCAmelCase : Optional[int] ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device
lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert )
lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
UpperCamelCase : Any = parser.parse_args()
main(args)
| 50 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def A__ ( __lowerCAmelCase : dict ):
return (data["data"], data["target"])
def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ):
lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__lowerCAmelCase , __lowerCAmelCase )
# Predict target for test data
lowerCamelCase__ = xgb.predict(__lowerCAmelCase )
lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 )
return predictions
def A__ ( ):
lowerCamelCase__ = fetch_california_housing()
lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 )
lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Error printing
print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 50 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCamelCase__ (a ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""hidden_sizes""" ) )
self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""neck_hidden_sizes""" ) )
self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""num_attention_heads""" ) )
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=6_40 ,_lowerCAmelCase=4 ,_lowerCAmelCase="silu" ,_lowerCAmelCase=3 ,_lowerCAmelCase=32 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=10 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = last_hidden_size
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = hidden_act
lowerCamelCase__ = conv_kernel_size
lowerCamelCase__ = output_stride
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = classifier_dropout_prob
lowerCamelCase__ = use_labels
lowerCamelCase__ = is_training
lowerCamelCase__ = num_labels
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scope
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_labels )
lowerCamelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
return MobileViTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = MobileViTModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.num_labels
lowerCamelCase__ = MobileViTForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.num_labels
lowerCamelCase__ = MobileViTForSemanticSegmentation(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape ,(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape ,(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
_UpperCamelCase = (
{
'feature-extraction': MobileViTModel,
'image-classification': MobileViTForImageClassification,
'image-segmentation': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MobileViTModelTester(self )
lowerCamelCase__ = MobileViTConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViT does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""MobileViT does not support input and output embeddings""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""MobileViT does not output attentions""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
def check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = outputs.hidden_states
lowerCamelCase__ = 5
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
lowerCamelCase__ = 2
for i in range(len(_lowerCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,)
divisor *= 2
self.assertEqual(self.model_tester.output_stride ,divisor // 2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = True
check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ = True
check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = MobileViTModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(_lowerCAmelCase )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" )
lowerCamelCase__ = model.to(_lowerCAmelCase )
lowerCamelCase__ = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
lowerCamelCase__ = outputs.logits
# verify the logits
lowerCamelCase__ = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
] ,device=_lowerCAmelCase ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" )
lowerCamelCase__ = model.to(_lowerCAmelCase )
lowerCamelCase__ = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
lowerCamelCase__ = outputs.logits.detach().cpu()
lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ,target_sizes=[(50, 60)] )
lowerCamelCase__ = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape ,_lowerCAmelCase )
lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase )
lowerCamelCase__ = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape ,_lowerCAmelCase )
| 50 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 20
lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create ramp distribution
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy()
lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 )
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy()
lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase__ = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
# check that min length is applied at length 5
lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 )
lowerCamelCase__ = 5
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] )
# check that min length is not applied anymore at length 15
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = 15
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 )
lowerCamelCase__ = 1
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 )
lowerCamelCase__ = 4
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# with processor list
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
# with processor list
def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
| 50 | 1 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = RobertaTokenizer
_UpperCamelCase = RobertaTokenizerFast
_UpperCamelCase = True
_UpperCamelCase = {'cls_token': '<s>'}
def UpperCamelCase_ ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCamelCase__ = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
lowerCamelCase__ = dict(zip(_lowerCAmelCase ,range(len(_lowerCAmelCase ) ) ) )
lowerCamelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
lowerCamelCase__ = {"""unk_token""": """<unk>"""}
lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_lowerCAmelCase ) )
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = """lower newer"""
return input_text, output_text
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
lowerCamelCase__ = tokenizer.tokenize(_lowerCAmelCase ) # , add_prefix_space=True)
self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = tokens + [tokenizer.unk_token]
lowerCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("""Hello world!""" ,add_special_tokens=_lowerCAmelCase ) ,[0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode("""Hello world! cécé herlolip 418""" ,add_special_tokens=_lowerCAmelCase ) ,[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] ,)
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer_class.from_pretrained("""roberta-base""" )
lowerCamelCase__ = tokenizer.encode("""sequence builders""" ,add_special_tokens=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.encode(
"""sequence builders""" ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.encode(
"""sequence builders""" ,"""multi-sequence build""" ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ,_lowerCAmelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = """Encode this sequence."""
lowerCamelCase__ = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]]
# Testing encoder arguments
lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase )
tokenizer.add_special_tokens({"""bos_token""": """<s>"""} )
lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(_lowerCAmelCase ,_lowerCAmelCase )
# Testing spaces after special tokens
lowerCamelCase__ = """<mask>"""
tokenizer.add_special_tokens(
{"""mask_token""": AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase )} ) # mask token has a left space
lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase )
lowerCamelCase__ = """Encode <mask> sequence"""
lowerCamelCase__ = """Encode <mask>sequence"""
lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase )
lowerCamelCase__ = encoded.index(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase )
lowerCamelCase__ = encoded.index(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = self.tokenizer_class.from_pretrained(_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = """A, <mask> AllenNLP sentence."""
lowerCamelCase__ = tokenizer_r.encode_plus(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase )
lowerCamelCase__ = tokenizer_p.encode_plus(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,)
lowerCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
lowerCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
_lowerCAmelCase ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
_lowerCAmelCase ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
def UpperCamelCase_ ( self ):
for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ):
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase )
lowerCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
lowerCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] ,_lowerCAmelCase )
self.assertEqual(post_processor_state["""add_prefix_space"""] ,_lowerCAmelCase )
self.assertEqual(post_processor_state["""trim_offsets"""] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowerCamelCase__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
lowerCamelCase__ = F'''{text_of_1_token} {text_of_1_token}'''
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase )
lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(_lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,)
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase )
lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(_lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,)
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase )
lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(_lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(_lowerCAmelCase ), len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,)
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase )
lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(_lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(_lowerCAmelCase ), len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,)
lowerCamelCase__ = F''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase )
lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(_lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(1 + len(_lowerCAmelCase ) + 1, 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,)
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase )
lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(_lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(1 + len(_lowerCAmelCase ), 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,)
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase )
lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(_lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(1 + len(_lowerCAmelCase ), 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,)
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCamelCase : Any = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = 384
if "tiny" in model_name:
lowerCamelCase__ = [3, 3, 9, 3]
lowerCamelCase__ = [96, 192, 384, 768]
if "small" in model_name:
lowerCamelCase__ = [3, 3, 27, 3]
lowerCamelCase__ = [96, 192, 384, 768]
if "base" in model_name:
lowerCamelCase__ = [3, 3, 27, 3]
lowerCamelCase__ = [128, 256, 512, 1024]
lowerCamelCase__ = 512
if "large" in model_name:
lowerCamelCase__ = [3, 3, 27, 3]
lowerCamelCase__ = [192, 384, 768, 1536]
lowerCamelCase__ = 768
if "xlarge" in model_name:
lowerCamelCase__ = [3, 3, 27, 3]
lowerCamelCase__ = [256, 512, 1024, 2048]
lowerCamelCase__ = 1024
# set label information
lowerCamelCase__ = 150
lowerCamelCase__ = """huggingface/label-files"""
lowerCamelCase__ = """ade20k-id2label.json"""
lowerCamelCase__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) )
lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
lowerCamelCase__ = ConvNextConfig(
depths=__lowerCAmelCase , hidden_sizes=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
lowerCamelCase__ = UperNetConfig(
backbone_config=__lowerCAmelCase , auxiliary_in_channels=__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase , )
return config
def A__ ( __lowerCAmelCase : Optional[Any] ):
lowerCamelCase__ = []
# fmt: off
# stem
rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") )
rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ):
lowerCamelCase__ = dct.pop(__lowerCAmelCase )
lowerCamelCase__ = val
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ):
lowerCamelCase__ = {
"""upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""",
"""upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""",
"""upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""",
"""upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""",
"""upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""",
}
lowerCamelCase__ = model_name_to_url[model_name]
lowerCamelCase__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""state_dict"""]
lowerCamelCase__ = get_upernet_config(__lowerCAmelCase )
lowerCamelCase__ = UperNetForSemanticSegmentation(__lowerCAmelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
if "bn" in key:
lowerCamelCase__ = key.replace("""bn""" , """batch_norm""" )
lowerCamelCase__ = val
# rename keys
lowerCamelCase__ = create_rename_keys(__lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
# verify on image
lowerCamelCase__ = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert("""RGB""" )
lowerCamelCase__ = SegformerImageProcessor()
lowerCamelCase__ = processor(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
lowerCamelCase__ = model(__lowerCAmelCase )
if model_name == "upernet-convnext-tiny":
lowerCamelCase__ = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
lowerCamelCase__ = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
lowerCamelCase__ = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
lowerCamelCase__ = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
lowerCamelCase__ = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCAmelCase , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
print(F'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(F'''openmmlab/{model_name}''' )
processor.push_to_hub(F'''openmmlab/{model_name}''' )
if __name__ == "__main__":
UpperCamelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-convnext-tiny',
type=str,
choices=[F'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']],
help='Name of the ConvNext UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
UpperCamelCase : Any = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 50 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ):
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ):
lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sgugger/tiny-distilbert-classification"""
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,torchscript=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" ,"""Cant do half precision""" )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,fpaa=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
# set architectures equal to `None`
lowerCamelCase__ = None
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase ,configs=[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" ,"""Can't do half precision""" )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,fpaa=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase ,configs=[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tinier_bart"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase ,configs=[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase ,configs=[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tinier_bart"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase ,configs=[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,train_memory_csv_file=os.path.join(_lowerCAmelCase ,"""train_mem.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,train_time_csv_file=os.path.join(_lowerCAmelCase ,"""train_time.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(_lowerCAmelCase ):
self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = PyTorchBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Union[str, Any] = {
'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'],
'tokenization_canine': ['CanineTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Any = [
'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST',
'CanineForMultipleChoice',
'CanineForQuestionAnswering',
'CanineForSequenceClassification',
'CanineForTokenClassification',
'CanineLayer',
'CanineModel',
'CaninePreTrainedModel',
'load_tf_weights_in_canine',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase : List[Any] = {
'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json',
}
class UpperCamelCase__ (a ,a ):
'''simple docstring'''
_UpperCamelCase = 'focalnet'
def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=False ,_lowerCAmelCase=[1_92, 3_84, 7_68, 7_68] ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[2, 2, 2, 2] ,_lowerCAmelCase=[3, 3, 3, 3] ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=False ,_lowerCAmelCase=1E-4 ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=32 ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embed_dim
lowerCamelCase__ = use_conv_embed
lowerCamelCase__ = hidden_sizes
lowerCamelCase__ = depths
lowerCamelCase__ = focal_levels
lowerCamelCase__ = focal_windows
lowerCamelCase__ = hidden_act
lowerCamelCase__ = mlp_ratio
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = use_layerscale
lowerCamelCase__ = layerscale_value
lowerCamelCase__ = use_post_layernorm
lowerCamelCase__ = use_post_layernorm_in_modulation
lowerCamelCase__ = normalize_modulator
lowerCamelCase__ = initializer_range
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = encoder_stride
lowerCamelCase__ = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 ,len(self.depths ) + 1 )]
lowerCamelCase__ , lowerCamelCase__ = get_aligned_output_features_output_indices(
out_features=_lowerCAmelCase ,out_indices=_lowerCAmelCase ,stage_names=self.stage_names )
| 50 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase : int = '3'
print('Python version:', sys.version)
print('transformers version:', transformers.__version__)
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
print('NCCL version:', torch.cuda.nccl.version())
except ImportError:
print('Torch version:', None)
try:
import deepspeed
print('DeepSpeed version:', deepspeed.__version__)
except ImportError:
print('DeepSpeed version:', None)
try:
import tensorflow as tf
print('TensorFlow version:', tf.__version__)
print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))
print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))
except ImportError:
print('TensorFlow version:', None)
| 50 | 1 |
'''simple docstring'''
from bisect import bisect
from itertools import accumulate
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda __lowerCAmelCase : x[0] / x[1] , reverse=__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = [i[0] for i in r], [i[1] for i in r]
lowerCamelCase__ = list(accumulate(__lowerCAmelCase ) )
lowerCamelCase__ = bisect(__lowerCAmelCase , __lowerCAmelCase )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'gpt_bigcode'
_UpperCamelCase = ['past_key_values']
_UpperCamelCase = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scale_attn_weights
lowerCamelCase__ = use_cache
lowerCamelCase__ = attention_softmax_in_fpaa
lowerCamelCase__ = scale_attention_softmax_in_fpaa
lowerCamelCase__ = multi_query
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ):
lowerCamelCase__ = size
lowerCamelCase__ = [0] * size
lowerCamelCase__ = [0] * size
@staticmethod
def UpperCamelCase_ ( _lowerCAmelCase ):
return index | (index + 1)
@staticmethod
def UpperCamelCase_ ( _lowerCAmelCase ):
return (index & (index + 1)) - 1
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = value
while index < self.size:
lowerCamelCase__ = self.get_prev(_lowerCAmelCase ) + 1
if current_left_border == index:
lowerCamelCase__ = value
else:
lowerCamelCase__ = max(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = self.get_next(_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
right -= 1 # Because of right is exclusive
lowerCamelCase__ = 0
while left <= right:
lowerCamelCase__ = self.get_prev(_lowerCAmelCase )
if left <= current_left:
lowerCamelCase__ = max(_lowerCAmelCase ,self.tree[right] )
lowerCamelCase__ = current_left
else:
lowerCamelCase__ = max(_lowerCAmelCase ,self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 |
'''simple docstring'''
from PIL import Image
def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ):
def brightness(__lowerCAmelCase : int ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(__lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 50 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ):
lowerCamelCase__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def A__ ( ):
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 |
'''simple docstring'''
def A__ ( ):
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
UpperCamelCase : Dict = generate_large_matrix()
UpperCamelCase : Any = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A__ ( __lowerCAmelCase : list[list[int]] ):
assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid )
assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowerCamelCase__ = (left + right) // 2
lowerCamelCase__ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowerCamelCase__ = mid + 1
else:
lowerCamelCase__ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(grid[0] )
for i in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__lowerCAmelCase ) * len(grid[0] )) - total
def A__ ( __lowerCAmelCase : list[list[int]] ):
return len([number for row in grid for number in row if number < 0] )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
for row in grid:
for i, number in enumerate(__lowerCAmelCase ):
if number < 0:
total += len(__lowerCAmelCase ) - i
break
return total
def A__ ( ):
from timeit import timeit
print("""Running benchmarks""" )
lowerCamelCase__ = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 )
print(F'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 50 | 1 |
'''simple docstring'''
import math
UpperCamelCase : Union[str, Any] = 10
UpperCamelCase : Optional[Any] = 7
UpperCamelCase : str = BALLS_PER_COLOUR * NUM_COLOURS
def A__ ( __lowerCAmelCase : int = 20 ):
lowerCamelCase__ = math.comb(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __lowerCAmelCase )
lowerCamelCase__ = NUM_COLOURS * (1 - missing_colour / total)
return F'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 50 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase : List[Any] = 'examples/'
UpperCamelCase : int = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
UpperCamelCase : Any = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
UpperCamelCase : Any = 'README.md'
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern]
lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase )
lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : str ):
for folder, directories, fnames in os.walk(__lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" )
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if not patch:
update_version_in_examples(__lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = """🤗 Transformers currently provides the following architectures"""
lowerCamelCase__ = """1. Want to contribute a new model?"""
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Find the start of the list.
lowerCamelCase__ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCamelCase__ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
lowerCamelCase__ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__lowerCAmelCase )
def A__ ( ):
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0]
return packaging.version.parse(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Union[str, Any]=False ):
lowerCamelCase__ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
lowerCamelCase__ = default_version.base_version
elif patch:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = default_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def A__ ( ):
lowerCamelCase__ = get_version()
lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
lowerCamelCase__ = current_version.base_version
# Check with the user we got that right.
lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
UpperCamelCase : Any = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 50 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 50 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCamelCase : int = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase : Tuple = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
UpperCamelCase : Dict = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = SqueezeBertTokenizer
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
super().__init__(
_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars
):
lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) )
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = strip_accents
lowerCamelCase__ = tokenize_chinese_chars
lowerCamelCase__ = normalizer_class(**_lowerCAmelCase )
lowerCamelCase__ = do_lower_case
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ):
lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def A__ ( __lowerCAmelCase : Dict ):
lowerCamelCase__ , lowerCamelCase__ = image.size
lowerCamelCase__ , lowerCamelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowerCamelCase__ = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] )
lowerCamelCase__ = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0
lowerCamelCase__ = image[None].transpose(0 , 3 , 1 , 2 )
lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase )
return 2.0 * image - 1.0
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
super().__init__()
self.register_modules(vqvae=_lowerCAmelCase ,unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase )
@torch.no_grad()
def __call__( self ,_lowerCAmelCase = None ,_lowerCAmelCase = 1 ,_lowerCAmelCase = 1_00 ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = None ,_lowerCAmelCase = "pil" ,_lowerCAmelCase = True ,):
if isinstance(_lowerCAmelCase ,PIL.Image.Image ):
lowerCamelCase__ = 1
elif isinstance(_lowerCAmelCase ,torch.Tensor ):
lowerCamelCase__ = image.shape[0]
else:
raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_lowerCAmelCase )}''' )
if isinstance(_lowerCAmelCase ,PIL.Image.Image ):
lowerCamelCase__ = preprocess(_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
lowerCamelCase__ = (batch_size, self.unet.config.in_channels // 2, height, width)
lowerCamelCase__ = next(self.unet.parameters() ).dtype
lowerCamelCase__ = randn_tensor(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=self.device ,dtype=_lowerCAmelCase )
lowerCamelCase__ = image.to(device=self.device ,dtype=_lowerCAmelCase )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_lowerCAmelCase ,device=self.device )
lowerCamelCase__ = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
lowerCamelCase__ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowerCamelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowerCamelCase__ = {}
if accepts_eta:
lowerCamelCase__ = eta
for t in self.progress_bar(_lowerCAmelCase ):
# concat latents and low resolution image in the channel dimension.
lowerCamelCase__ = torch.cat([latents, image] ,dim=1 )
lowerCamelCase__ = self.scheduler.scale_model_input(_lowerCAmelCase ,_lowerCAmelCase )
# predict the noise residual
lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
lowerCamelCase__ = self.scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample
# decode the image latents with the VQVAE
lowerCamelCase__ = self.vqvae.decode(_lowerCAmelCase ).sample
lowerCamelCase__ = torch.clamp(_lowerCAmelCase ,-1.0 ,1.0 )
lowerCamelCase__ = image / 2 + 0.5
lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
lowerCamelCase__ = self.numpy_to_pil(_lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowerCAmelCase )
| 50 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A__ ( __lowerCAmelCase : Any ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f)
or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) #
or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) #
or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) #
or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) #
or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) #
or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f)
or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) #
): #
return True
return False
def A__ ( __lowerCAmelCase : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCamelCase__ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = set()
for token in tokens:
lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowerCamelCase__ = list(__lowerCAmelCase )
return word_list
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ):
if not chinese_word_set:
return bert_tokens
lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowerCamelCase__ = bert_tokens
lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase )
while start < end:
lowerCamelCase__ = True
if is_chinese(bert_word[start] ):
lowerCamelCase__ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowerCamelCase__ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCamelCase__ = """##""" + bert_word[j]
lowerCamelCase__ = start + i
lowerCamelCase__ = False
break
if single_word:
start += 1
return bert_word
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ):
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = []
for id in input_ids:
lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowerCamelCase__ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def A__ ( __lowerCAmelCase : Optional[int] ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device
lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert )
lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
UpperCamelCase : Any = parser.parse_args()
main(args)
| 50 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
UpperCamelCase : Optional[int] = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" ,_lowerCAmelCase ,)
super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
| 50 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : Tuple = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
lowerCamelCase__ = 1024
lowerCamelCase__ = 4096
lowerCamelCase__ = 24
lowerCamelCase__ = 16
lowerCamelCase__ = [5, 11, 17, 23]
lowerCamelCase__ = [256, 512, 1024, 1024]
lowerCamelCase__ = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = [256, 512, 768, 768]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = (1, 384, 384)
lowerCamelCase__ = False
lowerCamelCase__ = """project"""
if "ade" in checkpoint_url:
lowerCamelCase__ = True
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = """huggingface/label-files"""
lowerCamelCase__ = """ade20k-id2label.json"""
lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowerCamelCase__ = idalabel
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
lowerCamelCase__ = [1, 150, 480, 480]
return config, expected_shape
def A__ ( __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : List[Any] ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
lowerCamelCase__ = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
lowerCamelCase__ = name.replace("""proj""" , """projection""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
lowerCamelCase__ = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
lowerCamelCase__ = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
lowerCamelCase__ = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
lowerCamelCase__ = name.replace("""..""" , """.""" )
if "stem.conv" in name:
lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[: config.hidden_size, :]
lowerCamelCase__ = in_proj_bias[: config.hidden_size]
lowerCamelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase__ = in_proj_bias[-config.hidden_size :]
def A__ ( ):
lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ):
lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(__lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
lowerCamelCase__ = val
# read in qkv matrices
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
# Check outputs on an image
lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384
lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth
if show_prediction:
lowerCamelCase__ = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
UpperCamelCase : List[str] = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 50 | 1 |
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
UpperCamelCase : int = [
'kernels/rwkv/wkv_cuda.cu',
'kernels/rwkv/wkv_op.cpp',
'kernels/deformable_detr/ms_deform_attn.h',
'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh',
'models/graphormer/algos_graphormer.pyx',
]
def A__ ( __lowerCAmelCase : Union[str, Any] ):
# Test all the extensions added in the setup
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.')
UpperCamelCase : Union[str, Any] = parser.parse_args()
if args.check_lib:
UpperCamelCase : Optional[int] = importlib.import_module('transformers')
UpperCamelCase : int = Path(transformers_module.__file__).parent
else:
UpperCamelCase : List[str] = Path.cwd() / 'build/lib/transformers'
if not test_custom_files_are_present(transformers_path):
raise ValueError('The built release does not contain the custom files. Fix this before going further!')
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Tuple = {
'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'],
'tokenization_mvp': ['MvpTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : str = ['MvpTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[int] = [
'MVP_PRETRAINED_MODEL_ARCHIVE_LIST',
'MvpForCausalLM',
'MvpForConditionalGeneration',
'MvpForQuestionAnswering',
'MvpForSequenceClassification',
'MvpModel',
'MvpPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCamelCase : Dict = logging.get_logger(__name__)
class UpperCamelCase__ (enum.Enum ):
'''simple docstring'''
_UpperCamelCase = 0
_UpperCamelCase = 1
@add_end_docstrings(a )
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'generated'
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def UpperCamelCase_ ( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
lowerCamelCase__ = {}
if truncation is not None:
lowerCamelCase__ = truncation
lowerCamelCase__ = generate_kwargs
lowerCamelCase__ = {}
if return_tensors is not None and return_type is None:
lowerCamelCase__ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
lowerCamelCase__ = return_type
if clean_up_tokenization_spaces is not None:
lowerCamelCase__ = clean_up_tokenization_spaces
if stop_sequence is not None:
lowerCamelCase__ = self.tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase )
if len(_lowerCAmelCase ) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""" )
lowerCamelCase__ = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
return True
def UpperCamelCase_ ( self ,*_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] ,_lowerCAmelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" )
lowerCamelCase__ = ([prefix + arg for arg in args[0]],)
lowerCamelCase__ = True
elif isinstance(args[0] ,_lowerCAmelCase ):
lowerCamelCase__ = (prefix + args[0],)
lowerCamelCase__ = False
else:
raise ValueError(
F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
lowerCamelCase__ = self.tokenizer(*_lowerCAmelCase ,padding=_lowerCAmelCase ,truncation=_lowerCAmelCase ,return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
lowerCamelCase__ = super().__call__(*_lowerCAmelCase ,**_lowerCAmelCase )
if (
isinstance(args[0] ,_lowerCAmelCase )
and all(isinstance(_lowerCAmelCase ,_lowerCAmelCase ) for el in args[0] )
and all(len(_lowerCAmelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=TruncationStrategy.DO_NOT_TRUNCATE ,**_lowerCAmelCase ):
lowerCamelCase__ = self._parse_and_tokenize(_lowerCAmelCase ,truncation=_lowerCAmelCase ,**_lowerCAmelCase )
return inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,**_lowerCAmelCase ):
if self.framework == "pt":
lowerCamelCase__ , lowerCamelCase__ = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
lowerCamelCase__ , lowerCamelCase__ = tf.shape(model_inputs["""input_ids"""] ).numpy()
lowerCamelCase__ = generate_kwargs.get("""min_length""" ,self.model.config.min_length )
lowerCamelCase__ = generate_kwargs.get("""max_length""" ,self.model.config.max_length )
self.check_inputs(_lowerCAmelCase ,generate_kwargs["""min_length"""] ,generate_kwargs["""max_length"""] )
lowerCamelCase__ = self.model.generate(**_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = output_ids.shape[0]
if self.framework == "pt":
lowerCamelCase__ = output_ids.reshape(_lowerCAmelCase ,out_b // in_b ,*output_ids.shape[1:] )
elif self.framework == "tf":
lowerCamelCase__ = tf.reshape(_lowerCAmelCase ,(in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=ReturnType.TEXT ,_lowerCAmelCase=False ):
lowerCamelCase__ = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
lowerCamelCase__ = {F'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
lowerCamelCase__ = {
F'''{self.return_name}_text''': self.tokenizer.decode(
_lowerCAmelCase ,skip_special_tokens=_lowerCAmelCase ,clean_up_tokenization_spaces=_lowerCAmelCase ,)
}
records.append(_lowerCAmelCase )
return records
@add_end_docstrings(a )
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'summary'
def __call__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
return super().__call__(*_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
if max_length < min_length:
logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
"""a summarization task, where outputs shorter than the input are typically wanted, you might """
F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(a )
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'translation'
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
if input_length > 0.9 * max_length:
logger.warning(
F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
"""increasing your max_length manually, e.g. translator('...', max_length=400)""" )
return True
def UpperCamelCase_ ( self ,*_lowerCAmelCase ,_lowerCAmelCase=TruncationStrategy.DO_NOT_TRUNCATE ,_lowerCAmelCase=None ,_lowerCAmelCase=None ):
if getattr(self.tokenizer ,"""_build_translation_inputs""" ,_lowerCAmelCase ):
return self.tokenizer._build_translation_inputs(
*_lowerCAmelCase ,return_tensors=self.framework ,truncation=_lowerCAmelCase ,src_lang=_lowerCAmelCase ,tgt_lang=_lowerCAmelCase )
else:
return super()._parse_and_tokenize(*_lowerCAmelCase ,truncation=_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,**_lowerCAmelCase ):
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = super()._sanitize_parameters(**_lowerCAmelCase )
if src_lang is not None:
lowerCamelCase__ = src_lang
if tgt_lang is not None:
lowerCamelCase__ = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
lowerCamelCase__ = kwargs.get("""task""" ,self.task )
lowerCamelCase__ = task.split("""_""" )
if task and len(_lowerCAmelCase ) == 4:
# translation, XX, to YY
lowerCamelCase__ = items[1]
lowerCamelCase__ = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
return super().__call__(*_lowerCAmelCase ,**_lowerCAmelCase )
| 50 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Dict = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'codegen'
_UpperCamelCase = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_ctx
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = rotary_dim
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = use_cache
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(
bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,):
super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase )
if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ):
# TODO: how to do that better?
lowerCamelCase__ = 0
@property
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" )
lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCamelCase__ = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def UpperCamelCase_ ( self ):
return self._config.n_layer
@property
def UpperCamelCase_ ( self ):
return self._config.n_head
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCamelCase__ = seqlen + 2
lowerCamelCase__ = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCamelCase__ = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers )
]
lowerCamelCase__ = common_inputs["""attention_mask"""]
if self.use_past:
lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype
lowerCamelCase__ = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 )
return ordered_inputs
@property
def UpperCamelCase_ ( self ):
return 13
| 50 | 1 |
'''simple docstring'''
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase )
lowerCamelCase__ = -1
lowerCamelCase__ = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
lowerCamelCase__ = model.generate(_lowerCAmelCase ,max_new_tokens=10 ,do_sample=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowerCamelCase__ = TextStreamer(_lowerCAmelCase )
model.generate(_lowerCAmelCase ,max_new_tokens=10 ,do_sample=_lowerCAmelCase ,streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCamelCase__ = cs.out[:-1]
self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase )
lowerCamelCase__ = -1
lowerCamelCase__ = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
lowerCamelCase__ = model.generate(_lowerCAmelCase ,max_new_tokens=10 ,do_sample=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.decode(greedy_ids[0] )
lowerCamelCase__ = TextIteratorStreamer(_lowerCAmelCase )
lowerCamelCase__ = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
lowerCamelCase__ = Thread(target=model.generate ,kwargs=_lowerCAmelCase )
thread.start()
lowerCamelCase__ = """"""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase )
lowerCamelCase__ = -1
lowerCamelCase__ = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
lowerCamelCase__ = model.generate(_lowerCAmelCase ,max_new_tokens=10 ,do_sample=_lowerCAmelCase )
lowerCamelCase__ = greedy_ids[:, input_ids.shape[1] :]
lowerCamelCase__ = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowerCamelCase__ = TextStreamer(_lowerCAmelCase ,skip_prompt=_lowerCAmelCase )
model.generate(_lowerCAmelCase ,max_new_tokens=10 ,do_sample=_lowerCAmelCase ,streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCamelCase__ = cs.out[:-1]
self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
lowerCamelCase__ = AutoTokenizer.from_pretrained("""distilgpt2""" )
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(_lowerCAmelCase )
lowerCamelCase__ = -1
lowerCamelCase__ = torch.ones((1, 5) ,device=_lowerCAmelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowerCamelCase__ = TextStreamer(_lowerCAmelCase ,skip_special_tokens=_lowerCAmelCase )
model.generate(_lowerCAmelCase ,max_new_tokens=1 ,do_sample=_lowerCAmelCase ,streamer=_lowerCAmelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowerCamelCase__ = cs.out[:-1] # Remove the final "\n"
lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_tensors="""pt""" )
self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase )
lowerCamelCase__ = -1
lowerCamelCase__ = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
lowerCamelCase__ = TextIteratorStreamer(_lowerCAmelCase ,timeout=0.001 )
lowerCamelCase__ = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
lowerCamelCase__ = Thread(target=model.generate ,kwargs=_lowerCAmelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowerCAmelCase ):
lowerCamelCase__ = """"""
for new_text in streamer:
streamer_text += new_text
| 50 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : int = {
'configuration_xmod': [
'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XmodConfig',
'XmodOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Tuple = [
'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST',
'XmodForCausalLM',
'XmodForMaskedLM',
'XmodForMultipleChoice',
'XmodForQuestionAnswering',
'XmodForSequenceClassification',
'XmodForTokenClassification',
'XmodModel',
'XmodPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = '▁'
UpperCamelCase : int = {'vocab_file': 'sentencepiece.bpe.model'}
UpperCamelCase : Dict = {
'vocab_file': {
'facebook/mbart-large-50-one-to-many-mmt': (
'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model'
),
}
}
UpperCamelCase : str = {
'facebook/mbart-large-50-one-to-many-mmt': 10_24,
}
# fmt: off
UpperCamelCase : Dict = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI']
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = ['input_ids', 'attention_mask']
_UpperCamelCase = []
_UpperCamelCase = []
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token
lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
lowerCamelCase__ = kwargs.get("""additional_special_tokens""" ,[] )
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=_lowerCAmelCase ,tgt_lang=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,)
lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_lowerCAmelCase ) )
lowerCamelCase__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
lowerCamelCase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowerCamelCase__ = 1
lowerCamelCase__ = len(self.sp_model )
lowerCamelCase__ = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowerCAmelCase )
}
lowerCamelCase__ = {v: k for k, v in self.lang_code_to_id.items()}
lowerCamelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
lowerCamelCase__ = src_lang if src_lang is not None else """en_XX"""
lowerCamelCase__ = self.lang_code_to_id[self._src_lang]
lowerCamelCase__ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def UpperCamelCase_ ( self ):
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def UpperCamelCase_ ( self ):
return self._src_lang
@src_lang.setter
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ):
lowerCamelCase__ = self.__dict__.copy()
lowerCamelCase__ = None
return state
def __setstate__( self ,_lowerCAmelCase ):
lowerCamelCase__ = d
# for backward compatibility
if not hasattr(self ,"""sp_model_kwargs""" ):
lowerCamelCase__ = {}
lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase__ = self.sp_model.PieceToId(_lowerCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = []
lowerCamelCase__ = """"""
lowerCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_lowerCAmelCase ) + token
lowerCamelCase__ = True
lowerCamelCase__ = []
else:
current_sub_tokens.append(_lowerCAmelCase )
lowerCamelCase__ = False
out_string += self.sp_model.decode(_lowerCAmelCase )
return out_string.strip()
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCamelCase__ = os.path.join(
_lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase ,"""wb""" ) as fi:
lowerCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase )
lowerCamelCase__ = [1] * len(self.prefix_tokens )
lowerCamelCase__ = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_lowerCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ):
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
lowerCamelCase__ = src_lang
lowerCamelCase__ = self(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,return_tensors=_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = self.convert_tokens_to_ids(_lowerCAmelCase )
lowerCamelCase__ = tgt_lang_id
return inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = "en_XX" ,_lowerCAmelCase = None ,_lowerCAmelCase = "ro_RO" ,**_lowerCAmelCase ,):
lowerCamelCase__ = src_lang
lowerCamelCase__ = tgt_lang
return super().prepare_seqaseq_batch(_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def UpperCamelCase_ ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = self.lang_code_to_id[src_lang]
lowerCamelCase__ = [self.cur_lang_code_id]
lowerCamelCase__ = [self.eos_token_id]
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = self.lang_code_to_id[tgt_lang]
lowerCamelCase__ = [self.cur_lang_code_id]
lowerCamelCase__ = [self.eos_token_id]
| 50 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCAmelCase , torch.Tensor ):
raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" )
lowerCamelCase__ = v.half()
if save_path is None: # overwrite src_path
lowerCamelCase__ = src_path
torch.save(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 50 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : Dict = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[int] = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 |
'''simple docstring'''
import os
from pathlib import Path
def A__ ( ):
from torch.utils.cpp_extension import load
lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
lowerCamelCase__ = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 50 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
UpperCamelCase : List[Any] = logging.get_logger(__name__)
UpperCamelCase : Any = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCamelCase : Union[str, Any] = {
'vocab_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-german-cased': (
'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'
),
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase : List[str] = {
'distilbert-base-uncased': 5_12,
'distilbert-base-uncased-distilled-squad': 5_12,
'distilbert-base-cased': 5_12,
'distilbert-base-cased-distilled-squad': 5_12,
'distilbert-base-german-cased': 5_12,
'distilbert-base-multilingual-cased': 5_12,
}
UpperCamelCase : int = {
'distilbert-base-uncased': {'do_lower_case': True},
'distilbert-base-uncased-distilled-squad': {'do_lower_case': True},
'distilbert-base-cased': {'do_lower_case': False},
'distilbert-base-cased-distilled-squad': {'do_lower_case': False},
'distilbert-base-german-cased': {'do_lower_case': False},
'distilbert-base-multilingual-cased': {'do_lower_case': False},
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase = ['input_ids', 'attention_mask']
_UpperCamelCase = DistilBertTokenizer
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
super().__init__(
_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars
):
lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) )
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = strip_accents
lowerCamelCase__ = tokenize_chinese_chars
lowerCamelCase__ = normalizer_class(**_lowerCAmelCase )
lowerCamelCase__ = do_lower_case
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ):
lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 50 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ):
lowerCamelCase__ = len(__lowerCAmelCase )
print("""The following activities are selected:""" )
# The first activity is always selected
lowerCamelCase__ = 0
print(__lowerCAmelCase , end=""",""" )
# Consider rest of the activities
for j in range(__lowerCAmelCase ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(__lowerCAmelCase , end=""",""" )
lowerCamelCase__ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase : Union[str, Any] = [1, 3, 0, 5, 8, 5]
UpperCamelCase : int = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 50 | 1 |
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = (DDIMParallelScheduler,)
_UpperCamelCase = (('eta', 0.0), ('num_inference_steps', 50))
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
lowerCamelCase__ = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""clip_sample""": True,
}
config.update(**_lowerCAmelCase )
return config
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config(**_lowerCAmelCase )
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = 10, 0.0
lowerCamelCase__ = self.dummy_model()
lowerCamelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
for t in scheduler.timesteps:
lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ).prev_sample
return sample
def UpperCamelCase_ ( self ):
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_lowerCAmelCase )
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config(steps_offset=1 )
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps ,torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def UpperCamelCase_ ( self ):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowerCAmelCase ,beta_end=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
self.check_over_configs(thresholding=_lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=_lowerCAmelCase ,prediction_type=_lowerCAmelCase ,sample_max_value=_lowerCAmelCase ,)
def UpperCamelCase_ ( self ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 5_00] ):
self.check_over_forward(time_step=_lowerCAmelCase ,num_inference_steps=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=_lowerCAmelCase ,eta=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config()
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 ,4_00 ) - 0.1_4771 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 ,9_60 ) - 0.3_2460 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ,4_86 ) - 0.0_0979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ,9_98 ) - 0.02 ) ) < 1E-5
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config()
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = 10, 0.0
scheduler.set_timesteps(_lowerCAmelCase )
lowerCamelCase__ = self.dummy_model()
lowerCamelCase__ = self.dummy_sample_deter
lowerCamelCase__ = self.dummy_sample_deter + 0.1
lowerCamelCase__ = self.dummy_sample_deter - 0.1
lowerCamelCase__ = samplea.shape[0]
lowerCamelCase__ = torch.stack([samplea, samplea, samplea] ,dim=0 )
lowerCamelCase__ = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 ,_lowerCAmelCase )
lowerCamelCase__ = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) )
lowerCamelCase__ = scheduler.batch_step_no_noise(_lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,_lowerCAmelCase )
lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) )
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 1147.7904 ) < 1E-2
assert abs(result_mean.item() - 0.4982 ) < 1E-3
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.full_loop()
lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) )
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 172.0067 ) < 1E-2
assert abs(result_mean.item() - 0.22_3967 ) < 1E-3
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.full_loop(prediction_type="""v_prediction""" )
lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) )
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 52.5302 ) < 1E-2
assert abs(result_mean.item() - 0.0684 ) < 1E-3
def UpperCamelCase_ ( self ):
# We specify different beta, so that the first alpha is 0.99
lowerCamelCase__ = self.full_loop(set_alpha_to_one=_lowerCAmelCase ,beta_start=0.01 )
lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) )
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 149.8295 ) < 1E-2
assert abs(result_mean.item() - 0.1951 ) < 1E-3
def UpperCamelCase_ ( self ):
# We specify different beta, so that the first alpha is 0.99
lowerCamelCase__ = self.full_loop(set_alpha_to_one=_lowerCAmelCase ,beta_start=0.01 )
lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) )
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 149.0784 ) < 1E-2
assert abs(result_mean.item() - 0.1941 ) < 1E-3
| 50 |
'''simple docstring'''
import warnings
from ..trainer import Trainer
from ..utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ):
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" ,_lowerCAmelCase ,)
super().__init__(args=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
UpperCamelCase : Tuple = 'true'
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any]=82 , __lowerCAmelCase : Tuple=16 ):
set_seed(42 )
lowerCamelCase__ = RegressionModel()
lowerCamelCase__ = deepcopy(__lowerCAmelCase )
lowerCamelCase__ = RegressionDataset(length=__lowerCAmelCase )
lowerCamelCase__ = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase )
model.to(accelerator.device )
lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase )
return model, ddp_model, dataloader
def A__ ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : Optional[Any]=False ):
lowerCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" )
lowerCamelCase__ = load_dataset("""glue""" , """mrpc""" , split="""validation""" )
def tokenize_function(__lowerCAmelCase : str ):
lowerCamelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase )
return outputs
with accelerator.main_process_first():
lowerCamelCase__ = dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
lowerCamelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__lowerCAmelCase : Dict ):
if use_longest:
return tokenizer.pad(__lowerCAmelCase , padding="""longest""" , return_tensors="""pt""" )
return tokenizer.pad(__lowerCAmelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=16 )
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] ):
lowerCamelCase__ = Accelerator(dispatch_batches=__lowerCAmelCase , split_batches=__lowerCAmelCase )
lowerCamelCase__ = get_dataloader(__lowerCAmelCase , not dispatch_batches )
lowerCamelCase__ = AutoModelForSequenceClassification.from_pretrained(
"""hf-internal-testing/mrpc-bert-base-cased""" , return_dict=__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str ):
lowerCamelCase__ = []
for batch in dataloader:
lowerCamelCase__ , lowerCamelCase__ = batch.values()
with torch.no_grad():
lowerCamelCase__ = model(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
lowerCamelCase__ , lowerCamelCase__ = [], []
for logit, targ in logits_and_targets:
logits.append(__lowerCAmelCase )
targs.append(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = torch.cat(__lowerCAmelCase ), torch.cat(__lowerCAmelCase )
return logits, targs
def A__ ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : Tuple=82 , __lowerCAmelCase : str=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : int=16 ):
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = get_basic_setup(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = generate_predictions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
assert (
len(__lowerCAmelCase ) == num_samples
), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCAmelCase )}'''
def A__ ( __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False ):
lowerCamelCase__ = evaluate.load("""glue""" , """mrpc""" )
lowerCamelCase__ , lowerCamelCase__ = get_mrpc_setup(__lowerCAmelCase , __lowerCAmelCase )
# First do baseline
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = setup["""no"""]
model.to(__lowerCAmelCase )
model.eval()
for batch in dataloader:
batch.to(__lowerCAmelCase )
with torch.inference_mode():
lowerCamelCase__ = model(**__lowerCAmelCase )
lowerCamelCase__ = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=__lowerCAmelCase , references=batch["""labels"""] )
lowerCamelCase__ = metric.compute()
# Then do distributed
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = setup["""ddp"""]
model.eval()
for batch in dataloader:
with torch.inference_mode():
lowerCamelCase__ = model(**__lowerCAmelCase )
lowerCamelCase__ = outputs.logits.argmax(dim=-1 )
lowerCamelCase__ = batch["""labels"""]
lowerCamelCase__ , lowerCamelCase__ = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=__lowerCAmelCase , references=__lowerCAmelCase )
lowerCamelCase__ = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'''
def A__ ( ):
lowerCamelCase__ = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("""**Testing gather_for_metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' )
test_mrpc(__lowerCAmelCase , __lowerCAmelCase )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test torch metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
lowerCamelCase__ = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase )
if accelerator.is_local_main_process:
print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' )
test_torch_metrics(__lowerCAmelCase , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test last batch is not dropped when perfectly divisible**""" )
lowerCamelCase__ = Accelerator()
test_torch_metrics(__lowerCAmelCase , 512 )
accelerator.state._reset_state()
def A__ ( __lowerCAmelCase : List[Any] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 50 |
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = []
for line in lines:
lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments
if line:
filtered_lines.append(__lowerCAmelCase )
lowerCamelCase__ = """\n""".join(__lowerCAmelCase )
# Make a hash from all this code
lowerCamelCase__ = full_str.encode("""utf-8""" )
return shaaaa(__lowerCAmelCase ).hexdigest()
# get importable module names and hash for caching
UpperCamelCase : Dict = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
UpperCamelCase : str = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
UpperCamelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('.zip')
_MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
| 50 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ):
if index == number_of_items:
return 0
lowerCamelCase__ = 0
lowerCamelCase__ = 0
lowerCamelCase__ = knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 )
if weights[index] <= max_weight:
lowerCamelCase__ = values[index] + knapsack(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , max_weight - weights[index] , index + 1 )
return max(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 |
'''simple docstring'''
import operator
def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ):
lowerCamelCase__ = operator.lt if reverse else operator.gt
lowerCamelCase__ = solution or []
if not arr:
return solution
lowerCamelCase__ = [arr.pop(0 )]
for i, item in enumerate(__lowerCAmelCase ):
if _operator(__lowerCAmelCase , sublist[-1] ):
sublist.append(__lowerCAmelCase )
arr.pop(__lowerCAmelCase )
# merging sublist into solution list
if not solution:
solution.extend(__lowerCAmelCase )
else:
while sublist:
lowerCamelCase__ = sublist.pop(0 )
for i, xx in enumerate(__lowerCAmelCase ):
if not _operator(__lowerCAmelCase , __lowerCAmelCase ):
solution.insert(__lowerCAmelCase , __lowerCAmelCase )
break
else:
solution.append(__lowerCAmelCase )
strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 50 | 1 |
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase : str = logging.get_logger(__name__)
UpperCamelCase : List[Any] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
UpperCamelCase : List[Any] = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
UpperCamelCase : int = {'facebook/blenderbot-3B': 1_28}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = ['input_ids', 'attention_mask']
_UpperCamelCase = BlenderbotTokenizer
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase="replace" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=False ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
super().__init__(
_lowerCAmelCase ,_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,errors=_lowerCAmelCase ,bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" ,_lowerCAmelCase ) != add_prefix_space:
lowerCamelCase__ = getattr(_lowerCAmelCase ,pre_tok_state.pop("""type""" ) )
lowerCamelCase__ = add_prefix_space
lowerCamelCase__ = pre_tok_class(**_lowerCAmelCase )
lowerCamelCase__ = add_prefix_space
lowerCamelCase__ = """post_processor"""
lowerCamelCase__ = getattr(self.backend_tokenizer ,_lowerCAmelCase ,_lowerCAmelCase )
if tokenizer_component_instance:
lowerCamelCase__ = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowerCamelCase__ = tuple(state["""sep"""] )
if "cls" in state:
lowerCamelCase__ = tuple(state["""cls"""] )
lowerCamelCase__ = False
if state.get("""add_prefix_space""" ,_lowerCAmelCase ) != add_prefix_space:
lowerCamelCase__ = add_prefix_space
lowerCamelCase__ = True
if state.get("""trim_offsets""" ,_lowerCAmelCase ) != trim_offsets:
lowerCamelCase__ = trim_offsets
lowerCamelCase__ = True
if changes_to_apply:
lowerCamelCase__ = getattr(_lowerCAmelCase ,state.pop("""type""" ) )
lowerCamelCase__ = component_class(**_lowerCAmelCase )
setattr(self.backend_tokenizer ,_lowerCAmelCase ,_lowerCAmelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def UpperCamelCase_ ( self ):
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else value
lowerCamelCase__ = value
def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
lowerCamelCase__ = kwargs.get("""is_split_into_words""" ,_lowerCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
lowerCamelCase__ = kwargs.get("""is_split_into_words""" ,_lowerCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
return token_ids_a + [self.eos_token_id]
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(""" """ + text )
else:
# Generated responses should contain them already.
inputs.append(_lowerCAmelCase )
lowerCamelCase__ = """ """.join(_lowerCAmelCase )
lowerCamelCase__ = self.encode(_lowerCAmelCase )
if len(_lowerCAmelCase ) > self.model_max_length:
lowerCamelCase__ = input_ids[-self.model_max_length :]
logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 50 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def A__ ( __lowerCAmelCase : dict ):
return (data["data"], data["target"])
def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ):
lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__lowerCAmelCase , __lowerCAmelCase )
# Predict target for test data
lowerCamelCase__ = xgb.predict(__lowerCAmelCase )
lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 )
return predictions
def A__ ( ):
lowerCamelCase__ = fetch_california_housing()
lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 )
lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Error printing
print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 50 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase : Any = {
'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'],
'tokenization_deberta': ['DebertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Union[str, Any] = ['DebertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Tuple = [
'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'DebertaForMaskedLM',
'DebertaForQuestionAnswering',
'DebertaForSequenceClassification',
'DebertaForTokenClassification',
'DebertaModel',
'DebertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : str = [
'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDebertaForMaskedLM',
'TFDebertaForQuestionAnswering',
'TFDebertaForSequenceClassification',
'TFDebertaForTokenClassification',
'TFDebertaModel',
'TFDebertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 20
lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create ramp distribution
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy()
lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 )
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy()
lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase__ = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
# check that min length is applied at length 5
lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 )
lowerCamelCase__ = 5
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] )
# check that min length is not applied anymore at length 15
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = 15
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 )
lowerCamelCase__ = 1
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 )
lowerCamelCase__ = 4
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# with processor list
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
# with processor list
def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
| 50 | 1 |
'''simple docstring'''
from .data_collator import (
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeqaSeq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadVaProcessor,
SquadVaProcessor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCamelCase : Any = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def A__ ( __lowerCAmelCase : Optional[int] ):
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class UpperCamelCase__ (a ):
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( _lowerCAmelCase ):
lowerCamelCase__ = parser.add_parser("""download""" )
download_parser.add_argument(
"""--cache-dir""" ,type=_lowerCAmelCase ,default=_lowerCAmelCase ,help="""Path to location to store the models""" )
download_parser.add_argument(
"""--force""" ,action="""store_true""" ,help="""Force the model to be download even if already in cache-dir""" )
download_parser.add_argument(
"""--trust-remote-code""" ,action="""store_true""" ,help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" ,)
download_parser.add_argument("""model""" ,type=_lowerCAmelCase ,help="""Name of the model to download""" )
download_parser.set_defaults(func=_lowerCAmelCase )
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = model
lowerCamelCase__ = cache
lowerCamelCase__ = force
lowerCamelCase__ = trust_remote_code
def UpperCamelCase_ ( self ):
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
| 50 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ):
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : int = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'cvt'
def __init__( self ,_lowerCAmelCase=3 ,_lowerCAmelCase=[7, 3, 3] ,_lowerCAmelCase=[4, 2, 2] ,_lowerCAmelCase=[2, 1, 1] ,_lowerCAmelCase=[64, 1_92, 3_84] ,_lowerCAmelCase=[1, 3, 6] ,_lowerCAmelCase=[1, 2, 10] ,_lowerCAmelCase=[4.0, 4.0, 4.0] ,_lowerCAmelCase=[0.0, 0.0, 0.0] ,_lowerCAmelCase=[0.0, 0.0, 0.0] ,_lowerCAmelCase=[0.0, 0.0, 0.1] ,_lowerCAmelCase=[True, True, True] ,_lowerCAmelCase=[False, False, True] ,_lowerCAmelCase=["dw_bn", "dw_bn", "dw_bn"] ,_lowerCAmelCase=[3, 3, 3] ,_lowerCAmelCase=[1, 1, 1] ,_lowerCAmelCase=[2, 2, 2] ,_lowerCAmelCase=[1, 1, 1] ,_lowerCAmelCase=[1, 1, 1] ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-12 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = num_channels
lowerCamelCase__ = patch_sizes
lowerCamelCase__ = patch_stride
lowerCamelCase__ = patch_padding
lowerCamelCase__ = embed_dim
lowerCamelCase__ = num_heads
lowerCamelCase__ = depth
lowerCamelCase__ = mlp_ratio
lowerCamelCase__ = attention_drop_rate
lowerCamelCase__ = drop_rate
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = qkv_bias
lowerCamelCase__ = cls_token
lowerCamelCase__ = qkv_projection_method
lowerCamelCase__ = kernel_qkv
lowerCamelCase__ = padding_kv
lowerCamelCase__ = stride_kv
lowerCamelCase__ = padding_q
lowerCamelCase__ = stride_q
lowerCamelCase__ = initializer_range
lowerCamelCase__ = layer_norm_eps
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Union[str, Any] = {
'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'],
'tokenization_canine': ['CanineTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Any = [
'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST',
'CanineForMultipleChoice',
'CanineForQuestionAnswering',
'CanineForSequenceClassification',
'CanineForTokenClassification',
'CanineLayer',
'CanineModel',
'CaninePreTrainedModel',
'load_tf_weights_in_canine',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
import os
from pathlib import Path
def A__ ( ):
from torch.utils.cpp_extension import load
lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
lowerCamelCase__ = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 50 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase : int = '3'
print('Python version:', sys.version)
print('transformers version:', transformers.__version__)
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
print('NCCL version:', torch.cuda.nccl.version())
except ImportError:
print('Torch version:', None)
try:
import deepspeed
print('DeepSpeed version:', deepspeed.__version__)
except ImportError:
print('DeepSpeed version:', None)
try:
import tensorflow as tf
print('TensorFlow version:', tf.__version__)
print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))
print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))
except ImportError:
print('TensorFlow version:', None)
| 50 | 1 |
'''simple docstring'''
from __future__ import annotations
UpperCamelCase : Optional[int] = 10
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = 1
lowerCamelCase__ = max(__lowerCAmelCase )
while placement <= max_digit:
# declare and initialize empty buckets
lowerCamelCase__ = [[] for _ in range(__lowerCAmelCase )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowerCamelCase__ = int((i / placement) % RADIX )
buckets[tmp].append(__lowerCAmelCase )
# put each buckets' contents into list_of_ints
lowerCamelCase__ = 0
for b in range(__lowerCAmelCase ):
for i in buckets[b]:
lowerCamelCase__ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'gpt_bigcode'
_UpperCamelCase = ['past_key_values']
_UpperCamelCase = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scale_attn_weights
lowerCamelCase__ = use_cache
lowerCamelCase__ = attention_softmax_in_fpaa
lowerCamelCase__ = scale_attention_softmax_in_fpaa
lowerCamelCase__ = multi_query
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
UpperCamelCase : str = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {'vocab_file': 'vocab.txt'}
UpperCamelCase : int = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
UpperCamelCase : Tuple = {
'YituTech/conv-bert-base': 5_12,
'YituTech/conv-bert-medium-small': 5_12,
'YituTech/conv-bert-small': 5_12,
}
UpperCamelCase : Dict = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = ConvBertTokenizer
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
super().__init__(
_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars
):
lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) )
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = strip_accents
lowerCamelCase__ = tokenize_chinese_chars
lowerCamelCase__ = normalizer_class(**_lowerCAmelCase )
lowerCamelCase__ = do_lower_case
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ):
lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 50 |
'''simple docstring'''
from PIL import Image
def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ):
def brightness(__lowerCAmelCase : int ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(__lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 50 | 1 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCAmelCase , torch.Tensor ):
raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" )
lowerCamelCase__ = v.half()
if save_path is None: # overwrite src_path
lowerCamelCase__ = src_path
torch.save(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 50 |
'''simple docstring'''
def A__ ( ):
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
UpperCamelCase : Dict = generate_large_matrix()
UpperCamelCase : Any = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A__ ( __lowerCAmelCase : list[list[int]] ):
assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid )
assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowerCamelCase__ = (left + right) // 2
lowerCamelCase__ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowerCamelCase__ = mid + 1
else:
lowerCamelCase__ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(grid[0] )
for i in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__lowerCAmelCase ) * len(grid[0] )) - total
def A__ ( __lowerCAmelCase : list[list[int]] ):
return len([number for row in grid for number in row if number < 0] )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
for row in grid:
for i, number in enumerate(__lowerCAmelCase ):
if number < 0:
total += len(__lowerCAmelCase ) - i
break
return total
def A__ ( ):
from timeit import timeit
print("""Running benchmarks""" )
lowerCamelCase__ = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 )
print(F'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 50 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCamelCase__ (a ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""width_multiplier""" ) )
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=64 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase="swish" ,_lowerCAmelCase=3 ,_lowerCAmelCase=32 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=10 ,_lowerCAmelCase=None ,_lowerCAmelCase=0.25 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = make_divisible(5_12 * width_multiplier ,divisor=8 )
lowerCamelCase__ = hidden_act
lowerCamelCase__ = conv_kernel_size
lowerCamelCase__ = output_stride
lowerCamelCase__ = classifier_dropout_prob
lowerCamelCase__ = use_labels
lowerCamelCase__ = is_training
lowerCamelCase__ = num_labels
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scope
lowerCamelCase__ = width_multiplier
lowerCamelCase__ = ffn_dropout
lowerCamelCase__ = attn_dropout
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_labels )
lowerCamelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self ):
return MobileViTVaConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = MobileViTVaModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.num_labels
lowerCamelCase__ = MobileViTVaForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.num_labels
lowerCamelCase__ = MobileViTVaForSemanticSegmentation(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape ,(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape ,(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
_UpperCamelCase = (
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MobileViTVaModelTester(self )
lowerCamelCase__ = MobileViTVaConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""" )
def UpperCamelCase_ ( self ):
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
def check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = outputs.hidden_states
lowerCamelCase__ = 5
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
lowerCamelCase__ = 2
for i in range(len(_lowerCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,)
divisor *= 2
self.assertEqual(self.model_tester.output_stride ,divisor // 2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = True
check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ = True
check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = MobileViTVaModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to(
_lowerCAmelCase )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowerCamelCase__ = model.to(_lowerCAmelCase )
lowerCamelCase__ = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
lowerCamelCase__ = outputs.logits
# verify the logits
lowerCamelCase__ = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] ,device=_lowerCAmelCase ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowerCamelCase__ = model.to(_lowerCAmelCase )
lowerCamelCase__ = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
lowerCamelCase__ = outputs.logits.detach().cpu()
lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ,target_sizes=[(50, 60)] )
lowerCamelCase__ = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape ,_lowerCAmelCase )
lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase )
lowerCamelCase__ = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape ,_lowerCAmelCase )
| 50 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase : List[Any] = 'examples/'
UpperCamelCase : int = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
UpperCamelCase : Any = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
UpperCamelCase : Any = 'README.md'
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern]
lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase )
lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : str ):
for folder, directories, fnames in os.walk(__lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" )
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if not patch:
update_version_in_examples(__lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = """🤗 Transformers currently provides the following architectures"""
lowerCamelCase__ = """1. Want to contribute a new model?"""
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Find the start of the list.
lowerCamelCase__ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCamelCase__ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
lowerCamelCase__ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__lowerCAmelCase )
def A__ ( ):
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0]
return packaging.version.parse(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Union[str, Any]=False ):
lowerCamelCase__ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
lowerCamelCase__ = default_version.base_version
elif patch:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = default_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def A__ ( ):
lowerCamelCase__ = get_version()
lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
lowerCamelCase__ = current_version.base_version
# Check with the user we got that right.
lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
UpperCamelCase : Any = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 50 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase : Dict = {
'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'],
'configuration_maskformer_swin': ['MaskFormerSwinConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : int = ['MaskFormerFeatureExtractor']
UpperCamelCase : Tuple = ['MaskFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Tuple = [
'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'MaskFormerForInstanceSegmentation',
'MaskFormerModel',
'MaskFormerPreTrainedModel',
]
UpperCamelCase : Tuple = [
'MaskFormerSwinBackbone',
'MaskFormerSwinModel',
'MaskFormerSwinPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 50 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCamelCase : int = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase : Tuple = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
UpperCamelCase : Dict = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = SqueezeBertTokenizer
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
super().__init__(
_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars
):
lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) )
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = strip_accents
lowerCamelCase__ = tokenize_chinese_chars
lowerCamelCase__ = normalizer_class(**_lowerCAmelCase )
lowerCamelCase__ = do_lower_case
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ):
lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = DebertaTokenizer
_UpperCamelCase = True
_UpperCamelCase = DebertaTokenizerFast
def UpperCamelCase_ ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCamelCase__ = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""[UNK]""",
]
lowerCamelCase__ = dict(zip(_lowerCAmelCase ,range(len(_lowerCAmelCase ) ) ) )
lowerCamelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
lowerCamelCase__ = {"""unk_token""": """[UNK]"""}
lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + """\n""" )
with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_lowerCAmelCase ) )
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = """lower newer"""
return input_text, output_text
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
lowerCamelCase__ = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = tokens + [tokenizer.unk_token]
lowerCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = tokenizer("""Hello""" ,"""World""" )
lowerCamelCase__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd["""token_type_ids"""] ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" )
lowerCamelCase__ = tokenizer.encode("""sequence builders""" ,add_special_tokens=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.encode(
"""sequence builders""" ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.encode(
"""sequence builders""" ,"""multi-sequence build""" ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ,_lowerCAmelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
lowerCamelCase__ = tokenizer_class.from_pretrained("""microsoft/deberta-base""" )
lowerCamelCase__ = [
"""ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""",
"""ALBERT incorporates two parameter reduction techniques""",
"""The first one is a factorized embedding parameterization. By decomposing the large vocabulary"""
""" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"""
""" vocabulary embedding.""",
]
lowerCamelCase__ = tokenizer(_lowerCAmelCase ,padding=_lowerCAmelCase )
lowerCamelCase__ = [tokenizer.decode(_lowerCAmelCase ,skip_special_tokens=_lowerCAmelCase ) for seq in encoding["""input_ids"""]]
# fmt: off
lowerCamelCase__ = {
"""input_ids""": [
[1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2]
],
"""token_type_ids""": [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
"""attention_mask""": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
lowerCamelCase__ = [
"""ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""",
"""ALBERT incorporates two parameter reduction techniques""",
"""The first one is a factorized embedding parameterization. By decomposing the large vocabulary"""
""" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"""
""" vocabulary embedding.""",
]
self.assertDictEqual(encoding.data ,_lowerCAmelCase )
for expected, decoded in zip(_lowerCAmelCase ,_lowerCAmelCase ):
self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase )
| 50 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A__ ( __lowerCAmelCase : Any ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f)
or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) #
or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) #
or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) #
or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) #
or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) #
or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f)
or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) #
): #
return True
return False
def A__ ( __lowerCAmelCase : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCamelCase__ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = set()
for token in tokens:
lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowerCamelCase__ = list(__lowerCAmelCase )
return word_list
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ):
if not chinese_word_set:
return bert_tokens
lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowerCamelCase__ = bert_tokens
lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase )
while start < end:
lowerCamelCase__ = True
if is_chinese(bert_word[start] ):
lowerCamelCase__ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowerCamelCase__ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCamelCase__ = """##""" + bert_word[j]
lowerCamelCase__ = start + i
lowerCamelCase__ = False
break
if single_word:
start += 1
return bert_word
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ):
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = []
for id in input_ids:
lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowerCamelCase__ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def A__ ( __lowerCAmelCase : Optional[int] ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device
lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert )
lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
UpperCamelCase : Any = parser.parse_args()
main(args)
| 50 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase : str = logging.get_logger(__name__)
UpperCamelCase : Any = {
'facebook/data2vec-vision-base-ft': (
'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json'
),
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'data2vec-vision'
def __init__( self ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-12 ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=16 ,_lowerCAmelCase=3 ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=True ,_lowerCAmelCase=[3, 5, 7, 11] ,_lowerCAmelCase=[1, 2, 3, 6] ,_lowerCAmelCase=True ,_lowerCAmelCase=0.4 ,_lowerCAmelCase=2_56 ,_lowerCAmelCase=1 ,_lowerCAmelCase=False ,_lowerCAmelCase=2_55 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = initializer_range
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = use_mask_token
lowerCamelCase__ = use_absolute_position_embeddings
lowerCamelCase__ = use_relative_position_bias
lowerCamelCase__ = use_shared_relative_position_bias
lowerCamelCase__ = layer_scale_init_value
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = use_mean_pooling
# decode head attributes (semantic segmentation)
lowerCamelCase__ = out_indices
lowerCamelCase__ = pool_scales
# auxiliary head attributes (semantic segmentation)
lowerCamelCase__ = use_auxiliary_head
lowerCamelCase__ = auxiliary_loss_weight
lowerCamelCase__ = auxiliary_channels
lowerCamelCase__ = auxiliary_num_convs
lowerCamelCase__ = auxiliary_concat_input
lowerCamelCase__ = semantic_loss_ignore_index
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = version.parse('1.11' )
@property
def UpperCamelCase_ ( self ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def UpperCamelCase_ ( self ):
return 1E-4
| 50 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : Tuple = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
lowerCamelCase__ = 1024
lowerCamelCase__ = 4096
lowerCamelCase__ = 24
lowerCamelCase__ = 16
lowerCamelCase__ = [5, 11, 17, 23]
lowerCamelCase__ = [256, 512, 1024, 1024]
lowerCamelCase__ = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = [256, 512, 768, 768]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = (1, 384, 384)
lowerCamelCase__ = False
lowerCamelCase__ = """project"""
if "ade" in checkpoint_url:
lowerCamelCase__ = True
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = """huggingface/label-files"""
lowerCamelCase__ = """ade20k-id2label.json"""
lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowerCamelCase__ = idalabel
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
lowerCamelCase__ = [1, 150, 480, 480]
return config, expected_shape
def A__ ( __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : List[Any] ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
lowerCamelCase__ = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
lowerCamelCase__ = name.replace("""proj""" , """projection""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
lowerCamelCase__ = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
lowerCamelCase__ = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
lowerCamelCase__ = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
lowerCamelCase__ = name.replace("""..""" , """.""" )
if "stem.conv" in name:
lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[: config.hidden_size, :]
lowerCamelCase__ = in_proj_bias[: config.hidden_size]
lowerCamelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase__ = in_proj_bias[-config.hidden_size :]
def A__ ( ):
lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ):
lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(__lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
lowerCamelCase__ = val
# read in qkv matrices
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
# Check outputs on an image
lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384
lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth
if show_prediction:
lowerCamelCase__ = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
UpperCamelCase : List[str] = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 50 | 1 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=7 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,_lowerCAmelCase=True ,_lowerCAmelCase=99 ,_lowerCAmelCase=32 ,_lowerCAmelCase=5 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=16 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=4 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = seq_length
lowerCamelCase__ = is_training
lowerCamelCase__ = use_input_mask
lowerCamelCase__ = use_token_type_ids
lowerCamelCase__ = use_labels
lowerCamelCase__ = vocab_size
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = max_position_embeddings
lowerCamelCase__ = type_vocab_size
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = num_labels
lowerCamelCase__ = num_choices
lowerCamelCase__ = scope
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowerCamelCase__ = None
if self.use_input_mask:
lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ = None
if self.use_token_type_ids:
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_choices )
lowerCamelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self ):
return OpenLlamaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,use_stable_embedding=_lowerCAmelCase ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = OpenLlamaModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
lowerCamelCase__ = True
lowerCamelCase__ = OpenLlamaModel(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(
_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ,encoder_attention_mask=_lowerCAmelCase ,)
lowerCamelCase__ = model(
_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ,)
lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
lowerCamelCase__ = OpenLlamaForCausalLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
lowerCamelCase__ = True
lowerCamelCase__ = True
lowerCamelCase__ = OpenLlamaForCausalLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
# first forward pass
lowerCamelCase__ = model(
_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ,encoder_attention_mask=_lowerCAmelCase ,use_cache=_lowerCAmelCase ,)
lowerCamelCase__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowerCamelCase__ = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowerCamelCase__ = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowerCamelCase__ = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowerCamelCase__ = torch.cat([input_mask, next_mask] ,dim=-1 )
lowerCamelCase__ = model(
_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ,encoder_attention_mask=_lowerCAmelCase ,output_hidden_states=_lowerCAmelCase ,)["""hidden_states"""][0]
lowerCamelCase__ = model(
_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ,encoder_attention_mask=_lowerCAmelCase ,past_key_values=_lowerCAmelCase ,output_hidden_states=_lowerCAmelCase ,)["""hidden_states"""][0]
# select random slice
lowerCamelCase__ = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowerCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCamelCase__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) = config_and_inputs
lowerCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
_UpperCamelCase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
_UpperCamelCase = (
{
'feature-extraction': OpenLlamaModel,
'text-classification': OpenLlamaForSequenceClassification,
'text-generation': OpenLlamaForCausalLM,
'zero-shot': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OpenLlamaModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ = type
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = 3
lowerCamelCase__ = input_dict["""input_ids"""]
lowerCamelCase__ = input_ids.ne(1 ).to(_lowerCAmelCase )
lowerCamelCase__ = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size )
lowerCamelCase__ = OpenLlamaForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,labels=_lowerCAmelCase )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = 3
lowerCamelCase__ = """single_label_classification"""
lowerCamelCase__ = input_dict["""input_ids"""]
lowerCamelCase__ = input_ids.ne(1 ).to(_lowerCAmelCase )
lowerCamelCase__ = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size )
lowerCamelCase__ = OpenLlamaForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,labels=_lowerCAmelCase )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = 3
lowerCamelCase__ = """multi_label_classification"""
lowerCamelCase__ = input_dict["""input_ids"""]
lowerCamelCase__ = input_ids.ne(1 ).to(_lowerCAmelCase )
lowerCamelCase__ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float )
lowerCamelCase__ = OpenLlamaForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,labels=_lowerCAmelCase )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def UpperCamelCase_ ( self ):
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = ids_tensor([1, 10] ,config.vocab_size )
lowerCamelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCamelCase__ = OpenLlamaModel(_lowerCAmelCase )
original_model.to(_lowerCAmelCase )
original_model.eval()
lowerCamelCase__ = original_model(_lowerCAmelCase ).last_hidden_state
lowerCamelCase__ = original_model(_lowerCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCamelCase__ = {"""type""": scaling_type, """factor""": 10.0}
lowerCamelCase__ = OpenLlamaModel(_lowerCAmelCase )
scaled_model.to(_lowerCAmelCase )
scaled_model.eval()
lowerCamelCase__ = scaled_model(_lowerCAmelCase ).last_hidden_state
lowerCamelCase__ = scaled_model(_lowerCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-5 ) )
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Tuple = {
'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'],
'tokenization_mvp': ['MvpTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : str = ['MvpTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[int] = [
'MVP_PRETRAINED_MODEL_ARCHIVE_LIST',
'MvpForCausalLM',
'MvpForConditionalGeneration',
'MvpForQuestionAnswering',
'MvpForSequenceClassification',
'MvpModel',
'MvpPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
import os
UpperCamelCase : int = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00}
def A__ ( __lowerCAmelCase : str ):
lowerCamelCase__ = 0
lowerCamelCase__ = 0
while index < len(__lowerCAmelCase ) - 1:
lowerCamelCase__ = SYMBOLS[numerals[index]]
lowerCamelCase__ = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = """"""
lowerCamelCase__ = num // 1000
numerals += m_count * "M"
num %= 1000
lowerCamelCase__ = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
lowerCamelCase__ = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def A__ ( __lowerCAmelCase : str = "/p089_roman.txt" ):
lowerCamelCase__ = 0
with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea:
lowerCamelCase__ = filea.readlines()
for line in lines:
lowerCamelCase__ = line.strip()
lowerCamelCase__ = parse_roman_numerals(__lowerCAmelCase )
lowerCamelCase__ = generate_roman_numerals(__lowerCAmelCase )
savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase )
return savings
if __name__ == "__main__":
print(F'{solution() = }')
| 50 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Dict = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'codegen'
_UpperCamelCase = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_ctx
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = rotary_dim
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = use_cache
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(
bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,):
super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase )
if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ):
# TODO: how to do that better?
lowerCamelCase__ = 0
@property
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" )
lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCamelCase__ = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def UpperCamelCase_ ( self ):
return self._config.n_layer
@property
def UpperCamelCase_ ( self ):
return self._config.n_head
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCamelCase__ = seqlen + 2
lowerCamelCase__ = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCamelCase__ = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers )
]
lowerCamelCase__ = common_inputs["""attention_mask"""]
if self.use_past:
lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype
lowerCamelCase__ = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 )
return ordered_inputs
@property
def UpperCamelCase_ ( self ):
return 13
| 50 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int ):
lowerCamelCase__ = len(__lowerCAmelCase )
lowerCamelCase__ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
lowerCamelCase__ = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
lowerCamelCase__ = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
lowerCamelCase__ = subset[i - 1][j]
if arr[i - 1] <= j:
lowerCamelCase__ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : int = {
'configuration_xmod': [
'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XmodConfig',
'XmodOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Tuple = [
'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST',
'XmodForCausalLM',
'XmodForMaskedLM',
'XmodForMultipleChoice',
'XmodForQuestionAnswering',
'XmodForSequenceClassification',
'XmodForTokenClassification',
'XmodModel',
'XmodPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Tuple = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[int] = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCAmelCase , torch.Tensor ):
raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" )
lowerCamelCase__ = v.half()
if save_path is None: # overwrite src_path
lowerCamelCase__ = src_path
torch.save(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 50 | 1 |
'''simple docstring'''
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ):
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = np.full((len(__lowerCAmelCase ), sequence_length, 2) , __lowerCAmelCase )
else:
lowerCamelCase__ = np.full((len(__lowerCAmelCase ), sequence_length) , __lowerCAmelCase )
for i, tensor in enumerate(__lowerCAmelCase ):
if padding_side == "right":
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = tensor[:sequence_length]
else:
lowerCamelCase__ = tensor[:sequence_length]
else:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = tensor[:sequence_length]
else:
lowerCamelCase__ = tensor[:sequence_length]
return out_tensor.tolist()
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = ord(__lowerCAmelCase )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
lowerCamelCase__ = unicodedata.category(__lowerCAmelCase )
if cat.startswith("""P""" ):
return True
return False
@dataclass
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 42
_UpperCamelCase = True
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = -100
_UpperCamelCase = "pt"
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
import torch
lowerCamelCase__ = """label""" if """label""" in features[0].keys() else """labels"""
lowerCamelCase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
lowerCamelCase__ = self.tokenizer.pad(
_lowerCAmelCase ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" if labels is None else None ,)
if labels is None:
return batch
lowerCamelCase__ = torch.tensor(batch["""entity_ids"""] ).shape[1]
lowerCamelCase__ = self.tokenizer.padding_side
if padding_side == "right":
lowerCamelCase__ = [
list(_lowerCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(_lowerCAmelCase )) for label in labels
]
else:
lowerCamelCase__ = [
[self.label_pad_token_id] * (sequence_length - len(_lowerCAmelCase )) + list(_lowerCAmelCase ) for label in labels
]
lowerCamelCase__ = [feature["""ner_tags"""] for feature in features]
lowerCamelCase__ = padding_tensor(_lowerCAmelCase ,-1 ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = [feature["""original_entity_spans"""] for feature in features]
lowerCamelCase__ = padding_tensor(_lowerCAmelCase ,(-1, -1) ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = {k: torch.tensor(_lowerCAmelCase ,dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 50 |
'''simple docstring'''
import os
from pathlib import Path
def A__ ( ):
from torch.utils.cpp_extension import load
lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
lowerCamelCase__ = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 50 | 1 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase : int = '3'
print('Python version:', sys.version)
print('transformers version:', transformers.__version__)
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
print('NCCL version:', torch.cuda.nccl.version())
except ImportError:
print('Torch version:', None)
try:
import deepspeed
print('DeepSpeed version:', deepspeed.__version__)
except ImportError:
print('DeepSpeed version:', None)
try:
import tensorflow as tf
print('TensorFlow version:', tf.__version__)
print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))
print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))
except ImportError:
print('TensorFlow version:', None)
| 50 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ):
lowerCamelCase__ = len(__lowerCAmelCase )
print("""The following activities are selected:""" )
# The first activity is always selected
lowerCamelCase__ = 0
print(__lowerCAmelCase , end=""",""" )
# Consider rest of the activities
for j in range(__lowerCAmelCase ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(__lowerCAmelCase , end=""",""" )
lowerCamelCase__ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase : Union[str, Any] = [1, 3, 0, 5, 8, 5]
UpperCamelCase : int = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 50 | 1 |
'''simple docstring'''
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = name
lowerCamelCase__ = val
def __str__( self ):
return F'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self ,_lowerCAmelCase ):
return self.val < other.val
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ):
lowerCamelCase__ = {}
lowerCamelCase__ = {}
lowerCamelCase__ = self.build_heap(_lowerCAmelCase )
def __getitem__( self ,_lowerCAmelCase ):
return self.get_value(_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return (idx - 1) // 2
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return idx * 2 + 1
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return idx * 2 + 2
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self.heap_dict[key]
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = len(_lowerCAmelCase ) - 1
lowerCamelCase__ = self.get_parent_idx(_lowerCAmelCase )
for idx, i in enumerate(_lowerCAmelCase ):
lowerCamelCase__ = idx
lowerCamelCase__ = i.val
for i in range(_lowerCAmelCase ,-1 ,-1 ):
self.sift_down(_lowerCAmelCase ,_lowerCAmelCase )
return array
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
while True:
lowerCamelCase__ = self.get_left_child_idx(_lowerCAmelCase ) # noqa: E741
lowerCamelCase__ = self.get_right_child_idx(_lowerCAmelCase )
lowerCamelCase__ = idx
if l < len(_lowerCAmelCase ) and array[l] < array[idx]:
lowerCamelCase__ = l
if r < len(_lowerCAmelCase ) and array[r] < array[smallest]:
lowerCamelCase__ = r
if smallest != idx:
lowerCamelCase__ , lowerCamelCase__ = array[smallest], array[idx]
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowerCamelCase__ = smallest
else:
break
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = self.get_parent_idx(_lowerCAmelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowerCamelCase__ , lowerCamelCase__ = self.heap[idx], self.heap[p]
lowerCamelCase__ , lowerCamelCase__ = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowerCamelCase__ = p
lowerCamelCase__ = self.get_parent_idx(_lowerCAmelCase )
def UpperCamelCase_ ( self ):
return self.heap[0]
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.heap[-1], self.heap[0]
lowerCamelCase__ , lowerCamelCase__ = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowerCamelCase__ = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 ,self.heap )
return x
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
self.heap.append(_lowerCAmelCase )
lowerCamelCase__ = len(self.heap ) - 1
lowerCamelCase__ = node.val
self.sift_up(len(self.heap ) - 1 )
def UpperCamelCase_ ( self ):
return len(self.heap ) == 0
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowerCamelCase__ = new_value
lowerCamelCase__ = new_value
self.sift_up(self.idx_of_element[node] )
UpperCamelCase : str = Node('R', -1)
UpperCamelCase : List[Any] = Node('B', 6)
UpperCamelCase : Any = Node('A', 3)
UpperCamelCase : List[Any] = Node('X', 1)
UpperCamelCase : Union[str, Any] = Node('E', 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
UpperCamelCase : Any = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print('Min Heap - before decrease key')
for i in my_min_heap.heap:
print(i)
print('Min Heap - After decrease key of node [B -> -17]')
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 |
'''simple docstring'''
import warnings
from ..trainer import Trainer
from ..utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ):
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" ,_lowerCAmelCase ,)
super().__init__(args=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase : Tuple = 16
UpperCamelCase : List[Any] = 32
def A__ ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 ):
lowerCamelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" )
lowerCamelCase__ = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__lowerCAmelCase : str ):
# max_length=None => use the model max length (it's actually the default)
lowerCamelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCamelCase__ = datasets.map(
__lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCamelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__lowerCAmelCase : Union[str, Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCamelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCamelCase__ = 16
elif accelerator.mixed_precision != "no":
lowerCamelCase__ = 8
else:
lowerCamelCase__ = None
return tokenizer.pad(
__lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , )
# Instantiate dataloaders.
lowerCamelCase__ = DataLoader(
tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase )
lowerCamelCase__ = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCamelCase : Optional[Any] = mocked_dataloaders # noqa: F811
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ):
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCAmelCase ) == "1":
lowerCamelCase__ = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
lowerCamelCase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir )
else:
lowerCamelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCamelCase__ = config["""lr"""]
lowerCamelCase__ = int(config["""num_epochs"""] )
lowerCamelCase__ = int(config["""seed"""] )
lowerCamelCase__ = int(config["""batch_size"""] )
set_seed(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
lowerCamelCase__ = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
lowerCamelCase__ = batch_size // MAX_GPU_BATCH_SIZE
lowerCamelCase__ = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCamelCase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCamelCase__ = model.to(accelerator.device )
# Instantiate optimizer
lowerCamelCase__ = AdamW(params=model.parameters() , lr=__lowerCAmelCase )
# Instantiate scheduler
lowerCamelCase__ = get_linear_schedule_with_warmup(
optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
lowerCamelCase__ = os.path.split(__lowerCAmelCase )[-1].split(""".""" )[0]
accelerator.init_trackers(__lowerCAmelCase , __lowerCAmelCase )
# Now we train the model
for epoch in range(__lowerCAmelCase ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
lowerCamelCase__ = 0
for step, batch in enumerate(__lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCamelCase__ = model(**__lowerCAmelCase )
lowerCamelCase__ = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
lowerCamelCase__ = loss / gradient_accumulation_steps
accelerator.backward(__lowerCAmelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
lowerCamelCase__ = model(**__lowerCAmelCase )
lowerCamelCase__ = outputs.logits.argmax(dim=-1 )
lowerCamelCase__ , lowerCamelCase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__lowerCAmelCase , references=__lowerCAmelCase , )
lowerCamelCase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
"""accuracy""": eval_metric["""accuracy"""],
"""f1""": eval_metric["""f1"""],
"""train_loss""": total_loss.item() / len(__lowerCAmelCase ),
"""epoch""": epoch,
} , step=__lowerCAmelCase , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def A__ ( ):
lowerCamelCase__ = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
parser.add_argument(
"""--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , )
parser.add_argument(
"""--project_dir""" , type=__lowerCAmelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , )
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
main()
| 50 |
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = []
for line in lines:
lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments
if line:
filtered_lines.append(__lowerCAmelCase )
lowerCamelCase__ = """\n""".join(__lowerCAmelCase )
# Make a hash from all this code
lowerCamelCase__ = full_str.encode("""utf-8""" )
return shaaaa(__lowerCAmelCase ).hexdigest()
# get importable module names and hash for caching
UpperCamelCase : Dict = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
UpperCamelCase : str = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
UpperCamelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('.zip')
_MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
| 50 | 1 |
'''simple docstring'''
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = (UnCLIPScheduler,)
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
lowerCamelCase__ = {
"""num_train_timesteps""": 10_00,
"""variance_type""": """fixed_small_log""",
"""clip_sample""": True,
"""clip_sample_range""": 1.0,
"""prediction_type""": """epsilon""",
}
config.update(**_lowerCAmelCase )
return config
def UpperCamelCase_ ( self ):
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
for time_step in [0, 5_00, 9_99]:
for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_lowerCAmelCase ,prev_timestep=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config(variance_type="""fixed_small_log""" )
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config(variance_type="""learned_range""" )
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
lowerCamelCase__ = 0.5
assert scheduler._get_variance(1 ,predicted_variance=_lowerCAmelCase ) - -10.171_2790 < 1E-5
assert scheduler._get_variance(4_87 ,predicted_variance=_lowerCAmelCase ) - -5.799_8052 < 1E-5
assert scheduler._get_variance(9_99 ,predicted_variance=_lowerCAmelCase ) - -0.001_0011 < 1E-5
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config()
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
lowerCamelCase__ = scheduler.timesteps
lowerCamelCase__ = self.dummy_model()
lowerCamelCase__ = self.dummy_sample_deter
lowerCamelCase__ = torch.manual_seed(0 )
for i, t in enumerate(_lowerCAmelCase ):
# 1. predict noise residual
lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase__ = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,generator=_lowerCAmelCase ).prev_sample
lowerCamelCase__ = pred_prev_sample
lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) )
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 252.268_2495 ) < 1E-2
assert abs(result_mean.item() - 0.328_4743 ) < 1E-3
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.scheduler_classes[0]
lowerCamelCase__ = self.get_scheduler_config()
lowerCamelCase__ = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(25 )
lowerCamelCase__ = scheduler.timesteps
lowerCamelCase__ = self.dummy_model()
lowerCamelCase__ = self.dummy_sample_deter
lowerCamelCase__ = torch.manual_seed(0 )
for i, t in enumerate(_lowerCAmelCase ):
# 1. predict noise residual
lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase )
if i + 1 == timesteps.shape[0]:
lowerCamelCase__ = None
else:
lowerCamelCase__ = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
lowerCamelCase__ = scheduler.step(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,prev_timestep=_lowerCAmelCase ,generator=_lowerCAmelCase ).prev_sample
lowerCamelCase__ = pred_prev_sample
lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) )
lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 258.204_4983 ) < 1E-2
assert abs(result_mean.item() - 0.336_2038 ) < 1E-3
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
pass
| 50 |
'''simple docstring'''
import operator
def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ):
lowerCamelCase__ = operator.lt if reverse else operator.gt
lowerCamelCase__ = solution or []
if not arr:
return solution
lowerCamelCase__ = [arr.pop(0 )]
for i, item in enumerate(__lowerCAmelCase ):
if _operator(__lowerCAmelCase , sublist[-1] ):
sublist.append(__lowerCAmelCase )
arr.pop(__lowerCAmelCase )
# merging sublist into solution list
if not solution:
solution.extend(__lowerCAmelCase )
else:
while sublist:
lowerCamelCase__ = sublist.pop(0 )
for i, xx in enumerate(__lowerCAmelCase ):
if not _operator(__lowerCAmelCase , __lowerCAmelCase ):
solution.insert(__lowerCAmelCase , __lowerCAmelCase )
break
else:
solution.append(__lowerCAmelCase )
strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 50 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=3 ,_lowerCAmelCase=32 ,_lowerCAmelCase=3 ,_lowerCAmelCase=10 ,_lowerCAmelCase=[8, 16, 32, 64] ,_lowerCAmelCase=[1, 1, 2, 1] ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="relu" ,_lowerCAmelCase=3 ,_lowerCAmelCase=None ,_lowerCAmelCase=["stage2", "stage3", "stage4"] ,_lowerCAmelCase=[2, 3, 4] ,_lowerCAmelCase=1 ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embeddings_size
lowerCamelCase__ = hidden_sizes
lowerCamelCase__ = depths
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_act
lowerCamelCase__ = num_labels
lowerCamelCase__ = scope
lowerCamelCase__ = len(_lowerCAmelCase )
lowerCamelCase__ = out_features
lowerCamelCase__ = out_indices
lowerCamelCase__ = num_groups
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_labels )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return BitConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = BitModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.num_labels
lowerCamelCase__ = BitForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = BitBackbone(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) )
self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowerCamelCase__ = None
lowerCamelCase__ = BitBackbone(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,1 )
self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
_UpperCamelCase = (
{'feature-extraction': BitModel, 'image-classification': BitForImageClassification}
if is_torch_available()
else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BitModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self ):
return
@unittest.skip(reason="""Bit does not output attentions""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""Bit does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""Bit does not support input and output embeddings""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(config=_lowerCAmelCase )
for name, module in model.named_modules():
if isinstance(_lowerCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
self.assertTrue(
torch.all(module.bias == 0 ) ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
def UpperCamelCase_ ( self ):
def check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCamelCase__ = self.model_tester.num_stages
self.assertEqual(len(_lowerCAmelCase ) ,expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,)
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = ["""preactivation""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowerCamelCase__ = layer_type
lowerCamelCase__ = True
check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ = True
check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
@unittest.skip(reason="""Bit does not use feedforward chunking""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = BitModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCAmelCase )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
@require_torch
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (BitBackbone,) if is_torch_available() else ()
_UpperCamelCase = BitConfig
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BitModelTester(self )
| 50 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def A__ ( __lowerCAmelCase : dict ):
return (data["data"], data["target"])
def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ):
lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__lowerCAmelCase , __lowerCAmelCase )
# Predict target for test data
lowerCamelCase__ = xgb.predict(__lowerCAmelCase )
lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 )
return predictions
def A__ ( ):
lowerCamelCase__ = fetch_california_housing()
lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 )
lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Error printing
print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 50 | 1 |
'''simple docstring'''
import os
def A__ ( __lowerCAmelCase : str = "input.txt" ):
with open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) as input_file:
lowerCamelCase__ = [
[int(__lowerCAmelCase ) for element in line.split(""",""" )]
for line in input_file.readlines()
]
lowerCamelCase__ = len(__lowerCAmelCase )
lowerCamelCase__ = len(matrix[0] )
lowerCamelCase__ = [[-1 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )]
for i in range(__lowerCAmelCase ):
lowerCamelCase__ = matrix[i][0]
for j in range(1 , __lowerCAmelCase ):
for i in range(__lowerCAmelCase ):
lowerCamelCase__ = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , __lowerCAmelCase ):
lowerCamelCase__ = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(F'{solution() = }')
| 50 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 20
lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create ramp distribution
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy()
lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 )
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy()
lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase__ = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
# check that min length is applied at length 5
lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 )
lowerCamelCase__ = 5
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] )
# check that min length is not applied anymore at length 15
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = 15
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 )
lowerCamelCase__ = 1
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 )
lowerCamelCase__ = 4
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# with processor list
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
# with processor list
def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
| 50 | 1 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('TEST_SAGEMAKER' ,'False' ) ) is not True ,reason='Skipping test because should only be run when releasing minor transformers version' ,)
@pytest.mark.usefixtures('sm_env' )
@parameterized_class(
[
{
'framework': 'pytorch',
'script': 'run_glue_model_parallelism.py',
'model_name_or_path': 'roberta-large',
'instance_type': 'ml.p3dn.24xlarge',
'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2},
},
{
'framework': 'pytorch',
'script': 'run_glue.py',
'model_name_or_path': 'roberta-large',
'instance_type': 'ml.p3dn.24xlarge',
'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2},
},
] )
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
if self.framework == "pytorch":
subprocess.run(
F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() ,encoding="""utf-8""" ,check=_lowerCAmelCase ,)
assert hasattr(self ,"""env""" )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
# configuration for running training on smdistributed Model Parallel
lowerCamelCase__ = {
"""enabled""": True,
"""processes_per_host""": 8,
}
lowerCamelCase__ = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
lowerCamelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
lowerCamelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' ,instance_count=_lowerCAmelCase ,instance_type=self.instance_type ,debugger_hook_config=_lowerCAmelCase ,hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 5_00,
} ,metric_definitions=self.env.metric_definitions ,distribution=_lowerCAmelCase ,py_version="""py36""" ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
TrainingJobAnalytics(_lowerCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(1,)] )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
# create estimator
lowerCamelCase__ = self.create_estimator(_lowerCAmelCase )
# run training
estimator.fit()
# result dataframe
lowerCamelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCamelCase__ = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,99_99_99 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'''{estimator.latest_training_job.name}.json''' ,"""w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,_lowerCAmelCase )
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCamelCase : Any = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
UpperCamelCase : Tuple = [
'EAGER',
'AOT_EAGER',
'INDUCTOR',
'NVFUSER',
'AOT_NVFUSER',
'AOT_CUDAGRAPHS',
'OFI',
'FX2TRT',
'ONNXRT',
'IPEX',
]
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : int=None ):
lowerCamelCase__ = True
while ask_again:
lowerCamelCase__ = input(__lowerCAmelCase )
try:
if default is not None and len(__lowerCAmelCase ) == 0:
return default
return convert_value(__lowerCAmelCase ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]=[] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=0 ):
lowerCamelCase__ = BulletMenu(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = menu.run(default_choice=__lowerCAmelCase )
return convert_value(__lowerCAmelCase ) if convert_value is not None else result
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = int(__lowerCAmelCase )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def A__ ( __lowerCAmelCase : str ):
lowerCamelCase__ = int(__lowerCAmelCase )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def A__ ( __lowerCAmelCase : str ):
lowerCamelCase__ = int(__lowerCAmelCase )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def A__ ( __lowerCAmelCase : Optional[Any] ):
lowerCamelCase__ = int(__lowerCAmelCase )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def A__ ( __lowerCAmelCase : List[Any] ):
lowerCamelCase__ = int(__lowerCAmelCase )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def A__ ( __lowerCAmelCase : Any ):
return {"yes": True, "no": False}[value.lower()]
class UpperCamelCase__ (argparse.RawDescriptionHelpFormatter ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = super()._format_usage(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = usage.replace("""<command> [<args>] """ ,"""""" )
return usage
| 50 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ):
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 | 1 |
'''simple docstring'''
import numpy as np
import qiskit
def A__ ( __lowerCAmelCase : int = 8 , __lowerCAmelCase : int | None = None ):
lowerCamelCase__ = np.random.default_rng(seed=__lowerCAmelCase )
# Roughly 25% of the qubits will contribute to the key.
# So we take more than we need.
lowerCamelCase__ = 6 * key_len
# Measurement basis for Alice's qubits.
lowerCamelCase__ = rng.integers(2 , size=__lowerCAmelCase )
# The set of states Alice will prepare.
lowerCamelCase__ = rng.integers(2 , size=__lowerCAmelCase )
# Measurement basis for Bob's qubits.
lowerCamelCase__ = rng.integers(2 , size=__lowerCAmelCase )
# Quantum Circuit to simulate BB84
lowerCamelCase__ = qiskit.QuantumCircuit(__lowerCAmelCase , name="""BB84""" )
# Alice prepares her qubits according to rules above.
for index, _ in enumerate(__lowerCAmelCase ):
if alice_state[index] == 1:
bbaa_circ.x(__lowerCAmelCase )
if alice_basis[index] == 1:
bbaa_circ.h(__lowerCAmelCase )
bbaa_circ.barrier()
# Bob measures the received qubits according to rules above.
for index, _ in enumerate(__lowerCAmelCase ):
if bob_basis[index] == 1:
bbaa_circ.h(__lowerCAmelCase )
bbaa_circ.barrier()
bbaa_circ.measure_all()
# Simulate the quantum circuit.
lowerCamelCase__ = qiskit.Aer.get_backend("""aer_simulator""" )
# We only need to run one shot because the key is unique.
# Multiple shots will produce the same key.
lowerCamelCase__ = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1 , seed_simulator=__lowerCAmelCase )
# Returns the result of measurement.
lowerCamelCase__ = job.result().get_counts(__lowerCAmelCase ).most_frequent()
# Extracting the generated key from the simulation results.
# Only keep measurement results where Alice and Bob chose the same basis.
lowerCamelCase__ = """""".join(
[
result_bit
for alice_basis_bit, bob_basis_bit, result_bit in zip(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if alice_basis_bit == bob_basis_bit
] )
# Get final key. Pad with 0 if too short, otherwise truncate.
lowerCamelCase__ = gen_key[:key_len] if len(__lowerCAmelCase ) >= key_len else gen_key.ljust(__lowerCAmelCase , """0""" )
return key
if __name__ == "__main__":
print(F'The generated key is : {bbaa(8, seed=0)}')
from doctest import testmod
testmod()
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Union[str, Any] = {
'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'],
'tokenization_canine': ['CanineTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Any = [
'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST',
'CanineForMultipleChoice',
'CanineForQuestionAnswering',
'CanineForSequenceClassification',
'CanineForTokenClassification',
'CanineLayer',
'CanineModel',
'CaninePreTrainedModel',
'load_tf_weights_in_canine',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
def A__ ( ):
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
UpperCamelCase : Dict = generate_large_matrix()
UpperCamelCase : Any = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A__ ( __lowerCAmelCase : list[list[int]] ):
assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid )
assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowerCamelCase__ = (left + right) // 2
lowerCamelCase__ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowerCamelCase__ = mid + 1
else:
lowerCamelCase__ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(grid[0] )
for i in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__lowerCAmelCase ) * len(grid[0] )) - total
def A__ ( __lowerCAmelCase : list[list[int]] ):
return len([number for row in grid for number in row if number < 0] )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
for row in grid:
for i, number in enumerate(__lowerCAmelCase ):
if number < 0:
total += len(__lowerCAmelCase ) - i
break
return total
def A__ ( ):
from timeit import timeit
print("""Running benchmarks""" )
lowerCamelCase__ = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 )
print(F'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 50 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase : int = '3'
print('Python version:', sys.version)
print('transformers version:', transformers.__version__)
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
print('NCCL version:', torch.cuda.nccl.version())
except ImportError:
print('Torch version:', None)
try:
import deepspeed
print('DeepSpeed version:', deepspeed.__version__)
except ImportError:
print('DeepSpeed version:', None)
try:
import tensorflow as tf
print('TensorFlow version:', tf.__version__)
print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))
print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))
except ImportError:
print('TensorFlow version:', None)
| 50 | 1 |
'''simple docstring'''
UpperCamelCase : Optional[int] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []}
UpperCamelCase : Tuple = ['a', 'b', 'c', 'd', 'e']
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ):
lowerCamelCase__ = start
# add current to visited
visited.append(__lowerCAmelCase )
lowerCamelCase__ = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
lowerCamelCase__ = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# if all neighbors visited add current to sort
sort.append(__lowerCAmelCase )
# if all vertices haven't been visited select a new one to visit
if len(__lowerCAmelCase ) != len(__lowerCAmelCase ):
for vertice in vertices:
if vertice not in visited:
lowerCamelCase__ = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# return sort
return sort
if __name__ == "__main__":
UpperCamelCase : int = topological_sort('a', [], [])
print(sort)
| 50 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'gpt_bigcode'
_UpperCamelCase = ['past_key_values']
_UpperCamelCase = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scale_attn_weights
lowerCamelCase__ = use_cache
lowerCamelCase__ = attention_softmax_in_fpaa
lowerCamelCase__ = scale_attention_softmax_in_fpaa
lowerCamelCase__ = multi_query
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Any = {
'configuration_altclip': [
'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AltCLIPConfig',
'AltCLIPTextConfig',
'AltCLIPVisionConfig',
],
'processing_altclip': ['AltCLIPProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'AltCLIPPreTrainedModel',
'AltCLIPModel',
'AltCLIPTextModel',
'AltCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 |
'''simple docstring'''
from PIL import Image
def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ):
def brightness(__lowerCAmelCase : int ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(__lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 50 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
lowerCamelCase__ = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
sd_pipe.set_scheduler("""sample_euler""" )
lowerCamelCase__ = """A painting of a squirrel eating a burger"""
lowerCamelCase__ = torch.manual_seed(0 )
lowerCamelCase__ = sd_pipe([prompt] ,generator=_lowerCAmelCase ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type="""np""" )
lowerCamelCase__ = output.images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCamelCase__ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
lowerCamelCase__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
lowerCamelCase__ = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
sd_pipe.set_scheduler("""sample_euler""" )
lowerCamelCase__ = """A painting of a squirrel eating a burger"""
lowerCamelCase__ = torch.manual_seed(0 )
lowerCamelCase__ = sd_pipe([prompt] ,generator=_lowerCAmelCase ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type="""np""" )
lowerCamelCase__ = output.images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCamelCase__ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def UpperCamelCase_ ( self ):
lowerCamelCase__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
lowerCamelCase__ = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
sd_pipe.set_scheduler("""sample_dpmpp_2m""" )
lowerCamelCase__ = """A painting of a squirrel eating a burger"""
lowerCamelCase__ = torch.manual_seed(0 )
lowerCamelCase__ = sd_pipe(
[prompt] ,generator=_lowerCAmelCase ,guidance_scale=7.5 ,num_inference_steps=15 ,output_type="""np""" ,use_karras_sigmas=_lowerCAmelCase ,)
lowerCamelCase__ = output.images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCamelCase__ = np.array(
[0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 50 |
'''simple docstring'''
def A__ ( ):
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
UpperCamelCase : Dict = generate_large_matrix()
UpperCamelCase : Any = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A__ ( __lowerCAmelCase : list[list[int]] ):
assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid )
assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowerCamelCase__ = (left + right) // 2
lowerCamelCase__ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowerCamelCase__ = mid + 1
else:
lowerCamelCase__ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(grid[0] )
for i in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__lowerCAmelCase ) * len(grid[0] )) - total
def A__ ( __lowerCAmelCase : list[list[int]] ):
return len([number for row in grid for number in row if number < 0] )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
for row in grid:
for i, number in enumerate(__lowerCAmelCase ):
if number < 0:
total += len(__lowerCAmelCase ) - i
break
return total
def A__ ( ):
from timeit import timeit
print("""Running benchmarks""" )
lowerCamelCase__ = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 )
print(F'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 50 | 1 |
'''simple docstring'''
import json
import sys
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ):
with open(__lowerCAmelCase , encoding="""utf-8""" ) as f:
lowerCamelCase__ = json.load(__lowerCAmelCase )
lowerCamelCase__ = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """]
for benchmark_name in sorted(__lowerCAmelCase ):
lowerCamelCase__ = results[benchmark_name]
lowerCamelCase__ = benchmark_name.split("""/""" )[-1]
output_md.append(F'''### Benchmark: {benchmark_file_name}''' )
lowerCamelCase__ = """| metric |"""
lowerCamelCase__ = """|--------|"""
lowerCamelCase__ = """| new / old (diff) |"""
for metric_name in sorted(__lowerCAmelCase ):
lowerCamelCase__ = benchmark_res[metric_name]
lowerCamelCase__ = metric_vals["""new"""]
lowerCamelCase__ = metric_vals.get("""old""" , __lowerCAmelCase )
lowerCamelCase__ = metric_vals.get("""diff""" , __lowerCAmelCase )
lowerCamelCase__ = F''' {new_val:f}''' if isinstance(__lowerCAmelCase , (int, float) ) else """None"""
if old_val is not None:
val_str += F''' / {old_val:f}''' if isinstance(__lowerCAmelCase , (int, float) ) else "None"
if dif_val is not None:
val_str += F''' ({dif_val:f})''' if isinstance(__lowerCAmelCase , (int, float) ) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append("""</details>""" )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.writelines("""\n""".join(__lowerCAmelCase ) )
if __name__ == "__main__":
UpperCamelCase : Dict = sys.argv[1]
UpperCamelCase : Any = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 50 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase : List[Any] = 'examples/'
UpperCamelCase : int = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
UpperCamelCase : Any = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
UpperCamelCase : Any = 'README.md'
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern]
lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase )
lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : str ):
for folder, directories, fnames in os.walk(__lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" )
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if not patch:
update_version_in_examples(__lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = """🤗 Transformers currently provides the following architectures"""
lowerCamelCase__ = """1. Want to contribute a new model?"""
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Find the start of the list.
lowerCamelCase__ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCamelCase__ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
lowerCamelCase__ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__lowerCAmelCase )
def A__ ( ):
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0]
return packaging.version.parse(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Union[str, Any]=False ):
lowerCamelCase__ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
lowerCamelCase__ = default_version.base_version
elif patch:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = default_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def A__ ( ):
lowerCamelCase__ = get_version()
lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
lowerCamelCase__ = current_version.base_version
# Check with the user we got that right.
lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
UpperCamelCase : Any = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 50 | 1 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=16 ,_lowerCAmelCase=[1, 2, 1] ,_lowerCAmelCase=[2, 2, 4] ,_lowerCAmelCase=2 ,_lowerCAmelCase=2.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=True ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=10 ,_lowerCAmelCase=8 ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embed_dim
lowerCamelCase__ = depths
lowerCamelCase__ = num_heads
lowerCamelCase__ = window_size
lowerCamelCase__ = mlp_ratio
lowerCamelCase__ = qkv_bias
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = hidden_act
lowerCamelCase__ = use_absolute_embeddings
lowerCamelCase__ = patch_norm
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = initializer_range
lowerCamelCase__ = is_training
lowerCamelCase__ = scope
lowerCamelCase__ = use_labels
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = encoder_stride
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return SwinvaConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = SwinvaModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
lowerCamelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowerCamelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = SwinvaForMaskedImageModeling(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCamelCase__ = 1
lowerCamelCase__ = SwinvaForMaskedImageModeling(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.type_sequence_label_size
lowerCamelCase__ = SwinvaForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_UpperCamelCase = (
{'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification}
if is_torch_available()
else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = SwinvaModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,embed_dim=37 )
def UpperCamelCase_ ( self ):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,nn.Linear ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = True
for model_class in self.all_model_classes:
lowerCamelCase__ = True
lowerCamelCase__ = False
lowerCamelCase__ = True
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = outputs.attentions
lowerCamelCase__ = len(self.model_tester.depths )
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCamelCase__ = True
lowerCamelCase__ = config.window_size**2
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = outputs.attentions
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,)
lowerCamelCase__ = len(_lowerCAmelCase )
# Check attention is always last and order is fine
lowerCamelCase__ = True
lowerCamelCase__ = True
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
if hasattr(self.model_tester ,"""num_hidden_states_types""" ):
lowerCamelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
lowerCamelCase__ = 2
self.assertEqual(out_len + added_hidden_states ,len(_lowerCAmelCase ) )
lowerCamelCase__ = outputs.attentions
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = outputs.hidden_states
lowerCamelCase__ = getattr(
self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
# Swinv2 has a different seq_length
lowerCamelCase__ = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCamelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,)
lowerCamelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = reshaped_hidden_states[0].shape
lowerCamelCase__ = (
reshaped_hidden_states[0].view(_lowerCAmelCase ,_lowerCAmelCase ,height * width ).permute(0 ,2 ,1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,)
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
lowerCamelCase__ = True
self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ = True
self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = 3
lowerCamelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowerCamelCase__ = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCamelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowerCamelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
lowerCamelCase__ = True
self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,(padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ = True
self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,(padded_height, padded_width) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = SwinvaModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = _config_zero_init(_lowerCAmelCase )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(config=_lowerCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
@require_vision
@require_torch
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
_lowerCAmelCase )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
| 50 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCamelCase : int = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase : Tuple = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
UpperCamelCase : Dict = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = SqueezeBertTokenizer
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
super().__init__(
_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars
):
lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) )
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = strip_accents
lowerCamelCase__ = tokenize_chinese_chars
lowerCamelCase__ = normalizer_class(**_lowerCAmelCase )
lowerCamelCase__ = do_lower_case
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ):
lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : List[Any] = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[Any] = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A__ ( __lowerCAmelCase : Any ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f)
or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) #
or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) #
or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) #
or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) #
or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) #
or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f)
or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) #
): #
return True
return False
def A__ ( __lowerCAmelCase : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCamelCase__ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = set()
for token in tokens:
lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowerCamelCase__ = list(__lowerCAmelCase )
return word_list
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ):
if not chinese_word_set:
return bert_tokens
lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowerCamelCase__ = bert_tokens
lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase )
while start < end:
lowerCamelCase__ = True
if is_chinese(bert_word[start] ):
lowerCamelCase__ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowerCamelCase__ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCamelCase__ = """##""" + bert_word[j]
lowerCamelCase__ = start + i
lowerCamelCase__ = False
break
if single_word:
start += 1
return bert_word
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ):
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = []
for id in input_ids:
lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowerCamelCase__ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def A__ ( __lowerCAmelCase : Optional[int] ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device
lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert )
lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
UpperCamelCase : Any = parser.parse_args()
main(args)
| 50 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'marian'
_UpperCamelCase = ['past_key_values']
_UpperCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self ,_lowerCAmelCase=5_81_01 ,_lowerCAmelCase=None ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=12 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=16 ,_lowerCAmelCase=12 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=16 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=5_81_00 ,_lowerCAmelCase=False ,_lowerCAmelCase=5_81_00 ,_lowerCAmelCase=0 ,_lowerCAmelCase=0 ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = decoder_vocab_size or vocab_size
lowerCamelCase__ = max_position_embeddings
lowerCamelCase__ = d_model
lowerCamelCase__ = encoder_ffn_dim
lowerCamelCase__ = encoder_layers
lowerCamelCase__ = encoder_attention_heads
lowerCamelCase__ = decoder_ffn_dim
lowerCamelCase__ = decoder_layers
lowerCamelCase__ = decoder_attention_heads
lowerCamelCase__ = dropout
lowerCamelCase__ = attention_dropout
lowerCamelCase__ = activation_dropout
lowerCamelCase__ = activation_function
lowerCamelCase__ = init_std
lowerCamelCase__ = encoder_layerdrop
lowerCamelCase__ = decoder_layerdrop
lowerCamelCase__ = use_cache
lowerCamelCase__ = encoder_layers
lowerCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowerCamelCase__ = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,is_encoder_decoder=_lowerCAmelCase ,decoder_start_token_id=_lowerCAmelCase ,forced_eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,)
class UpperCamelCase__ (a ):
'''simple docstring'''
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def UpperCamelCase_ ( self ):
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
lowerCamelCase__ = {0: """batch"""}
lowerCamelCase__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
lowerCamelCase__ = {0: """batch""", 1: """decoder_sequence"""}
lowerCamelCase__ = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ = self.num_layers
for i in range(_lowerCAmelCase ):
lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
else:
lowerCamelCase__ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}),
("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def UpperCamelCase_ ( self ):
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ = super().outputs
else:
lowerCamelCase__ = super(_lowerCAmelCase ,self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ = self.num_layers
for i in range(_lowerCAmelCase ):
lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
return common_outputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# Generate decoder inputs
lowerCamelCase__ = seq_length if not self.use_past else 1
lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ = dict(**_lowerCAmelCase ,**_lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
lowerCamelCase__ = common_inputs["""decoder_input_ids"""].shape[1]
lowerCamelCase__ , lowerCamelCase__ = self.num_attention_heads
lowerCamelCase__ = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ = decoder_seq_length + 3
lowerCamelCase__ = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ = torch.cat(
[common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase )] ,dim=1 )
lowerCamelCase__ = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ = self.num_layers
lowerCamelCase__ = min(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = max(_lowerCAmelCase ,_lowerCAmelCase ) - min_num_layers
lowerCamelCase__ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder"""
for _ in range(_lowerCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
) )
# TODO: test this.
lowerCamelCase__ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape
for _ in range(_lowerCAmelCase ,_lowerCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) )
return common_inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCamelCase__ = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ = self.num_layers
lowerCamelCase__ , lowerCamelCase__ = self.num_attention_heads
lowerCamelCase__ = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ = common_inputs["""attention_mask"""].dtype
lowerCamelCase__ = torch.cat(
[common_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 )
lowerCamelCase__ = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase )
]
return common_inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowerCamelCase__ = compute_effective_axis_dimension(
_lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ = tokenizer.num_special_tokens_to_add(_lowerCAmelCase )
lowerCamelCase__ = compute_effective_axis_dimension(
_lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ = dict(tokenizer(_lowerCAmelCase ,return_tensors=_lowerCAmelCase ) )
return common_inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
else:
lowerCamelCase__ = self._generate_dummy_inputs_for_causal_lm(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
return common_inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ = super()._flatten_past_key_values_(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
else:
lowerCamelCase__ = super(_lowerCAmelCase ,self )._flatten_past_key_values_(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
@property
def UpperCamelCase_ ( self ):
return 1E-4
| 50 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : Tuple = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
lowerCamelCase__ = 1024
lowerCamelCase__ = 4096
lowerCamelCase__ = 24
lowerCamelCase__ = 16
lowerCamelCase__ = [5, 11, 17, 23]
lowerCamelCase__ = [256, 512, 1024, 1024]
lowerCamelCase__ = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = [256, 512, 768, 768]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = (1, 384, 384)
lowerCamelCase__ = False
lowerCamelCase__ = """project"""
if "ade" in checkpoint_url:
lowerCamelCase__ = True
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = """huggingface/label-files"""
lowerCamelCase__ = """ade20k-id2label.json"""
lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowerCamelCase__ = idalabel
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
lowerCamelCase__ = [1, 150, 480, 480]
return config, expected_shape
def A__ ( __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : List[Any] ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
lowerCamelCase__ = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
lowerCamelCase__ = name.replace("""proj""" , """projection""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
lowerCamelCase__ = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
lowerCamelCase__ = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
lowerCamelCase__ = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
lowerCamelCase__ = name.replace("""..""" , """.""" )
if "stem.conv" in name:
lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[: config.hidden_size, :]
lowerCamelCase__ = in_proj_bias[: config.hidden_size]
lowerCamelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase__ = in_proj_bias[-config.hidden_size :]
def A__ ( ):
lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ):
lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(__lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
lowerCamelCase__ = val
# read in qkv matrices
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
# Check outputs on an image
lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384
lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth
if show_prediction:
lowerCamelCase__ = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
UpperCamelCase : List[str] = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 50 | 1 |
'''simple docstring'''
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
UpperCamelCase : Optional[int] = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n'
UpperCamelCase : int = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n'
UpperCamelCase : Tuple = r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n'
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCamelCase__ (datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" ),
"""references""": datasets.Value("""string""" ),
} ) ,homepage="""https://github.com/hendrycks/math""" ,codebase_urls=["""https://github.com/hendrycks/math"""] ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = 0.0
for i, j in zip(_lowerCAmelCase ,_lowerCAmelCase ):
n_correct += 1.0 if math_equivalence.is_equiv(_lowerCAmelCase ,_lowerCAmelCase ) else 0.0
lowerCamelCase__ = n_correct / len(_lowerCAmelCase )
return {
"accuracy": accuracy,
}
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Tuple = {
'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'],
'tokenization_mvp': ['MvpTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : str = ['MvpTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[int] = [
'MVP_PRETRAINED_MODEL_ARCHIVE_LIST',
'MvpForCausalLM',
'MvpForConditionalGeneration',
'MvpForQuestionAnswering',
'MvpForSequenceClassification',
'MvpModel',
'MvpPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = LEDConfig
_UpperCamelCase = {}
_UpperCamelCase = 'gelu'
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=7 ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,_lowerCAmelCase=99 ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=20 ,_lowerCAmelCase=2 ,_lowerCAmelCase=1 ,_lowerCAmelCase=0 ,_lowerCAmelCase=4 ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = seq_length
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = vocab_size
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = max_position_embeddings
lowerCamelCase__ = eos_token_id
lowerCamelCase__ = pad_token_id
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
lowerCamelCase__ = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
lowerCamelCase__ = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size )
lowerCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 )
lowerCamelCase__ = tf.concat([input_ids, eos_tensor] ,axis=1 )
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowerCamelCase__ = self.config_cls(
vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,attention_window=self.attention_window ,**self.config_updates ,)
lowerCamelCase__ = prepare_led_inputs_dict(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = tf.concat(
[tf.zeros_like(_lowerCAmelCase )[:, :-1], tf.ones_like(_lowerCAmelCase )[:, -1:]] ,axis=-1 ,)
lowerCamelCase__ = global_attention_mask
return config, inputs_dict
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFLEDModel(config=_lowerCAmelCase ).get_decoder()
lowerCamelCase__ = inputs_dict["""input_ids"""]
lowerCamelCase__ = input_ids[:1, :]
lowerCamelCase__ = inputs_dict["""attention_mask"""][:1, :]
lowerCamelCase__ = 1
# first forward pass
lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,use_cache=_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCamelCase__ = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowerCamelCase__ = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta )
# append to next input_ids and
lowerCamelCase__ = tf.concat([input_ids, next_tokens] ,axis=-1 )
lowerCamelCase__ = tf.concat([attention_mask, next_attn_mask] ,axis=-1 )
lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase )[0]
lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,past_key_values=_lowerCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] )
# select random slice
lowerCamelCase__ = int(ids_tensor((1,) ,output_from_past.shape[-1] ) )
lowerCamelCase__ = output_from_no_past[:, -3:, random_slice_idx]
lowerCamelCase__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCAmelCase ,_lowerCAmelCase ,rtol=1E-3 )
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Optional[Any]=None , ):
if attention_mask is None:
lowerCamelCase__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
lowerCamelCase__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
lowerCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_UpperCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
_UpperCamelCase = (
{
'conversational': TFLEDForConditionalGeneration,
'feature-extraction': TFLEDModel,
'summarization': TFLEDForConditionalGeneration,
'text2text-generation': TFLEDForConditionalGeneration,
'translation': TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_UpperCamelCase = True
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFLEDModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = tf.zeros_like(inputs_dict["""attention_mask"""] )
lowerCamelCase__ = 2
lowerCamelCase__ = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices ,1 ,inputs_dict["""global_attention_mask"""] ,)
lowerCamelCase__ = True
lowerCamelCase__ = self.model_tester.seq_length
lowerCamelCase__ = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(_lowerCAmelCase ):
lowerCamelCase__ = outputs.decoder_attentions
self.assertEqual(len(_lowerCAmelCase ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,)
def check_encoder_attentions_output(_lowerCAmelCase ):
lowerCamelCase__ = [t.numpy() for t in outputs.encoder_attentions]
lowerCamelCase__ = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(_lowerCAmelCase ) ,self.model_tester.num_hidden_layers )
self.assertEqual(len(_lowerCAmelCase ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,)
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] ,)
for model_class in self.all_model_classes:
lowerCamelCase__ = True
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = model(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = len(_lowerCAmelCase )
self.assertEqual(config.output_hidden_states ,_lowerCAmelCase )
check_encoder_attentions_output(_lowerCAmelCase )
if self.is_encoder_decoder:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = model(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
self.assertEqual(config.output_hidden_states ,_lowerCAmelCase )
check_decoder_attentions_output(_lowerCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
lowerCamelCase__ = True
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = model(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
self.assertEqual(config.output_hidden_states ,_lowerCAmelCase )
check_encoder_attentions_output(_lowerCAmelCase )
# Check attention is always last and order is fine
lowerCamelCase__ = True
lowerCamelCase__ = True
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = model(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(_lowerCAmelCase ) )
self.assertEqual(model.config.output_hidden_states ,_lowerCAmelCase )
check_encoder_attentions_output(_lowerCAmelCase )
@unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
# TODO: Head-masking not yet implement
pass
def A__ ( __lowerCAmelCase : Optional[int] ):
return tf.constant(__lowerCAmelCase , dtype=tf.intaa )
UpperCamelCase : List[Any] = 1E-4
@slow
@require_tf
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led
# change to intended input here
lowerCamelCase__ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
lowerCamelCase__ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
lowerCamelCase__ = prepare_led_inputs_dict(model.config ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(**_lowerCAmelCase )[0]
lowerCamelCase__ = (1, 10_24, 7_68)
self.assertEqual(output.shape ,_lowerCAmelCase )
# change to expected output here
lowerCamelCase__ = tf.convert_to_tensor(
[[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] ,)
tf.debugging.assert_near(output[:, :3, :3] ,_lowerCAmelCase ,atol=1E-3 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" )
# change to intended input here
lowerCamelCase__ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
lowerCamelCase__ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
lowerCamelCase__ = prepare_led_inputs_dict(model.config ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(**_lowerCAmelCase )[0]
lowerCamelCase__ = (1, 10_24, model.config.vocab_size)
self.assertEqual(output.shape ,_lowerCAmelCase )
# change to expected output here
lowerCamelCase__ = tf.convert_to_tensor(
[[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] ,)
tf.debugging.assert_near(output[:, :3, :3] ,_lowerCAmelCase ,atol=1E-3 ,rtol=1E-3 )
| 50 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Dict = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'codegen'
_UpperCamelCase = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_ctx
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = rotary_dim
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = use_cache
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(
bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,):
super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase )
if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ):
# TODO: how to do that better?
lowerCamelCase__ = 0
@property
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" )
lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCamelCase__ = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def UpperCamelCase_ ( self ):
return self._config.n_layer
@property
def UpperCamelCase_ ( self ):
return self._config.n_head
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCamelCase__ = seqlen + 2
lowerCamelCase__ = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCamelCase__ = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers )
]
lowerCamelCase__ = common_inputs["""attention_mask"""]
if self.use_past:
lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype
lowerCamelCase__ = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 )
return ordered_inputs
@property
def UpperCamelCase_ ( self ):
return 13
| 50 | 1 |
'''simple docstring'''
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = ProphetNetTokenizer
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
super().setUp()
lowerCamelCase__ = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = """UNwant\u00E9d,running"""
lowerCamelCase__ = """unwanted, running"""
return input_text, output_text
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer_class(self.vocab_file )
lowerCamelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(_lowerCAmelCase ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[9, 6, 7, 12, 10, 11] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BasicTokenizer(do_lower_case=_lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BasicTokenizer(do_lower_case=_lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BasicTokenizer(do_lower_case=_lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BasicTokenizer(do_lower_case=_lowerCAmelCase ,never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowerCamelCase__ = {}
for i, token in enumerate(_lowerCAmelCase ):
lowerCamelCase__ = i
lowerCamelCase__ = WordpieceTokenizer(vocab=_lowerCAmelCase ,unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) ,[] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] )
@require_torch
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
lowerCamelCase__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
lowerCamelCase__ = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
lowerCamelCase__ = tokenizer(_lowerCAmelCase ,padding=_lowerCAmelCase ,return_tensors="""pt""" )
self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase )
self.assertEqual((2, 9) ,batch.input_ids.shape )
self.assertEqual((2, 9) ,batch.attention_mask.shape )
def UpperCamelCase_ ( self ):
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def UpperCamelCase_ ( self ):
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def UpperCamelCase_ ( self ):
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
lowerCamelCase__ = tokenizer.encode("""sequence builders""" ,add_special_tokens=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ,_lowerCAmelCase )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 50 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : int = {
'configuration_xmod': [
'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XmodConfig',
'XmodOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Tuple = [
'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST',
'XmodForCausalLM',
'XmodForMaskedLM',
'XmodForMultipleChoice',
'XmodForQuestionAnswering',
'XmodForSequenceClassification',
'XmodForTokenClassification',
'XmodModel',
'XmodPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase : int = OrderedDict(
[
# Base model mapping
('albert', 'FlaxAlbertModel'),
('bart', 'FlaxBartModel'),
('beit', 'FlaxBeitModel'),
('bert', 'FlaxBertModel'),
('big_bird', 'FlaxBigBirdModel'),
('blenderbot', 'FlaxBlenderbotModel'),
('blenderbot-small', 'FlaxBlenderbotSmallModel'),
('clip', 'FlaxCLIPModel'),
('distilbert', 'FlaxDistilBertModel'),
('electra', 'FlaxElectraModel'),
('gpt-sw3', 'FlaxGPT2Model'),
('gpt2', 'FlaxGPT2Model'),
('gpt_neo', 'FlaxGPTNeoModel'),
('gptj', 'FlaxGPTJModel'),
('longt5', 'FlaxLongT5Model'),
('marian', 'FlaxMarianModel'),
('mbart', 'FlaxMBartModel'),
('mt5', 'FlaxMT5Model'),
('opt', 'FlaxOPTModel'),
('pegasus', 'FlaxPegasusModel'),
('regnet', 'FlaxRegNetModel'),
('resnet', 'FlaxResNetModel'),
('roberta', 'FlaxRobertaModel'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'),
('roformer', 'FlaxRoFormerModel'),
('t5', 'FlaxT5Model'),
('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'),
('vit', 'FlaxViTModel'),
('wav2vec2', 'FlaxWav2Vec2Model'),
('whisper', 'FlaxWhisperModel'),
('xglm', 'FlaxXGLMModel'),
('xlm-roberta', 'FlaxXLMRobertaModel'),
]
)
UpperCamelCase : Optional[Any] = OrderedDict(
[
# Model for pre-training mapping
('albert', 'FlaxAlbertForPreTraining'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForPreTraining'),
('big_bird', 'FlaxBigBirdForPreTraining'),
('electra', 'FlaxElectraForPreTraining'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('t5', 'FlaxT5ForConditionalGeneration'),
('wav2vec2', 'FlaxWav2Vec2ForPreTraining'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
UpperCamelCase : List[str] = OrderedDict(
[
# Model for Masked LM mapping
('albert', 'FlaxAlbertForMaskedLM'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForMaskedLM'),
('big_bird', 'FlaxBigBirdForMaskedLM'),
('distilbert', 'FlaxDistilBertForMaskedLM'),
('electra', 'FlaxElectraForMaskedLM'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
UpperCamelCase : Optional[Any] = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('bart', 'FlaxBartForConditionalGeneration'),
('blenderbot', 'FlaxBlenderbotForConditionalGeneration'),
('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'),
('encoder-decoder', 'FlaxEncoderDecoderModel'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('marian', 'FlaxMarianMTModel'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('pegasus', 'FlaxPegasusForConditionalGeneration'),
('t5', 'FlaxT5ForConditionalGeneration'),
]
)
UpperCamelCase : Optional[Any] = OrderedDict(
[
# Model for Image-classsification
('beit', 'FlaxBeitForImageClassification'),
('regnet', 'FlaxRegNetForImageClassification'),
('resnet', 'FlaxResNetForImageClassification'),
('vit', 'FlaxViTForImageClassification'),
]
)
UpperCamelCase : Optional[int] = OrderedDict(
[
('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'),
]
)
UpperCamelCase : Dict = OrderedDict(
[
# Model for Causal LM mapping
('bart', 'FlaxBartForCausalLM'),
('bert', 'FlaxBertForCausalLM'),
('big_bird', 'FlaxBigBirdForCausalLM'),
('electra', 'FlaxElectraForCausalLM'),
('gpt-sw3', 'FlaxGPT2LMHeadModel'),
('gpt2', 'FlaxGPT2LMHeadModel'),
('gpt_neo', 'FlaxGPTNeoForCausalLM'),
('gptj', 'FlaxGPTJForCausalLM'),
('opt', 'FlaxOPTForCausalLM'),
('roberta', 'FlaxRobertaForCausalLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'),
('xglm', 'FlaxXGLMForCausalLM'),
('xlm-roberta', 'FlaxXLMRobertaForCausalLM'),
]
)
UpperCamelCase : List[Any] = OrderedDict(
[
# Model for Sequence Classification mapping
('albert', 'FlaxAlbertForSequenceClassification'),
('bart', 'FlaxBartForSequenceClassification'),
('bert', 'FlaxBertForSequenceClassification'),
('big_bird', 'FlaxBigBirdForSequenceClassification'),
('distilbert', 'FlaxDistilBertForSequenceClassification'),
('electra', 'FlaxElectraForSequenceClassification'),
('mbart', 'FlaxMBartForSequenceClassification'),
('roberta', 'FlaxRobertaForSequenceClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'),
('roformer', 'FlaxRoFormerForSequenceClassification'),
('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'),
]
)
UpperCamelCase : List[str] = OrderedDict(
[
# Model for Question Answering mapping
('albert', 'FlaxAlbertForQuestionAnswering'),
('bart', 'FlaxBartForQuestionAnswering'),
('bert', 'FlaxBertForQuestionAnswering'),
('big_bird', 'FlaxBigBirdForQuestionAnswering'),
('distilbert', 'FlaxDistilBertForQuestionAnswering'),
('electra', 'FlaxElectraForQuestionAnswering'),
('mbart', 'FlaxMBartForQuestionAnswering'),
('roberta', 'FlaxRobertaForQuestionAnswering'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'),
('roformer', 'FlaxRoFormerForQuestionAnswering'),
('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'),
]
)
UpperCamelCase : int = OrderedDict(
[
# Model for Token Classification mapping
('albert', 'FlaxAlbertForTokenClassification'),
('bert', 'FlaxBertForTokenClassification'),
('big_bird', 'FlaxBigBirdForTokenClassification'),
('distilbert', 'FlaxDistilBertForTokenClassification'),
('electra', 'FlaxElectraForTokenClassification'),
('roberta', 'FlaxRobertaForTokenClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'),
('roformer', 'FlaxRoFormerForTokenClassification'),
('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'),
]
)
UpperCamelCase : Tuple = OrderedDict(
[
# Model for Multiple Choice mapping
('albert', 'FlaxAlbertForMultipleChoice'),
('bert', 'FlaxBertForMultipleChoice'),
('big_bird', 'FlaxBigBirdForMultipleChoice'),
('distilbert', 'FlaxDistilBertForMultipleChoice'),
('electra', 'FlaxElectraForMultipleChoice'),
('roberta', 'FlaxRobertaForMultipleChoice'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'),
('roformer', 'FlaxRoFormerForMultipleChoice'),
('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'),
]
)
UpperCamelCase : Tuple = OrderedDict(
[
('bert', 'FlaxBertForNextSentencePrediction'),
]
)
UpperCamelCase : str = OrderedDict(
[
('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
]
)
UpperCamelCase : Optional[int] = OrderedDict(
[
('whisper', 'FlaxWhisperForAudioClassification'),
]
)
UpperCamelCase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
UpperCamelCase : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
UpperCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
UpperCamelCase : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
UpperCamelCase : str = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
UpperCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
UpperCamelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
UpperCamelCase : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
UpperCamelCase : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
UpperCamelCase : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
UpperCamelCase : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
UpperCamelCase : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
UpperCamelCase : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
UpperCamelCase : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_MAPPING
UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModel)
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING
UpperCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining')
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
UpperCamelCase : Dict = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling')
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING
UpperCamelCase : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling')
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCamelCase : Tuple = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base'
)
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
UpperCamelCase : Any = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='sequence classification'
)
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
UpperCamelCase : Tuple = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering')
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCamelCase : int = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='token classification'
)
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
UpperCamelCase : int = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice')
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
UpperCamelCase : int = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction'
)
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCamelCase : Union[str, Any] = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='image classification'
)
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling')
class UpperCamelCase__ (_BaseAutoModelClass ):
'''simple docstring'''
_UpperCamelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
UpperCamelCase : Union[str, Any] = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling'
)
| 50 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCAmelCase , torch.Tensor ):
raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" )
lowerCamelCase__ = v.half()
if save_path is None: # overwrite src_path
lowerCamelCase__ = src_path
torch.save(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 50 | 1 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : Any = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
UpperCamelCase : Tuple = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight'))
rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias'))
rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight'))
rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias'))
rename_keys.append(
(F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias'))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append(
(
F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight',
F'decoder.layers.{i}.encoder_attn.out_proj.weight',
)
)
rename_keys.append(
(
F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias',
F'decoder.layers.{i}.encoder_attn.out_proj.bias',
)
)
rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight'))
rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias'))
rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight'))
rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias'))
rename_keys.append(
(F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append(
(F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight')
)
rename_keys.append(
(F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias')
)
rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias'))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('input_proj.weight', 'input_projection.weight'),
('input_proj.bias', 'input_projection.bias'),
('query_embed.weight', 'query_position_embeddings.weight'),
('transformer.encoder.norm.weight', 'encoder.layernorm.weight'),
('transformer.encoder.norm.bias', 'encoder.layernorm.bias'),
('transformer.decoder.norm.weight', 'decoder.layernorm.weight'),
('transformer.decoder.norm.bias', 'decoder.layernorm.bias'),
('class_embed.weight', 'class_labels_classifier.weight'),
('class_embed.bias', 'class_labels_classifier.bias'),
('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'),
('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'),
('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'),
('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'),
('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'),
('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'),
]
)
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str ):
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
lowerCamelCase__ = val
def A__ ( __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
lowerCamelCase__ = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
lowerCamelCase__ = value
else:
lowerCamelCase__ = value
return new_state_dict
def A__ ( __lowerCAmelCase : Any ):
lowerCamelCase__ = """"""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
lowerCamelCase__ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[:256, :]
lowerCamelCase__ = in_proj_bias[:256]
lowerCamelCase__ = in_proj_weight[256:512, :]
lowerCamelCase__ = in_proj_bias[256:512]
lowerCamelCase__ = in_proj_weight[-256:, :]
lowerCamelCase__ = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
lowerCamelCase__ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' )
lowerCamelCase__ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[:256, :]
lowerCamelCase__ = in_proj_bias[:256]
lowerCamelCase__ = in_proj_weight[256:512, :]
lowerCamelCase__ = in_proj_bias[256:512]
lowerCamelCase__ = in_proj_weight[-256:, :]
lowerCamelCase__ = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
lowerCamelCase__ = state_dict.pop(
F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' )
lowerCamelCase__ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) of cross-attention to the state dict
lowerCamelCase__ = in_proj_weight_cross_attn[:256, :]
lowerCamelCase__ = in_proj_bias_cross_attn[:256]
lowerCamelCase__ = in_proj_weight_cross_attn[256:512, :]
lowerCamelCase__ = in_proj_bias_cross_attn[256:512]
lowerCamelCase__ = in_proj_weight_cross_attn[-256:, :]
lowerCamelCase__ = in_proj_bias_cross_attn[-256:]
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ):
lowerCamelCase__ , lowerCamelCase__ = image.size
lowerCamelCase__ = max(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = 800 if """detection""" in checkpoint_url else 1000
lowerCamelCase__ = target_max_size / current_max_size
lowerCamelCase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def A__ ( __lowerCAmelCase : Any ):
lowerCamelCase__ = F.to_tensor(__lowerCAmelCase )
lowerCamelCase__ = F.normalize(__lowerCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ):
logger.info("""Converting model...""" )
# load original state dict
lowerCamelCase__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )
# rename keys
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = rename_backbone_keys(__lowerCAmelCase )
# query, key and value matrices need special treatment
read_in_q_k_v(__lowerCAmelCase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
lowerCamelCase__ = """model."""
for key in state_dict.copy().keys():
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
lowerCamelCase__ = val
# create HuggingFace model and load state dict
lowerCamelCase__ = TableTransformerConfig(
backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , )
if "detection" in checkpoint_url:
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = {0: """table""", 1: """table rotated"""}
lowerCamelCase__ = idalabel
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
else:
lowerCamelCase__ = 125
lowerCamelCase__ = 6
lowerCamelCase__ = {
0: """table""",
1: """table column""",
2: """table row""",
3: """table column header""",
4: """table projected row header""",
5: """table spanning cell""",
}
lowerCamelCase__ = idalabel
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
lowerCamelCase__ = DetrImageProcessor(
format="""coco_detection""" , max_size=800 if """detection""" in checkpoint_url else 1000 )
lowerCamelCase__ = TableTransformerForObjectDetection(__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
# verify our conversion
lowerCamelCase__ = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png"""
lowerCamelCase__ = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=__lowerCAmelCase )
lowerCamelCase__ = Image.open(__lowerCAmelCase ).convert("""RGB""" )
lowerCamelCase__ = normalize(resize(__lowerCAmelCase , __lowerCAmelCase ) ).unsqueeze(0 )
lowerCamelCase__ = model(__lowerCAmelCase )
if "detection" in checkpoint_url:
lowerCamelCase__ = (1, 15, 3)
lowerCamelCase__ = torch.tensor(
[[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] )
lowerCamelCase__ = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] )
else:
lowerCamelCase__ = (1, 125, 7)
lowerCamelCase__ = torch.tensor(
[[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] )
lowerCamelCase__ = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
# Push model to HF hub
logger.info("""Pushing model to the hub...""" )
lowerCamelCase__ = (
"""microsoft/table-transformer-detection"""
if """detection""" in checkpoint_url
else """microsoft/table-transformer-structure-recognition"""
)
model.push_to_hub(__lowerCAmelCase )
image_processor.push_to_hub(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_url',
default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth',
type=str,
choices=[
'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth',
'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth',
],
help='URL of the Table Transformer checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
UpperCamelCase : str = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 50 |
'''simple docstring'''
import os
from pathlib import Path
def A__ ( ):
from torch.utils.cpp_extension import load
lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
lowerCamelCase__ = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 50 | 1 |
'''simple docstring'''
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any]=1 ):
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=0 ):
lowerCamelCase__ = []
for old_item in old_list:
lowerCamelCase__ = old_item.replace("""in_layers.0""" , """norm1""" )
lowerCamelCase__ = new_item.replace("""in_layers.2""" , """conv1""" )
lowerCamelCase__ = new_item.replace("""out_layers.0""" , """norm2""" )
lowerCamelCase__ = new_item.replace("""out_layers.3""" , """conv2""" )
lowerCamelCase__ = new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
lowerCamelCase__ = new_item.replace("""skip_connection""" , """conv_shortcut""" )
lowerCamelCase__ = shave_segments(__lowerCAmelCase , n_shave_prefix_segments=__lowerCAmelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str]=0 ):
lowerCamelCase__ = []
for old_item in old_list:
lowerCamelCase__ = old_item
lowerCamelCase__ = new_item.replace("""norm.weight""" , """group_norm.weight""" )
lowerCamelCase__ = new_item.replace("""norm.bias""" , """group_norm.bias""" )
lowerCamelCase__ = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
lowerCamelCase__ = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
lowerCamelCase__ = shave_segments(__lowerCAmelCase , n_shave_prefix_segments=__lowerCAmelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : Tuple=None ):
assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
lowerCamelCase__ = old_checkpoint[path]
lowerCamelCase__ = old_tensor.shape[0] // 3
lowerCamelCase__ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
lowerCamelCase__ = old_tensor.shape[0] // config["""num_head_channels"""] // 3
lowerCamelCase__ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = old_tensor.split(channels // num_heads , dim=1 )
lowerCamelCase__ = query.reshape(__lowerCAmelCase )
lowerCamelCase__ = key.reshape(__lowerCAmelCase )
lowerCamelCase__ = value.reshape(__lowerCAmelCase )
for path in paths:
lowerCamelCase__ = path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
lowerCamelCase__ = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
lowerCamelCase__ = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
lowerCamelCase__ = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
lowerCamelCase__ = new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
lowerCamelCase__ = old_checkpoint[path["""old"""]][:, :, 0]
else:
lowerCamelCase__ = old_checkpoint[path["""old"""]]
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ):
lowerCamelCase__ = {}
lowerCamelCase__ = checkpoint["""time_embed.0.weight"""]
lowerCamelCase__ = checkpoint["""time_embed.0.bias"""]
lowerCamelCase__ = checkpoint["""time_embed.2.weight"""]
lowerCamelCase__ = checkpoint["""time_embed.2.bias"""]
lowerCamelCase__ = checkpoint["""input_blocks.0.0.weight"""]
lowerCamelCase__ = checkpoint["""input_blocks.0.0.bias"""]
lowerCamelCase__ = checkpoint["""out.0.weight"""]
lowerCamelCase__ = checkpoint["""out.0.bias"""]
lowerCamelCase__ = checkpoint["""out.2.weight"""]
lowerCamelCase__ = checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
lowerCamelCase__ = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
lowerCamelCase__ = {
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__lowerCAmelCase )
}
# Retrieves the keys for the middle blocks only
lowerCamelCase__ = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
lowerCamelCase__ = {
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__lowerCAmelCase )
}
# Retrieves the keys for the output blocks only
lowerCamelCase__ = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
lowerCamelCase__ = {
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__lowerCAmelCase )
}
for i in range(1 , __lowerCAmelCase ):
lowerCamelCase__ = (i - 1) // (config["""num_res_blocks"""] + 1)
lowerCamelCase__ = (i - 1) % (config["""num_res_blocks"""] + 1)
lowerCamelCase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
lowerCamelCase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
lowerCamelCase__ = checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
lowerCamelCase__ = checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
lowerCamelCase__ = renew_resnet_paths(__lowerCAmelCase )
lowerCamelCase__ = {"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
lowerCamelCase__ = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , additional_replacements=[meta_path, resnet_op] , config=__lowerCAmelCase )
if len(__lowerCAmelCase ):
lowerCamelCase__ = renew_attention_paths(__lowerCAmelCase )
lowerCamelCase__ = {
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
lowerCamelCase__ = {
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=__lowerCAmelCase , config=__lowerCAmelCase , )
lowerCamelCase__ = middle_blocks[0]
lowerCamelCase__ = middle_blocks[1]
lowerCamelCase__ = middle_blocks[2]
lowerCamelCase__ = renew_resnet_paths(__lowerCAmelCase )
assign_to_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , config=__lowerCAmelCase )
lowerCamelCase__ = renew_resnet_paths(__lowerCAmelCase )
assign_to_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , config=__lowerCAmelCase )
lowerCamelCase__ = renew_attention_paths(__lowerCAmelCase )
lowerCamelCase__ = {
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , attention_paths_to_split=__lowerCAmelCase , config=__lowerCAmelCase )
for i in range(__lowerCAmelCase ):
lowerCamelCase__ = i // (config["""num_res_blocks"""] + 1)
lowerCamelCase__ = i % (config["""num_res_blocks"""] + 1)
lowerCamelCase__ = [shave_segments(__lowerCAmelCase , 2 ) for name in output_blocks[i]]
lowerCamelCase__ = {}
for layer in output_block_layers:
lowerCamelCase__ , lowerCamelCase__ = layer.split(""".""" )[0], shave_segments(__lowerCAmelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__lowerCAmelCase )
else:
lowerCamelCase__ = [layer_name]
if len(__lowerCAmelCase ) > 1:
lowerCamelCase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
lowerCamelCase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
lowerCamelCase__ = renew_resnet_paths(__lowerCAmelCase )
lowerCamelCase__ = renew_resnet_paths(__lowerCAmelCase )
lowerCamelCase__ = {"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , additional_replacements=[meta_path] , config=__lowerCAmelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
lowerCamelCase__ = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
lowerCamelCase__ = checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
lowerCamelCase__ = checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__lowerCAmelCase ) == 2:
lowerCamelCase__ = []
if len(__lowerCAmelCase ):
lowerCamelCase__ = renew_attention_paths(__lowerCAmelCase )
lowerCamelCase__ = {
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
lowerCamelCase__ = {
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__lowerCAmelCase , )
else:
lowerCamelCase__ = renew_resnet_paths(__lowerCAmelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
lowerCamelCase__ = """.""".join(["""output_blocks""", str(__lowerCAmelCase ), path["""old"""]] )
lowerCamelCase__ = """.""".join(["""up_blocks""", str(__lowerCAmelCase ), """resnets""", str(__lowerCAmelCase ), path["""new"""]] )
lowerCamelCase__ = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
UpperCamelCase : List[str] = parser.parse_args()
UpperCamelCase : List[str] = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
UpperCamelCase : int = json.loads(f.read())
UpperCamelCase : Any = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
UpperCamelCase : Tuple = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
UpperCamelCase : Dict = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
UpperCamelCase : Dict = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
UpperCamelCase : str = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 50 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ):
lowerCamelCase__ = len(__lowerCAmelCase )
print("""The following activities are selected:""" )
# The first activity is always selected
lowerCamelCase__ = 0
print(__lowerCAmelCase , end=""",""" )
# Consider rest of the activities
for j in range(__lowerCAmelCase ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(__lowerCAmelCase , end=""",""" )
lowerCamelCase__ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase : Union[str, Any] = [1, 3, 0, 5, 8, 5]
UpperCamelCase : int = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 50 | 1 |
'''simple docstring'''
from __future__ import annotations
UpperCamelCase : Dict = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def A__ ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : list[list[int]] , ):
lowerCamelCase__ = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCAmelCase ) )
] # the reference grid
lowerCamelCase__ = 1
lowerCamelCase__ = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCAmelCase ) )
] # the action grid
lowerCamelCase__ = init[0]
lowerCamelCase__ = init[1]
lowerCamelCase__ = 0
lowerCamelCase__ = g + heuristic[x][y] # cost from starting cell to destination cell
lowerCamelCase__ = [[f, g, x, y]]
lowerCamelCase__ = False # flag that is set when search is complete
lowerCamelCase__ = False # flag set if we can't find expand
while not found and not resign:
if len(__lowerCAmelCase ) == 0:
raise ValueError("""Algorithm is unable to find solution""" )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
lowerCamelCase__ = cell.pop()
lowerCamelCase__ = next_cell[2]
lowerCamelCase__ = next_cell[3]
lowerCamelCase__ = next_cell[1]
if x == goal[0] and y == goal[1]:
lowerCamelCase__ = True
else:
for i in range(len(__lowerCAmelCase ) ): # to try out different valid actions
lowerCamelCase__ = x + DIRECTIONS[i][0]
lowerCamelCase__ = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__lowerCAmelCase ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
lowerCamelCase__ = g + cost
lowerCamelCase__ = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
lowerCamelCase__ = 1
lowerCamelCase__ = i
lowerCamelCase__ = []
lowerCamelCase__ = goal[0]
lowerCamelCase__ = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
lowerCamelCase__ = x - DIRECTIONS[action[x][y]][0]
lowerCamelCase__ = y - DIRECTIONS[action[x][y]][1]
lowerCamelCase__ = xa
lowerCamelCase__ = ya
invpath.append([x, y] )
lowerCamelCase__ = []
for i in range(len(__lowerCAmelCase ) ):
path.append(invpath[len(__lowerCAmelCase ) - 1 - i] )
return path, action
if __name__ == "__main__":
UpperCamelCase : List[Any] = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
UpperCamelCase : List[Any] = [0, 0]
# all coordinates are given in format [y,x]
UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1]
UpperCamelCase : Dict = 1
# the cost map which pushes the path closer to the goal
UpperCamelCase : Tuple = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
UpperCamelCase : str = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
UpperCamelCase : Any = 99
UpperCamelCase , UpperCamelCase : int = search(grid, init, goal, cost, heuristic)
print('ACTION MAP')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 50 |
'''simple docstring'''
import warnings
from ..trainer import Trainer
from ..utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ):
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" ,_lowerCAmelCase ,)
super().__init__(args=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : int=None ):
lowerCamelCase__ = None
if token is not None:
lowerCamelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''}
lowerCamelCase__ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
lowerCamelCase__ = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).json()
lowerCamelCase__ = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
lowerCamelCase__ = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(__lowerCAmelCase ):
lowerCamelCase__ = requests.get(url + F'''&page={i + 2}''' , headers=__lowerCAmelCase ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict=None ):
lowerCamelCase__ = None
if token is not None:
lowerCamelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''}
lowerCamelCase__ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
lowerCamelCase__ = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).json()
lowerCamelCase__ = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
lowerCamelCase__ = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(__lowerCAmelCase ):
lowerCamelCase__ = requests.get(url + F'''&page={i + 2}''' , headers=__lowerCAmelCase ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : str ):
lowerCamelCase__ = None
if token is not None:
lowerCamelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''}
lowerCamelCase__ = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase , allow_redirects=__lowerCAmelCase )
lowerCamelCase__ = result.headers["""Location"""]
lowerCamelCase__ = requests.get(__lowerCAmelCase , allow_redirects=__lowerCAmelCase )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , F'''{artifact_name}.zip''' )
with open(__lowerCAmelCase , """wb""" ) as fp:
fp.write(response.content )
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[str]=None ):
lowerCamelCase__ = []
lowerCamelCase__ = []
lowerCamelCase__ = None
with zipfile.ZipFile(__lowerCAmelCase ) as z:
for filename in z.namelist():
if not os.path.isdir(__lowerCAmelCase ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(__lowerCAmelCase ) as f:
for line in f:
lowerCamelCase__ = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowerCamelCase__ = line[: line.index(""": """ )]
lowerCamelCase__ = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
lowerCamelCase__ = line[len("""FAILED """ ) :]
failed_tests.append(__lowerCAmelCase )
elif filename == "job_name.txt":
lowerCamelCase__ = line
if len(__lowerCAmelCase ) != len(__lowerCAmelCase ):
raise ValueError(
F'''`errors` and `failed_tests` should have the same number of elements. Got {len(__lowerCAmelCase )} for `errors` '''
F'''and {len(__lowerCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
lowerCamelCase__ = None
if job_name and job_links:
lowerCamelCase__ = job_links.get(__lowerCAmelCase , __lowerCAmelCase )
# A list with elements of the form (line of error, error, failed test)
lowerCamelCase__ = [x + [y] + [job_link] for x, y in zip(__lowerCAmelCase , __lowerCAmelCase )]
return result
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any]=None ):
lowerCamelCase__ = []
lowerCamelCase__ = [os.path.join(__lowerCAmelCase , __lowerCAmelCase ) for p in os.listdir(__lowerCAmelCase ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(__lowerCAmelCase , job_links=__lowerCAmelCase ) )
return errors
def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str]=None ):
lowerCamelCase__ = Counter()
counter.update([x[1] for x in logs] )
lowerCamelCase__ = counter.most_common()
lowerCamelCase__ = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowerCamelCase__ = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
lowerCamelCase__ = dict(sorted(r.items() , key=lambda __lowerCAmelCase : item[1]["count"] , reverse=__lowerCAmelCase ) )
return r
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
lowerCamelCase__ = test.split("""/""" )[2]
else:
lowerCamelCase__ = None
return test
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Any=None ):
lowerCamelCase__ = [(x[0], x[1], get_model(x[2] )) for x in logs]
lowerCamelCase__ = [x for x in logs if x[2] is not None]
lowerCamelCase__ = {x[2] for x in logs}
lowerCamelCase__ = {}
for test in tests:
lowerCamelCase__ = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
lowerCamelCase__ = counter.most_common()
lowerCamelCase__ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowerCamelCase__ = sum(error_counts.values() )
if n_errors > 0:
lowerCamelCase__ = {"""count""": n_errors, """errors""": error_counts}
lowerCamelCase__ = dict(sorted(r.items() , key=lambda __lowerCAmelCase : item[1]["count"] , reverse=__lowerCAmelCase ) )
return r
def A__ ( __lowerCAmelCase : Any ):
lowerCamelCase__ = """| no. | error | status |"""
lowerCamelCase__ = """|-:|:-|:-|"""
lowerCamelCase__ = [header, sep]
for error in reduced_by_error:
lowerCamelCase__ = reduced_by_error[error]["""count"""]
lowerCamelCase__ = F'''| {count} | {error[:100]} | |'''
lines.append(__lowerCAmelCase )
return "\n".join(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = """| model | no. of errors | major error | count |"""
lowerCamelCase__ = """|-:|-:|-:|-:|"""
lowerCamelCase__ = [header, sep]
for model in reduced_by_model:
lowerCamelCase__ = reduced_by_model[model]["""count"""]
lowerCamelCase__ , lowerCamelCase__ = list(reduced_by_model[model]["""errors"""].items() )[0]
lowerCamelCase__ = F'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(__lowerCAmelCase )
return "\n".join(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
UpperCamelCase : List[Any] = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
UpperCamelCase : int = get_job_links(args.workflow_run_id, token=args.token)
UpperCamelCase : Dict = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
UpperCamelCase : int = k.find(' / ')
UpperCamelCase : List[str] = k[index + len(' / ') :]
UpperCamelCase : Any = v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
UpperCamelCase : Dict = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
UpperCamelCase : Optional[Any] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
UpperCamelCase : Union[str, Any] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
UpperCamelCase : Any = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
UpperCamelCase : str = reduce_by_error(errors)
UpperCamelCase : Any = reduce_by_model(errors)
UpperCamelCase : Optional[int] = make_github_table(reduced_by_error)
UpperCamelCase : List[Any] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 50 |
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = []
for line in lines:
lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments
if line:
filtered_lines.append(__lowerCAmelCase )
lowerCamelCase__ = """\n""".join(__lowerCAmelCase )
# Make a hash from all this code
lowerCamelCase__ = full_str.encode("""utf-8""" )
return shaaaa(__lowerCAmelCase ).hexdigest()
# get importable module names and hash for caching
UpperCamelCase : Dict = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
UpperCamelCase : str = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
UpperCamelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('.zip')
_MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
| 50 | 1 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
UpperCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = ['input_features', 'is_longer']
def __init__( self ,_lowerCAmelCase=64 ,_lowerCAmelCase=4_80_00 ,_lowerCAmelCase=4_80 ,_lowerCAmelCase=10 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=False ,_lowerCAmelCase = 0 ,_lowerCAmelCase = 1_40_00 ,_lowerCAmelCase = None ,_lowerCAmelCase = "fusion" ,_lowerCAmelCase = "repeatpad" ,**_lowerCAmelCase ,):
super().__init__(
feature_size=_lowerCAmelCase ,sampling_rate=_lowerCAmelCase ,padding_value=_lowerCAmelCase ,return_attention_mask=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = top_db
lowerCamelCase__ = truncation
lowerCamelCase__ = padding
lowerCamelCase__ = fft_window_size
lowerCamelCase__ = (fft_window_size >> 1) + 1
lowerCamelCase__ = hop_length
lowerCamelCase__ = max_length_s
lowerCamelCase__ = max_length_s * sampling_rate
lowerCamelCase__ = sampling_rate
lowerCamelCase__ = frequency_min
lowerCamelCase__ = frequency_max
lowerCamelCase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_lowerCAmelCase ,min_frequency=_lowerCAmelCase ,max_frequency=_lowerCAmelCase ,sampling_rate=_lowerCAmelCase ,norm=_lowerCAmelCase ,mel_scale="""htk""" ,)
lowerCamelCase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=_lowerCAmelCase ,min_frequency=_lowerCAmelCase ,max_frequency=_lowerCAmelCase ,sampling_rate=_lowerCAmelCase ,norm="""slaney""" ,mel_scale="""slaney""" ,)
def UpperCamelCase_ ( self ):
lowerCamelCase__ = copy.deepcopy(self.__dict__ )
lowerCamelCase__ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = spectrogram(
_lowerCAmelCase ,window_function(self.fft_window_size ,"""hann""" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=_lowerCAmelCase ,log_mel="""dB""" ,)
return log_mel_spectrogram.T
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowerCamelCase__ = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowerCamelCase__ = [0]
# randomly choose index for each part
lowerCamelCase__ = np.random.choice(ranges[0] )
lowerCamelCase__ = np.random.choice(ranges[1] )
lowerCamelCase__ = np.random.choice(ranges[2] )
lowerCamelCase__ = mel[idx_front : idx_front + chunk_frames, :]
lowerCamelCase__ = mel[idx_middle : idx_middle + chunk_frames, :]
lowerCamelCase__ = mel[idx_back : idx_back + chunk_frames, :]
lowerCamelCase__ = torch.tensor(mel[None, None, :] )
lowerCamelCase__ = torch.nn.functional.interpolate(
_lowerCAmelCase ,size=[chunk_frames, 64] ,mode="""bilinear""" ,align_corners=_lowerCAmelCase )
lowerCamelCase__ = mel_shrink[0][0].numpy()
lowerCamelCase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 )
return mel_fusion
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowerCamelCase__ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowerCamelCase__ = len(_lowerCAmelCase ) - max_length
lowerCamelCase__ = np.random.randint(0 ,overflow + 1 )
lowerCamelCase__ = waveform[idx : idx + max_length]
lowerCamelCase__ = self._np_extract_fbank_features(_lowerCAmelCase ,self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowerCamelCase__ = self._np_extract_fbank_features(_lowerCAmelCase ,self.mel_filters )
lowerCamelCase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowerCamelCase__ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowerCamelCase__ = np.stack([mel, mel, mel, mel] ,axis=0 )
lowerCamelCase__ = False
else:
lowerCamelCase__ = self._random_mel_fusion(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = True
else:
raise NotImplementedError(F'''data_truncating {truncation} not implemented''' )
else:
lowerCamelCase__ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowerCamelCase__ = int(max_length / len(_lowerCAmelCase ) )
lowerCamelCase__ = np.stack(np.tile(_lowerCAmelCase ,n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowerCamelCase__ = int(max_length / len(_lowerCAmelCase ) )
lowerCamelCase__ = np.stack(np.tile(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = np.pad(_lowerCAmelCase ,(0, max_length - waveform.shape[0]) ,mode="""constant""" ,constant_values=0 )
if truncation == "fusion":
lowerCamelCase__ = self._np_extract_fbank_features(_lowerCAmelCase ,self.mel_filters )
lowerCamelCase__ = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 )
else:
lowerCamelCase__ = self._np_extract_fbank_features(_lowerCAmelCase ,self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
lowerCamelCase__ = truncation if truncation is not None else self.truncation
lowerCamelCase__ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
lowerCamelCase__ = isinstance(_lowerCAmelCase ,np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowerCamelCase__ = is_batched_numpy or (
isinstance(_lowerCAmelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) ))
)
if is_batched:
lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_lowerCAmelCase ,np.ndarray ):
lowerCamelCase__ = np.asarray(_lowerCAmelCase ,dtype=np.floataa )
elif isinstance(_lowerCAmelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCamelCase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCamelCase__ = [np.asarray(_lowerCAmelCase )]
# convert to mel spectrogram, truncate and pad if needed.
lowerCamelCase__ = [
self._get_input_mel(_lowerCAmelCase ,max_length if max_length else self.nb_max_samples ,_lowerCAmelCase ,_lowerCAmelCase )
for waveform in raw_speech
]
lowerCamelCase__ = []
lowerCamelCase__ = []
for mel, longer in padded_inputs:
input_mel.append(_lowerCAmelCase )
is_longer.append(_lowerCAmelCase )
if truncation == "fusion" and sum(_lowerCAmelCase ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowerCamelCase__ = np.random.randint(0 ,len(_lowerCAmelCase ) )
lowerCamelCase__ = True
if isinstance(input_mel[0] ,_lowerCAmelCase ):
lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowerCamelCase__ = [[longer] for longer in is_longer]
lowerCamelCase__ = {"""input_features""": input_mel, """is_longer""": is_longer}
lowerCamelCase__ = BatchFeature(_lowerCAmelCase )
if return_tensors is not None:
lowerCamelCase__ = input_features.convert_to_tensors(_lowerCAmelCase )
return input_features
| 50 |
'''simple docstring'''
import operator
def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ):
lowerCamelCase__ = operator.lt if reverse else operator.gt
lowerCamelCase__ = solution or []
if not arr:
return solution
lowerCamelCase__ = [arr.pop(0 )]
for i, item in enumerate(__lowerCAmelCase ):
if _operator(__lowerCAmelCase , sublist[-1] ):
sublist.append(__lowerCAmelCase )
arr.pop(__lowerCAmelCase )
# merging sublist into solution list
if not solution:
solution.extend(__lowerCAmelCase )
else:
while sublist:
lowerCamelCase__ = sublist.pop(0 )
for i, xx in enumerate(__lowerCAmelCase ):
if not _operator(__lowerCAmelCase , __lowerCAmelCase ):
solution.insert(__lowerCAmelCase , __lowerCAmelCase )
break
else:
solution.append(__lowerCAmelCase )
strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 50 | 1 |
'''simple docstring'''
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
UpperCamelCase : Optional[int] = [
'cross_validation.py',
'gradient_accumulation.py',
'local_sgd.py',
'multi_process_metrics.py',
'memory.py',
'automatic_gradient_accumulation.py',
'fsdp_with_peak_mem_tracking.py',
'deepspeed_with_config_support.py',
'megatron_lm_gpt_pretraining.py',
]
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ):
lowerCamelCase__ = None
lowerCamelCase__ = os.path.abspath(os.path.join("""examples""" ,"""by_feature""" ) )
lowerCamelCase__ = os.path.abspath("""examples""" )
for item in os.listdir(_lowerCAmelCase ):
if item not in EXCLUDE_EXAMPLES:
lowerCamelCase__ = os.path.join(_lowerCAmelCase ,_lowerCAmelCase )
if os.path.isfile(_lowerCAmelCase ) and ".py" in item_path:
with self.subTest(
tested_script=_lowerCAmelCase ,feature_script=_lowerCAmelCase ,tested_section="""main()""" if parser_only else """training_function()""" ,):
lowerCamelCase__ = compare_against_test(
os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = """\n""".join(_lowerCAmelCase )
if special_strings is not None:
for string in special_strings:
lowerCamelCase__ = diff.replace(_lowerCAmelCase ,"""""" )
self.assertEqual(_lowerCAmelCase ,"""""" )
def UpperCamelCase_ ( self ):
self.one_complete_example("""complete_nlp_example.py""" ,_lowerCAmelCase )
self.one_complete_example("""complete_nlp_example.py""" ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = os.path.abspath(os.path.join("""examples""" ,"""cv_example.py""" ) )
lowerCamelCase__ = [
""" """ * 16 + """{\n\n""",
""" """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""",
""" """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""",
""" """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""",
""" """ * 20 + """\"epoch\": epoch,\n\n""",
""" """ * 16 + """},\n\n""",
""" """ * 16 + """step=epoch,\n""",
""" """ * 12,
""" """ * 8 + """for step, batch in enumerate(active_dataloader):\n""",
]
self.one_complete_example("""complete_cv_example.py""" ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
self.one_complete_example("""complete_cv_example.py""" ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
@mock.patch.dict(os.environ ,{'TESTING_MOCKED_DATALOADERS': '1'} )
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = False
@classmethod
def UpperCamelCase_ ( cls ):
super().setUpClass()
lowerCamelCase__ = tempfile.mkdtemp()
lowerCamelCase__ = os.path.join(cls._tmpdir ,"""default_config.yml""" )
write_basic_config(save_location=cls.configPath )
lowerCamelCase__ = ["""accelerate""", """launch""", """--config_file""", cls.configPath]
@classmethod
def UpperCamelCase_ ( cls ):
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = F'''
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
'''.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir ,"""epoch_0""" ) ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = F'''
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
'''.split()
lowerCamelCase__ = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir ,"""step_2""" ) ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = F'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir ,"epoch_0" )}
'''.split()
lowerCamelCase__ = run_command(self._launch_args + testargs ,return_stdout=_lowerCAmelCase )
self.assertNotIn("""epoch 0:""" ,_lowerCAmelCase )
self.assertIn("""epoch 1:""" ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = F'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir ,"step_2" )}
'''.split()
lowerCamelCase__ = run_command(self._launch_args + testargs ,return_stdout=_lowerCAmelCase )
if torch.cuda.is_available():
lowerCamelCase__ = torch.cuda.device_count()
else:
lowerCamelCase__ = 1
if num_processes > 1:
self.assertNotIn("""epoch 0:""" ,_lowerCAmelCase )
self.assertIn("""epoch 1:""" ,_lowerCAmelCase )
else:
self.assertIn("""epoch 0:""" ,_lowerCAmelCase )
self.assertIn("""epoch 1:""" ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """
examples/by_feature/cross_validation.py
--num_folds 2
""".split()
with mock.patch.dict(os.environ ,{"""TESTING_MOCKED_DATALOADERS""": """0"""} ):
lowerCamelCase__ = run_command(self._launch_args + testargs ,return_stdout=_lowerCAmelCase )
lowerCamelCase__ = re.findall("""({.+})""" ,_lowerCAmelCase )
lowerCamelCase__ = [r for r in results if """accuracy""" in r][-1]
lowerCamelCase__ = ast.literal_eval(_lowerCAmelCase )
self.assertGreaterEqual(results["""accuracy"""] ,0.75 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ["""examples/by_feature/multi_process_metrics.py"""]
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def UpperCamelCase_ ( self ):
with tempfile.TemporaryDirectory() as tmpdir:
lowerCamelCase__ = F'''
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
'''.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase ,"""tracking""" ) ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ["""examples/by_feature/gradient_accumulation.py"""]
run_command(self._launch_args + testargs )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ["""examples/by_feature/local_sgd.py"""]
run_command(self._launch_args + testargs )
| 50 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def A__ ( __lowerCAmelCase : dict ):
return (data["data"], data["target"])
def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ):
lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__lowerCAmelCase , __lowerCAmelCase )
# Predict target for test data
lowerCamelCase__ = xgb.predict(__lowerCAmelCase )
lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 )
return predictions
def A__ ( ):
lowerCamelCase__ = fetch_california_housing()
lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 )
lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Error printing
print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 50 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """ZinengTang/tvlt-base"""
lowerCamelCase__ = tempfile.mkdtemp()
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return TvltImageProcessor.from_pretrained(self.checkpoint ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return TvltFeatureExtractor.from_pretrained(self.checkpoint ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_feature_extractor()
lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase__ = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor ,_lowerCAmelCase )
self.assertIsInstance(processor.image_processor ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_feature_extractor()
lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase )
lowerCamelCase__ = np.ones([1_20_00] )
lowerCamelCase__ = feature_extractor(_lowerCAmelCase ,return_tensors="""np""" )
lowerCamelCase__ = processor(audio=_lowerCAmelCase ,return_tensors="""np""" )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_feature_extractor()
lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase )
lowerCamelCase__ = np.ones([3, 2_24, 2_24] )
lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" )
lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_feature_extractor()
lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase )
lowerCamelCase__ = np.ones([1_20_00] )
lowerCamelCase__ = np.ones([3, 2_24, 2_24] )
lowerCamelCase__ = processor(audio=_lowerCAmelCase ,images=_lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) ,["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_feature_extractor()
lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase )
self.assertListEqual(
processor.model_input_names ,image_processor.model_input_names + feature_extractor.model_input_names ,msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" ,)
| 50 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 20
lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create ramp distribution
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy()
lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 )
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy()
lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase__ = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
# check that min length is applied at length 5
lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 )
lowerCamelCase__ = 5
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] )
# check that min length is not applied anymore at length 15
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = 15
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 )
lowerCamelCase__ = 1
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 )
lowerCamelCase__ = 4
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# with processor list
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
# with processor list
def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
| 50 | 1 |
'''simple docstring'''
import os
from collections import namedtuple
import pytest
from datasets import ClassLabel, Features, Sequence, Value
from datasets.commands.test import TestCommand
from datasets.info import DatasetInfo, DatasetInfosDict
UpperCamelCase : List[Any] = namedtuple(
'_TestCommandArgs',
[
'dataset',
'name',
'cache_dir',
'data_dir',
'all_configs',
'save_infos',
'ignore_verifications',
'force_redownload',
'clear_cache',
],
defaults=[None, None, None, False, False, False, False, False],
)
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ):
return (abs(source - target ) / target) < 0.01
@pytest.mark.integration
def A__ ( __lowerCAmelCase : Tuple ):
lowerCamelCase__ = _TestCommandArgs(dataset=__lowerCAmelCase , all_configs=__lowerCAmelCase , save_infos=__lowerCAmelCase )
lowerCamelCase__ = TestCommand(*__lowerCAmelCase )
test_command.run()
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """README.md""" )
assert os.path.exists(__lowerCAmelCase )
lowerCamelCase__ = DatasetInfosDict.from_directory(__lowerCAmelCase )
lowerCamelCase__ = DatasetInfosDict(
{
"""default""": DatasetInfo(
features=Features(
{
"""tokens""": Sequence(Value("""string""" ) ),
"""ner_tags""": Sequence(
ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ),
"""langs""": Sequence(Value("""string""" ) ),
"""spans""": Sequence(Value("""string""" ) ),
} ) , splits=[
{
"""name""": """train""",
"""num_bytes""": 235_1563,
"""num_examples""": 1_0000,
},
{
"""name""": """validation""",
"""num_bytes""": 23_8418,
"""num_examples""": 1000,
},
] , download_size=394_0680 , dataset_size=258_9981 , )
} )
assert dataset_infos.keys() == expected_dataset_infos.keys()
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
lowerCamelCase__ , lowerCamelCase__ = getattr(dataset_infos["""default"""] , __lowerCAmelCase ), getattr(expected_dataset_infos["""default"""] , __lowerCAmelCase )
if key == "num_bytes":
assert is_apercent_close(__lowerCAmelCase , __lowerCAmelCase )
elif key == "splits":
assert list(__lowerCAmelCase ) == list(__lowerCAmelCase )
for split in result:
assert result[split].name == expected[split].name
assert result[split].num_examples == expected[split].num_examples
assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes )
else:
result == expected
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCamelCase : Any = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def A__ ( __lowerCAmelCase : Namespace ):
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
UpperCamelCase : Dict = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n'
class UpperCamelCase__ (a ):
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( _lowerCAmelCase ):
lowerCamelCase__ = parser.add_parser(
"""convert""" ,help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" ,)
train_parser.add_argument("""--model_type""" ,type=_lowerCAmelCase ,required=_lowerCAmelCase ,help="""Model's type.""" )
train_parser.add_argument(
"""--tf_checkpoint""" ,type=_lowerCAmelCase ,required=_lowerCAmelCase ,help="""TensorFlow checkpoint path or folder.""" )
train_parser.add_argument(
"""--pytorch_dump_output""" ,type=_lowerCAmelCase ,required=_lowerCAmelCase ,help="""Path to the PyTorch saved model output.""" )
train_parser.add_argument("""--config""" ,type=_lowerCAmelCase ,default="""""" ,help="""Configuration file path or folder.""" )
train_parser.add_argument(
"""--finetuning_task_name""" ,type=_lowerCAmelCase ,default=_lowerCAmelCase ,help="""Optional fine-tuning task name if the TF model was a finetuned model.""" ,)
train_parser.set_defaults(func=_lowerCAmelCase )
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,*_lowerCAmelCase ,):
lowerCamelCase__ = logging.get_logger("""transformers-cli/converting""" )
self._logger.info(F'''Loading model {model_type}''' )
lowerCamelCase__ = model_type
lowerCamelCase__ = tf_checkpoint
lowerCamelCase__ = pytorch_dump_output
lowerCamelCase__ = config
lowerCamelCase__ = finetuning_task_name
def UpperCamelCase_ ( self ):
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_lowerCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_lowerCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_lowerCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(_lowerCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_lowerCAmelCase )
if "ckpt" in self._tf_checkpoint.lower():
lowerCamelCase__ = self._tf_checkpoint
lowerCamelCase__ = """"""
else:
lowerCamelCase__ = self._tf_checkpoint
lowerCamelCase__ = """"""
convert_transfo_xl_checkpoint_to_pytorch(
_lowerCAmelCase ,self._config ,self._pytorch_dump_output ,_lowerCAmelCase )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_lowerCAmelCase )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_lowerCAmelCase )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
else:
raise ValueError(
"""--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
| 50 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ):
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 | 1 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=16 ,_lowerCAmelCase=[1, 2, 1] ,_lowerCAmelCase=[2, 2, 4] ,_lowerCAmelCase=2 ,_lowerCAmelCase=2.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=True ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=10 ,_lowerCAmelCase=8 ,_lowerCAmelCase=["stage1", "stage2", "stage3"] ,_lowerCAmelCase=[1, 2, 3] ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embed_dim
lowerCamelCase__ = depths
lowerCamelCase__ = num_heads
lowerCamelCase__ = window_size
lowerCamelCase__ = mlp_ratio
lowerCamelCase__ = qkv_bias
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = hidden_act
lowerCamelCase__ = use_absolute_embeddings
lowerCamelCase__ = patch_norm
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = initializer_range
lowerCamelCase__ = is_training
lowerCamelCase__ = scope
lowerCamelCase__ = use_labels
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = encoder_stride
lowerCamelCase__ = out_features
lowerCamelCase__ = out_indices
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return MaskFormerSwinConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = MaskFormerSwinModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
lowerCamelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowerCamelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = MaskFormerSwinBackbone(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) )
self.parent.assertListEqual(model.channels ,[16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(_lowerCAmelCase ):
lowerCamelCase__ = ["""stem"""]
lowerCamelCase__ = MaskFormerSwinBackbone(config=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
_UpperCamelCase = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MaskFormerSwinModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self ):
return
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_lowerCAmelCase )
@unittest.skip("""Swin does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,nn.Linear ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = outputs.hidden_states
lowerCamelCase__ = getattr(
self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
# Swin has a different seq_length
lowerCamelCase__ = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCamelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,)
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
lowerCamelCase__ = True
self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ = True
self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = 3
lowerCamelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowerCamelCase__ = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCamelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowerCamelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
lowerCamelCase__ = True
self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,(padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ = True
self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,(padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(_lowerCAmelCase ):
lowerCamelCase__ = 0
return t
def check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase={} ):
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase ,return_dict=_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = model(**_lowerCAmelCase ,return_dict=_lowerCAmelCase ,**_lowerCAmelCase ).to_tuple()
def recursive_check(_lowerCAmelCase ,_lowerCAmelCase ):
if isinstance(_lowerCAmelCase ,(List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_lowerCAmelCase ,_lowerCAmelCase ):
recursive_check(_lowerCAmelCase ,_lowerCAmelCase )
elif isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() ,dict_object.values() ):
recursive_check(_lowerCAmelCase ,_lowerCAmelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(_lowerCAmelCase ) ,set_nan_tensor_to_zero(_lowerCAmelCase ) ,atol=1E-5 ) ,msg=(
"""Tuple and dict output are not equal. Difference:"""
F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'''
F''' {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}. Dict has'''
F''' `nan`: {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}.'''
) ,)
recursive_check(_lowerCAmelCase ,_lowerCAmelCase )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase )
check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,{"""output_hidden_states""": True} )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase )
check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,{"""output_hidden_states""": True} )
@require_torch
class UpperCamelCase__ (unittest.TestCase ,a ):
'''simple docstring'''
_UpperCamelCase = (MaskFormerSwinBackbone,) if is_torch_available() else ()
_UpperCamelCase = MaskFormerSwinConfig
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MaskFormerSwinModelTester(self )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
lowerCamelCase__ = backbone_class(_lowerCAmelCase )
backbone.to(_lowerCAmelCase )
backbone.eval()
lowerCamelCase__ = backbone(**_lowerCAmelCase )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps ,_lowerCAmelCase )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps ,backbone.channels ):
self.assertTrue(feature_map.shape[:2] ,(batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
lowerCamelCase__ = backbone(**_lowerCAmelCase ,output_hidden_states=_lowerCAmelCase )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) ,len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] ,backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) ,(batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
lowerCamelCase__ = backbone(**_lowerCAmelCase ,output_attentions=_lowerCAmelCase )
self.assertIsNotNone(outputs.attentions )
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Union[str, Any] = {
'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'],
'tokenization_canine': ['CanineTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Any = [
'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST',
'CanineForMultipleChoice',
'CanineForQuestionAnswering',
'CanineForSequenceClassification',
'CanineForTokenClassification',
'CanineLayer',
'CanineModel',
'CaninePreTrainedModel',
'load_tf_weights_in_canine',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase : str = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = ['audio_values', 'audio_mask']
def __init__( self ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=1 ,_lowerCAmelCase=[16, 16] ,_lowerCAmelCase=1_28 ,_lowerCAmelCase=4_41_00 ,_lowerCAmelCase=86 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=0.0 ,**_lowerCAmelCase ,):
super().__init__(
feature_size=_lowerCAmelCase ,sampling_rate=_lowerCAmelCase ,padding_value=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = spectrogram_length
lowerCamelCase__ = num_channels
lowerCamelCase__ = patch_size
lowerCamelCase__ = feature_size // self.patch_size[1]
lowerCamelCase__ = n_fft
lowerCamelCase__ = sampling_rate // hop_length_to_sampling_rate
lowerCamelCase__ = sampling_rate
lowerCamelCase__ = padding_value
lowerCamelCase__ = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=_lowerCAmelCase ,min_frequency=0.0 ,max_frequency=2_2050.0 ,sampling_rate=_lowerCAmelCase ,norm="""slaney""" ,mel_scale="""slaney""" ,).T
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = spectrogram(
_lowerCAmelCase ,window_function(self.n_fft ,"""hann""" ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters.T ,log_mel="""dB""" ,db_range=80.0 ,)
lowerCamelCase__ = log_spec[:, :-1]
lowerCamelCase__ = log_spec - 20.0
lowerCamelCase__ = np.clip(log_spec / 40.0 ,-2.0 ,0.0 ) + 1.0
return log_spec
def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,**_lowerCAmelCase ,):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"""This feature extractor is set to support sampling rate"""
F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
F''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
lowerCamelCase__ = isinstance(_lowerCAmelCase ,np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowerCamelCase__ = is_batched_numpy or (
isinstance(_lowerCAmelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) ))
)
if is_batched:
lowerCamelCase__ = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_lowerCAmelCase ,np.ndarray ):
lowerCamelCase__ = np.asarray(_lowerCAmelCase ,dtype=np.floataa )
elif isinstance(_lowerCAmelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCamelCase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCamelCase__ = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
lowerCamelCase__ = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] ,_lowerCAmelCase ):
lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
lowerCamelCase__ = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
lowerCamelCase__ = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
lowerCamelCase__ = np.array(_lowerCAmelCase ).astype(np.floataa )
# convert into correct format for padding
lowerCamelCase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
lowerCamelCase__ = np.ones([len(_lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
lowerCamelCase__ = padded_audio_features * self.padding_value
for i in range(len(_lowerCAmelCase ) ):
lowerCamelCase__ = audio_features[i]
lowerCamelCase__ = feature
# return as BatchFeature
if return_attention_mask:
lowerCamelCase__ = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask}
else:
lowerCamelCase__ = {"""audio_values""": padded_audio_features}
lowerCamelCase__ = BatchFeature(data=_lowerCAmelCase ,tensor_type=_lowerCAmelCase )
return encoded_inputs
| 50 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase : int = '3'
print('Python version:', sys.version)
print('transformers version:', transformers.__version__)
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
print('NCCL version:', torch.cuda.nccl.version())
except ImportError:
print('Torch version:', None)
try:
import deepspeed
print('DeepSpeed version:', deepspeed.__version__)
except ImportError:
print('DeepSpeed version:', None)
try:
import tensorflow as tf
print('TensorFlow version:', tf.__version__)
print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))
print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))
except ImportError:
print('TensorFlow version:', None)
| 50 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class UpperCamelCase__ (a ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return 0.0
def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : int ):
lowerCamelCase__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
lowerCamelCase__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def A__ ( __lowerCAmelCase : FilterType , __lowerCAmelCase : int ):
lowerCamelCase__ = 512
lowerCamelCase__ = [1] + [0] * (size - 1)
lowerCamelCase__ = [filter_type.process(__lowerCAmelCase ) for item in inputs]
lowerCamelCase__ = [0] * (samplerate - size) # zero-padding
outputs += filler
lowerCamelCase__ = np.abs(np.fft.fft(__lowerCAmelCase ) )
lowerCamelCase__ = 20 * np.logaa(__lowerCAmelCase )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
# Display within reasonable bounds
lowerCamelCase__ = get_bounds(__lowerCAmelCase , __lowerCAmelCase )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("""Gain (dB)""" )
plt.plot(__lowerCAmelCase )
plt.show()
def A__ ( __lowerCAmelCase : FilterType , __lowerCAmelCase : int ):
lowerCamelCase__ = 512
lowerCamelCase__ = [1] + [0] * (size - 1)
lowerCamelCase__ = [filter_type.process(__lowerCAmelCase ) for item in inputs]
lowerCamelCase__ = [0] * (samplerate - size) # zero-padding
outputs += filler
lowerCamelCase__ = np.angle(np.fft.fft(__lowerCAmelCase ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("""Phase shift (Radians)""" )
plt.plot(np.unwrap(__lowerCAmelCase , -2 * pi ) )
plt.show()
| 50 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'gpt_bigcode'
_UpperCamelCase = ['past_key_values']
_UpperCamelCase = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scale_attn_weights
lowerCamelCase__ = use_cache
lowerCamelCase__ = attention_softmax_in_fpaa
lowerCamelCase__ = scale_attention_softmax_in_fpaa
lowerCamelCase__ = multi_query
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
import math
from collections.abc import Callable
def A__ ( __lowerCAmelCase : Callable[[float], float] , __lowerCAmelCase : float , __lowerCAmelCase : float ):
lowerCamelCase__ = xa
lowerCamelCase__ = xa
while True:
if x_n == x_na or function(__lowerCAmelCase ) == function(__lowerCAmelCase ):
raise ZeroDivisionError("""float division by zero, could not find root""" )
lowerCamelCase__ = x_na - (
function(__lowerCAmelCase ) / ((function(__lowerCAmelCase ) - function(__lowerCAmelCase )) / (x_na - x_n))
)
if abs(x_na - x_na ) < 10**-5:
return x_na
lowerCamelCase__ = x_na
lowerCamelCase__ = x_na
def A__ ( __lowerCAmelCase : float ):
return math.pow(__lowerCAmelCase , 3 ) - (2 * x) - 5
if __name__ == "__main__":
print(intersection(f, 3, 3.5))
| 50 |
'''simple docstring'''
from PIL import Image
def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ):
def brightness(__lowerCAmelCase : int ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(__lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 50 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : str = logging.get_logger(__name__)
UpperCamelCase : str = {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'dpr'
def __init__( self ,_lowerCAmelCase=3_05_22 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-12 ,_lowerCAmelCase=0 ,_lowerCAmelCase="absolute" ,_lowerCAmelCase = 0 ,**_lowerCAmelCase ,):
super().__init__(pad_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = vocab_size
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = hidden_act
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = max_position_embeddings
lowerCamelCase__ = type_vocab_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = projection_dim
lowerCamelCase__ = position_embedding_type
| 50 |
'''simple docstring'''
def A__ ( ):
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
UpperCamelCase : Dict = generate_large_matrix()
UpperCamelCase : Any = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A__ ( __lowerCAmelCase : list[list[int]] ):
assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid )
assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowerCamelCase__ = (left + right) // 2
lowerCamelCase__ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowerCamelCase__ = mid + 1
else:
lowerCamelCase__ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(grid[0] )
for i in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__lowerCAmelCase ) * len(grid[0] )) - total
def A__ ( __lowerCAmelCase : list[list[int]] ):
return len([number for row in grid for number in row if number < 0] )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
for row in grid:
for i, number in enumerate(__lowerCAmelCase ):
if number < 0:
total += len(__lowerCAmelCase ) - i
break
return total
def A__ ( ):
from timeit import timeit
print("""Running benchmarks""" )
lowerCamelCase__ = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 )
print(F'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 50 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 50 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase : List[Any] = 'examples/'
UpperCamelCase : int = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
UpperCamelCase : Any = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
UpperCamelCase : Any = 'README.md'
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern]
lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase )
lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : str ):
for folder, directories, fnames in os.walk(__lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" )
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if not patch:
update_version_in_examples(__lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = """🤗 Transformers currently provides the following architectures"""
lowerCamelCase__ = """1. Want to contribute a new model?"""
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Find the start of the list.
lowerCamelCase__ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCamelCase__ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
lowerCamelCase__ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__lowerCAmelCase )
def A__ ( ):
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0]
return packaging.version.parse(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Union[str, Any]=False ):
lowerCamelCase__ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
lowerCamelCase__ = default_version.base_version
elif patch:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = default_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def A__ ( ):
lowerCamelCase__ = get_version()
lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
lowerCamelCase__ = current_version.base_version
# Check with the user we got that right.
lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
UpperCamelCase : Any = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 50 | 1 |
'''simple docstring'''
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ):
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict ):
lowerCamelCase__ = tmp_path / """cache"""
lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read()
_check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ):
lowerCamelCase__ = tmp_path / """cache"""
lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowerCamelCase__ = features.copy() if features else default_expected_features
lowerCamelCase__ = (
Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__ = ParquetDatasetReader(__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read()
_check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ):
lowerCamelCase__ = tmp_path / """cache"""
lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowerCamelCase__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , split=__lowerCAmelCase ).read()
_check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ):
if issubclass(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = parquet_path
elif issubclass(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = [parquet_path]
lowerCamelCase__ = tmp_path / """cache"""
lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowerCamelCase__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read()
_check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any=("train",) ):
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
for split in splits:
lowerCamelCase__ = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Any ):
lowerCamelCase__ = tmp_path / """cache"""
lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__ = ParquetDatasetReader(
{"""train""": parquet_path} , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read()
_check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ):
lowerCamelCase__ = tmp_path / """cache"""
lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowerCamelCase__ = features.copy() if features else default_expected_features
lowerCamelCase__ = (
Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__ = ParquetDatasetReader({"""train""": parquet_path} , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read()
_check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ):
if split:
lowerCamelCase__ = {split: parquet_path}
else:
lowerCamelCase__ = """train"""
lowerCamelCase__ = {"""train""": parquet_path, """test""": parquet_path}
lowerCamelCase__ = tmp_path / """cache"""
lowerCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
lowerCamelCase__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read()
_check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Any ):
lowerCamelCase__ = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / """foo.parquet""" )
assert writer.write() > 0
lowerCamelCase__ = pq.ParquetFile(tmp_path / """foo.parquet""" )
lowerCamelCase__ = pf.read()
assert dataset.data.table == output_table
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Any ):
lowerCamelCase__ = str(shared_datadir / """test_image_rgb.jpg""" )
lowerCamelCase__ = {"""image""": [image_path]}
lowerCamelCase__ = Features({"""image""": Image()} )
lowerCamelCase__ = Dataset.from_dict(__lowerCAmelCase , features=__lowerCAmelCase )
lowerCamelCase__ = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / """foo.parquet""" )
assert writer.write() > 0
lowerCamelCase__ = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) )
assert dataset.features == reloaded_dataset.features
lowerCamelCase__ = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__lowerCAmelCase ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"""feature, expected""" , [
(Features({"""foo""": Value("""int32""" )} ), None),
(Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : int ):
assert get_writer_batch_size(__lowerCAmelCase ) == expected
| 50 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCamelCase : int = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase : Tuple = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
UpperCamelCase : Dict = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = SqueezeBertTokenizer
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
super().__init__(
_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars
):
lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) )
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = strip_accents
lowerCamelCase__ = tokenize_chinese_chars
lowerCamelCase__ = normalizer_class(**_lowerCAmelCase )
lowerCamelCase__ = do_lower_case
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ):
lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 50 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : list[int] ):
if not numbers:
return 0
if not isinstance(__lowerCAmelCase , (list, tuple) ) or not all(
isinstance(__lowerCAmelCase , __lowerCAmelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
lowerCamelCase__ = lowerCamelCase__ = lowerCamelCase__ = numbers[0]
for i in range(1 , len(__lowerCAmelCase ) ):
# update the maximum and minimum subarray products
lowerCamelCase__ = numbers[i]
if number < 0:
lowerCamelCase__ , lowerCamelCase__ = min_till_now, max_till_now
lowerCamelCase__ = max(__lowerCAmelCase , max_till_now * number )
lowerCamelCase__ = min(__lowerCAmelCase , min_till_now * number )
# update the maximum product found till now
lowerCamelCase__ = max(__lowerCAmelCase , __lowerCAmelCase )
return max_prod
| 50 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A__ ( __lowerCAmelCase : Any ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f)
or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) #
or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) #
or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) #
or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) #
or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) #
or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f)
or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) #
): #
return True
return False
def A__ ( __lowerCAmelCase : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCamelCase__ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = set()
for token in tokens:
lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowerCamelCase__ = list(__lowerCAmelCase )
return word_list
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ):
if not chinese_word_set:
return bert_tokens
lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowerCamelCase__ = bert_tokens
lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase )
while start < end:
lowerCamelCase__ = True
if is_chinese(bert_word[start] ):
lowerCamelCase__ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowerCamelCase__ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCamelCase__ = """##""" + bert_word[j]
lowerCamelCase__ = start + i
lowerCamelCase__ = False
break
if single_word:
start += 1
return bert_word
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ):
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = []
for id in input_ids:
lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowerCamelCase__ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def A__ ( __lowerCAmelCase : Optional[int] ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device
lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert )
lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
UpperCamelCase : Any = parser.parse_args()
main(args)
| 50 | 1 |
'''simple docstring'''
import gc
import math
import unittest
import torch
from diffusers import UNetaDModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
UpperCamelCase : Dict = logging.get_logger(__name__)
enable_full_determinism()
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = UNetaDModel
_UpperCamelCase = 'sample'
@property
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 3
lowerCamelCase__ = (32, 32)
lowerCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([10] ).to(_lowerCAmelCase )
return {"sample": noise, "timestep": time_step}
@property
def UpperCamelCase_ ( self ):
return (3, 32, 32)
@property
def UpperCamelCase_ ( self ):
return (3, 32, 32)
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {
"""block_out_channels""": (32, 64),
"""down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""),
"""up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""),
"""attention_head_dim""": 3,
"""out_channels""": 3,
"""in_channels""": 3,
"""layers_per_block""": 2,
"""sample_size""": 32,
}
lowerCamelCase__ = self.dummy_input
return init_dict, inputs_dict
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = UNetaDModel
_UpperCamelCase = 'sample'
@property
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 4
lowerCamelCase__ = (32, 32)
lowerCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([10] ).to(_lowerCAmelCase )
return {"sample": noise, "timestep": time_step}
@property
def UpperCamelCase_ ( self ):
return (4, 32, 32)
@property
def UpperCamelCase_ ( self ):
return (4, 32, 32)
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {
"""sample_size""": 32,
"""in_channels""": 4,
"""out_channels""": 4,
"""layers_per_block""": 2,
"""block_out_channels""": (32, 64),
"""attention_head_dim""": 32,
"""down_block_types""": ("""DownBlock2D""", """DownBlock2D"""),
"""up_block_types""": ("""UpBlock2D""", """UpBlock2D"""),
}
lowerCamelCase__ = self.dummy_input
return init_dict, inputs_dict
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ,output_loading_info=_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 )
model.to(_lowerCAmelCase )
lowerCamelCase__ = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != """cuda""" ,"""This test is supposed to run on GPU""" )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ,output_loading_info=_lowerCAmelCase )
model.to(_lowerCAmelCase )
lowerCamelCase__ = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != """cuda""" ,"""This test is supposed to run on GPU""" )
def UpperCamelCase_ ( self ):
# by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ,output_loading_info=_lowerCAmelCase )
model_accelerate.to(_lowerCAmelCase )
model_accelerate.eval()
lowerCamelCase__ = torch.randn(
1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,)
lowerCamelCase__ = noise.to(_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([10] * noise.shape[0] ).to(_lowerCAmelCase )
lowerCamelCase__ = model_accelerate(_lowerCAmelCase ,_lowerCAmelCase )["""sample"""]
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained(
"""fusing/unet-ldm-dummy-update""" ,output_loading_info=_lowerCAmelCase ,low_cpu_mem_usage=_lowerCAmelCase )
model_normal_load.to(_lowerCAmelCase )
model_normal_load.eval()
lowerCamelCase__ = model_normal_load(_lowerCAmelCase ,_lowerCAmelCase )["""sample"""]
assert torch_all_close(_lowerCAmelCase ,_lowerCAmelCase ,rtol=1E-3 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" )
model.eval()
model.to(_lowerCAmelCase )
lowerCamelCase__ = torch.randn(
1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,)
lowerCamelCase__ = noise.to(_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([10] * noise.shape[0] ).to(_lowerCAmelCase )
with torch.no_grad():
lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase ).sample
lowerCamelCase__ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
lowerCamelCase__ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] )
# fmt: on
self.assertTrue(torch_all_close(_lowerCAmelCase ,_lowerCAmelCase ,rtol=1E-3 ) )
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = UNetaDModel
_UpperCamelCase = 'sample'
@property
def UpperCamelCase_ ( self ,_lowerCAmelCase=(32, 32) ):
lowerCamelCase__ = 4
lowerCamelCase__ = 3
lowerCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
lowerCamelCase__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=_lowerCAmelCase )
return {"sample": noise, "timestep": time_step}
@property
def UpperCamelCase_ ( self ):
return (3, 32, 32)
@property
def UpperCamelCase_ ( self ):
return (3, 32, 32)
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {
"""block_out_channels""": [32, 64, 64, 64],
"""in_channels""": 3,
"""layers_per_block""": 1,
"""out_channels""": 3,
"""time_embedding_type""": """fourier""",
"""norm_eps""": 1E-6,
"""mid_block_scale_factor""": math.sqrt(2.0 ),
"""norm_num_groups""": None,
"""down_block_types""": [
"""SkipDownBlock2D""",
"""AttnSkipDownBlock2D""",
"""SkipDownBlock2D""",
"""SkipDownBlock2D""",
],
"""up_block_types""": [
"""SkipUpBlock2D""",
"""SkipUpBlock2D""",
"""AttnSkipUpBlock2D""",
"""SkipUpBlock2D""",
],
}
lowerCamelCase__ = self.dummy_input
return init_dict, inputs_dict
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ,output_loading_info=_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 )
model.to(_lowerCAmelCase )
lowerCamelCase__ = self.dummy_input
lowerCamelCase__ = floats_tensor((4, 3) + (2_56, 2_56) ).to(_lowerCAmelCase )
lowerCamelCase__ = noise
lowerCamelCase__ = model(**_lowerCAmelCase )
assert image is not None, "Make sure output is not None"
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" )
model.to(_lowerCAmelCase )
lowerCamelCase__ = 4
lowerCamelCase__ = 3
lowerCamelCase__ = (2_56, 2_56)
lowerCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
lowerCamelCase__ = torch.tensor(batch_size * [1E-4] ).to(_lowerCAmelCase )
with torch.no_grad():
lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase ).sample
lowerCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
lowerCamelCase__ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] )
# fmt: on
self.assertTrue(torch_all_close(_lowerCAmelCase ,_lowerCAmelCase ,rtol=1E-2 ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" )
model.to(_lowerCAmelCase )
lowerCamelCase__ = 4
lowerCamelCase__ = 3
lowerCamelCase__ = (32, 32)
lowerCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
lowerCamelCase__ = torch.tensor(batch_size * [1E-4] ).to(_lowerCAmelCase )
with torch.no_grad():
lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase ).sample
lowerCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
lowerCamelCase__ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] )
# fmt: on
self.assertTrue(torch_all_close(_lowerCAmelCase ,_lowerCAmelCase ,rtol=1E-2 ) )
def UpperCamelCase_ ( self ):
# not required for this model
pass
| 50 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : Tuple = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
lowerCamelCase__ = 1024
lowerCamelCase__ = 4096
lowerCamelCase__ = 24
lowerCamelCase__ = 16
lowerCamelCase__ = [5, 11, 17, 23]
lowerCamelCase__ = [256, 512, 1024, 1024]
lowerCamelCase__ = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = [256, 512, 768, 768]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = (1, 384, 384)
lowerCamelCase__ = False
lowerCamelCase__ = """project"""
if "ade" in checkpoint_url:
lowerCamelCase__ = True
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = """huggingface/label-files"""
lowerCamelCase__ = """ade20k-id2label.json"""
lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowerCamelCase__ = idalabel
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
lowerCamelCase__ = [1, 150, 480, 480]
return config, expected_shape
def A__ ( __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : List[Any] ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
lowerCamelCase__ = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
lowerCamelCase__ = name.replace("""proj""" , """projection""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
lowerCamelCase__ = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
lowerCamelCase__ = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
lowerCamelCase__ = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
lowerCamelCase__ = name.replace("""..""" , """.""" )
if "stem.conv" in name:
lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[: config.hidden_size, :]
lowerCamelCase__ = in_proj_bias[: config.hidden_size]
lowerCamelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase__ = in_proj_bias[-config.hidden_size :]
def A__ ( ):
lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ):
lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(__lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
lowerCamelCase__ = val
# read in qkv matrices
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
# Check outputs on an image
lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384
lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth
if show_prediction:
lowerCamelCase__ = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
UpperCamelCase : List[str] = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 50 | 1 |
'''simple docstring'''
import operator
def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ):
lowerCamelCase__ = operator.lt if reverse else operator.gt
lowerCamelCase__ = solution or []
if not arr:
return solution
lowerCamelCase__ = [arr.pop(0 )]
for i, item in enumerate(__lowerCAmelCase ):
if _operator(__lowerCAmelCase , sublist[-1] ):
sublist.append(__lowerCAmelCase )
arr.pop(__lowerCAmelCase )
# merging sublist into solution list
if not solution:
solution.extend(__lowerCAmelCase )
else:
while sublist:
lowerCamelCase__ = sublist.pop(0 )
for i, xx in enumerate(__lowerCAmelCase ):
if not _operator(__lowerCAmelCase , __lowerCAmelCase ):
solution.insert(__lowerCAmelCase , __lowerCAmelCase )
break
else:
solution.append(__lowerCAmelCase )
strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 50 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Tuple = {
'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'],
'tokenization_mvp': ['MvpTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : str = ['MvpTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[int] = [
'MVP_PRETRAINED_MODEL_ARCHIVE_LIST',
'MvpForCausalLM',
'MvpForConditionalGeneration',
'MvpForQuestionAnswering',
'MvpForSequenceClassification',
'MvpModel',
'MvpPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self ):
torch.manual_seed(0 )
lowerCamelCase__ = UNetaDModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,)
return model
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.dummy_uncond_unet
lowerCamelCase__ = ScoreSdeVeScheduler()
lowerCamelCase__ = ScoreSdeVePipeline(unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase )
sde_ve.to(_lowerCAmelCase )
sde_ve.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = torch.manual_seed(0 )
lowerCamelCase__ = sde_ve(num_inference_steps=2 ,output_type="""numpy""" ,generator=_lowerCAmelCase ).images
lowerCamelCase__ = torch.manual_seed(0 )
lowerCamelCase__ = sde_ve(num_inference_steps=2 ,output_type="""numpy""" ,generator=_lowerCAmelCase ,return_dict=_lowerCAmelCase )[
0
]
lowerCamelCase__ = image[0, -3:, -3:, -1]
lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCamelCase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """google/ncsnpp-church-256"""
lowerCamelCase__ = UNetaDModel.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = ScoreSdeVeScheduler.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = ScoreSdeVePipeline(unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase )
sde_ve.to(_lowerCAmelCase )
sde_ve.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = torch.manual_seed(0 )
lowerCamelCase__ = sde_ve(num_inference_steps=10 ,output_type="""numpy""" ,generator=_lowerCAmelCase ).images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
lowerCamelCase__ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 50 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Dict = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'codegen'
_UpperCamelCase = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_ctx
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = rotary_dim
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = use_cache
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(
bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,):
super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase )
if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ):
# TODO: how to do that better?
lowerCamelCase__ = 0
@property
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" )
lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCamelCase__ = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def UpperCamelCase_ ( self ):
return self._config.n_layer
@property
def UpperCamelCase_ ( self ):
return self._config.n_head
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCamelCase__ = seqlen + 2
lowerCamelCase__ = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCamelCase__ = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers )
]
lowerCamelCase__ = common_inputs["""attention_mask"""]
if self.use_past:
lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype
lowerCamelCase__ = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 )
return ordered_inputs
@property
def UpperCamelCase_ ( self ):
return 13
| 50 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.