code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if len(__lowerCamelCase ) < k or k < 0: raise ValueError("Invalid Input" ) __snake_case : Optional[int] = sum(array[:k] ) for i in range(len(__lowerCamelCase ) - k ): __snake_case : Dict = current_sum - array[i] + array[i + k] __snake_case : int = max(__lowerCamelCase , __lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _snake_case : Optional[Any] = [randint(-1_000, 1_000) for i in range(100)] _snake_case : Optional[int] = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
81
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase : int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
50
0
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return x if y == 0 else greatest_common_divisor(lowerCAmelCase__ , x % y ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return (x * y) // greatest_common_divisor(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ = 20 ): UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(lowerCAmelCase__ , lowerCAmelCase__ ) return g if __name__ == "__main__": print(F"{solution() = }")
82
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'gpt_bigcode' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = scale_attn_weights lowerCamelCase__ = use_cache lowerCamelCase__ = attention_softmax_in_fpaa lowerCamelCase__ = scale_attention_softmax_in_fpaa lowerCamelCase__ = multi_query lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
50
0
"""simple docstring""" def snake_case_ ( A_ : list, A_ : list, A_ : int, A_ : int, A_ : int ): '''simple docstring''' if index == number_of_items: return 0 _lowerCamelCase : int = 0 _lowerCamelCase : str = 0 _lowerCamelCase : Dict = knapsack(A_, A_, A_, A_, index + 1 ) if weights[index] <= max_weight: _lowerCamelCase : Tuple = values[index] + knapsack( A_, A_, A_, max_weight - weights[index], index + 1 ) return max(A_, A_ ) if __name__ == "__main__": import doctest doctest.testmod()
83
'''simple docstring''' from PIL import Image def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ): def brightness(__lowerCAmelCase : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
50
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE=None ): if subparsers is not None: lowercase = subparsers.add_parser('env' ) else: lowercase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file' , default=__SCREAMING_SNAKE_CASE , help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = torch.__version__ lowercase = torch.cuda.is_available() lowercase = is_xpu_available() lowercase = is_npu_available() lowercase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(__SCREAMING_SNAKE_CASE ): lowercase = load_config_from_file(args.config_file ).to_dict() lowercase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'PyTorch XPU available': str(__SCREAMING_SNAKE_CASE ), 'PyTorch NPU available': str(__SCREAMING_SNAKE_CASE ), 'System RAM': F'''{psutil.virtual_memory().total / 1024 ** 3:.2f} GB''', } if pt_cuda_available: lowercase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) lowercase = ( '\n'.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else F'''\t{accelerate_config}''' ) print(__SCREAMING_SNAKE_CASE ) lowercase = accelerate_config return info def UpperCAmelCase_ ( ): lowercase = env_command_parser() lowercase = parser.parse_args() env_command(__SCREAMING_SNAKE_CASE ) return 0 if __name__ == "__main__": raise SystemExit(main())
84
'''simple docstring''' def A__ ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCamelCase : Dict = generate_large_matrix() UpperCamelCase : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A__ ( __lowerCAmelCase : list[list[int]] ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase__ = (left + right) // 2 lowerCamelCase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase__ = mid + 1 else: lowerCamelCase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def A__ ( __lowerCAmelCase : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def A__ ( ): from timeit import timeit print("""Running benchmarks""" ) lowerCamelCase__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
50
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "vocab.txt"} SCREAMING_SNAKE_CASE__ : int = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } SCREAMING_SNAKE_CASE__ : Dict = { "openbmb/cpm-ant-10b": 1024, } def _a ( lowercase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = collections.OrderedDict() with open(lowercase__ , 'r' , encoding='utf-8' ) as reader: SCREAMING_SNAKE_CASE__ : Dict = reader.readlines() for index, token in enumerate(lowercase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = token.rstrip('\n' ) SCREAMING_SNAKE_CASE__ : Dict = index return vocab class snake_case ( UpperCamelCase_ ): def __init__( self : List[Any] , a_ : List[str] , a_ : Union[str, Any]="<unk>" , a_ : int=200 )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = vocab SCREAMING_SNAKE_CASE__ : Tuple = unk_token SCREAMING_SNAKE_CASE__ : int = max_input_chars_per_word def __lowercase( self : Union[str, Any] , a_ : Optional[int] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = list(a_ ) if len(a_ ) > self.max_input_chars_per_word: return [self.unk_token] SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : List[str] = [] while start < len(a_ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a_ ) SCREAMING_SNAKE_CASE__ : str = None while start < end: SCREAMING_SNAKE_CASE__ : Any = ''.join(chars[start:end] ) if substr in self.vocab: SCREAMING_SNAKE_CASE__ : str = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a_ ) SCREAMING_SNAKE_CASE__ : Dict = end return sub_tokens class snake_case ( UpperCamelCase_ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ['input_ids', 'attention_mask'] lowercase_ = False def __init__( self : Any , a_ : Union[str, Any] , a_ : Dict="<d>" , a_ : List[Any]="</d>" , a_ : Tuple="<s>" , a_ : Tuple="</s>" , a_ : Optional[Any]="<pad>" , a_ : Optional[Any]="<unk>" , a_ : Union[str, Any]="</n>" , a_ : int="</_>" , a_ : Any="left" , **a_ : Optional[int] , )-> str: """simple docstring""" requires_backends(self , ['jieba'] ) super().__init__( bod_token=a_ , eod_token=a_ , bos_token=a_ , eos_token=a_ , pad_token=a_ , unk_token=a_ , line_token=a_ , space_token=a_ , padding_side=a_ , **a_ , ) SCREAMING_SNAKE_CASE__ : Optional[int] = bod_token SCREAMING_SNAKE_CASE__ : List[str] = eod_token SCREAMING_SNAKE_CASE__ : List[str] = load_vocab(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = self.encoder[space_token] SCREAMING_SNAKE_CASE__ : Optional[int] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] SCREAMING_SNAKE_CASE__ : List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) SCREAMING_SNAKE_CASE__ : List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ : str = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __lowercase( self : Union[str, Any] )-> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __lowercase( self : str )-> Any: """simple docstring""" return self.encoder[self.eod_token] @property def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" return self.encoder["\n"] @property def __lowercase( self : List[str] )-> int: """simple docstring""" return len(self.encoder ) def __lowercase( self : Optional[int] )-> List[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __lowercase( self : Any , a_ : Any )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [] for x in jieba.cut(a_ , cut_all=a_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a_ ) ) return output_tokens def __lowercase( self : str , a_ : int , **a_ : str )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [i for i in token_ids if i >= 0] SCREAMING_SNAKE_CASE__ : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a_ , **a_ ) def __lowercase( self : Optional[int] , a_ : List[str] )-> Optional[Any]: """simple docstring""" return token in self.encoder def __lowercase( self : str , a_ : List[str] )-> str: """simple docstring""" return "".join(a_ ) def __lowercase( self : int , a_ : Tuple )-> int: """simple docstring""" return self.encoder.get(a_ , self.encoder.get(self.unk_token ) ) def __lowercase( self : str , a_ : List[Any] )-> Tuple: """simple docstring""" return self.decoder.get(a_ , self.unk_token ) def __lowercase( self : Any , a_ : str , a_ : Optional[str] = None )-> Tuple[str]: """simple docstring""" if os.path.isdir(a_ ): SCREAMING_SNAKE_CASE__ : str = os.path.join( a_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: SCREAMING_SNAKE_CASE__ : Tuple = (filename_prefix + '-' if filename_prefix else '') + save_directory SCREAMING_SNAKE_CASE__ : str = 0 if " " in self.encoder: SCREAMING_SNAKE_CASE__ : Dict = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: SCREAMING_SNAKE_CASE__ : Dict = self.encoder['\n'] del self.encoder["\n"] SCREAMING_SNAKE_CASE__ : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) with open(a_ , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def __lowercase( self : Tuple , a_ : List[int] , a_ : List[int] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __lowercase( self : int , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) return [1] + ([0] * len(a_ ))
85
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase : List[Any] = 'examples/' UpperCamelCase : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCamelCase : Any = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCamelCase : Any = 'README.md' def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern] lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase ) lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : str ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = """🤗 Transformers currently provides the following architectures""" lowerCamelCase__ = """1. Want to contribute a new model?""" with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Find the start of the list. lowerCamelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowerCamelCase__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) def A__ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Union[str, Any]=False ): lowerCamelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowerCamelCase__ = default_version.base_version elif patch: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A__ ( ): lowerCamelCase__ = get_version() lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowerCamelCase__ = current_version.base_version # Check with the user we got that right. lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCamelCase : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
50
0
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=99 , UpperCAmelCase : List[str]=32 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Dict=16 , UpperCAmelCase : int=2 , UpperCAmelCase : Any=0.02 , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple="None" , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : str=4 , UpperCAmelCase : List[str]=None , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = relative_attention A_ = position_biased_input A_ = pos_att_type A_ = scope def __A ( self : Tuple ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[int] ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __A ( self : Optional[int] , UpperCAmelCase : Tuple ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __A ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] ): A_ = DebertaVaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase )[0] A_ = model(UpperCAmelCase , token_type_ids=UpperCAmelCase )[0] A_ = model(UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __A ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict ): A_ = DebertaVaForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : int , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ): A_ = self.num_labels A_ = DebertaVaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCAmelCase ) def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ): A_ = self.num_labels A_ = DebertaVaForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): A_ = DebertaVaForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : int ): A_ = DebertaVaForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Dict = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase : List[str] = ( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Dict = True _lowerCamelCase : Any = False _lowerCamelCase : str = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Optional[Any] = False def __A ( self : Dict ): A_ = DebertaVaModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Union[str, Any] ): self.config_tester.run_common_tests() def __A ( self : List[str] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCAmelCase ) def __A ( self : Union[str, Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCAmelCase ) def __A ( self : Any ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCAmelCase ) def __A ( self : Any ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCAmelCase ) def __A ( self : str ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*UpperCAmelCase ) @slow def __A ( self : Optional[int] ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = DebertaVaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="Model not available yet" ) def __A ( self : Dict ): pass @slow def __A ( self : Tuple ): A_ = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" ) A_ = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) A_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] # compare the actual values for a slice. A_ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
86
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase : int = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } UpperCamelCase : Tuple = { 'squeezebert/squeezebert-uncased': 5_12, 'squeezebert/squeezebert-mnli': 5_12, 'squeezebert/squeezebert-mnli-headless': 5_12, } UpperCamelCase : Dict = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = SqueezeBertTokenizer def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,): super().__init__( _lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = strip_accents lowerCamelCase__ = tokenize_chinese_chars lowerCamelCase__ = normalizer_class(**_lowerCAmelCase ) lowerCamelCase__ = do_lower_case def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ): lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
50
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Optional[int] = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__ ( __lowerCAmelCase : Any ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def A__ ( __lowerCAmelCase : str ): # word like '180' or '身高' or '神' for char in word: lowerCamelCase__ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = set() for token in tokens: lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowerCamelCase__ = list(__lowerCAmelCase ) return word_list def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ): if not chinese_word_set: return bert_tokens lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowerCamelCase__ = bert_tokens lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase ) while start < end: lowerCamelCase__ = True if is_chinese(bert_word[start] ): lowerCamelCase__ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowerCamelCase__ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase__ = """##""" + bert_word[j] lowerCamelCase__ = start + i lowerCamelCase__ = False break if single_word: start += 1 return bert_word def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ): lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = [] for id in input_ids: lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowerCamelCase__ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def A__ ( __lowerCAmelCase : Optional[int] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert ) lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) UpperCamelCase : Any = parser.parse_args() main(args)
50
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase__ ( A_ ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = "arrow" , **SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__( split=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE , streaming=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _lowerCamelCase : str = load_from_cache_file _lowerCamelCase : Tuple = file_format _lowerCamelCase : List[str] = Spark( df=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , working_dir=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def UpperCamelCase_ ( self) -> Optional[Any]: if self.streaming: return self.builder.as_streaming_dataset(split=self.split) _lowerCamelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=SCREAMING_SNAKE_CASE , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
88
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 lowerCamelCase__ = [5, 11, 17, 23] lowerCamelCase__ = [256, 512, 1024, 1024] lowerCamelCase__ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = [256, 512, 768, 768] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = (1, 384, 384) lowerCamelCase__ = False lowerCamelCase__ = """project""" if "ade" in checkpoint_url: lowerCamelCase__ = True lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = [1, 150, 480, 480] return config, expected_shape def A__ ( __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCamelCase__ = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCamelCase__ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCamelCase__ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCamelCase__ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCamelCase__ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowerCamelCase__ = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowerCamelCase__ = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384 lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) # forward pass lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
50
0
import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE : Optional[Any] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, 'models/bert/')) _lowercase : List[Any] = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase, 'src/transformers/models/bert/modeling_bert.py'), os.path.join(self.transformer_dir, 'models/bert/modeling_bert.py'), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[Any] = 'src/transformers' shutil.rmtree(self.transformer_dir) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> str: """simple docstring""" _lowercase : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowercase : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowercase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_19) _lowercase : Union[str, Any] = black.format_str(lowerCamelCase, mode=lowerCamelCase) _lowercase : Optional[int] = os.path.join(self.transformer_dir, 'new_code.py') with open(lowerCamelCase, 'w', newline='\n') as f: f.write(lowerCamelCase) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase)) == 0) else: check_copies.is_copy_consistent(f.name, overwrite=lowerCamelCase) with open(lowerCamelCase, 'r') as f: self.assertTrue(f.read(), lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead') self.assertEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead', 'BertLMPredictionHead', REFERENCE_CODE + '\n', ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead', 'BertLMPredictionHead', lowerCamelCase, ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel', 'TestModelLMPredictionHead', re.sub('Bert', 'TestModel', lowerCamelCase), ) # Copy consistency with a really long name _lowercase : Tuple = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''', F'''{long_class_name}LMPredictionHead''', re.sub('Bert', lowerCamelCase, lowerCamelCase), ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel', 'TestModelLMPredictionHead', lowerCamelCase, overwrite_result=re.sub('Bert', 'TestModel', lowerCamelCase), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = check_copies.LOCALIZED_READMES['README_zh-hans.md'] _lowercase : List[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _lowercase : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase : List[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _lowercase , _lowercase : List[Any] = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['format_model_list']) self.assertFalse(lowerCamelCase) self.assertEqual(lowerCamelCase, lowerCamelCase) _lowercase , _lowercase : List[str] = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['format_model_list']) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase) _lowercase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _lowercase : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase , _lowercase : Dict = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['format_model_list']) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase, lowerCamelCase)
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Tuple = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=30 , lowerCamelCase_=2 , lowerCamelCase_=3 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=10 , lowerCamelCase_=0.02 , lowerCamelCase_=None , lowerCamelCase_=2 , ) -> Any: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = ViTModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: lowerCAmelCase__ = ViTForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = ViTForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = ViTForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = ViTForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase__ : Tuple = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) lowercase__ : Any = True lowercase__ : Union[str, Any] = False lowercase__ : Any = False lowercase__ : Tuple = False def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = ViTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = ViTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def _snake_case ( ) -> List[Any]: lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(lowerCamelCase_ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**lowerCamelCase_ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) lowerCAmelCase__ = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. lowerCAmelCase__ = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(lowerCamelCase_ ) lowerCAmelCase__ = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=4_80 ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase__ = inputs.pixel_values.to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(lowerCamelCase_ , interpolate_pos_encoding=lowerCamelCase_ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase_ ) lowerCAmelCase__ = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase__ = inputs.pixel_values.to(lowerCamelCase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCAmelCase__ = model(lowerCamelCase_ )
90
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'codegen' _UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_ctx lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = rotary_dim lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = use_cache lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__( bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,): super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase ) if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ): # TODO: how to do that better? lowerCamelCase__ = 0 @property def UpperCamelCase_ ( self ): lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ) lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase__ = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase_ ( self ): return self._config.n_layer @property def UpperCamelCase_ ( self ): return self._config.n_head def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers ) ] lowerCamelCase__ = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype lowerCamelCase__ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self ): return 13
50
0
"""simple docstring""" def _snake_case ( snake_case__ : int = 10 ): if not isinstance(snake_case__ , snake_case__ ) or n < 0: raise ValueError('Invalid input' ) A = 10**n A = 2_8433 * (pow(2 , 783_0457 , snake_case__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
91
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : int = 1000 ) -> int: lowercase : Optional[Any] =2**power lowercase : Dict =0 while n: lowercase , lowercase : Optional[Any] =r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
92
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCAmelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCamelCase__ = v.half() if save_path is None: # overwrite src_path lowerCamelCase__ = src_path torch.save(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
50
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Dict = """wavlm""" def __init__( self , __UpperCAmelCase=3_2 , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=1_2_8 , __UpperCAmelCase=1_6 , __UpperCAmelCase=3_2_0 , __UpperCAmelCase=8_0_0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=1_0 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1_0 , __UpperCAmelCase=3_2_0 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1_0_0 , __UpperCAmelCase=2_5_6 , __UpperCAmelCase=2_5_6 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=2_5_6 , __UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=8_0 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) lowerCAmelCase__ :int = hidden_size lowerCAmelCase__ :Optional[Any] = feat_extract_norm lowerCAmelCase__ :List[str] = feat_extract_activation lowerCAmelCase__ :List[Any] = list(__UpperCAmelCase ) lowerCAmelCase__ :int = list(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = list(__UpperCAmelCase ) lowerCAmelCase__ :str = conv_bias lowerCAmelCase__ :Any = num_buckets lowerCAmelCase__ :Optional[Any] = max_bucket_distance lowerCAmelCase__ :str = num_conv_pos_embeddings lowerCAmelCase__ :int = num_conv_pos_embedding_groups lowerCAmelCase__ :Dict = len(self.conv_dim ) lowerCAmelCase__ :int = num_hidden_layers lowerCAmelCase__ :int = intermediate_size lowerCAmelCase__ :List[str] = hidden_act lowerCAmelCase__ :Any = num_attention_heads lowerCAmelCase__ :Optional[Any] = hidden_dropout lowerCAmelCase__ :Union[str, Any] = attention_dropout lowerCAmelCase__ :Tuple = activation_dropout lowerCAmelCase__ :Union[str, Any] = feat_proj_dropout lowerCAmelCase__ :Optional[Any] = final_dropout lowerCAmelCase__ :int = layerdrop lowerCAmelCase__ :Union[str, Any] = layer_norm_eps lowerCAmelCase__ :int = initializer_range lowerCAmelCase__ :Any = num_ctc_classes lowerCAmelCase__ :int = vocab_size lowerCAmelCase__ :Dict = do_stable_layer_norm lowerCAmelCase__ :Tuple = use_weighted_layer_sum lowerCAmelCase__ :Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ :str = apply_spec_augment lowerCAmelCase__ :Any = mask_time_prob lowerCAmelCase__ :Union[str, Any] = mask_time_length lowerCAmelCase__ :List[Any] = mask_time_min_masks lowerCAmelCase__ :Dict = mask_feature_prob lowerCAmelCase__ :Union[str, Any] = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCAmelCase__ :Optional[Any] = num_codevectors_per_group lowerCAmelCase__ :List[str] = num_codevector_groups lowerCAmelCase__ :Union[str, Any] = contrastive_logits_temperature lowerCAmelCase__ :List[str] = num_negatives lowerCAmelCase__ :Union[str, Any] = codevector_dim lowerCAmelCase__ :Optional[Any] = proj_codevector_dim lowerCAmelCase__ :Optional[int] = diversity_loss_weight # ctc loss lowerCAmelCase__ :Any = ctc_loss_reduction lowerCAmelCase__ :str = ctc_zero_infinity # adapter lowerCAmelCase__ :Optional[int] = add_adapter lowerCAmelCase__ :Tuple = adapter_kernel_size lowerCAmelCase__ :Tuple = adapter_stride lowerCAmelCase__ :List[Any] = num_adapter_layers lowerCAmelCase__ :Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase__ :Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase__ :int = list(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = list(__UpperCAmelCase ) lowerCAmelCase__ :Any = list(__UpperCAmelCase ) lowerCAmelCase__ :Any = xvector_output_dim @property def snake_case ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
93
'''simple docstring''' import os from pathlib import Path def A__ ( ): from torch.utils.cpp_extension import load lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowerCamelCase__ = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
50
0
'''simple docstring''' from __future__ import annotations def lowercase_ ( __A : tuple[int, int] , __A : int ) -> list[tuple[int, int]]: """simple docstring""" lowercase , lowercase : Tuple =position lowercase : Optional[Any] =[ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase : int =[] for position in positions: lowercase , lowercase : List[str] =position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__A ) return permissible_positions def lowercase_ ( __A : list[list[int]] ) -> bool: """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def lowercase_ ( __A : list[list[int]] , __A : tuple[int, int] , __A : int ) -> bool: """simple docstring""" if is_complete(__A ): return True for position in get_valid_pos(__A , len(__A ) ): lowercase , lowercase : Union[str, Any] =position if board[y][x] == 0: lowercase : Optional[Any] =curr + 1 if open_knight_tour_helper(__A , __A , curr + 1 ): return True lowercase : Optional[int] =0 return False def lowercase_ ( __A : int ) -> list[list[int]]: """simple docstring""" lowercase : Dict =[[0 for i in range(__A )] for j in range(__A )] for i in range(__A ): for j in range(__A ): lowercase : Dict =1 if open_knight_tour_helper(__A , (i, j) , 1 ): return board lowercase : int =0 lowercase : List[Any] =F'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(__A ) if __name__ == "__main__": import doctest doctest.testmod()
94
'''simple docstring''' def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ): lowerCamelCase__ = len(__lowerCAmelCase ) print("""The following activities are selected:""" ) # The first activity is always selected lowerCamelCase__ = 0 print(__lowerCAmelCase , end=""",""" ) # Consider rest of the activities for j in range(__lowerCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__lowerCAmelCase , end=""",""" ) lowerCamelCase__ = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Union[str, Any] = [1, 3, 0, 5, 8, 5] UpperCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
50
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[Any] = 0 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Tuple = Path(lowerCAmelCase_ ) / "preprocessor_config.json" UpperCAmelCase_ : Optional[Any] = Path(lowerCAmelCase_ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCAmelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCAmelCase_ , "w" ) ) UpperCAmelCase_ : Optional[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : List[Any] = Path(lowerCAmelCase_ ) / "preprocessor_config.json" UpperCAmelCase_ : Dict = Path(lowerCAmelCase_ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(lowerCAmelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCAmelCase_ , "w" ) ) UpperCAmelCase_ : List[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : str = CLIPConfig() # Create a dummy config file with image_proceesor_type UpperCAmelCase_ : Union[str, Any] = Path(lowerCAmelCase_ ) / "preprocessor_config.json" UpperCAmelCase_ : List[Any] = Path(lowerCAmelCase_ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCAmelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCAmelCase_ , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally UpperCAmelCase_ : str = AutoImageProcessor.from_pretrained(lowerCAmelCase_ ).to_dict() config_dict.pop("image_processor_type" ) UpperCAmelCase_ : Dict = CLIPImageProcessor(**lowerCAmelCase_ ) # save in new folder model_config.save_pretrained(lowerCAmelCase_ ) config.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase_ ) # make sure private variable is not incorrectly saved UpperCAmelCase_ : List[Any] = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Optional[Any] = Path(lowerCAmelCase_ ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(lowerCAmelCase_ , "w" ) , ) UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> str: with self.assertRaisesRegex( lowerCAmelCase_ , "clip-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ : Any = AutoImageProcessor.from_pretrained("clip-base" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: with self.assertRaisesRegex( lowerCAmelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ : Optional[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase_ , revision="aaaaaa" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: with self.assertRaisesRegex( lowerCAmelCase_ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): UpperCAmelCase_ : List[Any] = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase_ ): UpperCAmelCase_ : List[str] = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase_ ): UpperCAmelCase_ : Dict = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCAmelCase_ ) UpperCAmelCase_ : str = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase_ , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: try: AutoConfig.register("custom" , lowerCAmelCase_ ) AutoImageProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoImageProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : List[str] = Path(lowerCAmelCase_ ) / "preprocessor_config.json" UpperCAmelCase_ : Optional[Any] = Path(lowerCAmelCase_ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(lowerCAmelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(lowerCAmelCase_ , "w" ) ) UpperCAmelCase_ : Tuple = CustomImageProcessor.from_pretrained(lowerCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Any = AutoImageProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: class UpperCamelCase_ (__A ): __magic_name__ = True try: AutoConfig.register("custom" , lowerCAmelCase_ ) AutoImageProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # If remote code is not set, the default is to use local UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase_ : str = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(lowerCAmelCase_ , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
95
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" ,_lowerCAmelCase ,) super().__init__(args=_lowerCAmelCase ,**_lowerCAmelCase )
50
0
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __lowerCamelCase = logging.getLogger(__name__) @dataclass class __A : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 @dataclass class __A : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "train" UpperCAmelCase__ = "dev" UpperCAmelCase__ = "test" class __A : @staticmethod def lowerCamelCase__ ( __snake_case : Union[str, Any] , __snake_case : Union[Split, str] ) -> List[InputExample]: raise NotImplementedError @staticmethod def lowerCamelCase__ ( __snake_case : str ) -> List[str]: raise NotImplementedError @staticmethod def lowerCamelCase__ ( __snake_case : List[InputExample] , __snake_case : List[str] , __snake_case : int , __snake_case : PreTrainedTokenizer , __snake_case : int=False , __snake_case : Union[str, Any]="[CLS]" , __snake_case : str=1 , __snake_case : Dict="[SEP]" , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Dict=0 , __snake_case : Dict=0 , __snake_case : Optional[int]=-1_0_0 , __snake_case : Optional[int]=0 , __snake_case : str=True , ) -> List[InputFeatures]: __magic_name__: str = {label: i for i, label in enumerate(__snake_case )} __magic_name__: Optional[Any] = [] for ex_index, example in enumerate(__snake_case ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d of %d""" , __snake_case , len(__snake_case ) ) __magic_name__: int = [] __magic_name__: List[Any] = [] for word, label in zip(example.words , example.labels ): __magic_name__: Optional[Any] = tokenizer.tokenize(__snake_case ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__snake_case ) > 0: tokens.extend(__snake_case ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__snake_case ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __magic_name__: int = tokenizer.num_special_tokens_to_add() if len(__snake_case ) > max_seq_length - special_tokens_count: __magic_name__: List[str] = tokens[: (max_seq_length - special_tokens_count)] __magic_name__: Optional[int] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __magic_name__: Union[str, Any] = [sequence_a_segment_id] * len(__snake_case ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __magic_name__: Union[str, Any] = [cls_token] + tokens __magic_name__: List[str] = [pad_token_label_id] + label_ids __magic_name__: Dict = [cls_token_segment_id] + segment_ids __magic_name__: str = tokenizer.convert_tokens_to_ids(__snake_case ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __magic_name__: int = [1 if mask_padding_with_zero else 0] * len(__snake_case ) # Zero-pad up to the sequence length. __magic_name__: Union[str, Any] = max_seq_length - len(__snake_case ) if pad_on_left: __magic_name__: Union[str, Any] = ([pad_token] * padding_length) + input_ids __magic_name__: Dict = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __magic_name__: Dict = ([pad_token_segment_id] * padding_length) + segment_ids __magic_name__: Optional[int] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__snake_case ) == max_seq_length assert len(__snake_case ) == max_seq_length assert len(__snake_case ) == max_seq_length assert len(__snake_case ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(__snake_case ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(__snake_case ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(__snake_case ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(__snake_case ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(__snake_case ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __magic_name__: Any = None features.append( InputFeatures( input_ids=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , label_ids=__snake_case ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = 42 UpperCAmelCase__ = nn.CrossEntropyLoss().ignore_index def __init__( self : int , __snake_case : TokenClassificationTask , __snake_case : str , __snake_case : PreTrainedTokenizer , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] = None , __snake_case : Any=False , __snake_case : Split = Split.train , ) -> Optional[int]: # Load data features from cache or dataset file __magic_name__: Union[str, Any] = os.path.join( __snake_case , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(__snake_case ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __magic_name__: Union[str, Any] = cached_features_file + """.lock""" with FileLock(__snake_case ): if os.path.exists(__snake_case ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) __magic_name__: List[Any] = torch.load(__snake_case ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) __magic_name__: int = token_classification_task.read_examples_from_file(__snake_case , __snake_case ) # TODO clean up all this to leverage built-in features of tokenizers __magic_name__: List[str] = token_classification_task.convert_examples_to_features( __snake_case , __snake_case , __snake_case , __snake_case , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'Saving features into cached file {cached_features_file}' ) torch.save(self.features , __snake_case ) def __len__( self : str ) -> str: return len(self.features ) def __getitem__( self : Any , __snake_case : Optional[int] ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class __A : UpperCAmelCase__ = 42 UpperCAmelCase__ = -1_0_0 def __init__( self : Tuple , __snake_case : TokenClassificationTask , __snake_case : str , __snake_case : PreTrainedTokenizer , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] = None , __snake_case : str=False , __snake_case : Split = Split.train , ) -> List[Any]: __magic_name__: Optional[int] = token_classification_task.read_examples_from_file(__snake_case , __snake_case ) # TODO clean up all this to leverage built-in features of tokenizers __magic_name__: Optional[int] = token_classification_task.convert_examples_to_features( __snake_case , __snake_case , __snake_case , __snake_case , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __magic_name__: Union[str, Any] = tf.data.Dataset.from_generator( __snake_case , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __magic_name__: str = tf.data.Dataset.from_generator( __snake_case , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCamelCase__ ( self : Tuple ) -> Dict: __magic_name__: Optional[Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Union[str, Any] ) -> int: return len(self.features ) def __getitem__( self : Dict , __snake_case : int ) -> InputFeatures: return self.features[i]
96
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = [] for line in lines: lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments if line: filtered_lines.append(__lowerCAmelCase ) lowerCamelCase__ = """\n""".join(__lowerCAmelCase ) # Make a hash from all this code lowerCamelCase__ = full_str.encode("""utf-8""" ) return shaaaa(__lowerCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCamelCase : Dict = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCamelCase : str = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
50
0
def a ( snake_case__: Optional[int] ): '''simple docstring''' lowercase_ = [] lowercase_ = [] lowercase_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator lowercase_ = len(snake_case__ ) if (len(snake_case__ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(snake_case__ ) , '''Postfix'''.center(snake_case__ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(snake_case__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(snake_case__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(snake_case__ ) == 0: stack.append(snake_case__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(snake_case__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(snake_case__ ) # push x to stack print( x.center(8 ) , (''''''.join(snake_case__ )).ljust(snake_case__ ) , (''''''.join(snake_case__ )).ljust(snake_case__ ) , sep=''' | ''' , ) # Output in tabular format while len(snake_case__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(snake_case__ )).ljust(snake_case__ ) , (''''''.join(snake_case__ )).ljust(snake_case__ ) , sep=''' | ''' , ) # Output in tabular format return "".join(snake_case__ ) # return Postfix as str def a ( snake_case__: List[Any] ): '''simple docstring''' lowercase_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(snake_case__ ) ): if infix[i] == "(": lowercase_ = ''')''' # change "(" to ")" elif infix[i] == ")": lowercase_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(snake_case__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __a = input('\nEnter an Infix Equation = ') # Input an Infix equation __a = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
97
'''simple docstring''' import operator def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ): lowerCamelCase__ = operator.lt if reverse else operator.gt lowerCamelCase__ = solution or [] if not arr: return solution lowerCamelCase__ = [arr.pop(0 )] for i, item in enumerate(__lowerCAmelCase ): if _operator(__lowerCAmelCase , sublist[-1] ): sublist.append(__lowerCAmelCase ) arr.pop(__lowerCAmelCase ) # merging sublist into solution list if not solution: solution.extend(__lowerCAmelCase ) else: while sublist: lowerCamelCase__ = sublist.pop(0 ) for i, xx in enumerate(__lowerCAmelCase ): if not _operator(__lowerCAmelCase , __lowerCAmelCase ): solution.insert(__lowerCAmelCase , __lowerCAmelCase ) break else: solution.append(__lowerCAmelCase ) strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
50
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowercase__ : List[str] = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : int , lowerCAmelCase__ : Path , lowerCAmelCase__ : Union[str, None] = None , lowerCAmelCase__ : Union[List[str], None] = None , lowerCAmelCase__ : Union[str, List[str], None] = None , lowerCAmelCase__ : bool = True , ) -> Dict: '''simple docstring''' _UpperCamelCase = [file for file in os.listdir(lowerCAmelCase__ ) if os.path.isfile(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) )] if identifier is not None: _UpperCamelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): for n_ in n_identifier: _UpperCamelCase = [file for file in files if n_ not in file] else: _UpperCamelCase = [file for file in files if n_identifier not in file] _UpperCamelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCamelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , lowerCAmelCase__ ) if only_modules: _UpperCamelCase = file.split('''.''' )[0] try: _UpperCamelCase = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = doctest.DocTestSuite(lowerCAmelCase__ ) _UpperCamelCase = unittest.TextTestRunner().run(lowerCAmelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: _UpperCamelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def snake_case__ ( self : Any ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = Path('''src/transformers''' ) _UpperCamelCase = '''modeling''' _UpperCamelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(lowerCAmelCase__ , identifier=lowerCAmelCase__ , ignore_files=lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = Path('''src/transformers''' ) _UpperCamelCase = '''tokenization''' self.analyze_directory(lowerCAmelCase__ , identifier=lowerCAmelCase__ ) def snake_case__ ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase = Path('''src/transformers''' ) _UpperCamelCase = '''configuration''' self.analyze_directory(lowerCAmelCase__ , identifier=lowerCAmelCase__ ) def snake_case__ ( self : str ) -> int: '''simple docstring''' _UpperCamelCase = Path('''src/transformers''' ) _UpperCamelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(lowerCAmelCase__ , n_identifier=lowerCAmelCase__ ) def snake_case__ ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase = Path('''docs/source''' ) _UpperCamelCase = ['''favicon.ico'''] self.analyze_directory(lowerCAmelCase__ , ignore_files=lowerCAmelCase__ , only_modules=lowerCAmelCase__ )
98
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A__ ( __lowerCAmelCase : dict ): return (data["data"], data["target"]) def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ): lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__lowerCAmelCase , __lowerCAmelCase ) # Predict target for test data lowerCamelCase__ = xgb.predict(__lowerCAmelCase ) lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 ) return predictions def A__ ( ): lowerCamelCase__ = fetch_california_housing() lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 ) lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
50
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(__A ) class __UpperCAmelCase ( __A ): """simple docstring""" def __init__( self , **__A ): super().__init__(**__A ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , __A , **__A ): return super().__call__(__A , **__A ) def snake_case_ ( self , **__A ): __a = {} if "candidate_labels" in kwargs: __a = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __a = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def snake_case_ ( self , __A , __A=None , __A="This is a sound of {}." ): if isinstance(__A , __A ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(__A ).content else: with open(__A , """rb""" ) as f: __a = f.read() if isinstance(__A , __A ): __a = ffmpeg_read(__A , self.feature_extractor.sampling_rate ) if not isinstance(__A , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) __a = candidate_labels __a = [hypothesis_template.format(__A ) for x in candidate_labels] __a = self.tokenizer(__A , return_tensors=self.framework , padding=__A ) __a = [text_inputs] return inputs def snake_case_ ( self , __A ): __a = model_inputs.pop("""candidate_labels""" ) __a = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __A ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**__A , **__A ) __a = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def snake_case_ ( self , __A ): __a = model_outputs.pop("""candidate_labels""" ) __a = model_outputs["""logits"""][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) __a = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__A , __A ) , key=lambda __A : -x[0] ) ] return result
99
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 20 lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create ramp distribution lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase__ = 5 lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy() lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCamelCase__ = 5 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 15 lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCamelCase__ = 1 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = 5 lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCamelCase__ = 4 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # with processor list lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
50
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A : Any = logging.get_logger(__name__) _A : Union[str, Any] = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : str = """focalnet""" def __init__( self , A_=2_24 , A_=4 , A_=3 , A_=96 , A_=False , A_=[1_92, 3_84, 7_68, 7_68] , A_=[2, 2, 6, 2] , A_=[2, 2, 2, 2] , A_=[3, 3, 3, 3] , A_="gelu" , A_=4.0 , A_=0.0 , A_=0.1 , A_=False , A_=1E-4 , A_=False , A_=False , A_=False , A_=0.02 , A_=1E-5 , A_=32 , A_=None , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = use_conv_embed SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = focal_levels SCREAMING_SNAKE_CASE__ = focal_windows SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = use_layerscale SCREAMING_SNAKE_CASE__ = layerscale_value SCREAMING_SNAKE_CASE__ = use_post_layernorm SCREAMING_SNAKE_CASE__ = use_post_layernorm_in_modulation SCREAMING_SNAKE_CASE__ = normalize_modulator SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = encoder_stride SCREAMING_SNAKE_CASE__ = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
100
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase : Any = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
from __future__ import annotations def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : list[list[int]] = [] SCREAMING_SNAKE_CASE_ : list[int] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : int = sum(A__ ) create_state_space_tree(A__, A__, A__, A__, A__, A__ ) return result def a__ ( A__, A__, A__, A__, A__, A__, ): if sum(A__ ) > max_sum or (remaining_nums_sum + sum(A__ )) < max_sum: return if sum(A__ ) == max_sum: result.append(A__ ) return for index in range(A__, len(A__ ) ): create_state_space_tree( A__, A__, index + 1, [*path, nums[index]], A__, remaining_nums_sum - nums[index], ) lowerCAmelCase__ : List[str] =[3, 34, 4, 12, 5, 2] lowerCAmelCase__ : str =9 lowerCAmelCase__ : Optional[int] =generate_sum_of_subsets_soln(nums, max_sum) print(*result)
101
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
50
0
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class lowercase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : List[Any] = PriorTransformer __lowerCAmelCase : List[Any] = """hidden_states""" @property def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = 4 UpperCamelCase : Dict = 8 UpperCamelCase : str = 7 UpperCamelCase : Tuple = floats_tensor((batch_size, embedding_dim) ).to(_A ) UpperCamelCase : Optional[Any] = floats_tensor((batch_size, embedding_dim) ).to(_A ) UpperCamelCase : Optional[int] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _a ( self , _A=0 ): '''simple docstring''' torch.manual_seed(_A ) UpperCamelCase : Optional[int] = 4 UpperCamelCase : str = 8 UpperCamelCase : Dict = 7 UpperCamelCase : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(_A ) UpperCamelCase : Tuple = torch.randn((batch_size, embedding_dim) ).to(_A ) UpperCamelCase : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _a ( self ): '''simple docstring''' return (4, 8) @property def _a ( self ): '''simple docstring''' return (4, 8) def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } UpperCamelCase : Tuple = self.dummy_input return init_dict, inputs_dict def _a ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : int = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(_A ) UpperCamelCase : str = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _a ( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCamelCase : Union[str, Any] = self.model_class(**_A ) UpperCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Any = [*signature.parameters.keys()] UpperCamelCase : List[str] = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , _A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) UpperCamelCase : Optional[Any] = model.to(_A ) if hasattr(_A , """set_default_attn_processor""" ): model.set_default_attn_processor() UpperCamelCase : List[Any] = self.get_dummy_seed_input() with torch.no_grad(): UpperCamelCase : Dict = model(**_A )[0] UpperCamelCase : int = output[0, :5].flatten().cpu() print(_A ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCamelCase : List[Any] = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) @slow class lowercase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , _A=1 , _A=7_6_8 , _A=7_7 , _A=0 ): '''simple docstring''' torch.manual_seed(_A ) UpperCamelCase : Optional[int] = batch_size UpperCamelCase : List[str] = embedding_dim UpperCamelCase : Optional[Any] = num_embeddings UpperCamelCase : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(_A ) UpperCamelCase : List[Any] = torch.randn((batch_size, embedding_dim) ).to(_A ) UpperCamelCase : Dict = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [3_7, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def _a ( self , _A , _A ): '''simple docstring''' UpperCamelCase : str = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(_A ) UpperCamelCase : List[str] = self.get_dummy_seed_input(seed=_A ) with torch.no_grad(): UpperCamelCase : str = model(**_A )[0] assert list(sample.shape ) == [1, 7_6_8] UpperCamelCase : List[Any] = sample[0, :8].flatten().cpu() print(_A ) UpperCamelCase : Dict = torch.tensor(_A ) assert torch_all_close(_A , _A , atol=1e-3 )
102
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Union[str, Any] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCAmelCase ( unittest.TestCase ): def __UpperCAmelCase ( self : Any ): """simple docstring""" # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _snake_case = [[1, 2, 4], [1, 2, 3, 4]] _snake_case = DisjunctiveConstraint(__lowerCamelCase ) self.assertTrue(isinstance(dc.token_ids , __lowerCamelCase ) ) with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _snake_case = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint(__lowerCamelCase ) # fails here def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = [[1, 2, 3], [1, 2, 4]] _snake_case = DisjunctiveConstraint(__lowerCamelCase ) _snake_case , _snake_case , _snake_case = dc.update(1 ) _snake_case = stepped is True and completed is False and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _snake_case , _snake_case , _snake_case = dc.update(2 ) _snake_case = stepped is True and completed is False and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case , _snake_case , _snake_case = dc.update(3 ) _snake_case = stepped is True and completed is True and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _snake_case = DisjunctiveConstraint(__lowerCamelCase ) _snake_case , _snake_case , _snake_case = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _snake_case , _snake_case , _snake_case = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case , _snake_case , _snake_case = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _snake_case , _snake_case , _snake_case = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _snake_case , _snake_case , _snake_case = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _snake_case , _snake_case , _snake_case = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case , _snake_case , _snake_case = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
103
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase : int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
50
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : int, UpperCAmelCase_ : int, UpperCAmelCase_ : int, UpperCAmelCase_ : int, UpperCAmelCase_ : int ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: A__ = ksize + 1 A__ = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(UpperCAmelCase_ ): for x in range(UpperCAmelCase_ ): # distance from center A__ = x - ksize // 2 A__ = y - ksize // 2 # degree to radiant A__ = theta / 180 * np.pi A__ = np.cos(_theta ) A__ = np.sin(_theta ) # get kernel x A__ = cos_theta * px + sin_theta * py # get kernel y A__ = -sin_theta * px + cos_theta * py # fill kernel A__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image UpperCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges UpperCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: UpperCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) UpperCamelCase = out / out.max() * 255 UpperCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
104
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'gpt_bigcode' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = scale_attn_weights lowerCamelCase__ = use_cache lowerCamelCase__ = attention_softmax_in_fpaa lowerCamelCase__ = scale_attention_softmax_in_fpaa lowerCamelCase__ = multi_query lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
50
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def __UpperCAmelCase ( lowerCamelCase_ : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [False] * len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = [-1] * len(lowerCamelCase_ ) def dfs(lowerCamelCase_ : Any , lowerCamelCase_ : Any ): SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Optional[Any] = c for u in graph[v]: if not visited[u]: dfs(lowerCamelCase_ , 1 - c ) for i in range(len(lowerCamelCase_ ) ): if not visited[i]: dfs(lowerCamelCase_ , 0 ) for i in range(len(lowerCamelCase_ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCamelCase__ : Any = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
105
'''simple docstring''' from PIL import Image def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ): def brightness(__lowerCAmelCase : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
50
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase_ ( ) -> str: '''simple docstring''' A = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('RGB' ) return image def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' A = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' A = dct.pop(lowerCAmelCase__ ) A = val def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ) -> int: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases A = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) A = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict A = torch.cat((q_bias, torch.zeros_like(lowerCAmelCase__ , requires_grad=lowerCAmelCase__ ), v_bias) ) A = qkv_bias def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' A = 364 if 'coco' in model_name else 224 A = BlipaVisionConfig(image_size=lowerCAmelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: A = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=lowerCAmelCase__ ).to_dict() elif "opt-6.7b" in model_name: A = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=lowerCAmelCase__ ).to_dict() elif "t5-xl" in model_name: A = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: A = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() A = BlipaConfig(vision_config=lowerCAmelCase__ , text_config=lowerCAmelCase__ ) return config, image_size @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=False ) -> Optional[Any]: '''simple docstring''' A = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) A = tokenizer('\n' , add_special_tokens=lowerCAmelCase__ ).input_ids[0] A , A = get_blipa_config(lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) A = BlipaForConditionalGeneration(lowerCAmelCase__ ).eval() A = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } A , A = model_name_to_original[model_name] # load original model print('Loading original model...' ) A = 'cuda' if torch.cuda.is_available() else 'cpu' A , A , A = load_model_and_preprocess( name=lowerCAmelCase__ , model_type=lowerCAmelCase__ , is_eval=lowerCAmelCase__ , device=lowerCAmelCase__ ) original_model.eval() print('Done!' ) # update state dict keys A = original_model.state_dict() A = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): A = state_dict.pop(lowerCAmelCase__ ) if key.startswith('Qformer.bert' ): A = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: A = key.replace('self' , 'attention' ) if "opt_proj" in key: A = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: A = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): A = key.replace('opt' , 'language' ) if key.startswith('t5' ): A = key.replace('t5' , 'language' ) A = val # read in qv biases read_in_q_v_bias(lowerCAmelCase__ , lowerCAmelCase__ ) A , A = hf_model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] A = load_demo_image() A = vis_processors['eval'](lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) A = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(lowerCAmelCase__ ) # create processor A = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ ) A = BlipaProcessor(image_processor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) A = processor(images=lowerCAmelCase__ , return_tensors='pt' ).pixel_values.to(lowerCAmelCase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) hf_model.to(lowerCAmelCase__ ) with torch.no_grad(): if "opt" in model_name: A = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits A = hf_model(lowerCAmelCase__ , lowerCAmelCase__ ).logits else: A = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits A = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) A = hf_model(lowerCAmelCase__ , lowerCAmelCase__ , labels=lowerCAmelCase__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": A = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowerCAmelCase__ ) assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": A = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowerCAmelCase__ ) else: # cast to same type A = logits.dtype assert torch.allclose(original_logits.to(lowerCAmelCase__ ) , lowerCAmelCase__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) A = '' A = tokenizer(lowerCAmelCase__ , return_tensors='pt' ).input_ids.to(lowerCAmelCase__ ) A = original_model.generate({'image': original_pixel_values} ) A = hf_model.generate( lowerCAmelCase__ , lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , lowerCAmelCase__ ) A = input_ids.shape[1] A = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCAmelCase__ ) A = [text.strip() for text in output_text] print('HF generation:' , lowerCAmelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCAmelCase__ ) hf_model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __snake_case :str =argparse.ArgumentParser() __snake_case :Optional[Any] =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __snake_case :List[Any] =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
106
'''simple docstring''' def A__ ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCamelCase : Dict = generate_large_matrix() UpperCamelCase : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A__ ( __lowerCAmelCase : list[list[int]] ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase__ = (left + right) // 2 lowerCamelCase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase__ = mid + 1 else: lowerCamelCase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def A__ ( __lowerCAmelCase : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def A__ ( ): from timeit import timeit print("""Running benchmarks""" ) lowerCamelCase__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
50
0
'''simple docstring''' # Algorithm for the pigeonhole sorting def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): _A = min(__snake_case ) # min() finds the minimum value _A = max(__snake_case ) # max() finds the maximum value _A = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _A = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__snake_case , __snake_case ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _A = 0 for count in range(__snake_case ): while holes[count] > 0: holes[count] -= 1 _A = count + min_val i += 1 def _SCREAMING_SNAKE_CASE ( ): _A = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__snake_case ) print('Sorted order is:' , ' '.join(__snake_case ) ) if __name__ == "__main__": main()
107
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase : List[Any] = 'examples/' UpperCamelCase : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCamelCase : Any = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCamelCase : Any = 'README.md' def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern] lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase ) lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : str ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = """🤗 Transformers currently provides the following architectures""" lowerCamelCase__ = """1. Want to contribute a new model?""" with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Find the start of the list. lowerCamelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowerCamelCase__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) def A__ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Union[str, Any]=False ): lowerCamelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowerCamelCase__ = default_version.base_version elif patch: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A__ ( ): lowerCamelCase__ = get_version() lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowerCamelCase__ = current_version.base_version # Check with the user we got that right. lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCamelCase : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
50
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _SCREAMING_SNAKE_CASE ( __snake_case ) -> List[Any]: _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase , _UpperCAmelCase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 _UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) _UpperCAmelCase = np.array(__snake_case ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.from_numpy(__snake_case ) return 2.0 * image - 1.0 class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : VQModel , lowerCamelCase : UNetaDModel , lowerCamelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Any: """simple docstring""" super().__init__() self.register_modules(vqvae=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self : Tuple , lowerCamelCase : Union[torch.Tensor, PIL.Image.Image] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : Optional[int] = 100 , lowerCamelCase : Optional[float] = 0.0 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(lowerCamelCase , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(lowerCamelCase , torch.Tensor ): _UpperCAmelCase = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCamelCase )}""" ) if isinstance(lowerCamelCase , PIL.Image.Image ): _UpperCAmelCase = preprocess(lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _UpperCAmelCase = next(self.unet.parameters() ).dtype _UpperCAmelCase = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) _UpperCAmelCase = image.to(device=self.device , dtype=lowerCamelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCamelCase , device=self.device ) _UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(lowerCamelCase ): # concat latents and low resolution image in the channel dimension. _UpperCAmelCase = torch.cat([latents, image] , dim=1 ) _UpperCAmelCase = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual _UpperCAmelCase = self.unet(lowerCamelCase , lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # decode the image latents with the VQVAE _UpperCAmelCase = self.vqvae.decode(lowerCamelCase ).sample _UpperCAmelCase = torch.clamp(lowerCamelCase , -1.0 , 1.0 ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
108
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase : int = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } UpperCamelCase : Tuple = { 'squeezebert/squeezebert-uncased': 5_12, 'squeezebert/squeezebert-mnli': 5_12, 'squeezebert/squeezebert-mnli-headless': 5_12, } UpperCamelCase : Dict = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = SqueezeBertTokenizer def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,): super().__init__( _lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = strip_accents lowerCamelCase__ = tokenize_chinese_chars lowerCamelCase__ = normalizer_class(**_lowerCAmelCase ) lowerCamelCase__ = do_lower_case def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ): lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
50
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __a ( _snake_case ): def __init__( self : Optional[int] ,lowerCamelCase : Optional[NestedDataStructureLike[PathLike]] = None ,lowerCamelCase : Optional[NamedSplit] = None ,lowerCamelCase : Optional[Features] = None ,lowerCamelCase : str = None ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : Optional[int] = None ,**lowerCamelCase : Optional[int] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = path_or_paths __SCREAMING_SNAKE_CASE = split if split or isinstance(lowerCamelCase ,lowerCamelCase ) else """train""" __SCREAMING_SNAKE_CASE = features __SCREAMING_SNAKE_CASE = cache_dir __SCREAMING_SNAKE_CASE = keep_in_memory __SCREAMING_SNAKE_CASE = streaming __SCREAMING_SNAKE_CASE = num_proc __SCREAMING_SNAKE_CASE = kwargs @abstractmethod def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass class __a ( _snake_case ): def __init__( self : Tuple ,lowerCamelCase : Optional[Features] = None ,lowerCamelCase : str = None ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : Optional[int] = None ,**lowerCamelCase : Optional[int] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = features __SCREAMING_SNAKE_CASE = cache_dir __SCREAMING_SNAKE_CASE = keep_in_memory __SCREAMING_SNAKE_CASE = streaming __SCREAMING_SNAKE_CASE = num_proc __SCREAMING_SNAKE_CASE = kwargs @abstractmethod def UpperCAmelCase__ ( self : str ): '''simple docstring''' pass
109
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__ ( __lowerCAmelCase : Any ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def A__ ( __lowerCAmelCase : str ): # word like '180' or '身高' or '神' for char in word: lowerCamelCase__ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = set() for token in tokens: lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowerCamelCase__ = list(__lowerCAmelCase ) return word_list def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ): if not chinese_word_set: return bert_tokens lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowerCamelCase__ = bert_tokens lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase ) while start < end: lowerCamelCase__ = True if is_chinese(bert_word[start] ): lowerCamelCase__ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowerCamelCase__ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase__ = """##""" + bert_word[j] lowerCamelCase__ = start + i lowerCamelCase__ = False break if single_word: start += 1 return bert_word def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ): lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = [] for id in input_ids: lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowerCamelCase__ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def A__ ( __lowerCAmelCase : Optional[int] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert ) lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) UpperCamelCase : Any = parser.parse_args() main(args)
50
0
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase__ = logging.getLogger(__name__) UpperCamelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a : UpperCamelCase : Optional[str] = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase : Optional[str] = field( default=lowercase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowercase )} , ) UpperCamelCase : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase : bool = field( default=lowercase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __snake_case ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class a : UpperCamelCase : Optional[str] = field( default=lowercase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase : Optional[str] = field(default=lowercase , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase : Optional[str] = field( default=lowercase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase : Optional[str] = field( default=lowercase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase : Optional[str] = field( default=lowercase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase : bool = field( default=lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase : Optional[int] = field( default=lowercase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase : Optional[int] = field( default=lowercase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase : bool = field( default=lowercase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def __snake_case ( self ): if self.train_file is not None: UpperCAmelCase__ : str = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: UpperCAmelCase__ : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowerCamelCase ( _snake_case ,_snake_case ): with open(_snake_case ,'r' ,encoding='utf-8' ) as f: UpperCAmelCase__ : Optional[Any] = [json.loads(_snake_case ) for line in f.read().splitlines() if (len(_snake_case ) > 0 and not line.isspace())] assert len(_snake_case ) == len(_snake_case ) UpperCAmelCase__ : List[str] = {c: dataset[c] for c in dataset.column_names} UpperCAmelCase__ : List[str] = refs return Dataset.from_dict(_snake_case ) def lowerCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCAmelCase__ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,handlers=[logging.StreamHandler(sys.stdout )] ,) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' ,_snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase__ : str = load_dataset(data_args.dataset_name ,data_args.dataset_config_name ) if "validation" not in datasets.keys(): UpperCAmelCase__ : Tuple = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=F'''train[:{data_args.validation_split_percentage}%]''' ,) UpperCAmelCase__ : Dict = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=F'''train[{data_args.validation_split_percentage}%:]''' ,) else: UpperCAmelCase__ : List[Any] = {} if data_args.train_file is not None: UpperCAmelCase__ : Tuple = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase__ : List[str] = data_args.validation_file UpperCAmelCase__ : List[str] = data_args.train_file.split('.' )[-1] if extension == "txt": UpperCAmelCase__ : Union[str, Any] = 'text' UpperCAmelCase__ : List[Any] = load_dataset(_snake_case ,data_files=_snake_case ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__ : List[str] = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(model_args.config_name ,**_snake_case ) elif model_args.model_name_or_path: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path ,**_snake_case ) else: UpperCAmelCase__ : str = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) UpperCAmelCase__ : int = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,**_snake_case ) elif model_args.model_name_or_path: UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,**_snake_case ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: UpperCAmelCase__ : Union[str, Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=_snake_case ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) else: logger.info('Training new model from scratch' ) UpperCAmelCase__ : Optional[Any] = AutoModelForMaskedLM.from_config(_snake_case ) model.resize_token_embeddings(len(_snake_case ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: UpperCAmelCase__ : List[str] = datasets['train'].column_names else: UpperCAmelCase__ : Optional[Any] = datasets['validation'].column_names UpperCAmelCase__ : Dict = 'text' if 'text' in column_names else column_names[0] UpperCAmelCase__ : List[Any] = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_snake_case ): # Remove empty lines UpperCAmelCase__ : Any = [line for line in examples['text'] if len(_snake_case ) > 0 and not line.isspace()] return tokenizer(examples['text'] ,padding=_snake_case ,truncation=_snake_case ,max_length=data_args.max_seq_length ) UpperCAmelCase__ : List[str] = datasets.map( _snake_case ,batched=_snake_case ,num_proc=data_args.preprocessing_num_workers ,remove_columns=[text_column_name] ,load_from_cache_file=not data_args.overwrite_cache ,) # Add the chinese references if provided if data_args.train_ref_file is not None: UpperCAmelCase__ : Any = add_chinese_references(tokenized_datasets['train'] ,data_args.train_ref_file ) if data_args.validation_ref_file is not None: UpperCAmelCase__ : Optional[Any] = add_chinese_references( tokenized_datasets['validation'] ,data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer UpperCAmelCase__ : int = data_args.train_ref_file or data_args.validation_ref_file if has_ref: UpperCAmelCase__ : List[str] = False # Data collator # This one will take care of randomly masking the tokens. UpperCAmelCase__ : Dict = DataCollatorForWholeWordMask(tokenizer=_snake_case ,mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase__ : int = Trainer( model=_snake_case ,args=_snake_case ,train_dataset=tokenized_datasets['train'] if training_args.do_train else None ,eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None ,tokenizer=_snake_case ,data_collator=_snake_case ,) # Training if training_args.do_train: if last_checkpoint is not None: UpperCAmelCase__ : Tuple = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): UpperCAmelCase__ : str = model_args.model_name_or_path else: UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Any = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase__ : Optional[Any] = os.path.join(training_args.output_dir ,'train_results.txt' ) if trainer.is_world_process_zero(): with open(_snake_case ,'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,'trainer_state.json' ) ) # Evaluation UpperCAmelCase__ : str = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCAmelCase__ : Dict = trainer.evaluate() UpperCAmelCase__ : Tuple = math.exp(eval_output['eval_loss'] ) UpperCAmelCase__ : str = perplexity UpperCAmelCase__ : List[str] = os.path.join(training_args.output_dir ,'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_snake_case ,'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) return results def lowerCamelCase ( _snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
110
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 lowerCamelCase__ = [5, 11, 17, 23] lowerCamelCase__ = [256, 512, 1024, 1024] lowerCamelCase__ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = [256, 512, 768, 768] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = (1, 384, 384) lowerCamelCase__ = False lowerCamelCase__ = """project""" if "ade" in checkpoint_url: lowerCamelCase__ = True lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = [1, 150, 480, 480] return config, expected_shape def A__ ( __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCamelCase__ = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCamelCase__ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCamelCase__ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCamelCase__ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCamelCase__ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowerCamelCase__ = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowerCamelCase__ = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384 lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) # forward pass lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
50
0
from math import sqrt def __lowerCamelCase ( lowerCamelCase__ : int = 1000000 ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
457
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Tuple = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> Union[str, Any]: return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ) -> Tuple: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
592
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'codegen' _UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_ctx lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = rotary_dim lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = use_cache lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__( bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,): super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase ) if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ): # TODO: how to do that better? lowerCamelCase__ = 0 @property def UpperCamelCase_ ( self ): lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ) lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase__ = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase_ ( self ): return self._config.n_layer @property def UpperCamelCase_ ( self ): return self._config.n_head def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers ) ] lowerCamelCase__ = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype lowerCamelCase__ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self ): return 13
50
0
'''simple docstring''' import os import sys import transformers __lowerCAmelCase = '3' print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
536
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''image_processor''', '''tokenizer'''] lowerCAmelCase_ = '''ViTImageProcessor''' lowerCAmelCase_ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , __lowercase : str=None , __lowercase : int=None , **__lowercase : Dict ): """simple docstring""" snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _lowerCAmelCase , ) snake_case_ = kwargs.pop("feature_extractor" ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self : List[Any] , __lowercase : str=None , __lowercase : Dict=None , __lowercase : Union[str, Any]=None , __lowercase : int=None , **__lowercase : int ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: snake_case_ = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if visual_prompt is not None: snake_case_ = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if images is not None: snake_case_ = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if visual_prompt is not None and images is not None: snake_case_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: snake_case_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: snake_case_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def snake_case__ ( self : List[str] , *__lowercase : str , **__lowercase : Optional[int] ): """simple docstring""" return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : List[str] , *__lowercase : List[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def snake_case__ ( self : Dict ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _lowerCAmelCase , ) return self.image_processor_class @property def snake_case__ ( self : Tuple ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _lowerCAmelCase , ) return self.image_processor
376
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCAmelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCamelCase__ = v.half() if save_path is None: # overwrite src_path lowerCamelCase__ = src_path torch.save(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
50
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def UpperCAmelCase_ ( _A , _A=False , _A=False , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' for i in range(config.num_hidden_layers ): SCREAMING_SNAKE_CASE__ = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = dct.pop(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = val @torch.no_grad() def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False if "vqa" in checkpoint_url: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 31_29 SCREAMING_SNAKE_CASE__ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE__ = '''vqa2-id2label.json''' SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = ViltForQuestionAnswering(__lowerCAmelCase ) elif "nlvr" in checkpoint_url: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = {0: '''False''', 1: '''True'''} SCREAMING_SNAKE_CASE__ = {v: k for k, v in config.idalabel.items()} SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = ViltForImagesAndTextClassification(__lowerCAmelCase ) elif "irtr" in checkpoint_url: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = ViltForImageAndTextRetrieval(__lowerCAmelCase ) elif "mlm_itm" in checkpoint_url: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = ViltForMaskedLM(__lowerCAmelCase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='''cpu''' )['''state_dict'''] SCREAMING_SNAKE_CASE__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) if mlm_model or irtr_model: SCREAMING_SNAKE_CASE__ = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowerCAmelCase ) # Define processor SCREAMING_SNAKE_CASE__ = ViltImageProcessor(size=3_84 ) SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) SCREAMING_SNAKE_CASE__ = ViltProcessor(__lowerCAmelCase , __lowerCAmelCase ) # Forward pass on example inputs (image + text) if nlvr_model: SCREAMING_SNAKE_CASE__ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowerCAmelCase ).raw ) SCREAMING_SNAKE_CASE__ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowerCAmelCase ).raw ) SCREAMING_SNAKE_CASE__ = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) SCREAMING_SNAKE_CASE__ = processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: SCREAMING_SNAKE_CASE__ = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowerCAmelCase ).raw ) if mlm_model: SCREAMING_SNAKE_CASE__ = '''a bunch of [MASK] laying on a [MASK].''' else: SCREAMING_SNAKE_CASE__ = '''How many cats are there?''' SCREAMING_SNAKE_CASE__ = processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = model(**__lowerCAmelCase ) # Verify outputs if mlm_model: SCREAMING_SNAKE_CASE__ = torch.Size([1, 11, 3_05_22] ) SCREAMING_SNAKE_CASE__ = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowerCAmelCase , atol=1e-4 ) # verify masked token prediction equals "cats" SCREAMING_SNAKE_CASE__ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: SCREAMING_SNAKE_CASE__ = torch.Size([1, 31_29] ) SCREAMING_SNAKE_CASE__ = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowerCAmelCase , atol=1e-4 ) # verify vqa prediction equals "2" SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: SCREAMING_SNAKE_CASE__ = torch.Size([1, 2] ) SCREAMING_SNAKE_CASE__ = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
493
'''simple docstring''' import os from pathlib import Path def A__ ( ): from torch.utils.cpp_extension import load lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowerCamelCase__ = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
50
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ (self ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=_lowerCAmelCase , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = OpenLlamaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) UpperCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = True UpperCamelCase__ = OpenLlamaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) UpperCamelCase__ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) UpperCamelCase__ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = OpenLlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = OpenLlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass UpperCamelCase__ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase , ) UpperCamelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["""hidden_states"""][0] UpperCamelCase__ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["""hidden_states"""][0] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = OpenLlamaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = input_dict["""input_ids"""] UpperCamelCase__ = input_ids.ne(1 ).to(_lowerCAmelCase ) UpperCamelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ = OpenLlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = """single_label_classification""" UpperCamelCase__ = input_dict["""input_ids"""] UpperCamelCase__ = input_ids.ne(1 ).to(_lowerCAmelCase ) UpperCamelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ = OpenLlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = """multi_label_classification""" UpperCamelCase__ = input_dict["""input_ids"""] UpperCamelCase__ = input_ids.ne(1 ).to(_lowerCAmelCase ) UpperCamelCase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase__ = OpenLlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase_ (self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ = OpenLlamaModel(_lowerCAmelCase ) original_model.to(_lowerCAmelCase ) original_model.eval() UpperCamelCase__ = original_model(_lowerCAmelCase ).last_hidden_state UpperCamelCase__ = original_model(_lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ = {"""type""": scaling_type, """factor""": 10.0} UpperCamelCase__ = OpenLlamaModel(_lowerCAmelCase ) scaled_model.to(_lowerCAmelCase ) scaled_model.eval() UpperCamelCase__ = scaled_model(_lowerCAmelCase ).last_hidden_state UpperCamelCase__ = scaled_model(_lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) )
513
'''simple docstring''' def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ): lowerCamelCase__ = len(__lowerCAmelCase ) print("""The following activities are selected:""" ) # The first activity is always selected lowerCamelCase__ = 0 print(__lowerCAmelCase , end=""",""" ) # Consider rest of the activities for j in range(__lowerCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__lowerCAmelCase , end=""",""" ) lowerCamelCase__ = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Union[str, Any] = [1, 3, 0, 5, 8, 5] UpperCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
50
0
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int=[] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =size[0] - overlap_pixels * 2 _SCREAMING_SNAKE_CASE =size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _SCREAMING_SNAKE_CASE =np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 _SCREAMING_SNAKE_CASE =np.pad(__lowerCAmelCase , mode='linear_ramp' , pad_width=__lowerCAmelCase , end_values=0 ) if "l" in remove_borders: _SCREAMING_SNAKE_CASE =mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _SCREAMING_SNAKE_CASE =mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _SCREAMING_SNAKE_CASE =mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _SCREAMING_SNAKE_CASE =mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : str ) -> List[Any]: """simple docstring""" return max(__lowerCAmelCase , min(__lowerCAmelCase , __lowerCAmelCase ) ) def _lowerCAmelCase ( _UpperCamelCase : [int] , _UpperCamelCase : [int] , _UpperCamelCase : [int] ) -> Optional[Any]: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _lowerCAmelCase ( _UpperCamelCase : [int] , _UpperCamelCase : int , _UpperCamelCase : [int] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =list(__lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _SCREAMING_SNAKE_CASE =clamp_rect(__lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__lowerCAmelCase , (original_slice, 0) ) return result def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =(original_image_slice * 4, 0, tile.size[0], tile.size[1]) _SCREAMING_SNAKE_CASE =tile.crop(__lowerCAmelCase ) return tile def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =n % d return n - divisor class A__ ( A__ ): def __init__( self : Union[str, Any] , _a : List[str] , _a : Dict , _a : Optional[Any] , _a : Tuple , _a : Any , _a : List[str] , _a : List[str] = 350 , ) -> Optional[Any]: '''simple docstring''' super().__init__( vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , low_res_scheduler=_lowerCAmelCase , scheduler=_lowerCAmelCase , max_noise_level=_lowerCAmelCase , ) def A ( self : Dict , _a : int , _a : str , _a : int , _a : Optional[int] , _a : Any , _a : Tuple , _a : Tuple , **_a : int ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _SCREAMING_SNAKE_CASE =add_overlap_rect(_lowerCAmelCase , _lowerCAmelCase , image.size ) _SCREAMING_SNAKE_CASE =image.crop(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE =((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _SCREAMING_SNAKE_CASE =translated_slice_x - (original_image_slice / 2) _SCREAMING_SNAKE_CASE =max(0 , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE =squeeze_tile(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE =to_input.size _SCREAMING_SNAKE_CASE =to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _SCREAMING_SNAKE_CASE =super(_lowerCAmelCase , self ).__call__(image=_lowerCAmelCase , **_lowerCAmelCase ).images[0] _SCREAMING_SNAKE_CASE =upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _SCREAMING_SNAKE_CASE =unsqueeze_tile(_lowerCAmelCase , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE =upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _SCREAMING_SNAKE_CASE =[] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) _SCREAMING_SNAKE_CASE =Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=_lowerCAmelCase ) , mode='L' , ) final_image.paste( _lowerCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , _lowerCAmelCase ) @torch.no_grad() def __call__( self : Any , _a : Optional[int] , _a : Any , _a : Any = 75 , _a : Dict = 9.0 , _a : Optional[Any] = 50 , _a : str = None , _a : Optional[Any] = 1 , _a : Dict = 0.0 , _a : List[Any] = None , _a : Optional[int] = None , _a : Any = None , _a : Tuple = 1 , _a : List[str] = 128 , _a : List[Any] = 32 , _a : Dict = 32 , ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) _SCREAMING_SNAKE_CASE =math.ceil(image.size[0] / tile_size ) _SCREAMING_SNAKE_CASE =math.ceil(image.size[1] / tile_size ) _SCREAMING_SNAKE_CASE =tcx * tcy _SCREAMING_SNAKE_CASE =0 for y in range(_lowerCAmelCase ): for x in range(_lowerCAmelCase ): self._process_tile( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prompt=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , noise_level=_lowerCAmelCase , negative_prompt=_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase , eta=_lowerCAmelCase , generator=_lowerCAmelCase , latents=_lowerCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _lowerCAmelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE ='stabilityai/stable-diffusion-x4-upscaler' _SCREAMING_SNAKE_CASE =StableDiffusionTiledUpscalePipeline.from_pretrained(__lowerCAmelCase , revision='fp16' , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE =pipe.to('cuda' ) _SCREAMING_SNAKE_CASE =Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(_UpperCamelCase : str ): print(f"progress: {obj['progress']:.4f}" ) obj["image"].save('diffusers_library_progress.jpg' ) _SCREAMING_SNAKE_CASE =pipe(image=__lowerCAmelCase , prompt='Black font, white background, vector' , noise_level=40 , callback=__lowerCAmelCase ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
405
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" ,_lowerCAmelCase ,) super().__init__(args=_lowerCAmelCase ,**_lowerCAmelCase )
50
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=30 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=None , ) -> Dict: '''simple docstring''' __snake_case : List[str] = parent __snake_case : Dict = batch_size __snake_case : Any = image_size __snake_case : List[str] = patch_size __snake_case : str = num_channels __snake_case : Tuple = is_training __snake_case : Union[str, Any] = use_labels __snake_case : Union[str, Any] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[Any] = type_sequence_label_size __snake_case : Optional[int] = initializer_range __snake_case : Optional[int] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case : Dict = (image_size // patch_size) ** 2 __snake_case : List[str] = num_patches + 1 def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> int: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' __snake_case : Optional[Any] = ViTMSNModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = self.type_sequence_label_size __snake_case : List[str] = ViTMSNForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : int = 1 __snake_case : Optional[int] = ViTMSNForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( a , a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Any =(ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCAmelCase_ : Union[str, Any] =( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ : str =False UpperCAmelCase_ : Union[str, Any] =False UpperCAmelCase_ : List[Any] =False UpperCAmelCase_ : List[str] =False def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : List[Any] = ViTMSNModelTester(self ) __snake_case : Tuple = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' pass def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(_lowerCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Dict = ViTMSNModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase__( ) -> Optional[int]: __snake_case : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def UpperCAmelCase ( self ) -> Any: '''simple docstring''' torch.manual_seed(2 ) __snake_case : List[str] = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(_lowerCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Tuple = prepare_img() __snake_case : str = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __snake_case : str = model(**_lowerCAmelCase ) # verify the logits __snake_case : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __snake_case : Union[str, Any] = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
243
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = [] for line in lines: lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments if line: filtered_lines.append(__lowerCAmelCase ) lowerCamelCase__ = """\n""".join(__lowerCAmelCase ) # Make a hash from all this code lowerCamelCase__ = full_str.encode("""utf-8""" ) return shaaaa(__lowerCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCamelCase : Dict = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCamelCase : str = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
50
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : def __init__( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str]=1_3 , __lowerCAmelCase : Optional[Any]=3_2 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : Optional[Any]=1_6 , __lowerCAmelCase : Optional[Any]=[1, 2, 1] , __lowerCAmelCase : str=[2, 2, 4] , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Optional[Any]=2.0 , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=0.0 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Optional[Any]=1E-5 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[Any]=1_0 , __lowerCAmelCase : Union[str, Any]=8 , ): __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = embed_dim __snake_case = depths __snake_case = num_heads __snake_case = window_size __snake_case = mlp_ratio __snake_case = qkv_bias __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_absolute_embeddings __snake_case = patch_norm __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = is_training __snake_case = scope __snake_case = use_labels __snake_case = type_sequence_label_size __snake_case = encoder_stride def lowercase__ ( self : int ): __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase__ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str ): __snake_case = SwinvaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case = model(_lowerCAmelCase ) __snake_case = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __snake_case = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ): __snake_case = SwinvaForMaskedImageModeling(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __snake_case = 1 __snake_case = SwinvaForMaskedImageModeling(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase__ ( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ): __snake_case = self.type_sequence_label_size __snake_case = SwinvaForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Tuple ): __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowercase_ : str = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowercase_ : int = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) lowercase_ : int = False lowercase_ : str = False lowercase_ : str = False lowercase_ : Union[str, Any] = False def lowercase__ ( self : Optional[Any] ): __snake_case = SwinvaModelTester(self ) __snake_case = ConfigTester(self , config_class=_lowerCAmelCase , embed_dim=3_7 ) def lowercase__ ( self : str ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def lowercase__ ( self : int ): pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : Any ): __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def lowercase__ ( self : List[str] ): __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowercase__ ( self : Dict ): __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True for model_class in self.all_model_classes: __snake_case = True __snake_case = False __snake_case = True __snake_case = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case = outputs.attentions __snake_case = len(self.model_tester.depths ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case = True __snake_case = config.window_size**2 __snake_case = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __snake_case = len(_lowerCAmelCase ) # Check attention is always last and order is fine __snake_case = True __snake_case = True __snake_case = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): __snake_case = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __snake_case = 2 self.assertEqual(out_len + added_hidden_states , len(_lowerCAmelCase ) ) __snake_case = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowercase__ ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): __snake_case = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case = outputs.hidden_states __snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # Swinv2 has a different seq_length __snake_case = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __snake_case = outputs.reshaped_hidden_states self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case = reshaped_hidden_states[0].shape __snake_case = ( reshaped_hidden_states[0].view(_lowerCAmelCase , _lowerCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase__ ( self : Any ): __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __snake_case = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowercase__ ( self : Tuple ): __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __snake_case = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __snake_case = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __snake_case = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) def lowercase__ ( self : str ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def lowercase__ ( self : Optional[Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowercase__ ( self : int ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = SwinvaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowercase__ ( self : List[Any] ): __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: __snake_case = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class a_ ( unittest.TestCase ): @cached_property def lowercase__ ( self : List[Any] ): return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def lowercase__ ( self : str ): __snake_case = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( _lowerCAmelCase ) __snake_case = self.default_image_processor __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __snake_case = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __snake_case = model(**_lowerCAmelCase ) # verify the logits __snake_case = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __snake_case = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
356
'''simple docstring''' import operator def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ): lowerCamelCase__ = operator.lt if reverse else operator.gt lowerCamelCase__ = solution or [] if not arr: return solution lowerCamelCase__ = [arr.pop(0 )] for i, item in enumerate(__lowerCAmelCase ): if _operator(__lowerCAmelCase , sublist[-1] ): sublist.append(__lowerCAmelCase ) arr.pop(__lowerCAmelCase ) # merging sublist into solution list if not solution: solution.extend(__lowerCAmelCase ) else: while sublist: lowerCamelCase__ = sublist.pop(0 ) for i, xx in enumerate(__lowerCAmelCase ): if not _operator(__lowerCAmelCase , __lowerCAmelCase ): solution.insert(__lowerCAmelCase , __lowerCAmelCase ) break else: solution.append(__lowerCAmelCase ) strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
50
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] ): """simple docstring""" if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): __magic_name__ : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): __magic_name__ : List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __magic_name__ : Dict = np.concatenate(__lowerCAmelCase , axis=0 ) __magic_name__ : Union[str, Any] = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0 __magic_name__ : Union[str, Any] = image.transpose(0 , 3 , 1 , 2 ) __magic_name__ : Optional[Any] = 2.0 * image - 1.0 __magic_name__ : Dict = torch.from_numpy(__lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): __magic_name__ : Optional[Any] = torch.cat(__lowerCAmelCase , dim=0 ) return image def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : Any=0.9995 ): """simple docstring""" if not isinstance(__lowerCAmelCase , np.ndarray ): __magic_name__ : Optional[int] = True __magic_name__ : str = va.device __magic_name__ : Any = va.cpu().numpy() __magic_name__ : Any = va.cpu().numpy() __magic_name__ : Dict = np.sum(va * va / (np.linalg.norm(__lowerCAmelCase ) * np.linalg.norm(__lowerCAmelCase )) ) if np.abs(__lowerCAmelCase ) > DOT_THRESHOLD: __magic_name__ : int = (1 - t) * va + t * va else: __magic_name__ : Any = np.arccos(__lowerCAmelCase ) __magic_name__ : Optional[int] = np.sin(__lowerCAmelCase ) __magic_name__ : str = theta_a * t __magic_name__ : Optional[int] = np.sin(__lowerCAmelCase ) __magic_name__ : List[str] = np.sin(theta_a - theta_t ) / sin_theta_a __magic_name__ : Optional[Any] = sin_theta_t / sin_theta_a __magic_name__ : List[str] = sa * va + sa * va if inputs_are_torch: __magic_name__ : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) return va def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ : Tuple = F.normalize(__lowerCAmelCase , dim=-1 ) __magic_name__ : Dict = F.normalize(__lowerCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str ): """simple docstring""" for param in model.parameters(): __magic_name__ : Any = value class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : str , _A : List[str] , _A : List[Any] , _A : Dict , _A : List[str] , _A : Tuple , _A : Any=None , _A : Tuple=None , _A : Tuple=None , ) -> Optional[Any]: super().__init__() self.register_modules( vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , clip_model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , coca_model=_lowerCAmelCase , coca_tokenizer=_lowerCAmelCase , coca_transform=_lowerCAmelCase , ) __magic_name__ : List[Any] = ( feature_extractor.size if isinstance(feature_extractor.size , _lowerCAmelCase ) else feature_extractor.size['shortest_edge'] ) __magic_name__ : int = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _lowerCAmelCase ) set_requires_grad(self.clip_model , _lowerCAmelCase ) def __lowerCAmelCase ( self : Tuple , _A : Union[str, Any] = "auto" ) -> str: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __magic_name__ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def __lowerCAmelCase ( self : Dict ) -> List[Any]: self.enable_attention_slicing(_lowerCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: set_requires_grad(self.vae , _lowerCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: set_requires_grad(self.vae , _lowerCAmelCase ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: set_requires_grad(self.unet , _lowerCAmelCase ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: set_requires_grad(self.unet , _lowerCAmelCase ) def __lowerCAmelCase ( self : Any , _A : List[str] , _A : Union[str, Any] , _A : Optional[int] ) -> Dict: # get the original timestep using init_timestep __magic_name__ : Union[str, Any] = min(int(num_inference_steps * strength ) , _lowerCAmelCase ) __magic_name__ : Tuple = max(num_inference_steps - init_timestep , 0 ) __magic_name__ : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowerCAmelCase ( self : Union[str, Any] , _A : int , _A : List[Any] , _A : Tuple , _A : str , _A : str , _A : List[str]=None ) -> List[Any]: if not isinstance(_lowerCAmelCase , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(_lowerCAmelCase )}' ) __magic_name__ : int = image.to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __magic_name__ : Tuple = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowerCAmelCase ) ] __magic_name__ : str = torch.cat(_lowerCAmelCase , dim=0 ) else: __magic_name__ : Any = self.vae.encode(_lowerCAmelCase ).latent_dist.sample(_lowerCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ : List[Any] = 0.1_8215 * init_latents __magic_name__ : int = init_latents.repeat_interleave(_lowerCAmelCase , dim=0 ) __magic_name__ : Union[str, Any] = randn_tensor(init_latents.shape , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) # get latents __magic_name__ : Optional[int] = self.scheduler.add_noise(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __magic_name__ : Tuple = init_latents return latents def __lowerCAmelCase ( self : int , _A : Dict ) -> Union[str, Any]: __magic_name__ : Dict = self.coca_transform(_lowerCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __magic_name__ : int = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __magic_name__ : List[Any] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def __lowerCAmelCase ( self : List[str] , _A : Tuple , _A : int ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.feature_extractor.preprocess(_lowerCAmelCase ) __magic_name__ : Union[str, Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() __magic_name__ : List[Any] = self.clip_model.get_image_features(_lowerCAmelCase ) __magic_name__ : int = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_lowerCAmelCase ) __magic_name__ : Any = image_embeddings_clip.repeat_interleave(_lowerCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def __lowerCAmelCase ( self : List[Any] , _A : List[Any] , _A : str , _A : Union[str, Any] , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[Any] , ) -> List[str]: __magic_name__ : Optional[int] = latents.detach().requires_grad_() __magic_name__ : Any = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # predict the noise residual __magic_name__ : List[str] = self.unet(_lowerCAmelCase , _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __magic_name__ : List[Any] = self.scheduler.alphas_cumprod[timestep] __magic_name__ : List[str] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ : Dict = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __magic_name__ : Dict = torch.sqrt(_lowerCAmelCase ) __magic_name__ : Optional[Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _lowerCAmelCase ): __magic_name__ : List[Any] = self.scheduler.sigmas[index] __magic_name__ : Optional[Any] = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ : int = 1 / 0.1_8215 * sample __magic_name__ : str = self.vae.decode(_lowerCAmelCase ).sample __magic_name__ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : str = transforms.Resize(self.feature_extractor_size )(_lowerCAmelCase ) __magic_name__ : int = self.normalize(_lowerCAmelCase ).to(latents.dtype ) __magic_name__ : Optional[int] = self.clip_model.get_image_features(_lowerCAmelCase ) __magic_name__ : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_lowerCAmelCase ) __magic_name__ : List[str] = spherical_dist_loss(_lowerCAmelCase , _lowerCAmelCase ).mean() * clip_guidance_scale __magic_name__ : str = -torch.autograd.grad(_lowerCAmelCase , _lowerCAmelCase )[0] if isinstance(self.scheduler , _lowerCAmelCase ): __magic_name__ : List[Any] = latents.detach() + grads * (sigma**2) __magic_name__ : str = noise_pred_original else: __magic_name__ : str = noise_pred_original - torch.sqrt(_lowerCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Optional[int] , _A : Any , _A : int , _A : Tuple = None , _A : Tuple = None , _A : Optional[int] = 512 , _A : Union[str, Any] = 512 , _A : Any = 0.6 , _A : Any = 50 , _A : Union[str, Any] = 7.5 , _A : Union[str, Any] = 1 , _A : Union[str, Any] = 0.0 , _A : int = 100 , _A : Optional[int] = None , _A : List[str] = "pil" , _A : int = True , _A : Any = 0.8 , _A : Any = 0.1 , _A : List[str] = 0.1 , ) -> int: if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(_lowerCAmelCase )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(_lowerCAmelCase , torch.Generator ) and batch_size > 1: __magic_name__ : Dict = [generator] + [None] * (batch_size - 1) __magic_name__ : str = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] __magic_name__ : Dict = [x[0] for x in coca_is_none if x[1]] __magic_name__ : Any = ', '.join(_lowerCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_lowerCAmelCase ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __magic_name__ : Dict = self.get_image_description(_lowerCAmelCase ) if style_prompt is None: if len(_lowerCAmelCase ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __magic_name__ : int = self.get_image_description(_lowerCAmelCase ) # get prompt text embeddings for content and style __magic_name__ : Tuple = self.tokenizer( _lowerCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors='pt' , ) __magic_name__ : Optional[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __magic_name__ : str = self.tokenizer( _lowerCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors='pt' , ) __magic_name__ : str = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __magic_name__ : List[str] = slerp(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # duplicate text embeddings for each generation per prompt __magic_name__ : List[Any] = text_embeddings.repeat_interleave(_lowerCAmelCase , dim=0 ) # set timesteps __magic_name__ : List[Any] = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __magic_name__ : Union[str, Any] = {} if accepts_offset: __magic_name__ : List[Any] = 1 self.scheduler.set_timesteps(_lowerCAmelCase , **_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __magic_name__ , __magic_name__ : int = self.get_timesteps(_lowerCAmelCase , _lowerCAmelCase , self.device ) __magic_name__ : str = timesteps[:1].repeat(_lowerCAmelCase ) # Preprocess image __magic_name__ : Optional[int] = preprocess(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __magic_name__ : str = self.prepare_latents( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text_embeddings.dtype , self.device , _lowerCAmelCase ) __magic_name__ : Optional[Any] = preprocess(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __magic_name__ : List[str] = self.prepare_latents( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text_embeddings.dtype , self.device , _lowerCAmelCase ) __magic_name__ : Dict = slerp(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if clip_guidance_scale > 0: __magic_name__ : List[str] = self.get_clip_image_embeddings(_lowerCAmelCase , _lowerCAmelCase ) __magic_name__ : int = self.get_clip_image_embeddings(_lowerCAmelCase , _lowerCAmelCase ) __magic_name__ : List[str] = slerp( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __magic_name__ : List[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __magic_name__ : str = content_text_input.input_ids.shape[-1] __magic_name__ : int = self.tokenizer([''] , padding='max_length' , max_length=_lowerCAmelCase , return_tensors='pt' ) __magic_name__ : int = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __magic_name__ : Optional[Any] = uncond_embeddings.repeat_interleave(_lowerCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __magic_name__ : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __magic_name__ : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __magic_name__ : List[Any] = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device='cpu' , dtype=_lowerCAmelCase ).to( self.device ) else: __magic_name__ : Tuple = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __magic_name__ : Dict = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __magic_name__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __magic_name__ : Optional[Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __magic_name__ : Optional[int] = {} if accepts_eta: __magic_name__ : Any = eta # check if the scheduler accepts generator __magic_name__ : Any = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __magic_name__ : List[Any] = generator with self.progress_bar(total=_lowerCAmelCase ): for i, t in enumerate(_lowerCAmelCase ): # expand the latents if we are doing classifier free guidance __magic_name__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ : Optional[Any] = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # predict the noise residual __magic_name__ : List[str] = self.unet(_lowerCAmelCase , _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: __magic_name__ , __magic_name__ : List[Any] = noise_pred.chunk(2 ) __magic_name__ : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __magic_name__ : str = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __magic_name__ , __magic_name__ : Optional[int] = self.cond_fn( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : List[str] = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ : Optional[Any] = 1 / 0.1_8215 * latents __magic_name__ : str = self.vae.decode(_lowerCAmelCase ).sample __magic_name__ : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ : List[Any] = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_lowerCAmelCase , nsfw_content_detected=_lowerCAmelCase )
561
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A__ ( __lowerCAmelCase : dict ): return (data["data"], data["target"]) def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ): lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__lowerCAmelCase , __lowerCAmelCase ) # Predict target for test data lowerCamelCase__ = xgb.predict(__lowerCAmelCase ) lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 ) return predictions def A__ ( ): lowerCamelCase__ = fetch_california_housing() lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 ) lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
50
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) lowerCAmelCase_ = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) lowerCAmelCase_ = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) lowerCAmelCase_ = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) lowerCAmelCase_ = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModel) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
173
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 20 lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create ramp distribution lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase__ = 5 lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy() lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCamelCase__ = 5 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 15 lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCamelCase__ = 1 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = 5 lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCamelCase__ = 4 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # with processor list lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
50
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = [[1, 2, 4], [1, 2, 3, 4]] lowerCamelCase = DisjunctiveConstraint(_lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , _lowerCAmelCase ) ) with self.assertRaises(_lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowerCAmelCase ): DisjunctiveConstraint(_lowerCAmelCase ) # fails here def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = [[1, 2, 3], [1, 2, 4]] lowerCamelCase = DisjunctiveConstraint(_lowerCAmelCase ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(1 ) lowerCamelCase = stepped is True and completed is False and reset is False self.assertTrue(_lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(2 ) lowerCamelCase = stepped is True and completed is False and reset is False self.assertTrue(_lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(3 ) lowerCamelCase = stepped is True and completed is True and reset is False self.assertTrue(_lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCamelCase = DisjunctiveConstraint(_lowerCAmelCase ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
457
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase : Any = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase__ ( snake_case_ : dict ) -> Dict: return (data["data"], data["target"]) def lowerCamelCase__ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> Tuple: __snake_case = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__lowerCAmelCase , __lowerCAmelCase ) # Predict target for test data __snake_case = xgb.predict(__lowerCAmelCase ) __snake_case = predictions.reshape(len(__lowerCAmelCase ) , 1 ) return predictions def lowerCamelCase__ ( ) -> Tuple: __snake_case = fetch_california_housing() __snake_case , __snake_case = data_handling(__lowerCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 ) __snake_case = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
592
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def _a ( self ): """simple docstring""" a_ = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] a_ = 'fp16' self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] a_ = 'fp16' self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] a_ = 'fp16' self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] a_ = 'fp16' self.assertFalse(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] a_ = 'fp16' self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] a_ = 'fp16' self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self ): """simple docstring""" a_ = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] a_ = 'fp16' self.assertFalse(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
536
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Union[str, Any] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : List[str] , __lowercase : Tuple , __lowercase : Dict ): """simple docstring""" snake_case_ = jnp.ones((batch_size, length) ) / length return scores def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = None snake_case_ = 20 snake_case_ = self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase ) # tweak scores to not be uniform anymore snake_case_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch snake_case_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax snake_case_ = jax.nn.softmax(_lowerCAmelCase , axis=-1 ) snake_case_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) snake_case_ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) snake_case_ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = None snake_case_ = 10 snake_case_ = 2 # create ramp distribution snake_case_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() snake_case_ = ramp_logits[1:, : vocab_size // 2] + vocab_size snake_case_ = FlaxTopKLogitsWarper(3 ) snake_case_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case snake_case_ = 5 snake_case_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) snake_case_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, length) ).copy() snake_case_ = top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ = None snake_case_ = 10 snake_case_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) snake_case_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) snake_case_ = FlaxTopPLogitsWarper(0.8 ) snake_case_ = np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 snake_case_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # check edge cases with negative and extreme logits snake_case_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme snake_case_ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept snake_case_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) snake_case_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = 20 snake_case_ = 4 snake_case_ = 0 snake_case_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 snake_case_ = ids_tensor((batch_size, 20) , vocab_size=20 ) snake_case_ = 5 snake_case_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 snake_case_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = 15 snake_case_ = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = 20 snake_case_ = 4 snake_case_ = 0 snake_case_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score snake_case_ = ids_tensor((batch_size, 1) , vocab_size=20 ) snake_case_ = 1 snake_case_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 snake_case_ = 3 snake_case_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = 20 snake_case_ = 4 snake_case_ = 0 snake_case_ = 5 snake_case_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached snake_case_ = ids_tensor((batch_size, 4) , vocab_size=20 ) snake_case_ = 4 snake_case_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached snake_case_ = 3 snake_case_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = 4 snake_case_ = 10 snake_case_ = 15 snake_case_ = 2 snake_case_ = 1 snake_case_ = 15 # dummy input_ids and scores snake_case_ = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) snake_case_ = input_ids.copy() snake_case_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = scores.copy() # instantiate all dist processors snake_case_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case_ = FlaxTopKLogitsWarper(3 ) snake_case_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors snake_case_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) snake_case_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) snake_case_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) snake_case_ = 10 # no processor list snake_case_ = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) snake_case_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) snake_case_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) snake_case_ = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) snake_case_ = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) snake_case_ = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # with processor list snake_case_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) snake_case_ = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = 4 snake_case_ = 10 snake_case_ = 15 snake_case_ = 2 snake_case_ = 1 snake_case_ = 15 # dummy input_ids and scores snake_case_ = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) snake_case_ = input_ids.copy() snake_case_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = scores.copy() # instantiate all dist processors snake_case_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) snake_case_ = FlaxTopKLogitsWarper(3 ) snake_case_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors snake_case_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) snake_case_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) snake_case_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) snake_case_ = 10 # no processor list def run_no_processor_list(__lowercase : Any , __lowercase : str , __lowercase : List[str] ): snake_case_ = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) snake_case_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) snake_case_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) snake_case_ = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) snake_case_ = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) snake_case_ = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(__lowercase : int , __lowercase : Optional[int] , __lowercase : str ): snake_case_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) snake_case_ = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores snake_case_ = jax.jit(_lowerCAmelCase ) snake_case_ = jax.jit(_lowerCAmelCase ) snake_case_ = jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case_ = jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
376
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase : int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
50
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
493
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'gpt_bigcode' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = scale_attn_weights lowerCamelCase__ = use_cache lowerCamelCase__ = attention_softmax_in_fpaa lowerCamelCase__ = scale_attention_softmax_in_fpaa lowerCamelCase__ = multi_query lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
50
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
513
'''simple docstring''' from PIL import Image def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ): def brightness(__lowerCAmelCase : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
50
0
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase : int = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("--check_lib", action="store_true", help="Whether to check the build or the actual package.") lowerCamelCase : Union[str, Any] = parser.parse_args() if args.check_lib: lowerCamelCase : Optional[int] = importlib.import_module("transformers") lowerCamelCase : int = Path(transformers_module.__file__).parent else: lowerCamelCase : List[str] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError("The built release does not contain the custom files. Fix this before going further!")
405
'''simple docstring''' def A__ ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCamelCase : Dict = generate_large_matrix() UpperCamelCase : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A__ ( __lowerCAmelCase : list[list[int]] ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase__ = (left + right) // 2 lowerCamelCase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase__ = mid + 1 else: lowerCamelCase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def A__ ( __lowerCAmelCase : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def A__ ( ): from timeit import timeit print("""Running benchmarks""" ) lowerCamelCase__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
50
0
import os _UpperCamelCase = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} def lowerCAmelCase__( lowercase : str ) -> Union[str, Any]: __snake_case : Optional[int] = 0 __snake_case : List[str] = 0 while index < len(__lowerCAmelCase ) - 1: __snake_case : int = SYMBOLS[numerals[index]] __snake_case : Optional[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowerCAmelCase__( lowercase : int ) -> Tuple: __snake_case : Any = "" __snake_case : str = num // 1000 numerals += m_count * "M" num %= 1000 __snake_case : Tuple = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __snake_case : Optional[int] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowerCAmelCase__( lowercase : str = "/p089_roman.txt" ) -> Dict: __snake_case : Optional[Any] = 0 with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea: __snake_case : List[str] = filea.readlines() for line in lines: __snake_case : Optional[int] = line.strip() __snake_case : List[str] = parse_roman_numerals(__lowerCAmelCase ) __snake_case : str = generate_roman_numerals(__lowerCAmelCase ) savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
243
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase : List[Any] = 'examples/' UpperCamelCase : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCamelCase : Any = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCamelCase : Any = 'README.md' def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern] lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase ) lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : str ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = """🤗 Transformers currently provides the following architectures""" lowerCamelCase__ = """1. Want to contribute a new model?""" with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Find the start of the list. lowerCamelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowerCamelCase__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) def A__ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Union[str, Any]=False ): lowerCamelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowerCamelCase__ = default_version.base_version elif patch: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A__ ( ): lowerCamelCase__ = get_version() lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowerCamelCase__ = current_version.base_version # Check with the user we got that right. lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCamelCase : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
50
0
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _lowercase = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class a_ ( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str = None , __lowerCAmelCase : Optional[int] = None ): __snake_case = None __snake_case = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) __snake_case = os.path.abspath('examples' ) for item in os.listdir(_lowerCAmelCase ): if item not in EXCLUDE_EXAMPLES: __snake_case = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if os.path.isfile(_lowerCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=_lowerCAmelCase , feature_script=_lowerCAmelCase , tested_section='main()' if parser_only else 'training_function()' , ): __snake_case = compare_against_test( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case = '\n'.join(_lowerCAmelCase ) if special_strings is not None: for string in special_strings: __snake_case = diff.replace(_lowerCAmelCase , '' ) self.assertEqual(_lowerCAmelCase , '' ) def lowercase__ ( self : Optional[int] ): self.one_complete_example('complete_nlp_example.py' , _lowerCAmelCase ) self.one_complete_example('complete_nlp_example.py' , _lowerCAmelCase ) def lowercase__ ( self : Tuple ): __snake_case = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) __snake_case = [ ' ' * 1_6 + '{\n\n', ' ' * 2_0 + '\"accuracy\": eval_metric[\"accuracy\"],\n\n', ' ' * 2_0 + '\"f1\": eval_metric[\"f1\"],\n\n', ' ' * 2_0 + '\"train_loss\": total_loss.item() / len(train_dataloader),\n\n', ' ' * 2_0 + '\"epoch\": epoch,\n\n', ' ' * 1_6 + '},\n\n', ' ' * 1_6 + 'step=epoch,\n', ' ' * 1_2, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.one_complete_example('complete_cv_example.py' , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class a_ ( UpperCAmelCase__ ): lowercase_ : Tuple = False @classmethod def lowercase__ ( cls : Optional[int] ): super().setUpClass() __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __snake_case = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def lowercase__ ( cls : List[str] ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowercase__ ( self : int ): __snake_case = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def lowercase__ ( self : Optional[int] ): __snake_case = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() __snake_case = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def lowercase__ ( self : List[Any] ): __snake_case = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() __snake_case = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) self.assertNotIn('epoch 0:' , _lowerCAmelCase ) self.assertIn('epoch 1:' , _lowerCAmelCase ) def lowercase__ ( self : Optional[Any] ): __snake_case = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() __snake_case = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) if torch.cuda.is_available(): __snake_case = torch.cuda.device_count() else: __snake_case = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , _lowerCAmelCase ) self.assertIn('epoch 1:' , _lowerCAmelCase ) else: self.assertIn('epoch 0:' , _lowerCAmelCase ) self.assertIn('epoch 1:' , _lowerCAmelCase ) @slow def lowercase__ ( self : List[str] ): __snake_case = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): __snake_case = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) __snake_case = re.findall('({.+})' , _lowerCAmelCase ) __snake_case = [r for r in results if 'accuracy' in r][-1] __snake_case = ast.literal_eval(_lowerCAmelCase ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def lowercase__ ( self : Union[str, Any] ): __snake_case = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase__ ( self : str ): with tempfile.TemporaryDirectory() as tmpdir: __snake_case = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , 'tracking' ) ) ) def lowercase__ ( self : int ): __snake_case = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def lowercase__ ( self : Dict ): __snake_case = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
356
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase : int = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } UpperCamelCase : Tuple = { 'squeezebert/squeezebert-uncased': 5_12, 'squeezebert/squeezebert-mnli': 5_12, 'squeezebert/squeezebert-mnli-headless': 5_12, } UpperCamelCase : Dict = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = SqueezeBertTokenizer def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,): super().__init__( _lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = strip_accents lowerCamelCase__ = tokenize_chinese_chars lowerCamelCase__ = normalizer_class(**_lowerCAmelCase ) lowerCamelCase__ = do_lower_case def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ): lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
50
0
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
561
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__ ( __lowerCAmelCase : Any ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def A__ ( __lowerCAmelCase : str ): # word like '180' or '身高' or '神' for char in word: lowerCamelCase__ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = set() for token in tokens: lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowerCamelCase__ = list(__lowerCAmelCase ) return word_list def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ): if not chinese_word_set: return bert_tokens lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowerCamelCase__ = bert_tokens lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase ) while start < end: lowerCamelCase__ = True if is_chinese(bert_word[start] ): lowerCamelCase__ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowerCamelCase__ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase__ = """##""" + bert_word[j] lowerCamelCase__ = start + i lowerCamelCase__ = False break if single_word: start += 1 return bert_word def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ): lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = [] for id in input_ids: lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowerCamelCase__ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def A__ ( __lowerCAmelCase : Optional[int] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert ) lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) UpperCamelCase : Any = parser.parse_args() main(args)
50
0
'''simple docstring''' from __future__ import annotations def A__ ( A : int): '''simple docstring''' UpperCamelCase : List[Any] = 2 UpperCamelCase : Optional[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase) if n > 1: factors.append(__lowerCAmelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
173
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 lowerCamelCase__ = [5, 11, 17, 23] lowerCamelCase__ = [256, 512, 1024, 1024] lowerCamelCase__ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = [256, 512, 768, 768] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = (1, 384, 384) lowerCamelCase__ = False lowerCamelCase__ = """project""" if "ade" in checkpoint_url: lowerCamelCase__ = True lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = [1, 150, 480, 480] return config, expected_shape def A__ ( __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCamelCase__ = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCamelCase__ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCamelCase__ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCamelCase__ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCamelCase__ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowerCamelCase__ = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowerCamelCase__ = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384 lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) # forward pass lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
50
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowercase ( a_ ): """simple docstring""" def __A ( self , A ) -> List[Any]: '''simple docstring''' return 0.0 def __lowerCamelCase ( lowerCamelCase__ : np.ndarray , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowerCamelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCamelCase ( lowerCamelCase__ : FilterType , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = 512 lowerCamelCase = [1] + [0] * (size - 1) lowerCamelCase = [filter_type.process(__lowerCAmelCase ) for item in inputs] lowerCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase = np.abs(np.fft.fft(__lowerCAmelCase ) ) lowerCamelCase = 20 * np.logaa(__lowerCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds lowerCamelCase = get_bounds(__lowerCAmelCase , __lowerCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__lowerCAmelCase ) plt.show() def __lowerCamelCase ( lowerCamelCase__ : FilterType , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = 512 lowerCamelCase = [1] + [0] * (size - 1) lowerCamelCase = [filter_type.process(__lowerCAmelCase ) for item in inputs] lowerCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase = np.angle(np.fft.fft(__lowerCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__lowerCAmelCase , -2 * pi ) ) plt.show()
457
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Tuple = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = 'philschmid/bart-large-cnn-samsum' A_ : List[str] = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) A_ : Optional[Any] = 'summarizer' A_ : Optional[int] = AutoTokenizer A_ : List[Any] = AutoModelForSeqaSeqLM A_ : Any = ['text'] A_ : Union[str, Any] = ['text'] def a (self : List[str] , a__ : Union[str, Any] ): """simple docstring""" return self.pre_processor(_lowerCAmelCase , return_tensors='''pt''' , truncation=_lowerCAmelCase ) def a (self : Union[str, Any] , a__ : Dict ): """simple docstring""" return self.model.generate(**_lowerCAmelCase )[0] def a (self : str , a__ : Optional[int] ): """simple docstring""" return self.pre_processor.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
592
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'codegen' _UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_ctx lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = rotary_dim lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = use_cache lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__( bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,): super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase ) if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ): # TODO: how to do that better? lowerCamelCase__ = 0 @property def UpperCamelCase_ ( self ): lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ) lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase__ = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase_ ( self ): return self._config.n_layer @property def UpperCamelCase_ ( self ): return self._config.n_head def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers ) ] lowerCamelCase__ = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype lowerCamelCase__ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self ): return 13
50
0
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __UpperCamelCase ( lowercase_ : Tuple , lowercase_ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def __UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Dict=0 ): """simple docstring""" a_ = [] for old_item in old_list: a_ = old_item.replace('in_layers.0' , 'norm1' ) a_ = new_item.replace('in_layers.2' , 'conv1' ) a_ = new_item.replace('out_layers.0' , 'norm2' ) a_ = new_item.replace('out_layers.3' , 'conv2' ) a_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) a_ = new_item.replace('skip_connection' , 'conv_shortcut' ) a_ = shave_segments(__lowerCAmelCase , n_shave_prefix_segments=__lowerCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def __UpperCamelCase ( lowercase_ : Tuple , lowercase_ : List[str]=0 ): """simple docstring""" a_ = [] for old_item in old_list: a_ = old_item a_ = new_item.replace('norm.weight' , 'group_norm.weight' ) a_ = new_item.replace('norm.bias' , 'group_norm.bias' ) a_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) a_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) a_ = shave_segments(__lowerCAmelCase , n_shave_prefix_segments=__lowerCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def __UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : List[str]=None , lowercase_ : str=None , lowercase_ : Tuple=None ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): a_ = old_checkpoint[path] a_ = old_tensor.shape[0] // 3 a_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) a_ = old_tensor.shape[0] // config['num_head_channels'] // 3 a_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) a_ , a_ , a_ = old_tensor.split(channels // num_heads , dim=1 ) a_ = query.reshape(__lowerCAmelCase ) a_ = key.reshape(__lowerCAmelCase ) a_ = value.reshape(__lowerCAmelCase ) for path in paths: a_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here a_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) a_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) a_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: a_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: a_ = old_checkpoint[path['old']][:, :, 0] else: a_ = old_checkpoint[path['old']] def __UpperCamelCase ( lowercase_ : Optional[Any] , lowercase_ : List[str] ): """simple docstring""" a_ = {} a_ = checkpoint['time_embed.0.weight'] a_ = checkpoint['time_embed.0.bias'] a_ = checkpoint['time_embed.2.weight'] a_ = checkpoint['time_embed.2.bias'] a_ = checkpoint['input_blocks.0.0.weight'] a_ = checkpoint['input_blocks.0.0.bias'] a_ = checkpoint['out.0.weight'] a_ = checkpoint['out.0.bias'] a_ = checkpoint['out.2.weight'] a_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only a_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) a_ = { layer_id: [key for key in checkpoint if F'input_blocks.{layer_id}' in key] for layer_id in range(__lowerCAmelCase ) } # Retrieves the keys for the middle blocks only a_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) a_ = { layer_id: [key for key in checkpoint if F'middle_block.{layer_id}' in key] for layer_id in range(__lowerCAmelCase ) } # Retrieves the keys for the output blocks only a_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) a_ = { layer_id: [key for key in checkpoint if F'output_blocks.{layer_id}' in key] for layer_id in range(__lowerCAmelCase ) } for i in range(1 , __lowerCAmelCase ): a_ = (i - 1) // (config['num_res_blocks'] + 1) a_ = (i - 1) % (config['num_res_blocks'] + 1) a_ = [key for key in input_blocks[i] if F'input_blocks.{i}.0' in key] a_ = [key for key in input_blocks[i] if F'input_blocks.{i}.1' in key] if F'input_blocks.{i}.0.op.weight' in checkpoint: a_ = checkpoint[ F'input_blocks.{i}.0.op.weight' ] a_ = checkpoint[ F'input_blocks.{i}.0.op.bias' ] continue a_ = renew_resnet_paths(__lowerCAmelCase ) a_ = {'old': F'input_blocks.{i}.0', 'new': F'down_blocks.{block_id}.resnets.{layer_in_block_id}'} a_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , additional_replacements=[meta_path, resnet_op] , config=__lowerCAmelCase ) if len(__lowerCAmelCase ): a_ = renew_attention_paths(__lowerCAmelCase ) a_ = { 'old': F'input_blocks.{i}.1', 'new': F'down_blocks.{block_id}.attentions.{layer_in_block_id}', } a_ = { F'input_blocks.{i}.1.qkv.bias': { 'key': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, F'input_blocks.{i}.1.qkv.weight': { 'key': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=__lowerCAmelCase , config=__lowerCAmelCase , ) a_ = middle_blocks[0] a_ = middle_blocks[1] a_ = middle_blocks[2] a_ = renew_resnet_paths(__lowerCAmelCase ) assign_to_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , config=__lowerCAmelCase ) a_ = renew_resnet_paths(__lowerCAmelCase ) assign_to_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , config=__lowerCAmelCase ) a_ = renew_attention_paths(__lowerCAmelCase ) a_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , attention_paths_to_split=__lowerCAmelCase , config=__lowerCAmelCase ) for i in range(__lowerCAmelCase ): a_ = i // (config['num_res_blocks'] + 1) a_ = i % (config['num_res_blocks'] + 1) a_ = [shave_segments(__lowerCAmelCase , 2 ) for name in output_blocks[i]] a_ = {} for layer in output_block_layers: a_ , a_ = layer.split('.' )[0], shave_segments(__lowerCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__lowerCAmelCase ) else: a_ = [layer_name] if len(__lowerCAmelCase ) > 1: a_ = [key for key in output_blocks[i] if F'output_blocks.{i}.0' in key] a_ = [key for key in output_blocks[i] if F'output_blocks.{i}.1' in key] a_ = renew_resnet_paths(__lowerCAmelCase ) a_ = renew_resnet_paths(__lowerCAmelCase ) a_ = {'old': F'output_blocks.{i}.0', 'new': F'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , additional_replacements=[meta_path] , config=__lowerCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): a_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) a_ = checkpoint[ F'output_blocks.{i}.{index}.conv.weight' ] a_ = checkpoint[ F'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(__lowerCAmelCase ) == 2: a_ = [] if len(__lowerCAmelCase ): a_ = renew_attention_paths(__lowerCAmelCase ) a_ = { 'old': F'output_blocks.{i}.1', 'new': F'up_blocks.{block_id}.attentions.{layer_in_block_id}', } a_ = { F'output_blocks.{i}.1.qkv.bias': { 'key': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, F'output_blocks.{i}.1.qkv.weight': { 'key': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=__lowerCAmelCase , ) else: a_ = renew_resnet_paths(__lowerCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: a_ = '.'.join(['output_blocks', str(__lowerCAmelCase ), path['old']] ) a_ = '.'.join(['up_blocks', str(__lowerCAmelCase ), 'resnets', str(__lowerCAmelCase ), path['new']] ) a_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __lowerCAmelCase = json.loads(f.read()) __lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __lowerCAmelCase = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) __lowerCAmelCase = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) __lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
536
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase : '''simple docstring''' def __init__( self : Any , __lowercase : List[Any] , __lowercase : Dict=13 , __lowercase : Tuple=32 , __lowercase : Any=2 , __lowercase : List[str]=3 , __lowercase : str=16 , __lowercase : List[str]=[1, 2, 1] , __lowercase : Optional[Any]=[2, 2, 4] , __lowercase : int=2 , __lowercase : Optional[int]=2.0 , __lowercase : Optional[Any]=True , __lowercase : str=0.0 , __lowercase : Union[str, Any]=0.0 , __lowercase : Dict=0.1 , __lowercase : Optional[int]="gelu" , __lowercase : Dict=False , __lowercase : Tuple=True , __lowercase : Any=0.02 , __lowercase : int=1E-5 , __lowercase : str=True , __lowercase : Optional[int]=None , __lowercase : List[Any]=True , __lowercase : str=10 , __lowercase : int=8 , __lowercase : str=["stage1", "stage2", "stage3"] , __lowercase : Dict=[1, 2, 3] , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = depths snake_case_ = num_heads snake_case_ = window_size snake_case_ = mlp_ratio snake_case_ = qkv_bias snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = drop_path_rate snake_case_ = hidden_act snake_case_ = use_absolute_embeddings snake_case_ = patch_norm snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = is_training snake_case_ = scope snake_case_ = use_labels snake_case_ = type_sequence_label_size snake_case_ = encoder_stride snake_case_ = out_features snake_case_ = out_indices def snake_case__ ( self : int ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Dict ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def snake_case__ ( self : Tuple , __lowercase : List[Any] , __lowercase : List[Any] , __lowercase : str ): """simple docstring""" snake_case_ = MaskFormerSwinModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case_ = model(_lowerCAmelCase ) snake_case_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case__ ( self : Optional[Any] , __lowercase : int , __lowercase : Union[str, Any] , __lowercase : Tuple ): """simple docstring""" snake_case_ = MaskFormerSwinBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case_ = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCAmelCase ): snake_case_ = ["stem"] snake_case_ = MaskFormerSwinBackbone(config=_lowerCAmelCase ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def snake_case__ ( self : int ): """simple docstring""" snake_case_ = MaskFormerSwinModelTester(self ) snake_case_ = ConfigTester(self , config_class=_lowerCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" pass def snake_case__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : Tuple ): """simple docstring""" return def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) @unittest.skip("Swin does not use inputs_embeds" ) def snake_case__ ( self : List[str] ): """simple docstring""" pass @unittest.skip("Swin does not support feedforward chunking" ) def snake_case__ ( self : List[Any] ): """simple docstring""" pass def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_lowerCAmelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def snake_case__ ( self : int ): """simple docstring""" pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def snake_case__ ( self : Any ): """simple docstring""" pass def snake_case__ ( self : int , __lowercase : int , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Any ): """simple docstring""" snake_case_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # Swin has a different seq_length snake_case_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case_ = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case_ = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def snake_case__ ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def snake_case__ ( self : int ): """simple docstring""" pass def snake_case__ ( self : int ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowercase : List[Any] ): snake_case_ = 0 return t def check_equivalence(__lowercase : Tuple , __lowercase : Dict , __lowercase : List[Any] , __lowercase : Optional[Any]={} ): with torch.no_grad(): snake_case_ = model(**_lowerCAmelCase , return_dict=_lowerCAmelCase , **_lowerCAmelCase ) snake_case_ = model(**_lowerCAmelCase , return_dict=_lowerCAmelCase , **_lowerCAmelCase ).to_tuple() def recursive_check(__lowercase : Dict , __lowercase : Tuple ): if isinstance(_lowerCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCAmelCase , _lowerCAmelCase ): recursive_check(_lowerCAmelCase , _lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCAmelCase , _lowerCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCAmelCase ) , set_nan_tensor_to_zero(_lowerCAmelCase ) , atol=1E-5 ) , msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}. Dict has" f" `nan`: {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}." ) , ) recursive_check(_lowerCAmelCase , _lowerCAmelCase ) for model_class in self.all_model_classes: snake_case_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) snake_case_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {"output_hidden_states": True} ) snake_case_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) snake_case_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {"output_hidden_states": True} ) @require_torch class UpperCAmelCase ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCAmelCase_ = MaskFormerSwinConfig def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = MaskFormerSwinModelTester(self ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: snake_case_ = backbone_class(_lowerCAmelCase ) backbone.to(_lowerCAmelCase ) backbone.eval() snake_case_ = backbone(**_lowerCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True snake_case_ = backbone(**_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) snake_case_ , snake_case_ , snake_case_ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: snake_case_ = backbone(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertIsNotNone(outputs.attentions )
376
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCAmelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCamelCase__ = v.half() if save_path is None: # overwrite src_path lowerCamelCase__ = src_path torch.save(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
50
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCAmelCase__ ( A__ ): """simple docstring""" a = 42 a = jnp.floataa a = True def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: super().setup() SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Tuple , *__lowerCamelCase : Tuple , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = FlaxBigBirdForNaturalQuestionsModule def UpperCAmelCase_ ( _A , _A , _A , _A , _A , _A ): '''simple docstring''' def cross_entropy(_A , _A , _A=None ): SCREAMING_SNAKE_CASE__ = logits.shape[-1] SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(__lowerCAmelCase )[None]).astype('''f4''' ) SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(__lowerCAmelCase , axis=-1 ) SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE__ = reduction(__lowerCAmelCase ) return loss SCREAMING_SNAKE_CASE__ = partial(__lowerCAmelCase , reduction=jnp.mean ) SCREAMING_SNAKE_CASE__ = cross_entropy(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = cross_entropy(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = cross_entropy(__lowerCAmelCase , __lowerCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCAmelCase__ : """simple docstring""" a = "google/bigbird-roberta-base" a = 30_00 a = 1_05_00 a = 1_28 a = 3 a = 1 a = 5 # tx_args a = 3e-5 a = 0.0 a = 2_00_00 a = 0.0_0_9_5 a = "bigbird-roberta-natural-questions" a = "training-expt" a = "data/nq-training.jsonl" a = "data/nq-validation.jsonl" def lowercase_ ( self : Optional[int] ) -> List[Any]: os.makedirs(self.base_dir , exist_ok=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir ) SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count() @dataclass class UpperCAmelCase__ : """simple docstring""" a = 42 a = 40_96 # no dynamic padding on TPUs def __call__( self : Optional[int] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.collate_fn(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(_lowerCAmelCase , _lowerCAmelCase ) return batch def lowercase_ ( self : Tuple , __lowerCamelCase : List[Any] ) -> int: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features['''input_ids'''] ) SCREAMING_SNAKE_CASE__ = { '''input_ids''': jnp.array(_lowerCAmelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(_lowerCAmelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def lowercase_ ( self : Tuple , __lowerCamelCase : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(_lowerCAmelCase ) for ids in input_ids] return zip(*_lowerCAmelCase ) def lowercase_ ( self : str , __lowerCamelCase : str ) -> int: SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(_lowerCAmelCase ) )] while len(_lowerCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def UpperCAmelCase_ ( _A , _A , _A=None ): '''simple docstring''' if seed is not None: SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) // batch_size ): SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__lowerCAmelCase ) @partial(jax.pmap , axis_name='''batch''' ) def UpperCAmelCase_ ( _A , _A , **_A ): '''simple docstring''' def loss_fn(_A ): SCREAMING_SNAKE_CASE__ = model_inputs.pop('''start_labels''' ) SCREAMING_SNAKE_CASE__ = model_inputs.pop('''end_labels''' ) SCREAMING_SNAKE_CASE__ = model_inputs.pop('''pooled_labels''' ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**__lowerCAmelCase , params=__lowerCAmelCase , dropout_rng=__lowerCAmelCase , train=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = outputs return state.loss_fn( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = jax.random.split(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = jax.value_and_grad(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = grad_fn(state.params ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean(__lowerCAmelCase , '''batch''' ) SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=__lowerCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def UpperCAmelCase_ ( _A , **_A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = model_inputs.pop('''start_labels''' ) SCREAMING_SNAKE_CASE__ = model_inputs.pop('''end_labels''' ) SCREAMING_SNAKE_CASE__ = model_inputs.pop('''pooled_labels''' ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**__lowerCAmelCase , params=state.params , train=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = outputs SCREAMING_SNAKE_CASE__ = state.loss_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class UpperCAmelCase__ ( train_state.TrainState ): """simple docstring""" a = struct.field(pytree_node=A__ ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = 42 a = 42 a = 42 a = 42 a = 42 a = 42 a = None def lowercase_ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=None ) -> str: SCREAMING_SNAKE_CASE__ = model.params SCREAMING_SNAKE_CASE__ = TrainState.create( apply_fn=model.__call__ , params=_lowerCAmelCase , tx=_lowerCAmelCase , loss_fn=_lowerCAmelCase , ) if ckpt_dir is not None: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = restore_checkpoint(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = build_tx(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = train_state.TrainState( step=_lowerCAmelCase , apply_fn=model.__call__ , params=_lowerCAmelCase , tx=_lowerCAmelCase , opt_state=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = data_collator SCREAMING_SNAKE_CASE__ = lr SCREAMING_SNAKE_CASE__ = params SCREAMING_SNAKE_CASE__ = jax_utils.replicate(_lowerCAmelCase ) return state def lowercase_ ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.args SCREAMING_SNAKE_CASE__ = len(_lowerCAmelCase ) // args.batch_size SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.split(_lowerCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = get_batched_dataset(_lowerCAmelCase , args.batch_size , seed=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(_lowerCAmelCase , total=_lowerCAmelCase , desc=f'''Running EPOCH-{epoch}''' ): SCREAMING_SNAKE_CASE__ = self.data_collator(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.train_step_fn(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE__ = running_loss.item() / i SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE__ = self.evaluate(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(_lowerCAmelCase ) ) self.logger.log(_lowerCAmelCase , commit=_lowerCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=_lowerCAmelCase ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = get_batched_dataset(_lowerCAmelCase , self.args.batch_size ) SCREAMING_SNAKE_CASE__ = len(_lowerCAmelCase ) // self.args.batch_size SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(_lowerCAmelCase , total=_lowerCAmelCase , desc='''Evaluating ... ''' ): SCREAMING_SNAKE_CASE__ = self.data_collator(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.val_step_fn(_lowerCAmelCase , **_lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(_lowerCAmelCase ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=''' ... ''' ) self.model_save_fn(_lowerCAmelCase , params=state.params ) with open(os.path.join(_lowerCAmelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCAmelCase , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(_lowerCAmelCase , '''data_collator.joblib''' ) ) with open(os.path.join(_lowerCAmelCase , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , _lowerCAmelCase ) print('''DONE''' ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(__lowerCAmelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() ) with open(os.path.join(__lowerCAmelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(__lowerCAmelCase , '''args.joblib''' ) ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(__lowerCAmelCase , '''data_collator.joblib''' ) ) with open(os.path.join(__lowerCAmelCase , '''training_state.json''' ) , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.load(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=__lowerCAmelCase , end_value=__lowerCAmelCase , transition_steps=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=__lowerCAmelCase , end_value=1e-7 , transition_steps=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCAmelCase_ ( _A , _A , _A , _A , _A ): '''simple docstring''' def weight_decay_mask(_A ): SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = scheduler_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=__lowerCAmelCase , weight_decay=__lowerCAmelCase , mask=__lowerCAmelCase ) return tx, lr
493
'''simple docstring''' import os from pathlib import Path def A__ ( ): from torch.utils.cpp_extension import load lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowerCamelCase__ = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
50
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase_ (self ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def UpperCAmelCase_ (self ): UpperCamelCase__ = self.dummy_uncond_unet UpperCamelCase__ = PNDMScheduler() UpperCamelCase__ = PNDMPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) pndm.to(_lowerCAmelCase ) pndm.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pndm(generator=_lowerCAmelCase , num_inference_steps=20 , output_type="""numpy""" ).images UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pndm(generator=_lowerCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=_lowerCAmelCase )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): UpperCamelCase__ = """google/ddpm-cifar10-32""" UpperCamelCase__ = UNetaDModel.from_pretrained(_lowerCAmelCase ) UpperCamelCase__ = PNDMScheduler() UpperCamelCase__ = PNDMPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) pndm.to(_lowerCAmelCase ) pndm.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pndm(generator=_lowerCAmelCase , output_type="""numpy""" ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
513
'''simple docstring''' def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ): lowerCamelCase__ = len(__lowerCAmelCase ) print("""The following activities are selected:""" ) # The first activity is always selected lowerCamelCase__ = 0 print(__lowerCAmelCase , end=""",""" ) # Consider rest of the activities for j in range(__lowerCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__lowerCAmelCase , end=""",""" ) lowerCamelCase__ = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Union[str, Any] = [1, 3, 0, 5, 8, 5] UpperCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
50
0
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : str = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] lowerCamelCase : Tuple = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Any ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE ={ 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _SCREAMING_SNAKE_CASE =int(re.match(r'.*layer_(\d*).*' , __lowerCAmelCase )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def _lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" if dtype == torch.bool: return 1 / 8 _SCREAMING_SNAKE_CASE =re.search(r'[^\d](\d+)$' , str(__lowerCAmelCase ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) _SCREAMING_SNAKE_CASE =int(bit_search.groups()[0] ) return bit_size // 8 def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" if bloom_config_file == "": _SCREAMING_SNAKE_CASE =BloomConfig() else: _SCREAMING_SNAKE_CASE =BloomConfig.from_json_file(__lowerCAmelCase ) if shard_model: _SCREAMING_SNAKE_CASE =os.listdir(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =sorted(filter(lambda _UpperCamelCase : s.startswith('layer' ) and "model_00" in s , __lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE ={'weight_map': {}, 'metadata': {}} _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =BloomConfig() for j, file in enumerate(__lowerCAmelCase ): print('Processing file: {}'.format(__lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE =None for i in range(__lowerCAmelCase ): # load all TP files _SCREAMING_SNAKE_CASE =file.replace('model_00' , f"model_0{i}" ) _SCREAMING_SNAKE_CASE =torch.load(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names _SCREAMING_SNAKE_CASE =list(temp.keys() ) for key in keys: _SCREAMING_SNAKE_CASE =temp.pop(__lowerCAmelCase ) if tensors is None: _SCREAMING_SNAKE_CASE =temp else: for key in tensors.keys(): if any(key.endswith(__lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _SCREAMING_SNAKE_CASE =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _SCREAMING_SNAKE_CASE =torch.cat([tensors[key], temp[key]] , dim=__lowerCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _SCREAMING_SNAKE_CASE =tensors[key] / pretraining_tp torch.save( __lowerCAmelCase , os.path.join( __lowerCAmelCase , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(__lowerCAmelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): _SCREAMING_SNAKE_CASE =tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: _SCREAMING_SNAKE_CASE ='pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(__lowerCAmelCase ) ).zfill(5 ) ) _SCREAMING_SNAKE_CASE =BloomConfig() _SCREAMING_SNAKE_CASE =pytorch_dump_folder_path + '/' + CONFIG_NAME _SCREAMING_SNAKE_CASE =total_size with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(__lowerCAmelCase , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: _SCREAMING_SNAKE_CASE =json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + '\n' f.write(__lowerCAmelCase ) else: _SCREAMING_SNAKE_CASE =BloomModel(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =os.listdir(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =sorted(filter(lambda _UpperCamelCase : s.startswith('layer' ) and "model_00" in s , __lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE =None for i, file in enumerate(__lowerCAmelCase ): _SCREAMING_SNAKE_CASE =None for i in range(__lowerCAmelCase ): # load all TP files _SCREAMING_SNAKE_CASE =file.replace('model_00' , f"model_0{i}" ) _SCREAMING_SNAKE_CASE =torch.load(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names _SCREAMING_SNAKE_CASE =list(temp.keys() ) for key in keys: _SCREAMING_SNAKE_CASE =temp.pop(__lowerCAmelCase ) if tensors is None: _SCREAMING_SNAKE_CASE =temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _SCREAMING_SNAKE_CASE =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _SCREAMING_SNAKE_CASE =torch.cat([tensors[key], temp[key]] , dim=__lowerCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__lowerCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _SCREAMING_SNAKE_CASE =tensors[key] / pretraining_tp _SCREAMING_SNAKE_CASE =model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: _SCREAMING_SNAKE_CASE =set(other_keys.missing_keys ) else: _SCREAMING_SNAKE_CASE =missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =pytorch_dump_folder_path + '/' + WEIGHTS_NAME _SCREAMING_SNAKE_CASE =pytorch_dump_folder_path + '/' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: _SCREAMING_SNAKE_CASE =model.to(config.torch_dtype ) torch.save(model.state_dict() , __lowerCAmelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
405
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" ,_lowerCAmelCase ,) super().__init__(args=_lowerCAmelCase ,**_lowerCAmelCase )
50
0
from __future__ import annotations def lowerCAmelCase__( lowercase : tuple[int, int] , lowercase : int ) -> List[Any]: __snake_case , __snake_case : List[Any] = position __snake_case : List[str] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __snake_case : Tuple = [] for position in positions: __snake_case , __snake_case : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__lowerCAmelCase ) return permissible_positions def lowerCAmelCase__( lowercase : list[list[int]] ) -> Optional[Any]: return not any(elem == 0 for row in board for elem in row ) def lowerCAmelCase__( lowercase : list[list[int]] , lowercase : tuple[int, int] , lowercase : int ) -> List[Any]: if is_complete(__lowerCAmelCase ): return True for position in get_valid_pos(__lowerCAmelCase , len(__lowerCAmelCase ) ): __snake_case , __snake_case : List[str] = position if board[y][x] == 0: __snake_case : Optional[Any] = curr + 1 if open_knight_tour_helper(__lowerCAmelCase , __lowerCAmelCase , curr + 1 ): return True __snake_case : List[Any] = 0 return False def lowerCAmelCase__( lowercase : int ) -> Optional[Any]: __snake_case : Optional[int] = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): __snake_case : Optional[Any] = 1 if open_knight_tour_helper(__lowerCAmelCase , (i, j) , 1 ): return board __snake_case : int = 0 __snake_case : List[Any] = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
243
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = [] for line in lines: lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments if line: filtered_lines.append(__lowerCAmelCase ) lowerCamelCase__ = """\n""".join(__lowerCAmelCase ) # Make a hash from all this code lowerCamelCase__ = full_str.encode("""utf-8""" ) return shaaaa(__lowerCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCamelCase : Dict = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCamelCase : str = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
50
0
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _lowercase = logging.get_logger(__name__) def lowerCamelCase__ ( a , a , a , a=False ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: __snake_case = os.path.abspath(__lowerCAmelCase ) logger.info(f'Loading PyTorch weights from {pt_path}' ) __snake_case = torch.load(__lowerCAmelCase , map_location='cpu' ) logger.info(f'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) __snake_case = convert_pytorch_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __snake_case = convert_pytorch_sharded_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) return flax_state_dict def lowerCamelCase__ ( a , a , a , a , ): def is_key_or_prefix_key_in_dict(a ) -> bool: return len(set(__lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __snake_case = pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __snake_case = pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __snake_case = pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __snake_case = pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __snake_case = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): __snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __snake_case = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): __snake_case = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __snake_case = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __snake_case = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __snake_case = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __snake_case = pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __snake_case = pt_tuple_key[-2] + '_v' if name is not None: __snake_case = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase__ ( a , a ): # convert pytorch tensor to numpy __snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} __snake_case = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __snake_case = flax_model.params['params'] else: __snake_case = flax_model.params __snake_case = flatten_dict(__lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __snake_case = flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(__lowerCAmelCase ) __snake_case = {} __snake_case = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __snake_case = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __snake_case = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __snake_case = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __snake_case = pt_tuple_key[1:] # Correctly rename weight parameters __snake_case , __snake_case = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary __snake_case = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __snake_case = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __snake_case = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __snake_case = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __snake_case = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def lowerCamelCase__ ( a , a ): import torch # Load the index __snake_case = {} for shard_file in shard_filenames: # load using msgpack utils __snake_case = torch.load(__lowerCAmelCase ) __snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} __snake_case = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __snake_case = flax_model.params['params'] __snake_case = flatten_dict(__lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: __snake_case = flax_model.params __snake_case = flatten_dict(__lowerCAmelCase ) __snake_case = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __snake_case = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __snake_case = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __snake_case = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __snake_case = pt_tuple_key[1:] # Correctly rename weight parameters __snake_case , __snake_case = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary __snake_case = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __snake_case = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __snake_case = jnp.asarray(__lowerCAmelCase ) continue if "var" in flax_key[-1]: __snake_case = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __snake_case = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __snake_case = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def lowerCamelCase__ ( a , a ): __snake_case = os.path.abspath(__lowerCAmelCase ) logger.info(f'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class __snake_case = getattr(__lowerCAmelCase , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(__lowerCAmelCase , 'rb' ) as state_f: try: __snake_case = from_bytes(__lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(__lowerCAmelCase , __lowerCAmelCase ) def lowerCamelCase__ ( a , a ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __snake_case = flatten_dict(jax.tree_util.tree_map(lambda a : x.dtype == jnp.bfloataa , __lowerCAmelCase ) ).values() if any(__lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __snake_case = jax.tree_util.tree_map( lambda a : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCAmelCase ) __snake_case = flatten_dict(__lowerCAmelCase ) __snake_case = pt_model.state_dict() __snake_case = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) __snake_case = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __snake_case = [] __snake_case = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __snake_case = flax_key_tuple[0] == pt_model.base_model_prefix __snake_case = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __snake_case = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __snake_case = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCAmelCase ) not in pt_model_dict: # conv layer __snake_case = flax_key_tuple[:-1] + ('weight',) __snake_case = jnp.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ) not in pt_model_dict: # linear layer __snake_case = flax_key_tuple[:-1] + ('weight',) __snake_case = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __snake_case = flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __snake_case = flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: __snake_case = flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: __snake_case = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __snake_case = '.'.join(__lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __snake_case = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __snake_case = key.split('.' ) __snake_case = None if key_components[-3::2] == ["parametrizations", "original0"]: __snake_case = key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: __snake_case = key_components[-2] + '_v' if name is not None: __snake_case = key_components[:-3] + [name] __snake_case = '.'.join(__lowerCAmelCase ) __snake_case = key if flax_key in special_pt_names: __snake_case = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __snake_case = np.asarray(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , np.ndarray ) else flax_tensor __snake_case = torch.from_numpy(__lowerCAmelCase ) # remove from missing keys missing_keys.remove(__lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCAmelCase ) pt_model.load_state_dict(__lowerCAmelCase ) # re-transform missing_keys to list __snake_case = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(f'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(__lowerCAmelCase ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) else: logger.warning( f'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' 'If your task is similar to the task the model of the checkpoint was trained on, ' f'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
356
'''simple docstring''' import operator def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ): lowerCamelCase__ = operator.lt if reverse else operator.gt lowerCamelCase__ = solution or [] if not arr: return solution lowerCamelCase__ = [arr.pop(0 )] for i, item in enumerate(__lowerCAmelCase ): if _operator(__lowerCAmelCase , sublist[-1] ): sublist.append(__lowerCAmelCase ) arr.pop(__lowerCAmelCase ) # merging sublist into solution list if not solution: solution.extend(__lowerCAmelCase ) else: while sublist: lowerCamelCase__ = sublist.pop(0 ) for i, xx in enumerate(__lowerCAmelCase ): if not _operator(__lowerCAmelCase , __lowerCAmelCase ): solution.insert(__lowerCAmelCase , __lowerCAmelCase ) break else: solution.append(__lowerCAmelCase ) strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase :Any = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
561
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A__ ( __lowerCAmelCase : dict ): return (data["data"], data["target"]) def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ): lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__lowerCAmelCase , __lowerCAmelCase ) # Predict target for test data lowerCamelCase__ = xgb.predict(__lowerCAmelCase ) lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 ) return predictions def A__ ( ): lowerCamelCase__ = fetch_california_housing() lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 ) lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
173
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 20 lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create ramp distribution lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase__ = 5 lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy() lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCamelCase__ = 5 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 15 lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCamelCase__ = 1 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = 5 lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCamelCase__ = 4 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # with processor list lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
50
0
import argparse from collections import defaultdict import yaml UpperCAmelCase : Union[str, Any] = 'docs/source/en/_toctree.yml' def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = defaultdict(__lowerCAmelCase ) lowerCamelCase = [] lowerCamelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(__lowerCAmelCase ) lowerCamelCase = new_doc_list lowerCamelCase = [key for key, value in counts.items() if value > 1] lowerCamelCase = [] for duplicate_key in duplicates: lowerCamelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(__lowerCAmelCase ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) lowerCamelCase = sorted(__lowerCAmelCase , key=lambda lowerCamelCase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__lowerCAmelCase ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(__lowerCAmelCase ) # Sort return overview_doc def __lowerCamelCase ( lowerCamelCase__ : Optional[Any]=False ): '''simple docstring''' with open(__lowerCAmelCase , encoding="""utf-8""" ) as f: lowerCamelCase = yaml.safe_load(f.read() ) # Get to the API doc lowerCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCamelCase = content[api_idx]["""sections"""] # Then to the model doc lowerCamelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowerCamelCase = api_doc[scheduler_idx]["""sections"""] lowerCamelCase = clean_doc_toc(__lowerCAmelCase ) lowerCamelCase = False if new_scheduler_doc != scheduler_doc: lowerCamelCase = True if overwrite: lowerCamelCase = new_scheduler_doc if diff: if overwrite: lowerCamelCase = api_doc with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__lowerCAmelCase , allow_unicode=__lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def __lowerCamelCase ( lowerCamelCase__ : List[str]=False ): '''simple docstring''' with open(__lowerCAmelCase , encoding="""utf-8""" ) as f: lowerCamelCase = yaml.safe_load(f.read() ) # Get to the API doc lowerCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCamelCase = content[api_idx]["""sections"""] # Then to the model doc lowerCamelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowerCamelCase = False lowerCamelCase = api_doc[pipeline_idx]["""sections"""] lowerCamelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowerCamelCase = pipeline_doc["""section"""] lowerCamelCase = clean_doc_toc(__lowerCAmelCase ) if overwrite: lowerCamelCase = new_sub_pipeline_doc new_pipeline_docs.append(__lowerCAmelCase ) # sort overall pipeline doc lowerCamelCase = clean_doc_toc(__lowerCAmelCase ) if new_pipeline_docs != pipeline_docs: lowerCamelCase = True if overwrite: lowerCamelCase = new_pipeline_docs if diff: if overwrite: lowerCamelCase = api_doc with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__lowerCAmelCase , allow_unicode=__lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase : Any = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
457
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase : Any = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import os def lowerCamelCase__ ( snake_case_ : str = "input.txt" ) -> List[Any]: with open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) as input_file: __snake_case = [ [int(__lowerCAmelCase ) for element in line.split(''',''' )] for line in input_file.readlines() ] __snake_case = len(__lowerCAmelCase ) __snake_case = len(matrix[0] ) __snake_case = [[-1 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): __snake_case = matrix[i][0] for j in range(1 , __lowerCAmelCase ): for i in range(__lowerCAmelCase ): __snake_case = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __lowerCAmelCase ): __snake_case = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __snake_case = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
592
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' def __UpperCamelCase ( lowercase_ : int ): """simple docstring""" a_ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __UpperCamelCase ( lowercase_ : int = 5_000 ): """simple docstring""" a_ = [(i * (3 * i - 1)) // 2 for i in range(1 , __lowerCAmelCase )] for i, pentagonal_i in enumerate(__lowerCAmelCase ): for j in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): a_ = pentagonal_nums[j] a_ = pentagonal_i + pentagonal_j a_ = pentagonal_j - pentagonal_i if is_pentagonal(__lowerCAmelCase ) and is_pentagonal(__lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
536
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Union[str, Any] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : List[Any] , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : Tuple ): """simple docstring""" self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for a, b in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertAlmostEqual(_lowerCAmelCase , _lowerCAmelCase , delta=_lowerCAmelCase ) def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowerCAmelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = None ops.enable_eager_execution_internal() snake_case_ = tf.config.list_physical_devices("CPU" ) if len(_lowerCAmelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) snake_case_ = tf.config.list_logical_devices(device_type="CPU" ) snake_case_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): snake_case_ = GradientAccumulator() snake_case_ = tf.Variable([4.0, 3.0] ) snake_case_ , snake_case_ = create_optimizer(5E-5 , 10 , 5 ) snake_case_ = tf.Variable([0.0, 0.0] , trainable=_lowerCAmelCase ) def accumulate_on_replica(__lowercase : Dict ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__lowercase : str , __lowercase : List[str] ): with strategy.scope(): snake_case_ = strategy.experimental_local_results(_lowerCAmelCase ) local_variables[0].assign(_lowerCAmelCase ) local_variables[1].assign(_lowerCAmelCase ) strategy.run(_lowerCAmelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowerCAmelCase ) def _check_local_values(__lowercase : List[Any] , __lowercase : Optional[int] ): snake_case_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowerCAmelCase , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _lowerCAmelCase , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
376
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase : int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
50
0
import math def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCAmelCase ) def UpperCAmelCase_ ( _A = 1 / 1_23_45 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 3 while True: SCREAMING_SNAKE_CASE__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = int(__lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(__lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
493
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'gpt_bigcode' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = scale_attn_weights lowerCamelCase__ = use_cache lowerCamelCase__ = attention_softmax_in_fpaa lowerCamelCase__ = scale_attention_softmax_in_fpaa lowerCamelCase__ = multi_query lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
50
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __A( __lowerCamelCase ): """simple docstring""" def UpperCAmelCase_ (self ): UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = 8 # DPR tok UpperCamelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCamelCase__ = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCamelCase__ = os.path.join(_lowerCAmelCase , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok UpperCamelCase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCamelCase__ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) UpperCamelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCamelCase__ = {"""unk_token""": """<unk>"""} UpperCamelCase__ = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCamelCase__ = os.path.join(_lowerCAmelCase , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ = os.path.join(_lowerCAmelCase , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def UpperCAmelCase_ (self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def UpperCAmelCase_ (self ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def UpperCAmelCase_ (self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def UpperCAmelCase_ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ (self ): UpperCamelCase__ = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_dummy_dataset() UpperCamelCase__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: UpperCamelCase__ = dataset UpperCamelCase__ = RagRetriever( _lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.get_dummy_dataset() UpperCamelCase__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""custom""" , ) if from_disk: UpperCamelCase__ = os.path.join(self.tmpdirname , """dataset""" ) UpperCamelCase__ = os.path.join(self.tmpdirname , """index.faiss""" ) dataset.get_index("""embeddings""" ).save(os.path.join(self.tmpdirname , """index.faiss""" ) ) dataset.drop_index("""embeddings""" ) dataset.save_to_disk(os.path.join(self.tmpdirname , """dataset""" ) ) del dataset UpperCamelCase__ = RagRetriever( _lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCamelCase__ = RagRetriever( _lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _lowerCAmelCase ) , ) return retriever def UpperCAmelCase_ (self ): UpperCamelCase__ = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("""embeddings""" , string_factory="""Flat""" , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase__ = os.path.join(self.tmpdirname , """hf_bert_base.hnswSQ8_correct_phi_128.c_index""" ) dataset.save_faiss_index("""embeddings""" , index_file_name + """.index.dpr""" ) pickle.dump(dataset["""id"""] , open(index_file_name + """.index_meta.dpr""" , """wb""" ) ) UpperCamelCase__ = os.path.join(self.tmpdirname , """psgs_w100.tsv.pkl""" ) UpperCamelCase__ = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset} pickle.dump(_lowerCAmelCase , open(_lowerCAmelCase , """wb""" ) ) UpperCamelCase__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="""legacy""" , index_path=self.tmpdirname , ) UpperCamelCase__ = RagRetriever( _lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCAmelCase_ (self ): UpperCamelCase__ = 1 UpperCamelCase__ = self.get_dummy_canonical_hf_index_retriever() UpperCamelCase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = retriever.retrieve(_lowerCAmelCase , n_docs=_lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , _lowerCAmelCase ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: UpperCamelCase__ = self.get_dummy_dataset() retriever.save_pretrained(_lowerCAmelCase ) UpperCamelCase__ = RagRetriever.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ = retriever.retrieve(_lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase_ (self ): UpperCamelCase__ = 1 UpperCamelCase__ = self.get_dummy_custom_hf_index_retriever(from_disk=_lowerCAmelCase ) UpperCamelCase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = retriever.retrieve(_lowerCAmelCase , n_docs=_lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , _lowerCAmelCase ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_dummy_custom_hf_index_retriever(from_disk=_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_lowerCAmelCase ) UpperCamelCase__ = RagRetriever.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ = retriever.retrieve(_lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase_ (self ): UpperCamelCase__ = 1 UpperCamelCase__ = self.get_dummy_custom_hf_index_retriever(from_disk=_lowerCAmelCase ) UpperCamelCase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = retriever.retrieve(_lowerCAmelCase , n_docs=_lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) , _lowerCAmelCase ) self.assertEqual(doc_dicts[0]["""id"""][0] , """1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] , """0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_dummy_custom_hf_index_retriever(from_disk=_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_lowerCAmelCase ) UpperCamelCase__ = RagRetriever.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ = retriever.retrieve(_lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase_ (self ): UpperCamelCase__ = 1 UpperCamelCase__ = self.get_dummy_legacy_index_retriever() UpperCamelCase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = retriever.retrieve(_lowerCAmelCase , n_docs=_lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["""text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""text"""] ) , _lowerCAmelCase ) self.assertEqual(doc_dicts[0]["""text"""][0] , """bar""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""text"""][0] , """foo""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_lowerCAmelCase ) UpperCamelCase__ = RagRetriever.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ = retriever.retrieve(_lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase_ (self ): import torch UpperCamelCase__ = 1 UpperCamelCase__ = self.get_dummy_canonical_hf_index_retriever() UpperCamelCase__ = [[5, 7], [10, 11]] UpperCamelCase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ = retriever(_lowerCAmelCase , _lowerCAmelCase , prefix=retriever.config.generator.prefix , n_docs=_lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = ( out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , np.ndarray ) UpperCamelCase__ = retriever( _lowerCAmelCase , _lowerCAmelCase , prefix=retriever.config.generator.prefix , n_docs=_lowerCAmelCase , return_tensors="""pt""" , ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = ( # noqa: F841 out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], out["""doc_ids"""], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_dpr_ctx_encoder_tokenizer() UpperCamelCase__ = 1 UpperCamelCase__ = self.get_dummy_custom_hf_index_retriever(from_disk=_lowerCAmelCase ) retriever.set_ctx_encoder_tokenizer(_lowerCAmelCase ) UpperCamelCase__ = [[5, 7], [10, 11]] UpperCamelCase__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ = retriever(_lowerCAmelCase , _lowerCAmelCase , prefix=retriever.config.generator.prefix , n_docs=_lowerCAmelCase ) self.assertEqual( len(_lowerCAmelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("""tokenized_doc_ids""", """tokenized_doc_attention_mask""") ) , _lowerCAmelCase ) # check for doc token related keys in dictionary.
513
'''simple docstring''' from PIL import Image def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ): def brightness(__lowerCAmelCase : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
50
0
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _a : int , _a : Tuple=7 , _a : Optional[Any]=3 , _a : Tuple=18 , _a : int=30 , _a : str=400 , _a : int=True , _a : Optional[int]=None , _a : Optional[int]=True , _a : List[Any]=None , _a : Tuple=True , _a : str=[0.5, 0.5, 0.5] , _a : Optional[Any]=[0.5, 0.5, 0.5] , _a : List[Any]=False , ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =size if size is not None else {'height': 20, 'width': 20} _SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else {'height': 18, 'width': 18} _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =min_resolution _SCREAMING_SNAKE_CASE =max_resolution _SCREAMING_SNAKE_CASE =do_resize _SCREAMING_SNAKE_CASE =size _SCREAMING_SNAKE_CASE =do_center_crop _SCREAMING_SNAKE_CASE =crop_size _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =image_mean _SCREAMING_SNAKE_CASE =image_std _SCREAMING_SNAKE_CASE =do_reduce_labels def A ( self : int ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _SCREAMING_SNAKE_CASE =Image.open(dataset[0]['file'] ) _SCREAMING_SNAKE_CASE =Image.open(dataset[1]['file'] ) return image, map def _lowerCAmelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) _SCREAMING_SNAKE_CASE =Image.open(ds[1]['file'] ) _SCREAMING_SNAKE_CASE =Image.open(ds[2]['file'] ) _SCREAMING_SNAKE_CASE =Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class A__ ( A__ , unittest.TestCase ): A__ = BeitImageProcessor if is_vision_available() else None def A ( self : str ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =BeitImageProcessingTester(self ) @property def A ( self : Optional[int] ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std' ) ) def A ( self : List[Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCAmelCase ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) def A ( self : Optional[int] ) -> int: '''simple docstring''' pass def A ( self : Optional[int] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A ( self : str ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A ( self : Union[str, Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE =[] for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_semantic_single_inputs() _SCREAMING_SNAKE_CASE =image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_semantic_batch_inputs() _SCREAMING_SNAKE_CASE =image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def A ( self : int ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_semantic_single_inputs() _SCREAMING_SNAKE_CASE =image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
405
'''simple docstring''' def A__ ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCamelCase : Dict = generate_large_matrix() UpperCamelCase : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A__ ( __lowerCAmelCase : list[list[int]] ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase__ = (left + right) // 2 lowerCamelCase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase__ = mid + 1 else: lowerCamelCase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def A__ ( __lowerCAmelCase : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def A__ ( ): from timeit import timeit print("""Running benchmarks""" ) lowerCamelCase__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
50
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Tuple =RobertaTokenizer UpperCAmelCase_ : Union[str, Any] =RobertaTokenizerFast UpperCAmelCase_ : Tuple =True UpperCAmelCase_ : List[Any] ={"cls_token": "<s>"} def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __snake_case : Optional[int] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __snake_case : Tuple = {"unk_token": "<unk>"} __snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowerCAmelCase ) ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' __snake_case : int = "lower newer" __snake_case : str = "lower newer" return input_text, output_text def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : str = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case : str = "lower newer" __snake_case : Union[str, Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] __snake_case : List[str] = tokenizer.tokenize(_lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Dict = tokens + [tokenizer.unk_token] __snake_case : List[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=_lowerCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=_lowerCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : Tuple = self.tokenizer_class.from_pretrained("roberta-base" ) __snake_case : int = tokenizer.encode("sequence builders" , add_special_tokens=_lowerCAmelCase ) __snake_case : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=_lowerCAmelCase ) __snake_case : List[Any] = tokenizer.encode( "sequence builders" , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) __snake_case : int = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) __snake_case : Any = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Optional[int] = "Encode this sequence." __snake_case : List[str] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments __snake_case : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) __snake_case : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Optional[Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) __snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) __snake_case : Optional[Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) __snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_lowerCAmelCase , _lowerCAmelCase ) # Testing spaces after special tokens __snake_case : Optional[Any] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase )} ) # mask token has a left space __snake_case : Optional[Any] = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) __snake_case : str = "Encode <mask> sequence" __snake_case : Optional[int] = "Encode <mask>sequence" __snake_case : Dict = tokenizer.encode(_lowerCAmelCase ) __snake_case : List[str] = encoded.index(_lowerCAmelCase ) __snake_case : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : str = tokenizer.encode(_lowerCAmelCase ) __snake_case : List[str] = encoded.index(_lowerCAmelCase ) __snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : List[Any] = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : Optional[int] = "A, <mask> AllenNLP sentence." __snake_case : Optional[Any] = tokenizer_r.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) __snake_case : Tuple = tokenizer_p.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) __snake_case : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) __snake_case : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _lowerCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( _lowerCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) __snake_case : str = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , _lowerCAmelCase ) self.assertEqual(post_processor_state["add_prefix_space"] , _lowerCAmelCase ) self.assertEqual(post_processor_state["trim_offsets"] , _lowerCAmelCase ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : Any = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __snake_case : List[Any] = F"""{text_of_1_token} {text_of_1_token}""" __snake_case : str = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) __snake_case : Optional[int] = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) __snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) __snake_case : List[Any] = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) __snake_case : Tuple = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) __snake_case : Optional[Any] = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ), len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) __snake_case : Any = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) __snake_case : int = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ), len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) __snake_case : Union[str, Any] = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case : Tuple = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) __snake_case : Dict = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ) + 1, 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) __snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) __snake_case : Dict = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ), 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) __snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) __snake_case : int = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ), 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , )
243
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase : List[Any] = 'examples/' UpperCamelCase : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCamelCase : Any = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCamelCase : Any = 'README.md' def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern] lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase ) lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : str ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = """🤗 Transformers currently provides the following architectures""" lowerCamelCase__ = """1. Want to contribute a new model?""" with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Find the start of the list. lowerCamelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowerCamelCase__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) def A__ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Union[str, Any]=False ): lowerCamelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowerCamelCase__ = default_version.base_version elif patch: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A__ ( ): lowerCamelCase__ = get_version() lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowerCamelCase__ = current_version.base_version # Check with the user we got that right. lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCamelCase : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
50
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[int] ): __snake_case = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) __snake_case = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case = model(_lowerCAmelCase )['last_hidden_state'] __snake_case = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice. __snake_case = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
356
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase : int = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } UpperCamelCase : Tuple = { 'squeezebert/squeezebert-uncased': 5_12, 'squeezebert/squeezebert-mnli': 5_12, 'squeezebert/squeezebert-mnli-headless': 5_12, } UpperCamelCase : Dict = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = SqueezeBertTokenizer def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,): super().__init__( _lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = strip_accents lowerCamelCase__ = tokenize_chinese_chars lowerCamelCase__ = normalizer_class(**_lowerCAmelCase ) lowerCamelCase__ = do_lower_case def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ): lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
50
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') lowerCAmelCase :int = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase :List[str] = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) lowerCAmelCase :int = BeautifulSoup(res.text, '''html.parser''') lowerCAmelCase :Optional[Any] = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F'https://google.com{link.get("href")}')
561
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__ ( __lowerCAmelCase : Any ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def A__ ( __lowerCAmelCase : str ): # word like '180' or '身高' or '神' for char in word: lowerCamelCase__ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = set() for token in tokens: lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowerCamelCase__ = list(__lowerCAmelCase ) return word_list def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ): if not chinese_word_set: return bert_tokens lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowerCamelCase__ = bert_tokens lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase ) while start < end: lowerCamelCase__ = True if is_chinese(bert_word[start] ): lowerCamelCase__ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowerCamelCase__ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase__ = """##""" + bert_word[j] lowerCamelCase__ = start + i lowerCamelCase__ = False break if single_word: start += 1 return bert_word def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ): lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = [] for id in input_ids: lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowerCamelCase__ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def A__ ( __lowerCAmelCase : Optional[int] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert ) lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) UpperCamelCase : Any = parser.parse_args() main(args)
50
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" __SCREAMING_SNAKE_CASE = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __SCREAMING_SNAKE_CASE = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __SCREAMING_SNAKE_CASE = field(default=lowerCamelCase_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCAmelCase_ : """simple docstring""" __SCREAMING_SNAKE_CASE = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) __SCREAMING_SNAKE_CASE = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def A__ ( ): '''simple docstring''' UpperCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome.") UpperCamelCase : Optional[int] = import_module("tasks") try: UpperCamelCase : int = getattr(__lowerCAmelCase , model_args.task_type) UpperCamelCase : int = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''') # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , __lowerCAmelCase) # Set seed set_seed(training_args.seed) # Prepare CONLL-2003 task UpperCamelCase : int = token_classification_task.get_labels(data_args.labels) UpperCamelCase : List[Any] = dict(enumerate(__lowerCAmelCase)) UpperCamelCase : Any = len(__lowerCAmelCase) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid={label: i for i, label in enumerate(__lowerCAmelCase)} , cache_dir=model_args.cache_dir , ) UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) UpperCamelCase : Any = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets UpperCamelCase : List[str] = ( TokenClassificationDataset( token_classification_task=__lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=__lowerCAmelCase , labels=__lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCamelCase : List[str] = ( TokenClassificationDataset( token_classification_task=__lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=__lowerCAmelCase , labels=__lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A : np.ndarray , A : np.ndarray) -> Tuple[List[int], List[int]]: UpperCamelCase : Dict = np.argmax(__lowerCAmelCase , axis=2) UpperCamelCase , UpperCamelCase : str = preds.shape UpperCamelCase : List[str] = [[] for _ in range(__lowerCAmelCase)] UpperCamelCase : str = [[] for _ in range(__lowerCAmelCase)] for i in range(__lowerCAmelCase): for j in range(__lowerCAmelCase): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) return preds_list, out_label_list def compute_metrics(A : EvalPrediction) -> Dict: UpperCamelCase , UpperCamelCase : str = align_predictions(p.predictions , p.label_ids) return { "accuracy_score": accuracy_score(__lowerCAmelCase , __lowerCAmelCase), "precision": precision_score(__lowerCAmelCase , __lowerCAmelCase), "recall": recall_score(__lowerCAmelCase , __lowerCAmelCase), "f1": fa_score(__lowerCAmelCase , __lowerCAmelCase), } # Data collator UpperCamelCase : Dict = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation UpperCamelCase : Optional[int] = {} if training_args.do_eval: logger.info("*** Evaluate ***") UpperCamelCase : str = trainer.evaluate() UpperCamelCase : int = os.path.join(training_args.output_dir , "eval_results.txt") if trainer.is_world_process_zero(): with open(__lowerCAmelCase , "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s" , __lowerCAmelCase , __lowerCAmelCase) writer.write("%s = %s\n" % (key, value)) results.update(__lowerCAmelCase) # Predict if training_args.do_predict: UpperCamelCase : Union[str, Any] = TokenClassificationDataset( token_classification_task=__lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=__lowerCAmelCase , labels=__lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) UpperCamelCase , UpperCamelCase , UpperCamelCase : int = trainer.predict(__lowerCAmelCase) UpperCamelCase , UpperCamelCase : List[Any] = align_predictions(__lowerCAmelCase , __lowerCAmelCase) UpperCamelCase : Optional[Any] = os.path.join(training_args.output_dir , "test_results.txt") if trainer.is_world_process_zero(): with open(__lowerCAmelCase , "w") as writer: for key, value in metrics.items(): logger.info(" %s = %s" , __lowerCAmelCase , __lowerCAmelCase) writer.write("%s = %s\n" % (key, value)) # Save predictions UpperCamelCase : Dict = os.path.join(training_args.output_dir , "test_predictions.txt") if trainer.is_world_process_zero(): with open(__lowerCAmelCase , "w") as writer: with open(os.path.join(data_args.data_dir , "test.txt") , "r") as f: token_classification_task.write_predictions_to_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) return results def A__ ( A : Union[str, Any]): '''simple docstring''' main() if __name__ == "__main__": main()
173
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 lowerCamelCase__ = [5, 11, 17, 23] lowerCamelCase__ = [256, 512, 1024, 1024] lowerCamelCase__ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = [256, 512, 768, 768] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = (1, 384, 384) lowerCamelCase__ = False lowerCamelCase__ = """project""" if "ade" in checkpoint_url: lowerCamelCase__ = True lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = [1, 150, 480, 480] return config, expected_shape def A__ ( __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCamelCase__ = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCamelCase__ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCamelCase__ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCamelCase__ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCamelCase__ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowerCamelCase__ = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowerCamelCase__ = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384 lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) # forward pass lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
50
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCAmelCase : List[str] = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Optional[int] = "ernie_m" UpperCamelCase : List[Any] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , A = 25_00_02 , A = 7_68 , A = 12 , A = 12 , A = 30_72 , A = "gelu" , A = 0.1 , A = 0.1 , A = 5_14 , A = 0.02 , A = 1 , A = 1e-0_5 , A=None , A=False , A=0.0 , **A , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = classifier_dropout lowerCamelCase = is_decoder lowerCamelCase = act_dropout
457
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Tuple = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Optional[Any] = 'bart' A_ : Dict = ['past_key_values'] A_ : List[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self : Dict , a__ : List[str]=5_0265 , a__ : Any=1024 , a__ : Tuple=12 , a__ : Optional[Any]=4096 , a__ : Any=16 , a__ : Optional[int]=12 , a__ : Tuple=4096 , a__ : Union[str, Any]=16 , a__ : Dict=0.0 , a__ : Optional[Any]=0.0 , a__ : Optional[Any]="gelu" , a__ : Union[str, Any]=1024 , a__ : str=0.1 , a__ : Optional[int]=0.0 , a__ : str=0.0 , a__ : List[Any]=0.0_2 , a__ : int=0.0 , a__ : str=False , a__ : Dict=True , a__ : List[str]=3 , a__ : Dict=1 , a__ : Tuple=0 , a__ : Dict=2 , a__ : Optional[Any]=True , a__ : Union[str, Any]=2 , a__ : List[str]=2 , **a__ : Any , ): """simple docstring""" __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = classifier_dropout __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , _lowerCAmelCase ): __snake_case = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @property def a (self : Dict ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case = {0: '''batch'''} __snake_case = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(_lowerCAmelCase ): __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def a (self : Any ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = super().outputs else: __snake_case = super(_lowerCAmelCase , self ).outputs if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(_lowerCAmelCase ): __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a (self : Union[str, Any] , a__ : List[Any] , a__ : Dict = -1 , a__ : Dict = -1 , a__ : Dict = False , a__ : List[Any] = None , ): """simple docstring""" __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs __snake_case = seq_length if not self.use_past else 1 __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __snake_case = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case , __snake_case = common_inputs['''input_ids'''].shape __snake_case = common_inputs['''decoder_input_ids'''].shape[1] __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = decoder_seq_length + 3 __snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __snake_case = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) __snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __snake_case , __snake_case = self.num_layers __snake_case = min(_lowerCAmelCase , _lowerCAmelCase ) __snake_case = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers __snake_case = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. __snake_case = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def a (self : List[Any] , a__ : Any , a__ : int = -1 , a__ : Any = -1 , a__ : Optional[Any] = False , a__ : Tuple = None , ): """simple docstring""" __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case , __snake_case = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case , __snake_case = self.num_layers __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = common_inputs['''attention_mask'''].dtype __snake_case = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) __snake_case = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def a (self : List[Any] , a__ : Dict , a__ : Any = -1 , a__ : List[Any] = -1 , a__ : str = False , a__ : Dict = None , ): """simple docstring""" __snake_case = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) __snake_case = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __snake_case = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __snake_case = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def a (self : str , a__ : List[Any] , a__ : List[Any] = -1 , a__ : Tuple = -1 , a__ : Optional[Any] = False , a__ : Tuple = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) elif self.task == "causal-lm": __snake_case = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def a (self : List[Any] , a__ : List[Any] , a__ : str , a__ : Optional[int] , a__ : Optional[Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __snake_case = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
592
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'codegen' _UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_ctx lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = rotary_dim lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = use_cache lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__( bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,): super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase ) if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ): # TODO: how to do that better? lowerCamelCase__ = 0 @property def UpperCamelCase_ ( self ): lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ) lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase__ = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase_ ( self ): return self._config.n_layer @property def UpperCamelCase_ ( self ): return self._config.n_head def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers ) ] lowerCamelCase__ = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype lowerCamelCase__ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self ): return 13
50
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __SCREAMING_SNAKE_CASE (__A , __A , __A , unittest.TestCase ): """simple docstring""" _a : Any = StableDiffusionControlNetImgaImgPipeline _a : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _a : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _a : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a ( self ): """simple docstring""" torch.manual_seed(0 ) a_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) a_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) a_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) torch.manual_seed(0 ) a_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) a_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ = CLIPTextModel(_lowerCAmelCase ) a_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a_ = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _a ( self , UpperCamelCase__ , UpperCamelCase__=0 ): """simple docstring""" if str(_lowerCAmelCase ).startswith('mps' ): a_ = torch.manual_seed(_lowerCAmelCase ) else: a_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) a_ = 2 a_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_lowerCAmelCase , device=torch.device(_lowerCAmelCase ) , ) a_ = floats_tensor(control_image.shape , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) a_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] a_ = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('RGB' ).resize((64, 64) ) a_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _a ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _a ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __SCREAMING_SNAKE_CASE (__A , __A , unittest.TestCase ): """simple docstring""" _a : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline _a : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _a : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a : Tuple = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _a ( self ): """simple docstring""" torch.manual_seed(0 ) a_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCamelCase__ ): if isinstance(_lowerCAmelCase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) a_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_lowerCAmelCase ) torch.manual_seed(0 ) a_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_lowerCAmelCase ) torch.manual_seed(0 ) a_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) torch.manual_seed(0 ) a_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) a_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ = CLIPTextModel(_lowerCAmelCase ) a_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a_ = MultiControlNetModel([controlneta, controlneta] ) a_ = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _a ( self , UpperCamelCase__ , UpperCamelCase__=0 ): """simple docstring""" if str(_lowerCAmelCase ).startswith('mps' ): a_ = torch.manual_seed(_lowerCAmelCase ) else: a_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) a_ = 2 a_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_lowerCAmelCase , device=torch.device(_lowerCAmelCase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_lowerCAmelCase , device=torch.device(_lowerCAmelCase ) , ), ] a_ = floats_tensor(control_image[0].shape , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) a_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] a_ = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('RGB' ).resize((64, 64) ) a_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _a ( self ): """simple docstring""" a_ = self.get_dummy_components() a_ = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) a_ = 10.0 a_ = 4 a_ = self.get_dummy_inputs(_lowerCAmelCase ) a_ = steps a_ = scale a_ = pipe(**_lowerCAmelCase )[0] a_ = self.get_dummy_inputs(_lowerCAmelCase ) a_ = steps a_ = scale a_ = pipe(**_lowerCAmelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] a_ = self.get_dummy_inputs(_lowerCAmelCase ) a_ = steps a_ = scale a_ = pipe(**_lowerCAmelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] a_ = self.get_dummy_inputs(_lowerCAmelCase ) a_ = steps a_ = scale a_ = pipe(**_lowerCAmelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _a ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _a ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _a ( self ): """simple docstring""" a_ = self.get_dummy_components() a_ = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_lowerCAmelCase ) except NotImplementedError: pass @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def _a ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): """simple docstring""" a_ = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) a_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=_lowerCAmelCase , controlnet=_lowerCAmelCase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_lowerCAmelCase ) a_ = torch.Generator(device='cpu' ).manual_seed(0 ) a_ = 'evil space-punk bird' a_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) a_ = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) a_ = pipe( _lowerCAmelCase , _lowerCAmelCase , control_image=_lowerCAmelCase , generator=_lowerCAmelCase , output_type='np' , num_inference_steps=50 , strength=0.6 , ) a_ = output.images[0] assert image.shape == (512, 512, 3) a_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
536
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase__ : Tuple = 'true' def lowerCamelCase__ ( _A , _A=82 , _A=16 ): '''simple docstring''' set_seed(42 ) snake_case_ = RegressionModel() snake_case_ = deepcopy(__lowerCAmelCase ) snake_case_ = RegressionDataset(length=__lowerCAmelCase ) snake_case_ = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) model.to(accelerator.device ) snake_case_ , snake_case_ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) return model, ddp_model, dataloader def lowerCamelCase__ ( _A , _A=False ): '''simple docstring''' snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) snake_case_ = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(_A ): snake_case_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs with accelerator.main_process_first(): snake_case_ = dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) snake_case_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_A ): if use_longest: return tokenizer.pad(__lowerCAmelCase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(__lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=16 ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = Accelerator(dispatch_batches=__lowerCAmelCase , split_batches=__lowerCAmelCase ) snake_case_ = get_dataloader(__lowerCAmelCase , not dispatch_batches ) snake_case_ = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=__lowerCAmelCase ) snake_case_ , snake_case_ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = [] for batch in dataloader: snake_case_ , snake_case_ = batch.values() with torch.no_grad(): snake_case_ = model(__lowerCAmelCase ) snake_case_ , snake_case_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case_ , snake_case_ = [], [] for logit, targ in logits_and_targets: logits.append(__lowerCAmelCase ) targs.append(__lowerCAmelCase ) snake_case_ , snake_case_ = torch.cat(__lowerCAmelCase ), torch.cat(__lowerCAmelCase ) return logits, targs def lowerCamelCase__ ( _A , _A=82 , _A=False , _A=False , _A=16 ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ = get_basic_setup(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case_ , snake_case_ = generate_predictions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert ( len(__lowerCAmelCase ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCAmelCase )}" def lowerCamelCase__ ( _A = False , _A = False ): '''simple docstring''' snake_case_ = evaluate.load("glue" , "mrpc" ) snake_case_ , snake_case_ = get_mrpc_setup(__lowerCAmelCase , __lowerCAmelCase ) # First do baseline snake_case_ , snake_case_ , snake_case_ = setup["no"] model.to(__lowerCAmelCase ) model.eval() for batch in dataloader: batch.to(__lowerCAmelCase ) with torch.inference_mode(): snake_case_ = model(**__lowerCAmelCase ) snake_case_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowerCAmelCase , references=batch["labels"] ) snake_case_ = metric.compute() # Then do distributed snake_case_ , snake_case_ , snake_case_ = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case_ = model(**__lowerCAmelCase ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ = batch["labels"] snake_case_ , snake_case_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) snake_case_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(__lowerCAmelCase , __lowerCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case_ = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(__lowerCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) snake_case_ = Accelerator() test_torch_metrics(__lowerCAmelCase , 512 ) accelerator.state._reset_state() def lowerCamelCase__ ( _A ): '''simple docstring''' main() if __name__ == "__main__": main()
376
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCAmelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCamelCase__ = v.half() if save_path is None: # overwrite src_path lowerCamelCase__ = src_path torch.save(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
50
0
def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = int(__lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = divmod(__lowerCAmelCase , 2 ) return binary_recursive(__lowerCAmelCase ) + str(__lowerCAmelCase ) def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = str(__lowerCAmelCase ).strip() if not number: raise ValueError('''No input value was provided''' ) SCREAMING_SNAKE_CASE__ = '''-''' if number.startswith('''-''' ) else '''''' SCREAMING_SNAKE_CASE__ = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return F'''{negative}0b{binary_recursive(int(__lowerCAmelCase ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
493
'''simple docstring''' import os from pathlib import Path def A__ ( ): from torch.utils.cpp_extension import load lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowerCamelCase__ = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
50
0
from statistics import mean import numpy as np def __magic_name__ ( __a : list , __a : list , __a : list , __a : int ): '''simple docstring''' UpperCamelCase__ = 0 # Number of processes finished UpperCamelCase__ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. UpperCamelCase__ = [0] * no_of_process # List to include calculation results UpperCamelCase__ = [0] * no_of_process # Sort by arrival time. UpperCamelCase__ = [burst_time[i] for i in np.argsort(__lowerCAmelCase )] UpperCamelCase__ = [process_name[i] for i in np.argsort(__lowerCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: UpperCamelCase__ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: UpperCamelCase__ = arrival_time[i] UpperCamelCase__ = 0 # Index showing the location of the process being performed UpperCamelCase__ = 0 # Saves the current response ratio. UpperCamelCase__ = 0 for i in range(0 , __lowerCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: UpperCamelCase__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: UpperCamelCase__ = temp UpperCamelCase__ = i # Calculate the turn around time UpperCamelCase__ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. UpperCamelCase__ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __magic_name__ ( __a : list , __a : list , __a : list , __a : int ): '''simple docstring''' UpperCamelCase__ = [0] * no_of_process for i in range(0 , __lowerCAmelCase ): UpperCamelCase__ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCamelCase_ = 5 lowerCamelCase_ = ['A', 'B', 'C', 'D', 'E'] lowerCamelCase_ = [1, 2, 3, 4, 5] lowerCamelCase_ = [1, 2, 3, 4, 5] lowerCamelCase_ = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCamelCase_ = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( f'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' f'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(f'average waiting time : {mean(waiting_time):.5f}') print(f'average turn around time : {mean(turn_around_time):.5f}')
513
'''simple docstring''' def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ): lowerCamelCase__ = len(__lowerCAmelCase ) print("""The following activities are selected:""" ) # The first activity is always selected lowerCamelCase__ = 0 print(__lowerCAmelCase , end=""",""" ) # Consider rest of the activities for j in range(__lowerCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__lowerCAmelCase , end=""",""" ) lowerCamelCase__ = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Union[str, Any] = [1, 3, 0, 5, 8, 5] UpperCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
50
0
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCamelCase : List[Any] = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Tuple ) -> int: """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _lowerCAmelCase ( _UpperCamelCase : Tuple ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =_TestCommandArgs(dataset=__lowerCAmelCase , all_configs=__lowerCAmelCase , save_infos=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =TestCommand(*__lowerCAmelCase ) test_command.run() _SCREAMING_SNAKE_CASE =os.path.join(__lowerCAmelCase , 'README.md' ) assert os.path.exists(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =DatasetInfosDict.from_directory(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE =DatasetInfosDict( { 'default': DatasetInfo( features=Features( { 'tokens': Sequence(Value('string' ) ), 'ner_tags': Sequence( ClassLabel(names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] ) ), 'langs': Sequence(Value('string' ) ), 'spans': Sequence(Value('string' ) ), } ) , splits=[ { 'name': 'train', 'num_bytes': 2_35_15_63, 'num_examples': 1_00_00, }, { 'name': 'validation', 'num_bytes': 23_84_18, 'num_examples': 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =getattr(dataset_infos['default'] , __lowerCAmelCase ), getattr(expected_dataset_infos['default'] , __lowerCAmelCase ) if key == "num_bytes": assert is_apercent_close(__lowerCAmelCase , __lowerCAmelCase ) elif key == "splits": assert list(__lowerCAmelCase ) == list(__lowerCAmelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
405
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" ,_lowerCAmelCase ,) super().__init__(args=_lowerCAmelCase ,**_lowerCAmelCase )
50
0
def lowerCAmelCase__( lowercase : list[int] ) -> Optional[Any]: __snake_case : Any = [] if len(__lowerCAmelCase ) == 1: return [nums.copy()] for _ in range(len(__lowerCAmelCase ) ): __snake_case : List[str] = nums.pop(0 ) __snake_case : Optional[int] = permute(__lowerCAmelCase ) for perm in permutations: perm.append(__lowerCAmelCase ) result.extend(__lowerCAmelCase ) nums.append(__lowerCAmelCase ) return result def lowerCAmelCase__( lowercase : List[Any] ) -> Any: def backtrack(lowercase : Optional[int] ): if start == len(__lowerCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): __snake_case , __snake_case : List[str] = nums[i], nums[start] backtrack(start + 1 ) __snake_case , __snake_case : List[Any] = nums[i], nums[start] # backtrack __snake_case : List[Any] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _UpperCamelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
243
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = [] for line in lines: lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments if line: filtered_lines.append(__lowerCAmelCase ) lowerCamelCase__ = """\n""".join(__lowerCAmelCase ) # Make a hash from all this code lowerCamelCase__ = full_str.encode("""utf-8""" ) return shaaaa(__lowerCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCamelCase : Dict = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCamelCase : str = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
50
0
'''simple docstring''' import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowerCamelCase__ ( a , a , a , a ): __snake_case = multiprocessing.Manager() __snake_case = manager.list() __snake_case = multiprocessing.Process(target=__lowerCAmelCase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowerCamelCase__ ( a , a , a ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __snake_case = shutil.rmtree __snake_case = os.rmdir __snake_case = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __snake_case = {} with swallow_io(): with time_limit(__lowerCAmelCase ): exec(__lowerCAmelCase , __lowerCAmelCase ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(f'failed: {e}' ) # Needed for cleaning up. __snake_case = rmtree __snake_case = rmdir __snake_case = chdir @contextlib.contextmanager def lowerCamelCase__ ( a ): def signal_handler(a , a ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , __lowerCAmelCase ) signal.signal(signal.SIGALRM , __lowerCAmelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def lowerCamelCase__ ( ): __snake_case = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowerCAmelCase ): with contextlib.redirect_stderr(__lowerCAmelCase ): with redirect_stdin(__lowerCAmelCase ): yield @contextlib.contextmanager def lowerCamelCase__ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowerCAmelCase ): yield dirname class a_ ( UpperCAmelCase__ ): pass class a_ ( io.StringIO ): def lowercase__ ( self : Dict , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ): raise OSError def lowercase__ ( self : Union[str, Any] , *__lowerCAmelCase : str , **__lowerCAmelCase : Optional[int] ): raise OSError def lowercase__ ( self : Optional[int] , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): raise OSError def lowercase__ ( self : Tuple , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Tuple ): return False class a_ ( contextlib._RedirectStream ): # type: ignore lowercase_ : List[Any] = '''stdin''' @contextlib.contextmanager def lowerCamelCase__ ( a ): if root == ".": yield return __snake_case = os.getcwd() os.chdir(__lowerCAmelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowerCAmelCase ) def lowerCamelCase__ ( a=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __snake_case = None __snake_case = None import os __snake_case = '1' __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None import shutil __snake_case = None __snake_case = None __snake_case = None import subprocess __snake_case = None # type: ignore __snake_case = None import sys __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None
356
'''simple docstring''' import operator def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ): lowerCamelCase__ = operator.lt if reverse else operator.gt lowerCamelCase__ = solution or [] if not arr: return solution lowerCamelCase__ = [arr.pop(0 )] for i, item in enumerate(__lowerCAmelCase ): if _operator(__lowerCAmelCase , sublist[-1] ): sublist.append(__lowerCAmelCase ) arr.pop(__lowerCAmelCase ) # merging sublist into solution list if not solution: solution.extend(__lowerCAmelCase ) else: while sublist: lowerCamelCase__ = sublist.pop(0 ) for i, xx in enumerate(__lowerCAmelCase ): if not _operator(__lowerCAmelCase , __lowerCAmelCase ): solution.insert(__lowerCAmelCase , __lowerCAmelCase ) break else: solution.append(__lowerCAmelCase ) strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
50
0
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : int = ProphetNetTokenizer A_ : Optional[Any] = False def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: super().setUp() __magic_name__ : Optional[int] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : List[str] ) -> Tuple: __magic_name__ : Tuple = 'UNwant\u00E9d,running' __magic_name__ : Tuple = 'unwanted, running' return input_text, output_text def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.tokenizer_class(self.vocab_file ) __magic_name__ : Any = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_lowerCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Any: __magic_name__ : int = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __lowerCAmelCase ( self : str ) -> List[str]: __magic_name__ : List[str] = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ : str = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : List[Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : List[str] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __lowerCAmelCase ( self : List[Any] ) -> List[str]: __magic_name__ : Tuple = BasicTokenizer(do_lower_case=_lowerCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __lowerCAmelCase ( self : List[str] ) -> List[Any]: __magic_name__ : Optional[Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __magic_name__ : int = {} for i, token in enumerate(_lowerCAmelCase ): __magic_name__ : int = i __magic_name__ : Any = WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def __lowerCAmelCase ( self : Optional[int] ) -> Any: __magic_name__ : Any = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __magic_name__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : List[str] = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __magic_name__ : str = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) __magic_name__ : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __lowerCAmelCase ( self : Dict ) -> List[str]: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __lowerCAmelCase ( self : Any ) -> List[str]: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ : Any = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __magic_name__ : List[str] = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCAmelCase ) __magic_name__ : List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCAmelCase ) __magic_name__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __magic_name__ : List[str] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
561
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A__ ( __lowerCAmelCase : dict ): return (data["data"], data["target"]) def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ): lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__lowerCAmelCase , __lowerCAmelCase ) # Predict target for test data lowerCamelCase__ = xgb.predict(__lowerCAmelCase ) lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 ) return predictions def A__ ( ): lowerCamelCase__ = fetch_california_housing() lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 ) lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
50
0
'''simple docstring''' import functools def A__ ( A : list[int] , A : list[int]): '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase) for day in days): raise ValueError("The parameter days should be a list of integers") if len(__lowerCAmelCase) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase) for cost in costs): raise ValueError("The parameter costs should be a list of three integers") if len(__lowerCAmelCase) == 0: return 0 if min(__lowerCAmelCase) <= 0: raise ValueError("All days elements should be greater than 0") if max(__lowerCAmelCase) >= 3_66: raise ValueError("All days elements should be less than 366") UpperCamelCase : Optional[Any] = set(__lowerCAmelCase) @functools.cache def dynamic_programming(A : int) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1) return min( costs[0] + dynamic_programming(index + 1) , costs[1] + dynamic_programming(index + 7) , costs[2] + dynamic_programming(index + 30) , ) return dynamic_programming(1) if __name__ == "__main__": import doctest doctest.testmod()
173
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 20 lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create ramp distribution lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase__ = 5 lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy() lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCamelCase__ = 5 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 15 lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCamelCase__ = 1 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = 5 lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCamelCase__ = 4 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # with processor list lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
50
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' for char in word: lowerCamelCase = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' lowerCamelCase = set() for token in tokens: lowerCamelCase = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowerCamelCase = list(__lowerCAmelCase ) return word_list def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens lowerCamelCase = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowerCamelCase = bert_tokens lowerCamelCase , lowerCamelCase = 0, len(__lowerCAmelCase ) while start < end: lowerCamelCase = True if is_chinese(bert_word[start] ): lowerCamelCase = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowerCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase = """##""" + bert_word[j] lowerCamelCase = start + i lowerCamelCase = False break if single_word: start += 1 return bert_word def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : LTP , lowerCamelCase__ : BertTokenizer ): '''simple docstring''' lowerCamelCase = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws lowerCamelCase = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase = [] for id in input_ids: lowerCamelCase = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowerCamelCase = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowerCamelCase = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def __lowerCamelCase ( lowerCamelCase__ : Optional[int] ): '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase = f.readlines() lowerCamelCase = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase = LTP(args.ltp ) # faster in GPU device lowerCamelCase = BertTokenizer.from_pretrained(args.bert ) lowerCamelCase = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) UpperCAmelCase : Any = parser.parse_args() main(args)
457
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase : Any = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : str ): """simple docstring""" __snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , '''width_multiplier''' ) ) class SCREAMING_SNAKE_CASE__ : def __init__(self : Optional[Any] , a__ : str , a__ : Tuple=13 , a__ : Dict=64 , a__ : int=2 , a__ : str=3 , a__ : List[Any]="swish" , a__ : Union[str, Any]=3 , a__ : Optional[int]=32 , a__ : List[str]=0.1 , a__ : Optional[Any]=0.0_2 , a__ : Optional[Any]=True , a__ : Any=True , a__ : List[str]=10 , a__ : Tuple=None , a__ : Optional[int]=0.2_5 , a__ : List[str]=0.0 , a__ : Optional[Any]=0.0 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = make_divisible(512 * width_multiplier , divisor=8 ) __snake_case = hidden_act __snake_case = conv_kernel_size __snake_case = output_stride __snake_case = classifier_dropout_prob __snake_case = use_labels __snake_case = is_training __snake_case = num_labels __snake_case = initializer_range __snake_case = scope __snake_case = width_multiplier __snake_case = ffn_dropout __snake_case = attn_dropout def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels, pixel_labels def a (self : int ): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def a (self : Optional[Any] , a__ : Optional[int] , a__ : List[Any] , a__ : List[Any] , a__ : Any ): """simple docstring""" __snake_case = MobileViTVaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a (self : Tuple , a__ : Any , a__ : Any , a__ : List[str] , a__ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = MobileViTVaForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Optional[Any] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : Any , a__ : str ): """simple docstring""" __snake_case = self.num_labels __snake_case = MobileViTVaForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : str = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) A_ : Tuple = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) A_ : str = False A_ : Any = False A_ : List[str] = False A_ : List[str] = False def a (self : str ): """simple docstring""" __snake_case = MobileViTVaModelTester(self ) __snake_case = MobileViTVaConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def a (self : str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def a (self : Any ): """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def a (self : Optional[Any] ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : str ): """simple docstring""" pass def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(_lowerCAmelCase ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def a (self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def a (self : List[str] ): """simple docstring""" def check_hidden_states_output(a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] ): __snake_case = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case = outputs.hidden_states __snake_case = 5 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case = 2 for i in range(len(_lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def a (self : List[str] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def a (self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = MobileViTVaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCamelCase__ ( ) -> Optional[int]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : List[Any] ): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def a (self : Tuple ): """simple docstring""" __snake_case = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _lowerCAmelCase ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __snake_case = model(**_lowerCAmelCase ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __snake_case = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def a (self : Tuple ): """simple docstring""" __snake_case = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __snake_case = model.to(_lowerCAmelCase ) __snake_case = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __snake_case = prepare_img() __snake_case = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __snake_case = model(**_lowerCAmelCase ) __snake_case = outputs.logits # verify the logits __snake_case = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _lowerCAmelCase ) __snake_case = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def a (self : int ): """simple docstring""" __snake_case = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __snake_case = model.to(_lowerCAmelCase ) __snake_case = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __snake_case = prepare_img() __snake_case = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __snake_case = model(**_lowerCAmelCase ) __snake_case = outputs.logits.detach().cpu() __snake_case = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(50, 60)] ) __snake_case = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase ) __snake_case = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) __snake_case = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
592
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' from functools import reduce __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __UpperCamelCase ( lowercase_ : str = N ): """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda lowercase_ , lowercase_ : str(int(__lowerCAmelCase ) * int(__lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(__lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
536
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Union[str, Any] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowercase__ : Optional[int] = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' lowercase__ : int = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' lowercase__ : Tuple = r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def snake_case__ ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def snake_case__ ( self : Optional[int] , __lowercase : str , __lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = 0.0 for i, j in zip(_lowerCAmelCase , _lowerCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_lowerCAmelCase , _lowerCAmelCase ) else 0.0 snake_case_ = n_correct / len(_lowerCAmelCase ) return { "accuracy": accuracy, }
376
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase : int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
50
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = BigBirdConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: SCREAMING_SNAKE_CASE__ = BigBirdForQuestionAnswering(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ = BigBirdForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowerCAmelCase , __lowerCAmelCase , is_trivia_qa=__lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
493
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'gpt_bigcode' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = scale_attn_weights lowerCamelCase__ = use_cache lowerCamelCase__ = attention_softmax_in_fpaa lowerCamelCase__ = scale_attention_softmax_in_fpaa lowerCamelCase__ = multi_query lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
50
0
from __future__ import annotations lowerCamelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = graph # mapping node to its parent in resulting breadth first tree UpperCamelCase__ = {} UpperCamelCase__ = source_vertex def UpperCAmelCase_ (self ): UpperCamelCase__ = {self.source_vertex} UpperCamelCase__ = None UpperCamelCase__ = [self.source_vertex] # first in first out queue while queue: UpperCamelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_lowerCAmelCase ) UpperCamelCase__ = vertex queue.append(_lowerCAmelCase ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if target_vertex == self.source_vertex: return self.source_vertex UpperCamelCase__ = self.parent.get(_lowerCAmelCase ) if target_vertex_parent is None: UpperCamelCase__ = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(_lowerCAmelCase ) return self.shortest_path(_lowerCAmelCase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase_ = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
513
'''simple docstring''' from PIL import Image def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ): def brightness(__lowerCAmelCase : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
50
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A__ ( unittest.TestCase ): def A ( self : List[Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE =['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _SCREAMING_SNAKE_CASE =dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _SCREAMING_SNAKE_CASE =['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _SCREAMING_SNAKE_CASE ={'unk_token': '<unk>'} _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE ={ 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def A ( self : List[Any] , **_a : Tuple ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def A ( self : str , **_a : Optional[Any] ) -> Dict: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def A ( self : Optional[Any] , **_a : List[str] ) -> List[Any]: '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def A ( self : int ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A ( self : Dict ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : List[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def A ( self : List[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def A ( self : Tuple ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_lowerCAmelCase , return_tensors='np' ) _SCREAMING_SNAKE_CASE =processor(images=_lowerCAmelCase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self : int ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE ='lower newer' _SCREAMING_SNAKE_CASE =processor(text=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE =tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE ='lower newer' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def A ( self : Tuple ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.batch_decode(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def A ( self : Dict ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE ='lower newer' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
405
'''simple docstring''' def A__ ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCamelCase : Dict = generate_large_matrix() UpperCamelCase : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A__ ( __lowerCAmelCase : list[list[int]] ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase__ = (left + right) // 2 lowerCamelCase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase__ = mid + 1 else: lowerCamelCase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def A__ ( __lowerCAmelCase : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def A__ ( ): from timeit import timeit print("""Running benchmarks""" ) lowerCamelCase__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
50
0
def lowerCAmelCase__( lowercase : int ) -> List[Any]: __snake_case : int = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
243
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase : List[Any] = 'examples/' UpperCamelCase : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCamelCase : Any = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCamelCase : Any = 'README.md' def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern] lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase ) lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : str ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = """🤗 Transformers currently provides the following architectures""" lowerCamelCase__ = """1. Want to contribute a new model?""" with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Find the start of the list. lowerCamelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowerCamelCase__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) def A__ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Union[str, Any]=False ): lowerCamelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowerCamelCase__ = default_version.base_version elif patch: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A__ ( ): lowerCamelCase__ = get_version() lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowerCamelCase__ = current_version.base_version # Check with the user we got that right. lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCamelCase : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
50
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class a_ ( UpperCAmelCase__ ): lowercase_ : Dict = '''blip_text_model''' def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[Any]=3_0_5_2_4 , __lowerCAmelCase : List[str]=7_6_8 , __lowerCAmelCase : Tuple=7_6_8 , __lowerCAmelCase : Tuple=3_0_7_2 , __lowerCAmelCase : Dict=7_6_8 , __lowerCAmelCase : List[str]=1_2 , __lowerCAmelCase : str=8 , __lowerCAmelCase : Union[str, Any]=5_1_2 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : List[str]=1E-12 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : Any=3_0_5_2_2 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Any=0 , __lowerCAmelCase : Union[str, Any]=1_0_2 , __lowerCAmelCase : str=True , __lowerCAmelCase : Union[str, Any]=True , **__lowerCAmelCase : List[Any] , ): super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , sep_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = encoder_hidden_size __snake_case = intermediate_size __snake_case = projection_dim __snake_case = hidden_dropout_prob __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = max_position_embeddings __snake_case = layer_norm_eps __snake_case = hidden_act __snake_case = initializer_range __snake_case = attention_probs_dropout_prob __snake_case = is_decoder __snake_case = use_cache @classmethod def lowercase__ ( cls : List[str] , __lowerCAmelCase : str , **__lowerCAmelCase : Optional[Any] ): cls._set_token_in_kwargs(_lowerCAmelCase ) __snake_case , __snake_case = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __snake_case = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class a_ ( UpperCAmelCase__ ): lowercase_ : int = '''blip_vision_model''' def __init__( self : Tuple , __lowerCAmelCase : Optional[Any]=7_6_8 , __lowerCAmelCase : Optional[int]=3_0_7_2 , __lowerCAmelCase : int=5_1_2 , __lowerCAmelCase : List[str]=1_2 , __lowerCAmelCase : List[Any]=1_2 , __lowerCAmelCase : List[Any]=3_8_4 , __lowerCAmelCase : str=1_6 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : Any=1E-10 , **__lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) __snake_case = hidden_size __snake_case = intermediate_size __snake_case = projection_dim __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = patch_size __snake_case = image_size __snake_case = initializer_range __snake_case = attention_dropout __snake_case = layer_norm_eps __snake_case = hidden_act @classmethod def lowercase__ ( cls : Union[str, Any] , __lowerCAmelCase : Dict , **__lowerCAmelCase : Union[str, Any] ): cls._set_token_in_kwargs(_lowerCAmelCase ) __snake_case , __snake_case = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class a_ ( UpperCAmelCase__ ): lowercase_ : Optional[Any] = '''blip''' lowercase_ : Tuple = True def __init__( self : Optional[Any] , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Any=5_1_2 , __lowerCAmelCase : Optional[Any]=2.6592 , __lowerCAmelCase : Dict=2_5_6 , **__lowerCAmelCase : Any , ): super().__init__(**_lowerCAmelCase ) if text_config is None: __snake_case = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __snake_case = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __snake_case = BlipTextConfig(**_lowerCAmelCase ) __snake_case = BlipVisionConfig(**_lowerCAmelCase ) __snake_case = self.vision_config.hidden_size __snake_case = projection_dim __snake_case = logit_scale_init_value __snake_case = 1.0 __snake_case = 0.02 __snake_case = image_text_hidden_size @classmethod def lowercase__ ( cls : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , **__lowerCAmelCase : Optional[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCAmelCase ) def lowercase__ ( self : Dict ): __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.text_config.to_dict() __snake_case = self.vision_config.to_dict() __snake_case = self.__class__.model_type return output
356
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase : int = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } UpperCamelCase : Tuple = { 'squeezebert/squeezebert-uncased': 5_12, 'squeezebert/squeezebert-mnli': 5_12, 'squeezebert/squeezebert-mnli-headless': 5_12, } UpperCamelCase : Dict = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = SqueezeBertTokenizer def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,): super().__init__( _lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = strip_accents lowerCamelCase__ = tokenize_chinese_chars lowerCamelCase__ = normalizer_class(**_lowerCAmelCase ) lowerCamelCase__ = do_lower_case def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ): lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
50
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase :List[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] ): """simple docstring""" inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ : List[str] = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ : Union[str, Any] = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : int = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __magic_name__ : List[Any] = expected_configs[0] assert expected_config in infos __magic_name__ : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" __magic_name__ : Dict = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos __magic_name__ : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] ): """simple docstring""" with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
561
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__ ( __lowerCAmelCase : Any ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def A__ ( __lowerCAmelCase : str ): # word like '180' or '身高' or '神' for char in word: lowerCamelCase__ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = set() for token in tokens: lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowerCamelCase__ = list(__lowerCAmelCase ) return word_list def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ): if not chinese_word_set: return bert_tokens lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowerCamelCase__ = bert_tokens lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase ) while start < end: lowerCamelCase__ = True if is_chinese(bert_word[start] ): lowerCamelCase__ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowerCamelCase__ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase__ = """##""" + bert_word[j] lowerCamelCase__ = start + i lowerCamelCase__ = False break if single_word: start += 1 return bert_word def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ): lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = [] for id in input_ids: lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowerCamelCase__ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def A__ ( __lowerCAmelCase : Optional[int] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert ) lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) UpperCamelCase : Any = parser.parse_args() main(args)
50
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = (DDIMParallelScheduler,) __SCREAMING_SNAKE_CASE = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def SCREAMING_SNAKE_CASE__ ( self , **lowerCamelCase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : List[str] = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE__ ( self , **lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Tuple = self.scheduler_classes[0] UpperCamelCase : Optional[int] = self.get_scheduler_config(**_lowerCAmelCase ) UpperCamelCase : str = scheduler_class(**_lowerCAmelCase ) UpperCamelCase , UpperCamelCase : int = 10, 0.0 UpperCamelCase : List[str] = self.dummy_model() UpperCamelCase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for t in scheduler.timesteps: UpperCamelCase : int = model(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Tuple = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) UpperCamelCase : int = self.scheduler_classes[0] UpperCamelCase : Any = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase : Optional[int] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCAmelCase , eta=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : List[str] = self.scheduler_classes[0] UpperCamelCase : str = self.get_scheduler_config() UpperCamelCase : List[str] = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' UpperCamelCase : Tuple = self.scheduler_classes[0] UpperCamelCase : Tuple = self.get_scheduler_config() UpperCamelCase : int = scheduler_class(**_lowerCAmelCase ) UpperCamelCase , UpperCamelCase : str = 10, 0.0 scheduler.set_timesteps(_lowerCAmelCase ) UpperCamelCase : Dict = self.dummy_model() UpperCamelCase : List[str] = self.dummy_sample_deter UpperCamelCase : List[Any] = self.dummy_sample_deter + 0.1 UpperCamelCase : int = self.dummy_sample_deter - 0.1 UpperCamelCase : List[Any] = samplea.shape[0] UpperCamelCase : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase : int = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) UpperCamelCase : Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase : Any = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCAmelCase ) UpperCamelCase : Any = torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCamelCase : int = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Tuple = self.full_loop() UpperCamelCase : Optional[Any] = torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCamelCase : Optional[Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Optional[int] = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase : int = torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCamelCase : Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : Tuple = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) UpperCamelCase : Union[str, Any] = torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCamelCase : Dict = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : int = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) UpperCamelCase : Any = torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCamelCase : Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
173
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 lowerCamelCase__ = [5, 11, 17, 23] lowerCamelCase__ = [256, 512, 1024, 1024] lowerCamelCase__ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = [256, 512, 768, 768] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = (1, 384, 384) lowerCamelCase__ = False lowerCamelCase__ = """project""" if "ade" in checkpoint_url: lowerCamelCase__ = True lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = [1, 150, 480, 480] return config, expected_shape def A__ ( __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCamelCase__ = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCamelCase__ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCamelCase__ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCamelCase__ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCamelCase__ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowerCamelCase__ = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowerCamelCase__ = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384 lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) # forward pass lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
50
0
def __lowerCamelCase ( ): '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase : Dict = generate_large_matrix() UpperCAmelCase : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCamelCase ( lowerCamelCase__ : list[list[int]] ): '''simple docstring''' assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def __lowerCamelCase ( lowerCamelCase__ : list[int] ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase = (left + right) // 2 lowerCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase = mid + 1 else: lowerCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def __lowerCamelCase ( lowerCamelCase__ : list[list[int]] ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): lowerCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def __lowerCamelCase ( lowerCamelCase__ : list[list[int]] ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __lowerCamelCase ( lowerCamelCase__ : list[list[int]] ): '''simple docstring''' lowerCamelCase = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def __lowerCamelCase ( ): '''simple docstring''' from timeit import timeit print("""Running benchmarks""" ) lowerCamelCase = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase = timeit(f'{func}(grid=grid)' , setup=__lowerCAmelCase , number=500 ) print(f'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
457
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Tuple = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
import warnings from ..trainer import Trainer from ..utils import logging snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[Any] , a__ : str=None , **a__ : List[str] ): """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , _lowerCAmelCase , ) super().__init__(args=_lowerCAmelCase , **_lowerCAmelCase )
592
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'codegen' _UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_ctx lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = rotary_dim lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = use_cache lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__( bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,): super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase ) if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ): # TODO: how to do that better? lowerCamelCase__ = 0 @property def UpperCamelCase_ ( self ): lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ) lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase__ = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase_ ( self ): return self._config.n_layer @property def UpperCamelCase_ ( self ): return self._config.n_head def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers ) ] lowerCamelCase__ = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype lowerCamelCase__ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self ): return 13
50
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : int ): """simple docstring""" a_ = [] for part_id in partition_order: a_ = df.where(F'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__lowerCAmelCase ): expected_row_ids_and_row_dicts.append((F'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __UpperCamelCase ( ): """simple docstring""" a_ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a_ = spark.range(100 ).repartition(1 ) a_ = Spark(__lowerCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __UpperCamelCase ( ): """simple docstring""" a_ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a_ = spark.range(10 ).repartition(2 ) a_ = [1, 0] a_ = _generate_iterable_examples(__lowerCAmelCase , __lowerCAmelCase ) # Reverse the partitions. a_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , __lowerCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCamelCase ( ): """simple docstring""" a_ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a_ = spark.range(10 ).repartition(1 ) a_ = SparkExamplesIterable(__lowerCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): assert row_id == F'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __UpperCamelCase ( ): """simple docstring""" a_ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a_ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: a_ = lambda lowercase_ : x.reverse() a_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [2, 1, 0] ) a_ = SparkExamplesIterable(__lowerCAmelCase ).shuffle_data_sources(__lowerCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): a_ , a_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCamelCase ( ): """simple docstring""" a_ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a_ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): a_ , a_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): a_ , a_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCamelCase ( ): """simple docstring""" a_ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a_ = spark.range(100 ).repartition(1 ) a_ = Spark(__lowerCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
536
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ : Dict = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['MaskFormerFeatureExtractor'] lowercase__ : Tuple = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] lowercase__ : Tuple = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
376
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCAmelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCamelCase__ = v.half() if save_path is None: # overwrite src_path lowerCamelCase__ = src_path torch.save(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
50
0