code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
_SCREAMING_SNAKE_CASE : Optional[Any] = '<<<<<<< This should probably be modified because it mentions: '
_SCREAMING_SNAKE_CASE : Union[str, Any] = '=======\n>>>>>>>\n'
_SCREAMING_SNAKE_CASE : Optional[int] = [
'TextEncoderConfig',
'ByteTextEncoder',
'SubwordTextEncoder',
'encoder_config',
'maybe_build_from_corpus',
'manual_dir',
]
_SCREAMING_SNAKE_CASE : Optional[Any] = [
# (pattern, replacement)
# Order is important here for some replacements
(r'tfds\.core', r'datasets'),
(r'tf\.io\.gfile\.GFile', r'open'),
(r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'),
(r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'),
(r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'),
(r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('),
(r'tfds\.features\.FeaturesDict\(', r'dict('),
(r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'),
(r'tfds\.', r'datasets.'),
(r'dl_manager\.manual_dir', r'self.config.data_dir'),
(r'self\.builder_config', r'self.config'),
]
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
return ConvertCommand(args.tfds_path , args.datasets_directory )
class UpperCAmelCase__ ( A__ ):
"""simple docstring"""
@staticmethod
def lowercase_ ( __lowerCamelCase : Tuple ) -> int:
SCREAMING_SNAKE_CASE__ = parser.add_parser(
'''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , )
train_parser.add_argument(
'''--tfds_path''' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , )
train_parser.add_argument(
'''--datasets_directory''' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''Path to the HuggingFace Datasets folder.''' )
train_parser.set_defaults(func=_lowerCAmelCase )
def __init__( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : List[str] , *__lowerCamelCase : Optional[int] ) -> int:
SCREAMING_SNAKE_CASE__ = get_logger('''datasets-cli/converting''' )
SCREAMING_SNAKE_CASE__ = tfds_path
SCREAMING_SNAKE_CASE__ = datasets_directory
def lowercase_ ( self : Dict ) -> int:
if os.path.isdir(self._tfds_path ):
SCREAMING_SNAKE_CASE__ = os.path.abspath(self._tfds_path )
elif os.path.isfile(self._tfds_path ):
SCREAMING_SNAKE_CASE__ = os.path.dirname(self._tfds_path )
else:
raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' )
SCREAMING_SNAKE_CASE__ = os.path.abspath(self._datasets_directory )
self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' )
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = {}
if os.path.isdir(self._tfds_path ):
SCREAMING_SNAKE_CASE__ = os.listdir(_lowerCAmelCase )
else:
SCREAMING_SNAKE_CASE__ = [os.path.basename(self._tfds_path )]
for f_name in file_names:
self._logger.info(f'''Looking at file {f_name}''' )
SCREAMING_SNAKE_CASE__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
SCREAMING_SNAKE_CASE__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
if not os.path.isfile(_lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info('''Skipping file''' )
continue
with open(_lowerCAmelCase , encoding='''utf-8''' ) as f:
SCREAMING_SNAKE_CASE__ = f.readlines()
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = []
for line in lines:
SCREAMING_SNAKE_CASE__ = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
SCREAMING_SNAKE_CASE__ = '''import datasets\n'''
elif "import tensorflow" in out_line:
# order is important here
SCREAMING_SNAKE_CASE__ = ''''''
continue
elif "from absl import logging" in out_line:
SCREAMING_SNAKE_CASE__ = '''from datasets import logging\n'''
elif "getLogger" in out_line:
SCREAMING_SNAKE_CASE__ = out_line.replace('''getLogger''' , '''get_logger''' )
elif any(expression in out_line for expression in TO_HIGHLIGHT ):
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = list(filter(lambda __lowerCamelCase : e in out_line , _lowerCAmelCase ) )
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCAmelCase ) + '''\n''' )
out_lines.append(_lowerCAmelCase )
out_lines.append(_lowerCAmelCase )
continue
else:
for pattern, replacement in TO_CONVERT:
SCREAMING_SNAKE_CASE__ = re.sub(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
SCREAMING_SNAKE_CASE__ = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _lowerCAmelCase )
tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) )
SCREAMING_SNAKE_CASE__ = '''from . import ''' + match.group(1 )
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(f'''Error converting {out_line.strip()}''' )
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
SCREAMING_SNAKE_CASE__ = True
out_lines.append(_lowerCAmelCase )
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
SCREAMING_SNAKE_CASE__ = f_name.replace('''.py''' , '''''' )
SCREAMING_SNAKE_CASE__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
SCREAMING_SNAKE_CASE__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
self._logger.info(f'''Adding directory {output_dir}''' )
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} )
else:
# Utilities will be moved at the end
utils_files.append(_lowerCAmelCase )
if needs_manual_update:
with_manual_update.append(_lowerCAmelCase )
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.writelines(_lowerCAmelCase )
self._logger.info(f'''Converted in {output_file}''' )
for utils_file in utils_files:
try:
SCREAMING_SNAKE_CASE__ = os.path.basename(_lowerCAmelCase )
SCREAMING_SNAKE_CASE__ = imports_to_builder_map[f_name.replace('''.py''' , '''''' )]
self._logger.info(f'''Moving {dest_folder} to {utils_file}''' )
shutil.copy(_lowerCAmelCase , _lowerCAmelCase )
except KeyError:
self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' )
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
| 493 |
'''simple docstring'''
import os
from pathlib import Path
def A__ ( ):
from torch.utils.cpp_extension import load
lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
lowerCamelCase__ = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 50 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase_ = {
'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'],
'tokenization_deberta': ['DebertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ['DebertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'DebertaForMaskedLM',
'DebertaForQuestionAnswering',
'DebertaForSequenceClassification',
'DebertaForTokenClassification',
'DebertaModel',
'DebertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDebertaForMaskedLM',
'TFDebertaForQuestionAnswering',
'TFDebertaForSequenceClassification',
'TFDebertaForTokenClassification',
'TFDebertaModel',
'TFDebertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 513 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ):
lowerCamelCase__ = len(__lowerCAmelCase )
print("""The following activities are selected:""" )
# The first activity is always selected
lowerCamelCase__ = 0
print(__lowerCAmelCase , end=""",""" )
# Consider rest of the activities
for j in range(__lowerCAmelCase ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(__lowerCAmelCase , end=""",""" )
lowerCamelCase__ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase : Union[str, Any] = [1, 3, 0, 5, 8, 5]
UpperCamelCase : int = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 50 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
lowerCamelCase : List[Any] = {'tokenization_herbert': ['HerbertTokenizer']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : Tuple = ['HerbertTokenizerFast']
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
lowerCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 405 |
'''simple docstring'''
import warnings
from ..trainer import Trainer
from ..utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ):
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" ,_lowerCAmelCase ,)
super().__init__(args=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json',
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : int ="gpt_bigcode"
UpperCAmelCase_ : Tuple =["past_key_values"]
UpperCAmelCase_ : Union[str, Any] ={
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , UpperCAmelCase=50257 , UpperCAmelCase=1024 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=None , UpperCAmelCase="gelu_pytorch_tanh" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1E-5 , UpperCAmelCase=0.02 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=50256 , UpperCAmelCase=50256 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , **UpperCAmelCase , ) -> Dict:
'''simple docstring'''
__snake_case : List[str] = vocab_size
__snake_case : Union[str, Any] = n_positions
__snake_case : int = n_embd
__snake_case : Optional[Any] = n_layer
__snake_case : Optional[Any] = n_head
__snake_case : Any = n_inner
__snake_case : int = activation_function
__snake_case : Union[str, Any] = resid_pdrop
__snake_case : str = embd_pdrop
__snake_case : Optional[Any] = attn_pdrop
__snake_case : str = layer_norm_epsilon
__snake_case : Optional[Any] = initializer_range
__snake_case : Optional[Any] = scale_attn_weights
__snake_case : Optional[int] = use_cache
__snake_case : List[Any] = attention_softmax_in_fpaa
__snake_case : Optional[int] = scale_attention_softmax_in_fpaa
__snake_case : Optional[int] = multi_query
__snake_case : str = bos_token_id
__snake_case : Dict = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
| 243 |
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = []
for line in lines:
lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments
if line:
filtered_lines.append(__lowerCAmelCase )
lowerCamelCase__ = """\n""".join(__lowerCAmelCase )
# Make a hash from all this code
lowerCamelCase__ = full_str.encode("""utf-8""" )
return shaaaa(__lowerCAmelCase ).hexdigest()
# get importable module names and hash for caching
UpperCamelCase : Dict = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
UpperCamelCase : str = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
UpperCamelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('.zip')
_MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
| 50 | 0 |
'''simple docstring'''
import re
import string
import numpy as np
import datasets
_lowercase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n'
_lowercase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n'
_lowercase = '\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
def lowercase__ ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , reference_urls=[] , )
def lowercase__ ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=False , __lowerCAmelCase : int=False , __lowerCAmelCase : List[str]=False , ):
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
__snake_case = np.array([re.sub(_lowerCAmelCase , '' , _lowerCAmelCase ) for x in predictions] )
__snake_case = np.array([re.sub(_lowerCAmelCase , '' , _lowerCAmelCase ) for x in references] )
else:
__snake_case = np.asarray(_lowerCAmelCase )
__snake_case = np.asarray(_lowerCAmelCase )
if ignore_case:
__snake_case = np.char.lower(_lowerCAmelCase )
__snake_case = np.char.lower(_lowerCAmelCase )
if ignore_punctuation:
__snake_case = string.punctuation.maketrans('' , '' , string.punctuation )
__snake_case = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
__snake_case = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
if ignore_numbers:
__snake_case = string.digits.maketrans('' , '' , string.digits )
__snake_case = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
__snake_case = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
__snake_case = predictions == references
return {"exact_match": np.mean(_lowerCAmelCase ) * 1_0_0}
| 356 |
'''simple docstring'''
import operator
def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ):
lowerCamelCase__ = operator.lt if reverse else operator.gt
lowerCamelCase__ = solution or []
if not arr:
return solution
lowerCamelCase__ = [arr.pop(0 )]
for i, item in enumerate(__lowerCAmelCase ):
if _operator(__lowerCAmelCase , sublist[-1] ):
sublist.append(__lowerCAmelCase )
arr.pop(__lowerCAmelCase )
# merging sublist into solution list
if not solution:
solution.extend(__lowerCAmelCase )
else:
while sublist:
lowerCamelCase__ = sublist.pop(0 )
for i, xx in enumerate(__lowerCAmelCase ):
if not _operator(__lowerCAmelCase , __lowerCAmelCase ):
solution.insert(__lowerCAmelCase , __lowerCAmelCase )
break
else:
solution.append(__lowerCAmelCase )
strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 50 | 0 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def lowerCamelCase ( lowerCAmelCase : Any ):
"""simple docstring"""
if isinstance(__lowerCAmelCase , collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class _lowerCamelCase :
'''simple docstring'''
def __lowerCAmelCase ( self : Dict , _A : int , _A : Optional[int] ) -> str:
pass
def __lowerCAmelCase ( self : List[Any] ) -> List[str]:
pass
def __lowerCAmelCase ( self : Dict ) -> List[str]:
pass
def __lowerCAmelCase ( self : List[Any] , _A : Optional[Any] , _A : Tuple , _A : List[str] ) -> List[Any]:
__magic_name__ : Any = np.abs((a - b) ).max()
self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' )
def __lowerCAmelCase ( self : Dict , _A : Any , _A : List[Any] , _A : int , _A : List[Any] , _A : Union[str, Any]=None , **_A : Optional[Any] ) -> int:
__magic_name__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase )
__magic_name__ : Union[str, Any] = FlaxVisionTextDualEncoderModel(_lowerCAmelCase )
__magic_name__ : Any = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) )
def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Dict , _A : int , _A : List[Any] , _A : Dict=None , **_A : List[str] ) -> Tuple:
__magic_name__ , __magic_name__ : Dict = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase )
__magic_name__ : List[Any] = {'vision_model': vision_model, 'text_model': text_model}
__magic_name__ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase )
__magic_name__ : int = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) )
def __lowerCAmelCase ( self : List[Any] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Any , _A : List[str]=None , **_A : Optional[int] ) -> Any:
__magic_name__ , __magic_name__ : Union[str, Any] = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase )
__magic_name__ : str = {'vision_model': vision_model, 'text_model': text_model}
__magic_name__ : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase )
__magic_name__ : int = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
__magic_name__ : Tuple = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCAmelCase )
__magic_name__ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase )
__magic_name__ : Optional[Any] = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
__magic_name__ : List[str] = after_output[0]
__magic_name__ : str = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCAmelCase , 1E-3 )
def __lowerCAmelCase ( self : Tuple , _A : str , _A : Any , _A : int , _A : str , _A : int=None , **_A : List[Any] ) -> Union[str, Any]:
__magic_name__ , __magic_name__ : Tuple = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase )
__magic_name__ : int = {'vision_model': vision_model, 'text_model': text_model}
__magic_name__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase )
__magic_name__ : int = model(
input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase )
__magic_name__ : Dict = output.vision_model_output.attentions
self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
__magic_name__ : Union[str, Any] = to_atuple(vision_model.config.image_size )
__magic_name__ : Union[str, Any] = to_atuple(vision_model.config.patch_size )
__magic_name__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
__magic_name__ : str = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
__magic_name__ : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def __lowerCAmelCase ( self : Any , _A : str , _A : Optional[Any] , _A : Optional[int] ) -> List[str]:
pt_model.to(_lowerCAmelCase )
pt_model.eval()
# prepare inputs
__magic_name__ : str = inputs_dict
__magic_name__ : int = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
__magic_name__ : Union[str, Any] = pt_model(**_lowerCAmelCase ).to_tuple()
__magic_name__ : Union[str, Any] = fx_model(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(_lowerCAmelCase , pt_output.numpy() , 4E-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(_lowerCAmelCase )
__magic_name__ : str = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase , from_pt=_lowerCAmelCase )
__magic_name__ : Union[str, Any] = fx_model_loaded(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(_lowerCAmelCase , pt_output.numpy() , 4E-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(_lowerCAmelCase )
__magic_name__ : Tuple = VisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase , from_flax=_lowerCAmelCase )
pt_model_loaded.to(_lowerCAmelCase )
pt_model_loaded.eval()
with torch.no_grad():
__magic_name__ : Optional[int] = pt_model_loaded(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(_lowerCAmelCase , pt_output_loaded.numpy() , 4E-2 )
def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : Tuple , _A : Tuple ) -> Dict:
__magic_name__ : str = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase )
__magic_name__ : List[Any] = VisionTextDualEncoderModel(_lowerCAmelCase )
__magic_name__ : str = FlaxVisionTextDualEncoderModel(_lowerCAmelCase )
__magic_name__ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCAmelCase )
__magic_name__ : Dict = fx_state
self.check_pt_flax_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self : str , _A : List[Any] , _A : Dict , _A : Tuple ) -> Any:
__magic_name__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase )
__magic_name__ : Tuple = VisionTextDualEncoderModel(_lowerCAmelCase )
__magic_name__ : List[str] = FlaxVisionTextDualEncoderModel(_lowerCAmelCase )
__magic_name__ : List[str] = load_flax_weights_in_pytorch_model(_lowerCAmelCase , fx_model.params )
self.check_pt_flax_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Any:
__magic_name__ : List[str] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**_lowerCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
__magic_name__ : Optional[int] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase )
def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
__magic_name__ : Tuple = self.prepare_config_and_inputs()
self.check_save_load(**_lowerCAmelCase )
def __lowerCAmelCase ( self : int ) -> List[str]:
__magic_name__ : Optional[int] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**_lowerCAmelCase )
@is_pt_flax_cross_test
def __lowerCAmelCase ( self : int ) -> Optional[int]:
__magic_name__ : Optional[Any] = self.prepare_config_and_inputs()
__magic_name__ : Optional[Any] = config_inputs_dict.pop('vision_config' )
__magic_name__ : str = config_inputs_dict.pop('text_config' )
__magic_name__ : int = config_inputs_dict
self.check_equivalence_pt_to_flax(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
self.check_equivalence_flax_to_pt(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
@slow
def __lowerCAmelCase ( self : int ) -> List[str]:
__magic_name__ , __magic_name__ : Union[str, Any] = self.get_pretrained_model_and_inputs()
__magic_name__ : List[Any] = model_a(**_lowerCAmelCase )
__magic_name__ : List[str] = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(_lowerCAmelCase )
__magic_name__ : str = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase )
__magic_name__ : Optional[int] = model_a(**_lowerCAmelCase )
__magic_name__ : Dict = after_outputs[0]
__magic_name__ : List[str] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCAmelCase , 1E-5 )
@require_flax
class _lowerCamelCase ( lowercase__ , unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Tuple ) -> Tuple:
__magic_name__ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_lowerCAmelCase , text_from_pt=_lowerCAmelCase , )
__magic_name__ : Union[str, Any] = 13
__magic_name__ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
__magic_name__ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
__magic_name__ : List[str] = random_attention_mask([batch_size, 4] )
__magic_name__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def __lowerCAmelCase ( self : List[Any] , _A : Optional[Any] , _A : Dict ) -> List[str]:
__magic_name__ : Dict = FlaxViTModel(_lowerCAmelCase )
__magic_name__ : List[str] = FlaxBertModel(_lowerCAmelCase )
return vision_model, text_model
def __lowerCAmelCase ( self : str ) -> Any:
__magic_name__ : Optional[int] = FlaxViTModelTester(self )
__magic_name__ : Any = FlaxBertModelTester(self )
__magic_name__ : int = vit_model_tester.prepare_config_and_inputs()
__magic_name__ : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
__magic_name__ , __magic_name__ : Dict = vision_config_and_inputs
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[str] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class _lowerCamelCase ( lowercase__ , unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : Any ) -> List[str]:
__magic_name__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_lowerCAmelCase , text_from_pt=_lowerCAmelCase , )
__magic_name__ : Dict = 13
__magic_name__ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
__magic_name__ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
__magic_name__ : Optional[int] = random_attention_mask([batch_size, 4] )
__magic_name__ : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def __lowerCAmelCase ( self : Union[str, Any] , _A : Optional[Any] , _A : List[Any] ) -> int:
__magic_name__ : Union[str, Any] = FlaxCLIPVisionModel(_lowerCAmelCase )
__magic_name__ : str = FlaxBertModel(_lowerCAmelCase )
return vision_model, text_model
def __lowerCAmelCase ( self : Any ) -> List[Any]:
__magic_name__ : int = FlaxCLIPVisionModelTester(self )
__magic_name__ : Dict = FlaxBertModelTester(self )
__magic_name__ : Optional[int] = clip_model_tester.prepare_config_and_inputs()
__magic_name__ : int = bert_model_tester.prepare_config_and_inputs()
__magic_name__ , __magic_name__ : Any = vision_config_and_inputs
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __lowerCAmelCase ( self : Optional[Any] ) -> Any:
__magic_name__ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 )
__magic_name__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' )
__magic_name__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
__magic_name__ : int = processor(
text=['una foto di un gatto', 'una foto di un cane'] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' )
__magic_name__ : Optional[int] = model(**_lowerCAmelCase )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
__magic_name__ : int = np.array([[1.228_4727, 0.310_4122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) )
| 561 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def A__ ( __lowerCAmelCase : dict ):
return (data["data"], data["target"])
def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ):
lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__lowerCAmelCase , __lowerCAmelCase )
# Predict target for test data
lowerCamelCase__ = xgb.predict(__lowerCAmelCase )
lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 )
return predictions
def A__ ( ):
lowerCamelCase__ = fetch_california_housing()
lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 )
lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Error printing
print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 50 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''sew'''
def __init__( self , lowerCamelCase=32 , lowerCamelCase=7_68 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=30_72 , lowerCamelCase=2 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase="group" , lowerCamelCase="gelu" , lowerCamelCase=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase=False , lowerCamelCase=1_28 , lowerCamelCase=16 , lowerCamelCase=True , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=0 , lowerCamelCase="mean" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=2_56 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , **lowerCamelCase , ) -> Any:
'''simple docstring'''
super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase )
UpperCamelCase : Optional[Any] = hidden_size
UpperCamelCase : Any = feat_extract_norm
UpperCamelCase : Optional[int] = feat_extract_activation
UpperCamelCase : Optional[Any] = list(_lowerCAmelCase )
UpperCamelCase : int = list(_lowerCAmelCase )
UpperCamelCase : int = list(_lowerCAmelCase )
UpperCamelCase : Any = conv_bias
UpperCamelCase : Tuple = num_conv_pos_embeddings
UpperCamelCase : List[Any] = num_conv_pos_embedding_groups
UpperCamelCase : Tuple = len(self.conv_dim )
UpperCamelCase : List[Any] = num_hidden_layers
UpperCamelCase : Dict = intermediate_size
UpperCamelCase : str = squeeze_factor
UpperCamelCase : str = hidden_act
UpperCamelCase : List[Any] = num_attention_heads
UpperCamelCase : Optional[int] = hidden_dropout
UpperCamelCase : Optional[Any] = attention_dropout
UpperCamelCase : str = activation_dropout
UpperCamelCase : int = feat_proj_dropout
UpperCamelCase : int = final_dropout
UpperCamelCase : int = layerdrop
UpperCamelCase : Any = layer_norm_eps
UpperCamelCase : str = initializer_range
UpperCamelCase : Union[str, Any] = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase : Tuple = apply_spec_augment
UpperCamelCase : Union[str, Any] = mask_time_prob
UpperCamelCase : List[str] = mask_time_length
UpperCamelCase : Union[str, Any] = mask_time_min_masks
UpperCamelCase : Any = mask_feature_prob
UpperCamelCase : int = mask_feature_length
UpperCamelCase : int = mask_feature_min_masks
# ctc loss
UpperCamelCase : Tuple = ctc_loss_reduction
UpperCamelCase : Dict = ctc_zero_infinity
# sequence classification
UpperCamelCase : List[str] = use_weighted_layer_sum
UpperCamelCase : List[Any] = classifier_proj_size
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 173 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 20
lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create ramp distribution
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy()
lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 )
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy()
lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase__ = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
# check that min length is applied at length 5
lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 )
lowerCamelCase__ = 5
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] )
# check that min length is not applied anymore at length 15
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = 15
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 )
lowerCamelCase__ = 1
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 )
lowerCamelCase__ = 4
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# with processor list
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
# with processor list
def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
| 50 | 0 |
class __lowercase :
"""simple docstring"""
def __init__( self , A ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase = size
lowerCamelCase = [0] * size
lowerCamelCase = [0] * size
@staticmethod
def __A ( A ) -> int:
'''simple docstring'''
return index | (index + 1)
@staticmethod
def __A ( A ) -> Tuple:
'''simple docstring'''
return (index & (index + 1)) - 1
def __A ( self , A , A ) -> Any:
'''simple docstring'''
lowerCamelCase = value
while index < self.size:
lowerCamelCase = self.get_prev(_lowerCAmelCase ) + 1
if current_left_border == index:
lowerCamelCase = value
else:
lowerCamelCase = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
lowerCamelCase = self.get_next(_lowerCAmelCase )
def __A ( self , A , A ) -> Dict:
'''simple docstring'''
right -= 1 # Because of right is exclusive
lowerCamelCase = 0
while left <= right:
lowerCamelCase = self.get_prev(_lowerCAmelCase )
if left <= current_left:
lowerCamelCase = max(_lowerCAmelCase , self.tree[right] )
lowerCamelCase = current_left
else:
lowerCamelCase = max(_lowerCAmelCase , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 457 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCamelCase : Any = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
snake_case_ = r'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n'
@add_start_docstrings(_UpperCAmelCase )
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
A_ : int = 'rag'
A_ : List[str] = True
def __init__(self : List[str] , a__ : Tuple=None , a__ : Optional[int]=True , a__ : int=None , a__ : Union[str, Any]=None , a__ : Any=None , a__ : int=None , a__ : List[str]=None , a__ : str=" / " , a__ : Tuple=" // " , a__ : Any=5 , a__ : List[str]=300 , a__ : Dict=768 , a__ : Optional[int]=8 , a__ : str="wiki_dpr" , a__ : Union[str, Any]="train" , a__ : Tuple="compressed" , a__ : Dict=None , a__ : Any=None , a__ : Optional[Any]=False , a__ : Dict=False , a__ : str=0.0 , a__ : List[Any]=True , a__ : Optional[int]=False , a__ : List[Any]=False , a__ : Dict=False , a__ : Any=True , a__ : Union[str, Any]=None , **a__ : str , ):
"""simple docstring"""
super().__init__(
bos_token_id=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , prefix=_lowerCAmelCase , vocab_size=_lowerCAmelCase , **_lowerCAmelCase , )
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
__snake_case = kwargs.pop('''question_encoder''' )
__snake_case = question_encoder_config.pop('''model_type''' )
__snake_case = kwargs.pop('''generator''' )
__snake_case = decoder_config.pop('''model_type''' )
from ..auto.configuration_auto import AutoConfig
__snake_case = AutoConfig.for_model(_lowerCAmelCase , **_lowerCAmelCase )
__snake_case = AutoConfig.for_model(_lowerCAmelCase , **_lowerCAmelCase )
__snake_case = reduce_loss
__snake_case = label_smoothing
__snake_case = exclude_bos_score
__snake_case = do_marginalize
__snake_case = title_sep
__snake_case = doc_sep
__snake_case = n_docs
__snake_case = max_combined_length
__snake_case = dataset
__snake_case = dataset_split
__snake_case = index_name
__snake_case = retrieval_vector_size
__snake_case = retrieval_batch_size
__snake_case = passages_path
__snake_case = index_path
__snake_case = use_dummy_dataset
__snake_case = output_retrieved
__snake_case = do_deduplication
__snake_case = use_cache
if self.forced_eos_token_id is None:
__snake_case = getattr(self.generator , '''forced_eos_token_id''' , _lowerCAmelCase )
@classmethod
def a (cls : int , a__ : Optional[int] , a__ : Tuple , **a__ : List[Any] ):
"""simple docstring"""
return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_lowerCAmelCase )
def a (self : Tuple ):
"""simple docstring"""
__snake_case = copy.deepcopy(self.__dict__ )
__snake_case = self.question_encoder.to_dict()
__snake_case = self.generator.to_dict()
__snake_case = self.__class__.model_type
return output
| 592 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ):
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 | 0 |
'''simple docstring'''
def __UpperCamelCase ( lowercase_ : str , lowercase_ : bool = False ):
"""simple docstring"""
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
a_ = F'Expected string as input, found {type(__lowerCAmelCase )}'
raise ValueError(__lowerCAmelCase )
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
a_ = F'Expected boolean as use_pascal parameter, found {type(__lowerCAmelCase )}'
raise ValueError(__lowerCAmelCase )
a_ = input_str.split('_' )
a_ = 0 if use_pascal else 1
a_ = words[start_index:]
a_ = [word[0].upper() + word[1:] for word in words_to_capitalize]
a_ = '' if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 536 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Union[str, Any] = {
'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'],
'tokenization_canine': ['CanineTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Any = [
'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST',
'CanineForMultipleChoice',
'CanineForQuestionAnswering',
'CanineForSequenceClassification',
'CanineForTokenClassification',
'CanineLayer',
'CanineModel',
'CaninePreTrainedModel',
'load_tf_weights_in_canine',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : str = {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
lowerCAmelCase_ = '''dpr'''
def __init__( self : Tuple , __lowercase : int=3_05_22 , __lowercase : int=7_68 , __lowercase : Tuple=12 , __lowercase : int=12 , __lowercase : str=30_72 , __lowercase : str="gelu" , __lowercase : Any=0.1 , __lowercase : str=0.1 , __lowercase : Optional[int]=5_12 , __lowercase : str=2 , __lowercase : Optional[Any]=0.02 , __lowercase : str=1E-12 , __lowercase : Dict=0 , __lowercase : Union[str, Any]="absolute" , __lowercase : Any = 0 , **__lowercase : Optional[Any] , ):
"""simple docstring"""
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = hidden_act
snake_case_ = intermediate_size
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = projection_dim
snake_case_ = position_embedding_type
| 376 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase : int = '3'
print('Python version:', sys.version)
print('transformers version:', transformers.__version__)
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
print('NCCL version:', torch.cuda.nccl.version())
except ImportError:
print('Torch version:', None)
try:
import deepspeed
print('DeepSpeed version:', deepspeed.__version__)
except ImportError:
print('DeepSpeed version:', None)
try:
import tensorflow as tf
print('TensorFlow version:', tf.__version__)
print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))
print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))
except ImportError:
print('TensorFlow version:', None)
| 50 | 0 |
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self : str , __lowerCamelCase : Optional[int] ) -> Any:
SCREAMING_SNAKE_CASE__ = 3
SCREAMING_SNAKE_CASE__ = 250
SCREAMING_SNAKE_CASE__ = ids_tensor((batch_size, length) , _lowerCAmelCase )
SCREAMING_SNAKE_CASE__ = torch.ones((batch_size, length) , device=_lowerCAmelCase , dtype=torch.float ) / length
return input_ids, scores
def lowercase_ ( self : Dict ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_tensors(5 )
SCREAMING_SNAKE_CASE__ = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_tensors(9 )
self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_tensors(10 )
self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
def lowercase_ ( self : Union[str, Any] ) -> Any:
SCREAMING_SNAKE_CASE__ = MaxLengthCriteria(max_length=10 )
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_tensors(5 )
self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_tensors(9 )
self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_tensors(10 )
self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
def lowercase_ ( self : Dict ) -> List[str]:
SCREAMING_SNAKE_CASE__ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_tensors(5 )
self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_tensors(9 )
self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_tensors(10 )
self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def lowercase_ ( self : List[str] ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._get_tensors(5 )
SCREAMING_SNAKE_CASE__ = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) )
def lowercase_ ( self : Any ) -> Tuple:
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(_lowerCAmelCase ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
SCREAMING_SNAKE_CASE__ = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
| 493 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'gpt_bigcode'
_UpperCamelCase = ['past_key_values']
_UpperCamelCase = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scale_attn_weights
lowerCamelCase__ = use_cache
lowerCamelCase__ = attention_softmax_in_fpaa
lowerCamelCase__ = scale_attention_softmax_in_fpaa
lowerCamelCase__ = multi_query
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 0 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __magic_name__ ( __a : Union[str, Any] , __a : Any ):
'''simple docstring'''
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def __magic_name__ ( __a : Union[str, Any] , __a : Tuple , __a : Dict ):
'''simple docstring'''
UpperCamelCase__ = tmp_path / """cache"""
UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read()
_check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def __magic_name__ ( __a : Optional[Any] , __a : Union[str, Any] , __a : List[Any] ):
'''simple docstring'''
UpperCamelCase__ = tmp_path / """cache"""
UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
UpperCamelCase__ = features.copy() if features else default_expected_features
UpperCamelCase__ = (
Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase__ = ParquetDatasetReader(__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read()
_check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def __magic_name__ ( __a : Any , __a : int , __a : Optional[Any] ):
'''simple docstring'''
UpperCamelCase__ = tmp_path / """cache"""
UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
UpperCamelCase__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , split=__lowerCAmelCase ).read()
_check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def __magic_name__ ( __a : Any , __a : List[str] , __a : List[Any] ):
'''simple docstring'''
if issubclass(__lowerCAmelCase , __lowerCAmelCase ):
UpperCamelCase__ = parquet_path
elif issubclass(__lowerCAmelCase , __lowerCAmelCase ):
UpperCamelCase__ = [parquet_path]
UpperCamelCase__ = tmp_path / """cache"""
UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
UpperCamelCase__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read()
_check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase )
def __magic_name__ ( __a : Any , __a : str , __a : Any=("train",) ):
'''simple docstring'''
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
for split in splits:
UpperCamelCase__ = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def __magic_name__ ( __a : Optional[int] , __a : str , __a : Any ):
'''simple docstring'''
UpperCamelCase__ = tmp_path / """cache"""
UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase__ = ParquetDatasetReader(
{"""train""": parquet_path} , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read()
_check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def __magic_name__ ( __a : str , __a : Any , __a : Optional[Any] ):
'''simple docstring'''
UpperCamelCase__ = tmp_path / """cache"""
UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
UpperCamelCase__ = features.copy() if features else default_expected_features
UpperCamelCase__ = (
Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase__ = ParquetDatasetReader({"""train""": parquet_path} , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read()
_check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def __magic_name__ ( __a : str , __a : Dict , __a : List[Any] ):
'''simple docstring'''
if split:
UpperCamelCase__ = {split: parquet_path}
else:
UpperCamelCase__ = """train"""
UpperCamelCase__ = {"""train""": parquet_path, """test""": parquet_path}
UpperCamelCase__ = tmp_path / """cache"""
UpperCamelCase__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
UpperCamelCase__ = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read()
_check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def __magic_name__ ( __a : Any , __a : Any ):
'''simple docstring'''
UpperCamelCase__ = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / """foo.parquet""" )
assert writer.write() > 0
UpperCamelCase__ = pq.ParquetFile(tmp_path / """foo.parquet""" )
UpperCamelCase__ = pf.read()
assert dataset.data.table == output_table
def __magic_name__ ( __a : Dict , __a : Any ):
'''simple docstring'''
UpperCamelCase__ = str(shared_datadir / """test_image_rgb.jpg""" )
UpperCamelCase__ = {"""image""": [image_path]}
UpperCamelCase__ = Features({"""image""": Image()} )
UpperCamelCase__ = Dataset.from_dict(__lowerCAmelCase , features=__lowerCAmelCase )
UpperCamelCase__ = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / """foo.parquet""" )
assert writer.write() > 0
UpperCamelCase__ = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) )
assert dataset.features == reloaded_dataset.features
UpperCamelCase__ = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__lowerCAmelCase ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"""feature, expected""" , [
(Features({"""foo""": Value("""int32""" )} ), None),
(Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def __magic_name__ ( __a : Tuple , __a : int ):
'''simple docstring'''
assert get_writer_batch_size(__lowerCAmelCase ) == expected
| 513 |
'''simple docstring'''
from PIL import Image
def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ):
def brightness(__lowerCAmelCase : int ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(__lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 50 | 0 |
'''simple docstring'''
def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> Dict:
"""simple docstring"""
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 405 |
'''simple docstring'''
def A__ ( ):
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
UpperCamelCase : Dict = generate_large_matrix()
UpperCamelCase : Any = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A__ ( __lowerCAmelCase : list[list[int]] ):
assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid )
assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowerCamelCase__ = (left + right) // 2
lowerCamelCase__ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowerCamelCase__ = mid + 1
else:
lowerCamelCase__ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(grid[0] )
for i in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__lowerCAmelCase ) * len(grid[0] )) - total
def A__ ( __lowerCAmelCase : list[list[int]] ):
return len([number for row in grid for number in row if number < 0] )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
for row in grid:
for i, number in enumerate(__lowerCAmelCase ):
if number < 0:
total += len(__lowerCAmelCase ) - i
break
return total
def A__ ( ):
from timeit import timeit
print("""Running benchmarks""" )
lowerCamelCase__ = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 )
print(F'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 50 | 0 |
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : List[Any] , lowercase : List[str] , lowercase : List[Any] ) -> int:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__snake_case : int = np.full((len(__lowerCAmelCase ), sequence_length, 2) , __lowerCAmelCase )
else:
__snake_case : Optional[int] = np.full((len(__lowerCAmelCase ), sequence_length) , __lowerCAmelCase )
for i, tensor in enumerate(__lowerCAmelCase ):
if padding_side == "right":
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__snake_case : int = tensor[:sequence_length]
else:
__snake_case : str = tensor[:sequence_length]
else:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__snake_case : List[str] = tensor[:sequence_length]
else:
__snake_case : Dict = tensor[:sequence_length]
return out_tensor.tolist()
def lowerCAmelCase__( lowercase : int ) -> Dict:
__snake_case : str = ord(__lowerCAmelCase )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
__snake_case : Any = unicodedata.category(__lowerCAmelCase )
if cat.startswith("P" ):
return True
return False
@dataclass
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] =42
UpperCAmelCase_ : Union[str, Any] =True
UpperCAmelCase_ : Optional[int] =None
UpperCAmelCase_ : Dict =None
UpperCAmelCase_ : Tuple =-100
UpperCAmelCase_ : int ="pt"
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
import torch
__snake_case : Optional[int] = "label" if "label" in features[0].keys() else "labels"
__snake_case : Union[str, Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
__snake_case : Dict = self.tokenizer.pad(
_lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , )
if labels is None:
return batch
__snake_case : int = torch.tensor(batch["entity_ids"] ).shape[1]
__snake_case : List[Any] = self.tokenizer.padding_side
if padding_side == "right":
__snake_case : Optional[int] = [
list(_lowerCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(_lowerCAmelCase )) for label in labels
]
else:
__snake_case : Any = [
[self.label_pad_token_id] * (sequence_length - len(_lowerCAmelCase )) + list(_lowerCAmelCase ) for label in labels
]
__snake_case : Tuple = [feature["ner_tags"] for feature in features]
__snake_case : List[Any] = padding_tensor(_lowerCAmelCase , -1 , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = [feature["original_entity_spans"] for feature in features]
__snake_case : Union[str, Any] = padding_tensor(_lowerCAmelCase , (-1, -1) , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : int = {k: torch.tensor(_lowerCAmelCase , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 243 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase : List[Any] = 'examples/'
UpperCamelCase : int = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
UpperCamelCase : Any = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
UpperCamelCase : Any = 'README.md'
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern]
lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase )
lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : str ):
for folder, directories, fnames in os.walk(__lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" )
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if not patch:
update_version_in_examples(__lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = """🤗 Transformers currently provides the following architectures"""
lowerCamelCase__ = """1. Want to contribute a new model?"""
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Find the start of the list.
lowerCamelCase__ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCamelCase__ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
lowerCamelCase__ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__lowerCAmelCase )
def A__ ( ):
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0]
return packaging.version.parse(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Union[str, Any]=False ):
lowerCamelCase__ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
lowerCamelCase__ = default_version.base_version
elif patch:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = default_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def A__ ( ):
lowerCamelCase__ = get_version()
lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
lowerCamelCase__ = current_version.base_version
# Check with the user we got that right.
lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
UpperCamelCase : Any = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 50 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class a_ ( UpperCAmelCase__ ):
def lowercase__ ( self : Dict ):
__snake_case = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_lowerCAmelCase , 'hidden_sizes' ) )
self.parent.assertTrue(hasattr(_lowerCAmelCase , 'neck_hidden_sizes' ) )
self.parent.assertTrue(hasattr(_lowerCAmelCase , 'num_attention_heads' ) )
class a_ :
def __init__( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int]=1_3 , __lowerCAmelCase : Optional[int]=3_2 , __lowerCAmelCase : int=2 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Union[str, Any]=6_4_0 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : List[str]="silu" , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : Optional[int]=3_2 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[int]=1_0 , __lowerCAmelCase : Dict=None , ):
__snake_case = parent
__snake_case = batch_size
__snake_case = image_size
__snake_case = patch_size
__snake_case = num_channels
__snake_case = last_hidden_size
__snake_case = num_attention_heads
__snake_case = hidden_act
__snake_case = conv_kernel_size
__snake_case = output_stride
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = classifier_dropout_prob
__snake_case = use_labels
__snake_case = is_training
__snake_case = num_labels
__snake_case = initializer_range
__snake_case = scope
def lowercase__ ( self : Tuple ):
__snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case = None
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.num_labels )
__snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__snake_case = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase__ ( self : Dict ):
return MobileViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def lowercase__ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ):
__snake_case = MobileViTModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case = model(_lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] ):
__snake_case = self.num_labels
__snake_case = MobileViTForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ):
__snake_case = self.num_labels
__snake_case = MobileViTForSemanticSegmentation(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__snake_case = model(_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__snake_case = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : Dict ):
__snake_case = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs
__snake_case = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
lowercase_ : Optional[Any] = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase_ : Optional[Any] = (
{
'''feature-extraction''': MobileViTModel,
'''image-classification''': MobileViTForImageClassification,
'''image-segmentation''': MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase_ : Dict = False
lowercase_ : Dict = False
lowercase_ : List[str] = False
lowercase_ : Optional[int] = False
def lowercase__ ( self : Any ):
__snake_case = MobileViTModelTester(self )
__snake_case = MobileViTConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase )
def lowercase__ ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViT does not use inputs_embeds' )
def lowercase__ ( self : int ):
pass
@unittest.skip(reason='MobileViT does not support input and output embeddings' )
def lowercase__ ( self : Dict ):
pass
@unittest.skip(reason='MobileViT does not output attentions' )
def lowercase__ ( self : Dict ):
pass
def lowercase__ ( self : Optional[int] ):
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case = model_class(_lowerCAmelCase )
__snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case = [*signature.parameters.keys()]
__snake_case = ['pixel_values']
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowercase__ ( self : Any ):
pass
def lowercase__ ( self : Tuple ):
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def lowercase__ ( self : List[Any] ):
def check_hidden_states_output(__lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ):
__snake_case = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
__snake_case = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) )
__snake_case = outputs.hidden_states
__snake_case = 5
self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__snake_case = 2
for i in range(len(_lowerCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def lowercase__ ( self : List[str] ):
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
def lowercase__ ( self : Optional[int] ):
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase )
@slow
def lowercase__ ( self : Dict ):
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case = MobileViTModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def lowerCamelCase__ ( ):
__snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
@cached_property
def lowercase__ ( self : Optional[Any] ):
return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None
@slow
def lowercase__ ( self : Union[str, Any] ):
__snake_case = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_lowerCAmelCase )
__snake_case = self.default_image_processor
__snake_case = prepare_img()
__snake_case = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
__snake_case = model(**_lowerCAmelCase )
# verify the logits
__snake_case = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
__snake_case = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def lowercase__ ( self : Union[str, Any] ):
__snake_case = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case = model.to(_lowerCAmelCase )
__snake_case = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case = prepare_img()
__snake_case = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
__snake_case = model(**_lowerCAmelCase )
__snake_case = outputs.logits
# verify the logits
__snake_case = torch.Size((1, 2_1, 3_2, 3_2) )
self.assertEqual(logits.shape , _lowerCAmelCase )
__snake_case = torch.tensor(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
] , device=_lowerCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def lowercase__ ( self : Tuple ):
__snake_case = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case = model.to(_lowerCAmelCase )
__snake_case = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' )
__snake_case = prepare_img()
__snake_case = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
__snake_case = model(**_lowerCAmelCase )
__snake_case = outputs.logits.detach().cpu()
__snake_case = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(5_0, 6_0)] )
__snake_case = torch.Size((5_0, 6_0) )
self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
__snake_case = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase )
__snake_case = torch.Size((3_2, 3_2) )
self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
| 356 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCamelCase : int = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase : Tuple = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
UpperCamelCase : Dict = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = SqueezeBertTokenizer
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
super().__init__(
_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars
):
lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) )
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = strip_accents
lowerCamelCase__ = tokenize_chinese_chars
lowerCamelCase__ = normalizer_class(**_lowerCAmelCase )
lowerCamelCase__ = do_lower_case
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ):
lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 50 | 0 |
'''simple docstring'''
def lowerCamelCase ( lowerCAmelCase : list[int] , lowerCAmelCase : int ):
"""simple docstring"""
__magic_name__ : int = len(__lowerCAmelCase )
__magic_name__ : Any = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__magic_name__ : int = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__magic_name__ : Tuple = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__magic_name__ : Optional[int] = subset[i - 1][j]
if arr[i - 1] <= j:
__magic_name__ : int = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 561 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A__ ( __lowerCAmelCase : Any ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f)
or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) #
or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) #
or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) #
or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) #
or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) #
or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f)
or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) #
): #
return True
return False
def A__ ( __lowerCAmelCase : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCamelCase__ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = set()
for token in tokens:
lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowerCamelCase__ = list(__lowerCAmelCase )
return word_list
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ):
if not chinese_word_set:
return bert_tokens
lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowerCamelCase__ = bert_tokens
lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase )
while start < end:
lowerCamelCase__ = True
if is_chinese(bert_word[start] ):
lowerCamelCase__ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowerCamelCase__ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCamelCase__ = """##""" + bert_word[j]
lowerCamelCase__ = start + i
lowerCamelCase__ = False
break
if single_word:
start += 1
return bert_word
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ):
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = []
for id in input_ids:
lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowerCamelCase__ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def A__ ( __lowerCAmelCase : Optional[int] ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device
lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert )
lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
UpperCamelCase : Any = parser.parse_args()
main(args)
| 50 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'facebook/data2vec-vision-base-ft': (
'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json'
),
}
class UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = '''data2vec-vision'''
def __init__( self , lowerCamelCase=7_68 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=30_72 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=2_24 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=True , lowerCamelCase=[3, 5, 7, 11] , lowerCamelCase=[1, 2, 3, 6] , lowerCamelCase=True , lowerCamelCase=0.4 , lowerCamelCase=2_56 , lowerCamelCase=1 , lowerCamelCase=False , lowerCamelCase=2_55 , **lowerCamelCase , ) -> Dict:
'''simple docstring'''
super().__init__(**_lowerCAmelCase )
UpperCamelCase : List[Any] = hidden_size
UpperCamelCase : int = num_hidden_layers
UpperCamelCase : Optional[int] = num_attention_heads
UpperCamelCase : Union[str, Any] = intermediate_size
UpperCamelCase : List[str] = hidden_act
UpperCamelCase : Union[str, Any] = hidden_dropout_prob
UpperCamelCase : int = attention_probs_dropout_prob
UpperCamelCase : List[Any] = initializer_range
UpperCamelCase : str = layer_norm_eps
UpperCamelCase : Dict = image_size
UpperCamelCase : Union[str, Any] = patch_size
UpperCamelCase : List[Any] = num_channels
UpperCamelCase : Tuple = use_mask_token
UpperCamelCase : List[Any] = use_absolute_position_embeddings
UpperCamelCase : Union[str, Any] = use_relative_position_bias
UpperCamelCase : Any = use_shared_relative_position_bias
UpperCamelCase : List[Any] = layer_scale_init_value
UpperCamelCase : Optional[int] = drop_path_rate
UpperCamelCase : Optional[Any] = use_mean_pooling
# decode head attributes (semantic segmentation)
UpperCamelCase : str = out_indices
UpperCamelCase : Any = pool_scales
# auxiliary head attributes (semantic segmentation)
UpperCamelCase : Optional[Any] = use_auxiliary_head
UpperCamelCase : List[str] = auxiliary_loss_weight
UpperCamelCase : Optional[Any] = auxiliary_channels
UpperCamelCase : Any = auxiliary_num_convs
UpperCamelCase : Tuple = auxiliary_concat_input
UpperCamelCase : List[str] = semantic_loss_ignore_index
class UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = version.parse('''1.11''' )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
return 1e-4
| 173 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : Tuple = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
lowerCamelCase__ = 1024
lowerCamelCase__ = 4096
lowerCamelCase__ = 24
lowerCamelCase__ = 16
lowerCamelCase__ = [5, 11, 17, 23]
lowerCamelCase__ = [256, 512, 1024, 1024]
lowerCamelCase__ = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = [256, 512, 768, 768]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = (1, 384, 384)
lowerCamelCase__ = False
lowerCamelCase__ = """project"""
if "ade" in checkpoint_url:
lowerCamelCase__ = True
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = """huggingface/label-files"""
lowerCamelCase__ = """ade20k-id2label.json"""
lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowerCamelCase__ = idalabel
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
lowerCamelCase__ = [1, 150, 480, 480]
return config, expected_shape
def A__ ( __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : List[Any] ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
lowerCamelCase__ = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
lowerCamelCase__ = name.replace("""proj""" , """projection""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
lowerCamelCase__ = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
lowerCamelCase__ = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
lowerCamelCase__ = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
lowerCamelCase__ = name.replace("""..""" , """.""" )
if "stem.conv" in name:
lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[: config.hidden_size, :]
lowerCamelCase__ = in_proj_bias[: config.hidden_size]
lowerCamelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase__ = in_proj_bias[-config.hidden_size :]
def A__ ( ):
lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ):
lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(__lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
lowerCamelCase__ = val
# read in qkv matrices
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
# Check outputs on an image
lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384
lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth
if show_prediction:
lowerCamelCase__ = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
UpperCamelCase : List[str] = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 50 | 0 |
from __future__ import annotations
UpperCAmelCase : Optional[int] = 10
def __lowerCamelCase ( lowerCamelCase__ : list[int] ):
'''simple docstring'''
lowerCamelCase = 1
lowerCamelCase = max(__lowerCAmelCase )
while placement <= max_digit:
# declare and initialize empty buckets
lowerCamelCase = [[] for _ in range(__lowerCAmelCase )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowerCamelCase = int((i / placement) % RADIX )
buckets[tmp].append(__lowerCAmelCase )
# put each buckets' contents into list_of_ints
lowerCamelCase = 0
for b in range(__lowerCAmelCase ):
for i in buckets[b]:
lowerCamelCase = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 457 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Tuple = {
'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'],
'tokenization_mvp': ['MvpTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : str = ['MvpTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[int] = [
'MVP_PRETRAINED_MODEL_ARCHIVE_LIST',
'MvpForCausalLM',
'MvpForConditionalGeneration',
'MvpForQuestionAnswering',
'MvpForSequenceClassification',
'MvpModel',
'MvpPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 0 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@property
def a (self : Dict ):
"""simple docstring"""
torch.manual_seed(0 )
__snake_case = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def a (self : Dict ):
"""simple docstring"""
__snake_case = self.dummy_uncond_unet
__snake_case = ScoreSdeVeScheduler()
__snake_case = ScoreSdeVePipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase )
sde_ve.to(_lowerCAmelCase )
sde_ve.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case = torch.manual_seed(0 )
__snake_case = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_lowerCAmelCase ).images
__snake_case = torch.manual_seed(0 )
__snake_case = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_lowerCAmelCase , return_dict=_lowerCAmelCase )[
0
]
__snake_case = image[0, -3:, -3:, -1]
__snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__snake_case = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def a (self : Optional[Any] ):
"""simple docstring"""
__snake_case = '''google/ncsnpp-church-256'''
__snake_case = UNetaDModel.from_pretrained(_lowerCAmelCase )
__snake_case = ScoreSdeVeScheduler.from_pretrained(_lowerCAmelCase )
__snake_case = ScoreSdeVePipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase )
sde_ve.to(_lowerCAmelCase )
sde_ve.set_progress_bar_config(disable=_lowerCAmelCase )
__snake_case = torch.manual_seed(0 )
__snake_case = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=_lowerCAmelCase ).images
__snake_case = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
__snake_case = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 592 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Dict = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'codegen'
_UpperCamelCase = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_04_00 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=20_48 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=28 ,_lowerCAmelCase=16 ,_lowerCAmelCase=64 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_new" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_ctx
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = rotary_dim
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = use_cache
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(
bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,tie_word_embeddings=_lowerCAmelCase ,**_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,):
super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase )
if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ):
# TODO: how to do that better?
lowerCamelCase__ = 0
@property
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" )
lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCamelCase__ = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def UpperCamelCase_ ( self ):
return self._config.n_layer
@property
def UpperCamelCase_ ( self ):
return self._config.n_head
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCamelCase__ = seqlen + 2
lowerCamelCase__ = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCamelCase__ = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers )
]
lowerCamelCase__ = common_inputs["""attention_mask"""]
if self.use_past:
lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype
lowerCamelCase__ = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 )
return ordered_inputs
@property
def UpperCamelCase_ ( self ):
return 13
| 50 | 0 |
'''simple docstring'''
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
"""simple docstring"""
a_ = 'hf-internal-testing/tiny-random-t5'
a_ = AutoTokenizer.from_pretrained(_lowerCAmelCase )
a_ = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase )
a_ = tokenizer('This is me' , return_tensors='pt' )
a_ = model.to_bettertransformer()
self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
a_ = model.generate(**_lowerCAmelCase )
a_ = model.reverse_bettertransformer()
self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCAmelCase )
a_ = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase )
self.assertFalse(
any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
a_ = model_reloaded.generate(**_lowerCAmelCase )
self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) )
def _a ( self ):
"""simple docstring"""
a_ = 'hf-internal-testing/tiny-random-t5'
a_ = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase )
a_ = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_lowerCAmelCase ):
model.save_pretrained(_lowerCAmelCase )
a_ = model.reverse_bettertransformer()
model.save_pretrained(_lowerCAmelCase )
| 536 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : int = {
'configuration_xmod': [
'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XmodConfig',
'XmodOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Tuple = [
'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST',
'XmodForCausalLM',
'XmodForMaskedLM',
'XmodForMultipleChoice',
'XmodForQuestionAnswering',
'XmodForSequenceClassification',
'XmodForTokenClassification',
'XmodModel',
'XmodPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Union[str, Any] = {'vocab_file': 'vocab.txt'}
lowercase__ : int = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
lowercase__ : Tuple = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
lowercase__ : Dict = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
lowerCAmelCase_ = VOCAB_FILES_NAMES
lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION
lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ = ConvBertTokenizer
def __init__( self : str , __lowercase : Optional[Any]=None , __lowercase : int=None , __lowercase : List[str]=True , __lowercase : Dict="[UNK]" , __lowercase : int="[SEP]" , __lowercase : Dict="[PAD]" , __lowercase : Union[str, Any]="[CLS]" , __lowercase : Union[str, Any]="[MASK]" , __lowercase : List[str]=True , __lowercase : List[Any]=None , **__lowercase : str , ):
"""simple docstring"""
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , _lowerCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , _lowerCAmelCase ) != tokenize_chinese_chars
):
snake_case_ = getattr(_lowerCAmelCase , normalizer_state.pop("type" ) )
snake_case_ = do_lower_case
snake_case_ = strip_accents
snake_case_ = tokenize_chinese_chars
snake_case_ = normalizer_class(**_lowerCAmelCase )
snake_case_ = do_lower_case
def snake_case__ ( self : str , __lowercase : Union[str, Any] , __lowercase : str=None ):
"""simple docstring"""
snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case__ ( self : Union[str, Any] , __lowercase : Dict , __lowercase : int = None ):
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , __lowercase : Optional[int] , __lowercase : Tuple = None ):
"""simple docstring"""
snake_case_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 376 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCAmelCase , torch.Tensor ):
raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" )
lowerCamelCase__ = v.half()
if save_path is None: # overwrite src_path
lowerCamelCase__ = src_path
torch.save(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 50 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
_SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE : Any = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
'vocab_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'
),
'distilbert-base-german-cased': (
'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'
),
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'
),
},
}
_SCREAMING_SNAKE_CASE : List[str] = {
'distilbert-base-uncased': 512,
'distilbert-base-uncased-distilled-squad': 512,
'distilbert-base-cased': 512,
'distilbert-base-cased-distilled-squad': 512,
'distilbert-base-german-cased': 512,
'distilbert-base-multilingual-cased': 512,
}
_SCREAMING_SNAKE_CASE : int = {
'distilbert-base-uncased': {'do_lower_case': True},
'distilbert-base-uncased-distilled-squad': {'do_lower_case': True},
'distilbert-base-cased': {'do_lower_case': False},
'distilbert-base-cased-distilled-squad': {'do_lower_case': False},
'distilbert-base-german-cased': {'do_lower_case': False},
'distilbert-base-multilingual-cased': {'do_lower_case': False},
}
class UpperCAmelCase__ ( A__ ):
"""simple docstring"""
a = VOCAB_FILES_NAMES
a = PRETRAINED_VOCAB_FILES_MAP
a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a = PRETRAINED_INIT_CONFIGURATION
a = ["input_ids", "attention_mask"]
a = DistilBertTokenizer
def __init__( self : Tuple , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : str=True , __lowerCamelCase : Optional[Any]="[UNK]" , __lowerCamelCase : Optional[int]="[SEP]" , __lowerCamelCase : str="[PAD]" , __lowerCamelCase : int="[CLS]" , __lowerCamelCase : Any="[MASK]" , __lowerCamelCase : str=True , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Dict , ) -> Dict:
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowerCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowerCAmelCase ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE__ = getattr(_lowerCAmelCase , normalizer_state.pop('''type''' ) )
SCREAMING_SNAKE_CASE__ = do_lower_case
SCREAMING_SNAKE_CASE__ = strip_accents
SCREAMING_SNAKE_CASE__ = tokenize_chinese_chars
SCREAMING_SNAKE_CASE__ = normalizer_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE__ = do_lower_case
def lowercase_ ( self : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase_ ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any = None ) -> str:
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] = None ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 493 |
'''simple docstring'''
import os
from pathlib import Path
def A__ ( ):
from torch.utils.cpp_extension import load
lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
lowerCamelCase__ = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 50 | 0 |
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json',
'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json',
}
class __A( __lowerCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """encodec"""
def __init__(self , SCREAMING_SNAKE_CASE_=[1.5, 3.0, 6.0, 12.0, 24.0] , SCREAMING_SNAKE_CASE_=2_40_00 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=[8, 5, 4, 2] , SCREAMING_SNAKE_CASE_="weight_norm" , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="reflect" , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase__ = target_bandwidths
UpperCamelCase__ = sampling_rate
UpperCamelCase__ = audio_channels
UpperCamelCase__ = normalize
UpperCamelCase__ = chunk_length_s
UpperCamelCase__ = overlap
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_filters
UpperCamelCase__ = num_residual_layers
UpperCamelCase__ = upsampling_ratios
UpperCamelCase__ = norm_type
UpperCamelCase__ = kernel_size
UpperCamelCase__ = last_kernel_size
UpperCamelCase__ = residual_kernel_size
UpperCamelCase__ = dilation_growth_rate
UpperCamelCase__ = use_causal_conv
UpperCamelCase__ = pad_mode
UpperCamelCase__ = compress
UpperCamelCase__ = num_lstm_layers
UpperCamelCase__ = trim_right_ratio
UpperCamelCase__ = codebook_size
UpperCamelCase__ = codebook_dim if codebook_dim is not None else hidden_size
UpperCamelCase__ = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
F"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" )
super().__init__(**_lowerCAmelCase )
@property
def UpperCAmelCase_ (self ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def UpperCAmelCase_ (self ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def UpperCAmelCase_ (self ):
UpperCamelCase__ = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def UpperCAmelCase_ (self ):
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 513 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] ):
lowerCamelCase__ = len(__lowerCAmelCase )
print("""The following activities are selected:""" )
# The first activity is always selected
lowerCamelCase__ = 0
print(__lowerCAmelCase , end=""",""" )
# Consider rest of the activities
for j in range(__lowerCAmelCase ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(__lowerCAmelCase , end=""",""" )
lowerCamelCase__ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase : Union[str, Any] = [1, 3, 0, 5, 8, 5]
UpperCamelCase : int = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 50 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
class A__ ( A__ ):
A__ = ['input_features', 'attention_mask']
def __init__( self : Dict , _a : Optional[Any]=80 , _a : List[Any]=1_6000 , _a : Any=0.0 , _a : List[str]=10 , _a : int=25 , _a : Tuple="hamming_window" , _a : str=3_2768.0 , _a : int=0.97 , _a : List[str]=1.0 , _a : Union[str, Any]=True , _a : List[str]=True , _a : str=False , **_a : List[Any] , ) -> List[Any]:
'''simple docstring'''
super().__init__(feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , **_lowerCAmelCase )
_SCREAMING_SNAKE_CASE =feature_size
_SCREAMING_SNAKE_CASE =sampling_rate
_SCREAMING_SNAKE_CASE =padding_value
_SCREAMING_SNAKE_CASE =hop_length
_SCREAMING_SNAKE_CASE =win_length
_SCREAMING_SNAKE_CASE =frame_signal_scale
_SCREAMING_SNAKE_CASE =preemphasis_coeff
_SCREAMING_SNAKE_CASE =mel_floor
_SCREAMING_SNAKE_CASE =normalize_means
_SCREAMING_SNAKE_CASE =normalize_vars
_SCREAMING_SNAKE_CASE =win_function
_SCREAMING_SNAKE_CASE =return_attention_mask
_SCREAMING_SNAKE_CASE =win_length * sampling_rate // 1000
_SCREAMING_SNAKE_CASE =hop_length * sampling_rate // 1000
_SCREAMING_SNAKE_CASE =optimal_fft_length(self.sample_size )
_SCREAMING_SNAKE_CASE =(self.n_fft // 2) + 1
def A ( self : List[Any] , _a : int ) -> Tuple:
'''simple docstring'''
if self.win_function == "hamming_window":
_SCREAMING_SNAKE_CASE =window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCAmelCase )
else:
_SCREAMING_SNAKE_CASE =window_function(window_length=self.sample_size , name=self.win_function )
_SCREAMING_SNAKE_CASE =mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , )
_SCREAMING_SNAKE_CASE =spectrogram(
one_waveform * self.frame_signal_scale , window=_lowerCAmelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowerCAmelCase , preemphasis=self.preemphasis_coeff , mel_filters=_lowerCAmelCase , mel_floor=self.mel_floor , log_mel='log' , )
return msfc_features.T
def A ( self : int , _a : Dict , _a : Tuple , _a : Optional[int] ) -> Optional[int]:
'''simple docstring'''
if self.normalize_means:
_SCREAMING_SNAKE_CASE =x[:input_length].mean(axis=0 )
_SCREAMING_SNAKE_CASE =np.subtract(_lowerCAmelCase , _lowerCAmelCase )
if self.normalize_vars:
_SCREAMING_SNAKE_CASE =x[:input_length].std(axis=0 )
_SCREAMING_SNAKE_CASE =np.divide(_lowerCAmelCase , _lowerCAmelCase )
if input_length < x.shape[0]:
_SCREAMING_SNAKE_CASE =padding_value
# make sure array is in float32
_SCREAMING_SNAKE_CASE =x.astype(np.floataa )
return x
def A ( self : Tuple , _a : Union[str, Any] , _a : int = None ) -> str:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(_lowerCAmelCase , _lowerCAmelCase , self.padding_value ) for x, n in zip(_lowerCAmelCase , _lowerCAmelCase )]
def __call__( self : Union[str, Any] , _a : List[Any] , _a : Union[str, Any] = False , _a : int = None , _a : Union[str, Any] = False , _a : Union[str, Any] = None , _a : Dict = None , _a : Union[str, Any] = None , _a : Tuple = None , **_a : Optional[Any] , ) -> List[Any]:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_SCREAMING_SNAKE_CASE =isinstance(_lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}" )
_SCREAMING_SNAKE_CASE =is_batched_numpy or (
isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_SCREAMING_SNAKE_CASE =[np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ):
_SCREAMING_SNAKE_CASE =np.asarray(_lowerCAmelCase , dtype=np.floataa )
elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_SCREAMING_SNAKE_CASE =raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_SCREAMING_SNAKE_CASE =[raw_speech]
# extract fbank features
_SCREAMING_SNAKE_CASE =[self._extract_mfsc_features(_lowerCAmelCase ) for one_waveform in raw_speech]
# convert into correct format for padding
_SCREAMING_SNAKE_CASE =BatchFeature({'input_features': features} )
_SCREAMING_SNAKE_CASE =self.pad(
_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , )
# make sure list is in array format
_SCREAMING_SNAKE_CASE =padded_inputs.get('input_features' )
if isinstance(input_features[0] , _lowerCAmelCase ):
_SCREAMING_SNAKE_CASE =[np.asarray(_lowerCAmelCase , dtype=np.floataa ) for feature in input_features]
_SCREAMING_SNAKE_CASE =padded_inputs.get('attention_mask' )
if attention_mask is not None:
_SCREAMING_SNAKE_CASE =[np.asarray(_lowerCAmelCase , dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
_SCREAMING_SNAKE_CASE =(
np.array(_lowerCAmelCase , dtype=np.intaa )
if self._get_padding_strategies(_lowerCAmelCase , max_length=_lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
_SCREAMING_SNAKE_CASE =self.normalize(
padded_inputs['input_features'] , attention_mask=_lowerCAmelCase )
if return_tensors is not None:
_SCREAMING_SNAKE_CASE =padded_inputs.convert_to_tensors(_lowerCAmelCase )
return padded_inputs
| 405 |
'''simple docstring'''
import warnings
from ..trainer import Trainer
from ..utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase=None ,**_lowerCAmelCase ):
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" ,_lowerCAmelCase ,)
super().__init__(args=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 0 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(a )
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def UpperCAmelCase ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> str:
'''simple docstring'''
__snake_case : List[str] = {}
__snake_case : List[str] = {}
if prompt is not None:
__snake_case : str = prompt
if generate_kwargs is not None:
__snake_case : Dict = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case : Optional[Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"
" please use only one" )
__snake_case : Dict = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self , UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return super().__call__(_lowerCAmelCase , **_lowerCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Any = load_image(_lowerCAmelCase )
if prompt is not None:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError(
F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """
"Note also that one single text can be provided for conditional image to text generation." )
__snake_case : str = self.model.config.model_type
if model_type == "git":
__snake_case : List[str] = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Optional[int] = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids
__snake_case : str = [self.tokenizer.cls_token_id] + input_ids
__snake_case : str = torch.tensor(_lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({"input_ids": input_ids} )
elif model_type == "pix2struct":
__snake_case : List[Any] = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case : Optional[Any] = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
__snake_case : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(_lowerCAmelCase )
else:
raise ValueError(F"""Model type {model_type} does not support conditional text generation""" )
else:
__snake_case : List[str] = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__snake_case : List[Any] = None
return model_inputs
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
if (
"input_ids" in model_inputs
and isinstance(model_inputs["input_ids"] , _lowerCAmelCase )
and all(x is None for x in model_inputs["input_ids"] )
):
__snake_case : List[str] = None
if generate_kwargs is None:
__snake_case : Dict = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case : Union[str, Any] = model_inputs.pop(self.model.main_input_name )
__snake_case : List[Any] = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase )
return model_outputs
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = []
for output_ids in model_outputs:
__snake_case : List[str] = {
"generated_text": self.tokenizer.decode(
_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , )
}
records.append(_lowerCAmelCase )
return records
| 243 |
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = []
for line in lines:
lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments
if line:
filtered_lines.append(__lowerCAmelCase )
lowerCamelCase__ = """\n""".join(__lowerCAmelCase )
# Make a hash from all this code
lowerCamelCase__ = full_str.encode("""utf-8""" )
return shaaaa(__lowerCAmelCase ).hexdigest()
# get importable module names and hash for caching
UpperCamelCase : Dict = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
UpperCamelCase : str = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
UpperCamelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('.zip')
_MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
| 50 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_lowercase = logging.get_logger(__name__)
class a_ ( UpperCAmelCase__ ):
lowercase_ : str = ['''pixel_values''']
def __init__( self : Any , __lowerCAmelCase : int = True , __lowerCAmelCase : str = None , __lowerCAmelCase : str = PILImageResampling.BILINEAR , __lowerCAmelCase : int = True , __lowerCAmelCase : str = None , __lowerCAmelCase : str = True , __lowerCAmelCase : List[str] = 1 / 2_5_5 , __lowerCAmelCase : str = True , __lowerCAmelCase : Tuple = None , __lowerCAmelCase : Tuple = None , **__lowerCAmelCase : Dict , ):
super().__init__(**_lowerCAmelCase )
__snake_case = size if size is not None else {'shortest_edge': 2_5_6}
__snake_case = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
__snake_case = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4}
__snake_case = get_size_dict(_lowerCAmelCase , param_name='crop_size' )
__snake_case = do_resize
__snake_case = size
__snake_case = resample
__snake_case = do_center_crop
__snake_case = crop_size
__snake_case = do_rescale
__snake_case = rescale_factor
__snake_case = do_normalize
__snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] = PILImageResampling.BICUBIC , __lowerCAmelCase : Dict = None , **__lowerCAmelCase : Optional[Any] , ):
__snake_case = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
__snake_case = get_resize_output_image_size(_lowerCAmelCase , size=size['shortest_edge'] , default_to_square=_lowerCAmelCase )
return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowercase__ ( self : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] = None , **__lowerCAmelCase : Any , ):
__snake_case = get_size_dict(_lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(_lowerCAmelCase , size=(size['height'], size['width']) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str = None , **__lowerCAmelCase : List[Any] ):
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] = None , **__lowerCAmelCase : str , ):
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowercase__ ( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] = None , __lowerCAmelCase : Dict = None , __lowerCAmelCase : Union[str, Any] = None , __lowerCAmelCase : List[Any] = None , __lowerCAmelCase : List[Any] = None , __lowerCAmelCase : Tuple = None , __lowerCAmelCase : int = None , __lowerCAmelCase : int = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = None , __lowerCAmelCase : List[str] = None , __lowerCAmelCase : Tuple = ChannelDimension.FIRST , **__lowerCAmelCase : Dict , ):
__snake_case = do_resize if do_resize is not None else self.do_resize
__snake_case = size if size is not None else self.size
__snake_case = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
__snake_case = resample if resample is not None else self.resample
__snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case = crop_size if crop_size is not None else self.crop_size
__snake_case = get_size_dict(_lowerCAmelCase , param_name='crop_size' )
__snake_case = do_rescale if do_rescale is not None else self.do_rescale
__snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case = do_normalize if do_normalize is not None else self.do_normalize
__snake_case = image_mean if image_mean is not None else self.image_mean
__snake_case = image_std if image_std is not None else self.image_std
__snake_case = make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__snake_case = [to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
__snake_case = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images]
if do_center_crop:
__snake_case = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images]
if do_rescale:
__snake_case = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images]
if do_normalize:
__snake_case = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images]
__snake_case = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
__snake_case = {'pixel_values': images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
def lowercase__ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict = None ):
__snake_case = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_lowerCAmelCase ) != len(_lowerCAmelCase ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(_lowerCAmelCase ):
__snake_case = target_sizes.numpy()
__snake_case = []
for idx in range(len(_lowerCAmelCase ) ):
__snake_case = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowerCAmelCase )
__snake_case = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_lowerCAmelCase )
else:
__snake_case = logits.argmax(dim=1 )
__snake_case = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 356 |
'''simple docstring'''
import operator
def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ):
lowerCamelCase__ = operator.lt if reverse else operator.gt
lowerCamelCase__ = solution or []
if not arr:
return solution
lowerCamelCase__ = [arr.pop(0 )]
for i, item in enumerate(__lowerCAmelCase ):
if _operator(__lowerCAmelCase , sublist[-1] ):
sublist.append(__lowerCAmelCase )
arr.pop(__lowerCAmelCase )
# merging sublist into solution list
if not solution:
solution.extend(__lowerCAmelCase )
else:
while sublist:
lowerCamelCase__ = sublist.pop(0 )
for i, xx in enumerate(__lowerCAmelCase ):
if not _operator(__lowerCAmelCase , __lowerCAmelCase ):
solution.insert(__lowerCAmelCase , __lowerCAmelCase )
break
else:
solution.append(__lowerCAmelCase )
strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 50 | 0 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
lowerCAmelCase :Any = logging.get_logger(__name__)
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : Dict = ["""input_features""", """is_longer"""]
def __init__( self : Dict , _A : Dict=64 , _A : Optional[Any]=48000 , _A : Optional[int]=480 , _A : Union[str, Any]=10 , _A : str=1024 , _A : str=0.0 , _A : Dict=False , _A : Tuple = 0 , _A : str = 14000 , _A : Union[str, Any] = None , _A : Any = "fusion" , _A : Dict = "repeatpad" , **_A : List[str] , ) -> Any:
super().__init__(
feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , )
__magic_name__ : int = top_db
__magic_name__ : str = truncation
__magic_name__ : Optional[int] = padding
__magic_name__ : str = fft_window_size
__magic_name__ : str = (fft_window_size >> 1) + 1
__magic_name__ : int = hop_length
__magic_name__ : int = max_length_s
__magic_name__ : Optional[Any] = max_length_s * sampling_rate
__magic_name__ : Any = sampling_rate
__magic_name__ : List[Any] = frequency_min
__magic_name__ : Optional[Any] = frequency_max
__magic_name__ : Tuple = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowerCAmelCase , min_frequency=_lowerCAmelCase , max_frequency=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , norm=_lowerCAmelCase , mel_scale='htk' , )
__magic_name__ : Optional[Any] = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowerCAmelCase , min_frequency=_lowerCAmelCase , max_frequency=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , norm='slaney' , mel_scale='slaney' , )
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
__magic_name__ : Union[str, Any] = copy.deepcopy(self.__dict__ )
__magic_name__ : List[str] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def __lowerCAmelCase ( self : Any , _A : List[str] , _A : Optional[int] = None ) -> str:
__magic_name__ : List[Any] = spectrogram(
_lowerCAmelCase , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_lowerCAmelCase , log_mel='dB' , )
return log_mel_spectrogram.T
def __lowerCAmelCase ( self : Optional[Any] , _A : List[Any] , _A : int , _A : List[str] ) -> Tuple:
__magic_name__ : int = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
__magic_name__ : Optional[Any] = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
__magic_name__ : List[str] = [0]
# randomly choose index for each part
__magic_name__ : Optional[Any] = np.random.choice(ranges[0] )
__magic_name__ : Union[str, Any] = np.random.choice(ranges[1] )
__magic_name__ : Optional[Any] = np.random.choice(ranges[2] )
__magic_name__ : Optional[int] = mel[idx_front : idx_front + chunk_frames, :]
__magic_name__ : Optional[Any] = mel[idx_middle : idx_middle + chunk_frames, :]
__magic_name__ : Union[str, Any] = mel[idx_back : idx_back + chunk_frames, :]
__magic_name__ : Optional[int] = torch.tensor(mel[None, None, :] )
__magic_name__ : Any = torch.nn.functional.interpolate(
_lowerCAmelCase , size=[chunk_frames, 64] , mode='bilinear' , align_corners=_lowerCAmelCase )
__magic_name__ : List[Any] = mel_shrink[0][0].numpy()
__magic_name__ : Union[str, Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def __lowerCAmelCase ( self : Tuple , _A : Union[str, Any] , _A : Any , _A : Any , _A : Tuple ) -> List[str]:
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
__magic_name__ : Optional[Any] = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
__magic_name__ : str = len(_lowerCAmelCase ) - max_length
__magic_name__ : List[str] = np.random.randint(0 , overflow + 1 )
__magic_name__ : Optional[int] = waveform[idx : idx + max_length]
__magic_name__ : Optional[int] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
__magic_name__ : List[str] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters )
__magic_name__ : int = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
__magic_name__ : Dict = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
__magic_name__ : Optional[int] = np.stack([mel, mel, mel, mel] , axis=0 )
__magic_name__ : Dict = False
else:
__magic_name__ : Dict = self._random_mel_fusion(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__magic_name__ : int = True
else:
raise NotImplementedError(F'data_truncating {truncation} not implemented' )
else:
__magic_name__ : Optional[int] = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
__magic_name__ : str = int(max_length / len(_lowerCAmelCase ) )
__magic_name__ : Union[str, Any] = np.stack(np.tile(_lowerCAmelCase , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
__magic_name__ : int = int(max_length / len(_lowerCAmelCase ) )
__magic_name__ : Optional[Any] = np.stack(np.tile(_lowerCAmelCase , _lowerCAmelCase ) )
__magic_name__ : Optional[int] = np.pad(_lowerCAmelCase , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 )
if truncation == "fusion":
__magic_name__ : Dict = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters )
__magic_name__ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
__magic_name__ : Any = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : int , _A : List[Any] , _A : str = None , _A : Any = None , _A : List[Any] = None , _A : Dict = None , _A : Tuple = None , **_A : int , ) -> Optional[int]:
__magic_name__ : Optional[Any] = truncation if truncation is not None else self.truncation
__magic_name__ : Dict = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'
F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'
F' was sampled with {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
__magic_name__ : Dict = isinstance(_lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
__magic_name__ : Any = is_batched_numpy or (
isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__magic_name__ : Union[str, Any] = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ):
__magic_name__ : Any = np.asarray(_lowerCAmelCase , dtype=np.floataa )
elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__magic_name__ : Tuple = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__magic_name__ : Optional[Any] = [np.asarray(_lowerCAmelCase )]
# convert to mel spectrogram, truncate and pad if needed.
__magic_name__ : List[Any] = [
self._get_input_mel(_lowerCAmelCase , max_length if max_length else self.nb_max_samples , _lowerCAmelCase , _lowerCAmelCase )
for waveform in raw_speech
]
__magic_name__ : Tuple = []
__magic_name__ : Optional[int] = []
for mel, longer in padded_inputs:
input_mel.append(_lowerCAmelCase )
is_longer.append(_lowerCAmelCase )
if truncation == "fusion" and sum(_lowerCAmelCase ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
__magic_name__ : Optional[int] = np.random.randint(0 , len(_lowerCAmelCase ) )
__magic_name__ : List[Any] = True
if isinstance(input_mel[0] , _lowerCAmelCase ):
__magic_name__ : int = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
__magic_name__ : Tuple = [[longer] for longer in is_longer]
__magic_name__ : List[Any] = {'input_features': input_mel, 'is_longer': is_longer}
__magic_name__ : Union[str, Any] = BatchFeature(_lowerCAmelCase )
if return_tensors is not None:
__magic_name__ : int = input_features.convert_to_tensors(_lowerCAmelCase )
return input_features
| 561 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def A__ ( __lowerCAmelCase : dict ):
return (data["data"], data["target"])
def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray ):
lowerCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__lowerCAmelCase , __lowerCAmelCase )
# Predict target for test data
lowerCamelCase__ = xgb.predict(__lowerCAmelCase )
lowerCamelCase__ = predictions.reshape(len(__lowerCAmelCase ) , 1 )
return predictions
def A__ ( ):
lowerCamelCase__ = fetch_california_housing()
lowerCamelCase__ , lowerCamelCase__ = data_handling(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 )
lowerCamelCase__ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Error printing
print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 50 | 0 |
'''simple docstring'''
def A__ ( A : list[int]):
'''simple docstring'''
if not numbers:
return 0
if not isinstance(__lowerCAmelCase , (list, tuple)) or not all(
isinstance(__lowerCAmelCase , __lowerCAmelCase) for number in numbers):
raise ValueError("numbers must be an iterable of integers")
UpperCamelCase : Union[str, Any] = numbers[0]
for i in range(1 , len(__lowerCAmelCase)):
# update the maximum and minimum subarray products
UpperCamelCase : List[Any] = numbers[i]
if number < 0:
UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now
UpperCamelCase : List[str] = max(__lowerCAmelCase , max_till_now * number)
UpperCamelCase : Optional[Any] = min(__lowerCAmelCase , min_till_now * number)
# update the maximum product found till now
UpperCamelCase : Dict = max(__lowerCAmelCase , __lowerCAmelCase)
return max_prod
| 173 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = jnp.ones((batch_size, length) ) / length
return scores
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 20
lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase )
# tweak scores to not be uniform anymore
lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create ramp distribution
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy()
lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 )
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy()
lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = None
lowerCamelCase__ = 10
lowerCamelCase__ = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase__ = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
# check that min length is applied at length 5
lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 )
lowerCamelCase__ = 5
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] )
# check that min length is not applied anymore at length 15
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = 15
lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 )
lowerCamelCase__ = 1
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 20
lowerCamelCase__ = 4
lowerCamelCase__ = 0
lowerCamelCase__ = 5
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 )
lowerCamelCase__ = 4
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase__ = 3
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# with processor list
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 4
lowerCamelCase__ = 10
lowerCamelCase__ = 15
lowerCamelCase__ = 2
lowerCamelCase__ = 1
lowerCamelCase__ = 15
# dummy input_ids and scores
lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase )
lowerCamelCase__ = input_ids.copy()
lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = scores.copy()
# instantiate all dist processors
lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase__ = FlaxTopKLogitsWarper(3 )
lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase )
lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase )
lowerCamelCase__ = 10
# no processor list
def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
# with processor list
def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase )
return scores
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jax.jit(_lowerCAmelCase )
lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# scores should be equal
self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
| 50 | 0 |
def __lowerCamelCase ( lowerCamelCase__ : int ):
'''simple docstring'''
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
lowerCamelCase = 1
lowerCamelCase = 1
while repunit:
lowerCamelCase = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def __lowerCamelCase ( lowerCamelCase__ : int = 1000000 ):
'''simple docstring'''
lowerCamelCase = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__lowerCAmelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(f"""{solution() = }""")
| 457 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCamelCase : Any = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 0 |
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ):
A_ : Any = DebertaTokenizer
A_ : Optional[int] = True
A_ : str = DebertaTokenizerFast
def a (self : Optional[int] ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__snake_case = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
__snake_case = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
__snake_case = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__snake_case = {'''unk_token''': '''[UNK]'''}
__snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(_lowerCAmelCase ) )
def a (self : Union[str, Any] , **a__ : int ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def a (self : Tuple , a__ : int ):
"""simple docstring"""
__snake_case = '''lower newer'''
__snake_case = '''lower newer'''
return input_text, output_text
def a (self : Any ):
"""simple docstring"""
__snake_case = self.get_tokenizer()
__snake_case = '''lower newer'''
__snake_case = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__snake_case = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
__snake_case = tokens + [tokenizer.unk_token]
__snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase )
def a (self : int ):
"""simple docstring"""
__snake_case = self.get_tokenizer()
__snake_case = tokenizer('''Hello''' , '''World''' )
__snake_case = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , _lowerCAmelCase )
@slow
def a (self : Union[str, Any] ):
"""simple docstring"""
__snake_case = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__snake_case = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCAmelCase )
__snake_case = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCAmelCase )
__snake_case = tokenizer.encode(
'''sequence builders''' , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase )
__snake_case = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase )
__snake_case = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
__snake_case = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def a (self : List[str] ):
"""simple docstring"""
__snake_case = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
__snake_case = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__snake_case = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
__snake_case = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase )
__snake_case = [tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) for seq in encoding['''input_ids''']]
# fmt: off
__snake_case = {
'''input_ids''': [
[1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
__snake_case = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , _lowerCAmelCase )
for expected, decoded in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
| 592 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ):
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 | 0 |
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
__lowerCAmelCase = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
_a : List[Any] = None
@experimental
def __UpperCamelCase ( lowercase_ : str , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple ):
"""simple docstring"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return _map_with_joblib(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def __UpperCamelCase ( lowercase_ : int , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : int , lowercase_ : str , lowercase_ : List[str] ):
"""simple docstring"""
a_ = num_proc if num_proc <= len(__lowerCAmelCase ) else len(__lowerCAmelCase )
a_ = [] # We organize the splits ourselve (contiguous splits)
for index in range(__lowerCAmelCase ):
a_ = len(__lowerCAmelCase ) // num_proc
a_ = len(__lowerCAmelCase ) % num_proc
a_ = div * index + min(__lowerCAmelCase , __lowerCAmelCase )
a_ = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(__lowerCAmelCase ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F'Error dividing inputs iterable among processes. '
F'Total number of objects {len(__lowerCAmelCase )}, '
F'length: {sum(len(i[1] ) for i in split_kwds )}' )
logger.info(
F'Spawning {num_proc} processes for {len(__lowerCAmelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}' )
a_ , a_ = None, None
if not disable_tqdm:
a_ , a_ = (RLock(),), tqdm.set_lock
with Pool(__lowerCAmelCase , initargs=__lowerCAmelCase , initializer=__lowerCAmelCase ) as pool:
a_ = pool.map(__lowerCAmelCase , __lowerCAmelCase )
logger.info(F'Finished {num_proc} processes' )
a_ = [obj for proc_res in mapped for obj in proc_res]
logger.info(F'Unpacked {len(__lowerCAmelCase )} objects' )
return mapped
def __UpperCamelCase ( lowercase_ : str , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Dict , lowercase_ : Optional[int] ):
"""simple docstring"""
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__lowerCAmelCase ):
return joblib.Parallel()(
joblib.delayed(__lowerCAmelCase )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def __UpperCamelCase ( lowercase_ : str ):
"""simple docstring"""
a_ = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
a_ = None
| 536 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Union[str, Any] = {
'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'],
'tokenization_canine': ['CanineTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Any = [
'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST',
'CanineForMultipleChoice',
'CanineForQuestionAnswering',
'CanineForSequenceClassification',
'CanineForTokenClassification',
'CanineLayer',
'CanineModel',
'CaninePreTrainedModel',
'load_tf_weights_in_canine',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 | 0 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
lowercase__ : Optional[int] = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n'
lowercase__ : List[str] = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n'
lowercase__ : Any = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def snake_case__ ( self : str ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def snake_case__ ( self : Any , __lowercase : Optional[int] , __lowercase : Any , __lowercase : List[Any] = 1 , __lowercase : List[Any] = 4 , ):
"""simple docstring"""
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase )
}
| 376 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase : int = '3'
print('Python version:', sys.version)
print('transformers version:', transformers.__version__)
try:
import torch
print('Torch version:', torch.__version__)
print('Cuda available:', torch.cuda.is_available())
print('Cuda version:', torch.version.cuda)
print('CuDNN version:', torch.backends.cudnn.version())
print('Number of GPUs available:', torch.cuda.device_count())
print('NCCL version:', torch.cuda.nccl.version())
except ImportError:
print('Torch version:', None)
try:
import deepspeed
print('DeepSpeed version:', deepspeed.__version__)
except ImportError:
print('DeepSpeed version:', None)
try:
import tensorflow as tf
print('TensorFlow version:', tf.__version__)
print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))
print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))
except ImportError:
print('TensorFlow version:', None)
| 50 | 0 |
from sklearn.metrics import fa_score
import datasets
_SCREAMING_SNAKE_CASE : Tuple = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n'
_SCREAMING_SNAKE_CASE : str = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n'
_SCREAMING_SNAKE_CASE : Union[str, Any] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase__ ( datasets.Metric ):
"""simple docstring"""
def lowercase_ ( self : Tuple ) -> Dict:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , )
def lowercase_ ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int="binary" , __lowerCamelCase : Optional[int]=None ) -> Any:
SCREAMING_SNAKE_CASE__ = fa_score(
_lowerCAmelCase , _lowerCAmelCase , labels=_lowerCAmelCase , pos_label=_lowerCAmelCase , average=_lowerCAmelCase , sample_weight=_lowerCAmelCase )
return {"f1": float(_lowerCAmelCase ) if score.size == 1 else score}
| 493 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'gpt_bigcode'
_UpperCamelCase = ['past_key_values']
_UpperCamelCase = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = n_positions
lowerCamelCase__ = n_embd
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = n_inner
lowerCamelCase__ = activation_function
lowerCamelCase__ = resid_pdrop
lowerCamelCase__ = embd_pdrop
lowerCamelCase__ = attn_pdrop
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scale_attn_weights
lowerCamelCase__ = use_cache
lowerCamelCase__ = attention_softmax_in_fpaa
lowerCamelCase__ = scale_attention_softmax_in_fpaa
lowerCamelCase__ = multi_query
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
| 50 | 0 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
lowerCamelCase_ = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias'))
rename_keys.append(
(f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias'))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append(
(
f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight',
f'decoder.layers.{i}.encoder_attn.out_proj.weight',
)
)
rename_keys.append(
(
f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias',
f'decoder.layers.{i}.encoder_attn.out_proj.bias',
)
)
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight')
)
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias')
)
rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias'))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''),
('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
]
)
def __magic_name__ ( __a : int , __a : List[Any] , __a : str ):
'''simple docstring'''
UpperCamelCase__ = state_dict.pop(__lowerCAmelCase )
UpperCamelCase__ = val
def __magic_name__ ( __a : Optional[int] ):
'''simple docstring'''
UpperCamelCase__ = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCamelCase__ = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
UpperCamelCase__ = value
else:
UpperCamelCase__ = value
return new_state_dict
def __magic_name__ ( __a : Any ):
'''simple docstring'''
UpperCamelCase__ = """"""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCamelCase__ = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" )
UpperCamelCase__ = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase__ = in_proj_weight[:256, :]
UpperCamelCase__ = in_proj_bias[:256]
UpperCamelCase__ = in_proj_weight[256:512, :]
UpperCamelCase__ = in_proj_bias[256:512]
UpperCamelCase__ = in_proj_weight[-256:, :]
UpperCamelCase__ = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
UpperCamelCase__ = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" )
UpperCamelCase__ = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase__ = in_proj_weight[:256, :]
UpperCamelCase__ = in_proj_bias[:256]
UpperCamelCase__ = in_proj_weight[256:512, :]
UpperCamelCase__ = in_proj_bias[256:512]
UpperCamelCase__ = in_proj_weight[-256:, :]
UpperCamelCase__ = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
UpperCamelCase__ = state_dict.pop(
f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" )
UpperCamelCase__ = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
UpperCamelCase__ = in_proj_weight_cross_attn[:256, :]
UpperCamelCase__ = in_proj_bias_cross_attn[:256]
UpperCamelCase__ = in_proj_weight_cross_attn[256:512, :]
UpperCamelCase__ = in_proj_bias_cross_attn[256:512]
UpperCamelCase__ = in_proj_weight_cross_attn[-256:, :]
UpperCamelCase__ = in_proj_bias_cross_attn[-256:]
def __magic_name__ ( __a : Dict , __a : Dict ):
'''simple docstring'''
UpperCamelCase__ , UpperCamelCase__ = image.size
UpperCamelCase__ = max(__lowerCAmelCase , __lowerCAmelCase )
UpperCamelCase__ = 800 if """detection""" in checkpoint_url else 1_000
UpperCamelCase__ = target_max_size / current_max_size
UpperCamelCase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def __magic_name__ ( __a : Any ):
'''simple docstring'''
UpperCamelCase__ = F.to_tensor(__lowerCAmelCase )
UpperCamelCase__ = F.normalize(__lowerCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def __magic_name__ ( __a : Tuple , __a : Any , __a : List[Any] ):
'''simple docstring'''
logger.info("""Converting model...""" )
# load original state dict
UpperCamelCase__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )
# rename keys
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
UpperCamelCase__ = rename_backbone_keys(__lowerCAmelCase )
# query, key and value matrices need special treatment
read_in_q_k_v(__lowerCAmelCase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCamelCase__ = """model."""
for key in state_dict.copy().keys():
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
UpperCamelCase__ = state_dict.pop(__lowerCAmelCase )
UpperCamelCase__ = val
# create HuggingFace model and load state dict
UpperCamelCase__ = TableTransformerConfig(
backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , )
if "detection" in checkpoint_url:
UpperCamelCase__ = 15
UpperCamelCase__ = 2
UpperCamelCase__ = {0: """table""", 1: """table rotated"""}
UpperCamelCase__ = idalabel
UpperCamelCase__ = {v: k for k, v in idalabel.items()}
else:
UpperCamelCase__ = 125
UpperCamelCase__ = 6
UpperCamelCase__ = {
0: """table""",
1: """table column""",
2: """table row""",
3: """table column header""",
4: """table projected row header""",
5: """table spanning cell""",
}
UpperCamelCase__ = idalabel
UpperCamelCase__ = {v: k for k, v in idalabel.items()}
UpperCamelCase__ = DetrImageProcessor(
format="""coco_detection""" , max_size=800 if """detection""" in checkpoint_url else 1_000 )
UpperCamelCase__ = TableTransformerForObjectDetection(__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
# verify our conversion
UpperCamelCase__ = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png"""
UpperCamelCase__ = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=__lowerCAmelCase )
UpperCamelCase__ = Image.open(__lowerCAmelCase ).convert("""RGB""" )
UpperCamelCase__ = normalize(resize(__lowerCAmelCase , __lowerCAmelCase ) ).unsqueeze(0 )
UpperCamelCase__ = model(__lowerCAmelCase )
if "detection" in checkpoint_url:
UpperCamelCase__ = (1, 15, 3)
UpperCamelCase__ = torch.tensor(
[[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] )
UpperCamelCase__ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] )
else:
UpperCamelCase__ = (1, 125, 7)
UpperCamelCase__ = torch.tensor(
[[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] )
UpperCamelCase__ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
# Push model to HF hub
logger.info("""Pushing model to the hub...""" )
UpperCamelCase__ = (
"""microsoft/table-transformer-detection"""
if """detection""" in checkpoint_url
else """microsoft/table-transformer-structure-recognition"""
)
model.push_to_hub(__lowerCAmelCase )
image_processor.push_to_hub(__lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_url''',
default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''',
type=str,
choices=[
'''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''',
'''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''',
],
help='''URL of the Table Transformer checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
lowerCamelCase_ = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 513 |
'''simple docstring'''
from PIL import Image
def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ):
def brightness(__lowerCAmelCase : int ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(__lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 50 | 0 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowerCamelCase : int = datasets.utils.logging.get_logger(__name__)
lowerCamelCase : List[str] = ['names', 'prefix']
lowerCamelCase : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
lowerCamelCase : Optional[int] = ['encoding_errors', 'on_bad_lines']
lowerCamelCase : Optional[int] = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
A__ = ','
A__ = None
A__ = 'infer'
A__ = None
A__ = None
A__ = None
A__ = None
A__ = None
A__ = True
A__ = None
A__ = None
A__ = None
A__ = None
A__ = False
A__ = None
A__ = None
A__ = None
A__ = True
A__ = True
A__ = False
A__ = True
A__ = None
A__ = '.'
A__ = None
A__ = '"'
A__ = 0
A__ = None
A__ = None
A__ = None
A__ = None
A__ = True
A__ = True
A__ = 0
A__ = True
A__ = False
A__ = None
A__ = 1_00_00
A__ = None
A__ = 'strict'
A__ = 'error'
A__ = None
def A ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if self.delimiter is not None:
_SCREAMING_SNAKE_CASE =self.delimiter
if self.column_names is not None:
_SCREAMING_SNAKE_CASE =self.column_names
@property
def A ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE ={
'sep': self.sep,
'header': self.header,
'names': self.names,
'index_col': self.index_col,
'usecols': self.usecols,
'prefix': self.prefix,
'mangle_dupe_cols': self.mangle_dupe_cols,
'engine': self.engine,
'converters': self.converters,
'true_values': self.true_values,
'false_values': self.false_values,
'skipinitialspace': self.skipinitialspace,
'skiprows': self.skiprows,
'nrows': self.nrows,
'na_values': self.na_values,
'keep_default_na': self.keep_default_na,
'na_filter': self.na_filter,
'verbose': self.verbose,
'skip_blank_lines': self.skip_blank_lines,
'thousands': self.thousands,
'decimal': self.decimal,
'lineterminator': self.lineterminator,
'quotechar': self.quotechar,
'quoting': self.quoting,
'escapechar': self.escapechar,
'comment': self.comment,
'encoding': self.encoding,
'dialect': self.dialect,
'error_bad_lines': self.error_bad_lines,
'warn_bad_lines': self.warn_bad_lines,
'skipfooter': self.skipfooter,
'doublequote': self.doublequote,
'memory_map': self.memory_map,
'float_precision': self.float_precision,
'chunksize': self.chunksize,
'encoding_errors': self.encoding_errors,
'on_bad_lines': self.on_bad_lines,
'date_format': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCAmelCase ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
A__ = CsvConfig
def A ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def A ( self : int , _a : str ) -> Optional[int]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" )
_SCREAMING_SNAKE_CASE =dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCAmelCase , (str, list, tuple) ):
_SCREAMING_SNAKE_CASE =data_files
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_SCREAMING_SNAKE_CASE =[files]
_SCREAMING_SNAKE_CASE =[dl_manager.iter_files(_lowerCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
_SCREAMING_SNAKE_CASE =[]
for split_name, files in data_files.items():
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_SCREAMING_SNAKE_CASE =[files]
_SCREAMING_SNAKE_CASE =[dl_manager.iter_files(_lowerCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={'files': files} ) )
return splits
def A ( self : Tuple , _a : List[str] ) -> List[str]:
'''simple docstring'''
if self.config.features is not None:
_SCREAMING_SNAKE_CASE =self.config.features.arrow_schema
if all(not require_storage_cast(_lowerCAmelCase ) for feature in self.config.features.values() ):
# cheaper cast
_SCREAMING_SNAKE_CASE =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCAmelCase )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_SCREAMING_SNAKE_CASE =table_cast(_lowerCAmelCase , _lowerCAmelCase )
return pa_table
def A ( self : Any , _a : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_SCREAMING_SNAKE_CASE =(
{
name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCAmelCase ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ):
_SCREAMING_SNAKE_CASE =pd.read_csv(_lowerCAmelCase , iterator=_lowerCAmelCase , dtype=_lowerCAmelCase , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(_lowerCAmelCase ):
_SCREAMING_SNAKE_CASE =pa.Table.from_pandas(_lowerCAmelCase )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_lowerCAmelCase )
except ValueError as e:
logger.error(f"Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}" )
raise
| 405 |
'''simple docstring'''
def A__ ( ):
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
UpperCamelCase : Dict = generate_large_matrix()
UpperCamelCase : Any = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A__ ( __lowerCAmelCase : list[list[int]] ):
assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid )
assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowerCamelCase__ = (left + right) // 2
lowerCamelCase__ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowerCamelCase__ = mid + 1
else:
lowerCamelCase__ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(grid[0] )
for i in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__lowerCAmelCase ) * len(grid[0] )) - total
def A__ ( __lowerCAmelCase : list[list[int]] ):
return len([number for row in grid for number in row if number < 0] )
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = 0
for row in grid:
for i, number in enumerate(__lowerCAmelCase ):
if number < 0:
total += len(__lowerCAmelCase ) - i
break
return total
def A__ ( ):
from timeit import timeit
print("""Running benchmarks""" )
lowerCamelCase__ = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 )
print(F'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 50 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'configuration_x_clip': [
'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XCLIPConfig',
'XCLIPTextConfig',
'XCLIPVisionConfig',
],
'processing_x_clip': ['XCLIPProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'XCLIPModel',
'XCLIPPreTrainedModel',
'XCLIPTextModel',
'XCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 243 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase : List[Any] = 'examples/'
UpperCamelCase : int = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
UpperCamelCase : Any = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
UpperCamelCase : Any = 'README.md'
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern]
lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase )
lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : str ):
for folder, directories, fnames in os.walk(__lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" )
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if not patch:
update_version_in_examples(__lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = """🤗 Transformers currently provides the following architectures"""
lowerCamelCase__ = """1. Want to contribute a new model?"""
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Find the start of the list.
lowerCamelCase__ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
lowerCamelCase__ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
lowerCamelCase__ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__lowerCAmelCase )
def A__ ( ):
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
lowerCamelCase__ = f.read()
lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0]
return packaging.version.parse(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Union[str, Any]=False ):
lowerCamelCase__ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
lowerCamelCase__ = default_version.base_version
elif patch:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = default_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def A__ ( ):
lowerCamelCase__ = get_version()
lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
lowerCamelCase__ = current_version.base_version
# Check with the user we got that right.
lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(__lowerCAmelCase ) == 0:
lowerCamelCase__ = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(__lowerCAmelCase )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
UpperCamelCase : Any = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 50 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class a_ :
lowercase_ : str = PegasusConfig
lowercase_ : Union[str, Any] = {}
lowercase_ : List[Any] = '''gelu'''
def __init__( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any]=1_3 , __lowerCAmelCase : int=7 , __lowerCAmelCase : int=True , __lowerCAmelCase : Any=False , __lowerCAmelCase : Any=9_9 , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : str=2 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : Any=3_7 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Optional[Any]=4_0 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Any=1 , __lowerCAmelCase : int=0 , ):
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = eos_token_id
__snake_case = pad_token_id
__snake_case = bos_token_id
def lowercase__ ( self : Any ):
__snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__snake_case = tf.concat([input_ids, eos_tensor] , axis=1 )
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__snake_case = prepare_pegasus_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def lowercase__ ( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ):
__snake_case = TFPegasusModel(config=_lowerCAmelCase ).get_decoder()
__snake_case = inputs_dict['input_ids']
__snake_case = input_ids[:1, :]
__snake_case = inputs_dict['attention_mask'][:1, :]
__snake_case = inputs_dict['head_mask']
__snake_case = 1
# first forward pass
__snake_case = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase )
__snake_case , __snake_case = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size )
__snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__snake_case = tf.concat([input_ids, next_tokens] , axis=-1 )
__snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__snake_case = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
__snake_case = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__snake_case = output_from_no_past[:, -3:, random_slice_idx]
__snake_case = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-3 )
def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ):
if attention_mask is None:
__snake_case = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__snake_case = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
lowercase_ : Optional[Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
lowercase_ : Optional[Any] = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
lowercase_ : Dict = (
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase_ : List[str] = True
lowercase_ : str = False
lowercase_ : Any = False
def lowercase__ ( self : Any ):
__snake_case = TFPegasusModelTester(self )
__snake_case = ConfigTester(self , config_class=_lowerCAmelCase )
def lowercase__ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def lowercase__ ( self : int ):
__snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class a_ ( unittest.TestCase ):
lowercase_ : Optional[int] = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
lowercase_ : Optional[Any] = [
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
lowercase_ : List[str] = '''google/pegasus-xsum'''
@cached_property
def lowercase__ ( self : str ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def lowercase__ ( self : List[Any] ):
__snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def lowercase__ ( self : Dict , **__lowerCAmelCase : Optional[int] ):
__snake_case = self.translate_src_text(**_lowerCAmelCase )
assert self.expected_text == generated_words
def lowercase__ ( self : Dict , **__lowerCAmelCase : Optional[int] ):
__snake_case = self.tokenizer(self.src_text , **_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='tf' )
__snake_case = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCAmelCase , )
__snake_case = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase )
return generated_words
@slow
def lowercase__ ( self : Any ):
self._assert_generated_batch_equal_expected()
| 356 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCamelCase : int = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
UpperCamelCase : Tuple = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
UpperCamelCase : Dict = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = SqueezeBertTokenizer
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,):
super().__init__(
_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars
):
lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) )
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = strip_accents
lowerCamelCase__ = tokenize_chinese_chars
lowerCamelCase__ = normalizer_class(**_lowerCAmelCase )
lowerCamelCase__ = do_lower_case
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ):
lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 50 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
lowerCAmelCase :Tuple = logging.get_logger(__name__)
lowerCAmelCase :Dict = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
A_ : int = """codegen"""
A_ : Optional[int] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : str , _A : Any=50400 , _A : str=2048 , _A : int=2048 , _A : Optional[Any]=4096 , _A : Union[str, Any]=28 , _A : Union[str, Any]=16 , _A : Dict=64 , _A : Any=None , _A : Any="gelu_new" , _A : List[str]=0.0 , _A : Union[str, Any]=0.0 , _A : Optional[int]=0.0 , _A : int=1E-5 , _A : Union[str, Any]=0.02 , _A : Tuple=True , _A : Optional[Any]=50256 , _A : Any=50256 , _A : List[Any]=False , **_A : int , ) -> str:
__magic_name__ : Union[str, Any] = vocab_size
__magic_name__ : Tuple = n_ctx
__magic_name__ : Dict = n_positions
__magic_name__ : Union[str, Any] = n_embd
__magic_name__ : str = n_layer
__magic_name__ : str = n_head
__magic_name__ : List[str] = n_inner
__magic_name__ : Any = rotary_dim
__magic_name__ : Dict = activation_function
__magic_name__ : List[Any] = resid_pdrop
__magic_name__ : List[Any] = embd_pdrop
__magic_name__ : int = attn_pdrop
__magic_name__ : Union[str, Any] = layer_norm_epsilon
__magic_name__ : Optional[Any] = initializer_range
__magic_name__ : Tuple = use_cache
__magic_name__ : Dict = bos_token_id
__magic_name__ : Any = eos_token_id
super().__init__(
bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , **_lowerCAmelCase )
class _lowerCamelCase ( lowercase__ ):
'''simple docstring'''
def __init__( self : List[Any] , _A : str , _A : Tuple = "default" , _A : Optional[Any] = None , _A : Union[str, Any] = False , ) -> str:
super().__init__(_lowerCAmelCase , task=_lowerCAmelCase , patching_specs=_lowerCAmelCase , use_past=_lowerCAmelCase )
if not getattr(self._config , 'pad_token_id' , _lowerCAmelCase ):
# TODO: how to do that better?
__magic_name__ : Tuple = 0
@property
def __lowerCAmelCase ( self : List[Any] ) -> Dict:
__magic_name__ : List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} )
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs' )
__magic_name__ : Any = {0: 'batch', 1: 'past_sequence + sequence'}
else:
__magic_name__ : Tuple = {0: 'batch', 1: 'sequence'}
return common_inputs
@property
def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
return self._config.n_layer
@property
def __lowerCAmelCase ( self : Tuple ) -> Dict:
return self._config.n_head
def __lowerCAmelCase ( self : List[str] , _A : Optional[int] , _A : Any = -1 , _A : Dict = -1 , _A : Tuple = False , _A : Any = None , ) -> List[str]:
__magic_name__ : Union[str, Any] = super(_lowerCAmelCase , self ).generate_dummy_inputs(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
# We need to order the input in the way they appears in the forward()
__magic_name__ : Dict = OrderedDict({'input_ids': common_inputs['input_ids']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
__magic_name__ , __magic_name__ : Dict = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
__magic_name__ : Any = seqlen + 2
__magic_name__ : Any = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__magic_name__ : Union[str, Any] = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers )
]
__magic_name__ : Optional[Any] = common_inputs['attention_mask']
if self.use_past:
__magic_name__ : Dict = ordered_inputs['attention_mask'].dtype
__magic_name__ : List[Any] = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 )
return ordered_inputs
@property
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
return 13
| 561 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A__ ( __lowerCAmelCase : Any ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f)
or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) #
or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) #
or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) #
or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) #
or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) #
or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f)
or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) #
): #
return True
return False
def A__ ( __lowerCAmelCase : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCamelCase__ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def A__ ( __lowerCAmelCase : List[str] ):
lowerCamelCase__ = set()
for token in tokens:
lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowerCamelCase__ = list(__lowerCAmelCase )
return word_list
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ):
if not chinese_word_set:
return bert_tokens
lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowerCamelCase__ = bert_tokens
lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase )
while start < end:
lowerCamelCase__ = True
if is_chinese(bert_word[start] ):
lowerCamelCase__ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowerCamelCase__ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCamelCase__ = """##""" + bert_word[j]
lowerCamelCase__ = start + i
lowerCamelCase__ = False
break
if single_word:
start += 1
return bert_word
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ):
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for i in range(0 , len(__lowerCAmelCase ) , 100 ):
lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowerCamelCase__ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = []
for id in input_ids:
lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowerCamelCase__ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def A__ ( __lowerCAmelCase : Optional[int] ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device
lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert )
lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
UpperCamelCase : Any = parser.parse_args()
main(args)
| 50 | 0 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer''']
__SCREAMING_SNAKE_CASE = '''LayoutLMv3ImageProcessor'''
__SCREAMING_SNAKE_CASE = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''')
def __init__( self , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , _lowerCAmelCase , )
UpperCamelCase : Tuple = kwargs.pop("feature_extractor" )
UpperCamelCase : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = True , lowerCamelCase = None , **lowerCamelCase , ) -> Union[str, Any]:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
# first, apply the image processor
UpperCamelCase : List[str] = self.image_processor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
UpperCamelCase : Union[str, Any] = [text] # add batch dimension (as the image processor always adds a batch dimension)
UpperCamelCase : Any = features["words"]
UpperCamelCase : Optional[int] = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , )
# add pixel values
UpperCamelCase : int = features.pop("pixel_values" )
if return_overflowing_tokens is True:
UpperCamelCase : Any = self.get_overflowing_images(_lowerCAmelCase , encoded_inputs["overflow_to_sample_mapping"] )
UpperCamelCase : Optional[Any] = images
return encoded_inputs
def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase ) -> str:
'''simple docstring'''
UpperCamelCase : Any = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_lowerCAmelCase ) != len(_lowerCAmelCase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
f''' {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}''' )
return images_with_overflow
def SCREAMING_SNAKE_CASE__ ( self , *lowerCamelCase , **lowerCamelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self , *lowerCamelCase , **lowerCamelCase ) -> int:
'''simple docstring'''
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _lowerCAmelCase , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _lowerCAmelCase , )
return self.image_processor
| 173 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : Tuple = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
lowerCamelCase__ = 1024
lowerCamelCase__ = 4096
lowerCamelCase__ = 24
lowerCamelCase__ = 16
lowerCamelCase__ = [5, 11, 17, 23]
lowerCamelCase__ = [256, 512, 1024, 1024]
lowerCamelCase__ = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = [256, 512, 768, 768]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = (1, 384, 384)
lowerCamelCase__ = False
lowerCamelCase__ = """project"""
if "ade" in checkpoint_url:
lowerCamelCase__ = True
lowerCamelCase__ = 768
lowerCamelCase__ = [1, 1, 1, 0.5]
lowerCamelCase__ = 150
lowerCamelCase__ = 16
lowerCamelCase__ = """huggingface/label-files"""
lowerCamelCase__ = """ade20k-id2label.json"""
lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowerCamelCase__ = idalabel
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
lowerCamelCase__ = [1, 150, 480, 480]
return config, expected_shape
def A__ ( __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : List[Any] ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
lowerCamelCase__ = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
lowerCamelCase__ = name.replace("""proj""" , """projection""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
lowerCamelCase__ = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
lowerCamelCase__ = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
lowerCamelCase__ = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
lowerCamelCase__ = name.replace("""..""" , """.""" )
if "stem.conv" in name:
lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
lowerCamelCase__ = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[: config.hidden_size, :]
lowerCamelCase__ = in_proj_bias[: config.hidden_size]
lowerCamelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase__ = in_proj_bias[-config.hidden_size :]
def A__ ( ):
lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ):
lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(__lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
lowerCamelCase__ = val
# read in qkv matrices
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
# Check outputs on an image
lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384
lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth
if show_prediction:
lowerCamelCase__ = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
UpperCamelCase : List[str] = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 50 | 0 |
'''simple docstring'''
import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
a__ : Dict = {
'bart': (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
'bert': (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'bert-base-cased-finetuned-mrpc': (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'dpr': (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
'gpt2': (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'xlnet': (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'xlm': (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'xlm-roberta': (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'transfo-xl': (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'openai-gpt': (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'roberta': (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'layoutlm': (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
'roberta-large-mnli': (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'camembert': (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'flaubert': (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'distilbert': (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'distilbert-base-distilled-squad': (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'lxmert': (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'lxmert-visual-feature-encoder': (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'ctrl': (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'albert': (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
't5': (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'electra': (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'wav2vec2': (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Any=True ) -> List[str]:
"""simple docstring"""
if model_type not in MODEL_CLASSES:
raise ValueError(f"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}." )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
UpperCAmelCase = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models )
UpperCAmelCase = config_class.from_json_file(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = True
UpperCAmelCase = True
print(f"Building TensorFlow model from configuration: {config}" )
UpperCAmelCase = model_class(SCREAMING_SNAKE_CASE_ )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
UpperCAmelCase = cached_file(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
UpperCAmelCase = load_pytorch_checkpoint_in_tfa_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if compare_with_pt_model:
UpperCAmelCase = tf_model(tf_model.dummy_inputs , training=SCREAMING_SNAKE_CASE_ ) # build the network
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
UpperCAmelCase = pt_model_class.from_pretrained(
pretrained_model_name_or_path=SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ , state_dict=SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
UpperCAmelCase = pt_model(**pt_model.dummy_inputs )
UpperCAmelCase = pto[0].numpy()
UpperCAmelCase = tfo[0].numpy()
UpperCAmelCase = np.amax(np.abs(np_pt - np_tf ) )
print(f"Max absolute difference between models outputs {diff}" )
assert diff <= 2e-2, f"Error, model absolute difference is >2e-2: {diff}"
# Save pytorch-model
print(f"Save TensorFlow model to {tf_dump_path}" )
tf_model.save_weights(SCREAMING_SNAKE_CASE_ , save_format='''h5''' )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : Dict=False , ) -> Tuple:
"""simple docstring"""
if args_model_type is None:
UpperCAmelCase = list(MODEL_CLASSES.keys() )
else:
UpperCAmelCase = [args_model_type]
for j, model_type in enumerate(SCREAMING_SNAKE_CASE_ , start=1 ):
print('''=''' * 100 )
print(f" Converting model type {j}/{len(SCREAMING_SNAKE_CASE_ )}: {model_type}" )
print('''=''' * 100 )
if model_type not in MODEL_CLASSES:
raise ValueError(f"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}." )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
UpperCAmelCase = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
UpperCAmelCase = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , start=1 ):
print('''-''' * 100 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(f" Skipping finetuned checkpoint {model_shortcut_name}" )
continue
UpperCAmelCase = model_shortcut_name
elif only_convert_finetuned_models:
print(f" Skipping not finetuned checkpoint {model_shortcut_name}" )
continue
print(
f" Converting checkpoint {i}/{len(SCREAMING_SNAKE_CASE_ )}: {model_shortcut_name} - model_type {model_type}" )
print('''-''' * 100 )
if config_shortcut_name in aws_config_map:
UpperCAmelCase = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models )
else:
UpperCAmelCase = config_shortcut_name
if model_shortcut_name in aws_model_maps:
UpperCAmelCase = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models )
else:
UpperCAmelCase = model_shortcut_name
if os.path.isfile(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = '''converted_model'''
convert_pt_checkpoint_to_tf(
model_type=SCREAMING_SNAKE_CASE_ , pytorch_checkpoint_path=SCREAMING_SNAKE_CASE_ , config_file=SCREAMING_SNAKE_CASE_ , tf_dump_path=os.path.join(SCREAMING_SNAKE_CASE_ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=SCREAMING_SNAKE_CASE_ , )
if remove_cached_files:
os.remove(SCREAMING_SNAKE_CASE_ )
os.remove(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.'
)
parser.add_argument(
'--model_type',
default=None,
type=str,
help=(
F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """
'convert all the models from AWS.'
),
)
parser.add_argument(
'--pytorch_checkpoint_path',
default=None,
type=str,
help=(
'Path to the PyTorch checkpoint path or shortcut name to download from AWS. '
'If not given, will download and convert all the checkpoints from AWS.'
),
)
parser.add_argument(
'--config_file',
default=None,
type=str,
help=(
'The config json file corresponding to the pre-trained model. \n'
'This specifies the model architecture. If not given and '
'--pytorch_checkpoint_path is not given or is a shortcut name '
'use the configuration associated to the shortcut name on the AWS'
),
)
parser.add_argument(
'--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.'
)
parser.add_argument(
'--use_cached_models',
action='store_true',
help='Use cached models if possible instead of updating to latest checkpoint versions.',
)
parser.add_argument(
'--remove_cached_files',
action='store_true',
help='Remove pytorch models after conversion (save memory when converting in batches).',
)
parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.')
a__ : Dict = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 51 |
'''simple docstring'''
from math import factorial
def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int:
"""simple docstring"""
return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 51 | 1 |
'''simple docstring'''
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
a__ : List[Any] = parse(importlib.metadata.version('torch'))
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Version] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]:
"""simple docstring"""
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" )
UpperCAmelCase = STR_OPERATION_TO_FUNC[operation]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = parse(importlib.metadata.version(SCREAMING_SNAKE_CASE_ ) )
return operation(SCREAMING_SNAKE_CASE_ , parse(SCREAMING_SNAKE_CASE_ ) )
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]:
"""simple docstring"""
return compare_versions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 51 |
'''simple docstring'''
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =StableUnCLIPPipeline
_lowerCamelCase =TEXT_TO_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
_lowerCamelCase =False
def __snake_case ( self : str ):
UpperCAmelCase = 32
UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , )
torch.manual_seed(0 )
UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ )
UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , )
torch.manual_seed(0 )
UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , )
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL()
UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __snake_case ( self : List[Any] ):
UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=a__ )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' )
UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(a__ , a__ )
def __snake_case ( self : str ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 51 | 1 |
'''simple docstring'''
a__ : int = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
a__ : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}]
a__ : int = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 51 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict:
"""simple docstring"""
if not head:
return True
# split the list to two parts
UpperCAmelCase, UpperCAmelCase = head.next, head
while fast and fast.next:
UpperCAmelCase = fast.next.next
UpperCAmelCase = slow.next
UpperCAmelCase = slow.next
UpperCAmelCase = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase = None
while second:
UpperCAmelCase = second.next
UpperCAmelCase = node
UpperCAmelCase = second
UpperCAmelCase = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase = node.next
UpperCAmelCase = head.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]:
"""simple docstring"""
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head
while fast and fast.next:
UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase = [slow.val]
while slow.next:
UpperCAmelCase = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase = cur.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
"""simple docstring"""
if not head or not head.next:
return True
UpperCAmelCase = {}
UpperCAmelCase = 0
while head:
if head.val in d:
d[head.val].append(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase = [pos]
UpperCAmelCase = head.next
pos += 1
UpperCAmelCase = pos - 1
UpperCAmelCase = 0
for v in d.values():
if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase = 0
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ):
if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 51 | 1 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int:
"""simple docstring"""
return 1 if digit in (0, 1) else (digit * factorial(digit - 1 ))
def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
UpperCAmelCase = 0
UpperCAmelCase = number
while duplicate > 0:
UpperCAmelCase, UpperCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 )
fact_sum += factorial(SCREAMING_SNAKE_CASE_ )
return fact_sum == number
if __name__ == "__main__":
print('Program to check whether a number is a Krisnamurthy Number or not.')
a__ : List[str] = int(input('Enter number: ').strip())
print(
F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number."""
)
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : str ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __snake_case ( self : Optional[int] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , )
return self.image_processor_class
@property
def __snake_case ( self : List[Any] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , )
return self.image_processor
| 51 | 1 |
'''simple docstring'''
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def __snake_case ( ) -> int:
"""simple docstring"""
raise RuntimeError('''CUDA out of memory.''' )
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict ):
super().__init__()
UpperCAmelCase = nn.Linear(3 , 4 )
UpperCAmelCase = nn.BatchNormad(4 )
UpperCAmelCase = nn.Linear(4 , 5 )
def __snake_case ( self : Dict , a__ : Tuple ):
return self.lineara(self.batchnorm(self.lineara(a__ ) ) )
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(a__ : List[Any] ):
nonlocal batch_sizes
batch_sizes.append(a__ )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(a__ , [128, 64, 32, 16, 8] )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(a__ : str , a__ : int ):
nonlocal batch_sizes
batch_sizes.append(a__ )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
UpperCAmelCase, UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(a__ , [128, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def __snake_case ( self : Any ):
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(a__ : Dict ):
pass
with self.assertRaises(a__ ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def __snake_case ( self : int ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(a__ : str ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(a__ ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def __snake_case ( self : str ):
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(a__ : List[Any] , a__ : List[Any] , a__ : Union[str, Any] ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(a__ ) as cm:
mock_training_loop_function(128 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def __snake_case ( self : Union[str, Any] ):
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(a__ : int ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(a__ ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def __snake_case ( self : Tuple ):
UpperCAmelCase = torch.cuda.memory_allocated()
UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , a__ )
UpperCAmelCase = release_memory(a__ )
self.assertEqual(torch.cuda.memory_allocated() , a__ )
| 51 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : str = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =XGLMTokenizer
_lowerCamelCase =XGLMTokenizerFast
_lowerCamelCase =True
_lowerCamelCase =True
def __snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = '''<pad>'''
UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(a__ ) , 1008 )
def __snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(
a__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def __snake_case ( self : Optional[Any] ):
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def __snake_case ( self : Optional[int] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(a__ , f.name )
UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ )
UpperCAmelCase = pickle.dumps(a__ )
pickle.loads(a__ )
def __snake_case ( self : Tuple ):
if not self.test_rust_tokenizer:
return
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase = tokenizer.tokenize(a__ )
UpperCAmelCase = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = tokenizer.encode(a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
@slow
def __snake_case ( self : int ):
UpperCAmelCase = '''Hello World!'''
UpperCAmelCase = [2, 31227, 4447, 35]
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : List[str] ):
UpperCAmelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : Any ):
# fmt: off
UpperCAmelCase = {
'''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple ):
UpperCAmelCase = {}
def __snake_case ( self : Any , a__ : str ):
UpperCAmelCase = {}
def __snake_case ( self : Optional[Any] , a__ : str , a__ : str , a__ : float ):
if nodea not in self.connections:
self.add_node(a__ )
if nodea not in self.connections:
self.add_node(a__ )
UpperCAmelCase = probability
def __snake_case ( self : Tuple ):
return list(self.connections )
def __snake_case ( self : Dict , a__ : str ):
UpperCAmelCase = 0
UpperCAmelCase = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : list[tuple[str, str, float]] , SCREAMING_SNAKE_CASE_ : int ) -> dict[str, int]:
"""simple docstring"""
UpperCAmelCase = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = Counter(graph.get_nodes() )
UpperCAmelCase = start
for _ in range(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = graph.transition(SCREAMING_SNAKE_CASE_ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a__ : str = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig:
"""simple docstring"""
UpperCAmelCase = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase = 192
UpperCAmelCase = 768
UpperCAmelCase = 12
UpperCAmelCase = 3
UpperCAmelCase = [800, 1_333]
UpperCAmelCase = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = 330
UpperCAmelCase = 14
UpperCAmelCase = 6
UpperCAmelCase = 1_320
elif "yolos_s" in yolos_name:
UpperCAmelCase = 384
UpperCAmelCase = 1_536
UpperCAmelCase = 12
UpperCAmelCase = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase = [800, 1_344]
UpperCAmelCase = 91
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''coco-detection-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase = in_proj_bias[: config.hidden_size]
UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
if "backbone" in name:
UpperCAmelCase = name.replace('''backbone''' , '''vit''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "det_token" in name:
UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' )
if "mid_pos_embed" in name:
UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
if "class_embed" in name:
UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' )
if "bbox_embed" in name:
UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' )
if "vit.norm" in name:
UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' )
return name
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[2] )
UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[
dim : dim * 2, :
]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def __snake_case ( ) -> torch.Tensor:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model''']
# load 🤗 model
UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512
UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes
UpperCAmelCase, UpperCAmelCase = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
UpperCAmelCase = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
UpperCAmelCase = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
UpperCAmelCase = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
UpperCAmelCase = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
UpperCAmelCase = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
UpperCAmelCase = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if push_to_hub:
UpperCAmelCase = {
'''yolos_ti''': '''yolos-tiny''',
'''yolos_s_200_pre''': '''yolos-small''',
'''yolos_s_300_pre''': '''yolos-small-300''',
'''yolos_s_dWr''': '''yolos-small-dwr''',
'''yolos_base''': '''yolos-base''',
}
print('''Pushing to the hub...''' )
UpperCAmelCase = model_mapping[yolos_name]
image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
if __name__ == "__main__":
a__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--yolos_name',
default='yolos_s_200_pre',
type=str,
help=(
'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','
' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'
),
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
a__ : Optional[Any] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 51 | 1 |
'''simple docstring'''
from collections import defaultdict
from math import ceil, sqrt
def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 1_000_000 , SCREAMING_SNAKE_CASE_ : int = 10 ) -> int:
"""simple docstring"""
UpperCAmelCase = defaultdict(SCREAMING_SNAKE_CASE_ )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
UpperCAmelCase = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
UpperCAmelCase = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(SCREAMING_SNAKE_CASE_ , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 51 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a__ : List[Any] = logging.get_logger(__name__)
a__ : int = {
'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json',
}
# fmt: off
a__ : Any = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377,
1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211,
4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786,
11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791,
17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409,
34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361
]
a__ : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627,
3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647,
7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793,
14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675,
22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865,
42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362
]
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="whisper"
_lowerCamelCase =["past_key_values"]
_lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ):
UpperCAmelCase = vocab_size
UpperCAmelCase = num_mel_bins
UpperCAmelCase = d_model
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = max_source_positions
UpperCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase = classifier_proj_size
UpperCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase = apply_spec_augment
UpperCAmelCase = mask_time_prob
UpperCAmelCase = mask_time_length
UpperCAmelCase = mask_time_min_masks
UpperCAmelCase = mask_feature_prob
UpperCAmelCase = mask_feature_length
UpperCAmelCase = mask_feature_min_masks
UpperCAmelCase = median_filter_width
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def __snake_case ( self : List[str] ):
UpperCAmelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(a__ , direction='''inputs''' )
return common_inputs
def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ):
UpperCAmelCase = OrderedDict()
UpperCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , )
UpperCAmelCase = encoder_inputs['''input_features'''].shape[2]
UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , a__ , a__ , a__ , a__ )
UpperCAmelCase = encoder_inputs.pop('''input_features''' )
UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
UpperCAmelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def __snake_case ( self : Dict ):
return 1e-3
| 51 | 1 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
a__ : Union[str, Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'}
@is_pipeline_test
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_lowerCamelCase =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_lowerCamelCase ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_lowerCamelCase ={
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __snake_case ( self : Dict ):
UpperCAmelCase = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' )
UpperCAmelCase = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
UpperCAmelCase = text_classifier('''This is great !''' , top_k=2 )
self.assertEqual(
nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] )
UpperCAmelCase = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 )
self.assertEqual(
nested_simplify(a__ ) , [
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
] , )
UpperCAmelCase = text_classifier('''This is great !''' , top_k=1 )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
# Legacy behavior
UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=a__ )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=a__ )
self.assertEqual(
nested_simplify(a__ ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] )
UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=a__ )
self.assertEqual(
nested_simplify(a__ ) , [
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
] , )
UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=a__ )
self.assertEqual(
nested_simplify(a__ ) , [
{'''label''': '''LABEL_0''', '''score''': 0.504},
{'''label''': '''LABEL_0''', '''score''': 0.504},
] , )
@require_torch
def __snake_case ( self : Union[str, Any] ):
import torch
UpperCAmelCase = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , )
UpperCAmelCase = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
@require_tf
def __snake_case ( self : str ):
UpperCAmelCase = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' )
UpperCAmelCase = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
@slow
@require_torch
def __snake_case ( self : Any ):
UpperCAmelCase = pipeline('''text-classification''' )
UpperCAmelCase = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] )
UpperCAmelCase = text_classifier('''This is bad !''' )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] )
UpperCAmelCase = text_classifier('''Birds are a type of animal''' )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] )
@slow
@require_tf
def __snake_case ( self : str ):
UpperCAmelCase = pipeline('''text-classification''' , framework='''tf''' )
UpperCAmelCase = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] )
UpperCAmelCase = text_classifier('''This is bad !''' )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] )
UpperCAmelCase = text_classifier('''Birds are a type of animal''' )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] )
def __snake_case ( self : Optional[Any] , a__ : Tuple , a__ : List[Any] , a__ : Any ):
UpperCAmelCase = TextClassificationPipeline(model=a__ , tokenizer=a__ )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __snake_case ( self : Any , a__ : int , a__ : Tuple ):
UpperCAmelCase = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
UpperCAmelCase = '''HuggingFace is in'''
UpperCAmelCase = text_classifier(a__ )
self.assertEqual(nested_simplify(a__ ) , [{'''label''': ANY(a__ ), '''score''': ANY(a__ )}] )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
UpperCAmelCase = ['''HuggingFace is in ''', '''Paris is in France''']
UpperCAmelCase = text_classifier(a__ )
self.assertEqual(
nested_simplify(a__ ) , [{'''label''': ANY(a__ ), '''score''': ANY(a__ )}, {'''label''': ANY(a__ ), '''score''': ANY(a__ )}] , )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
UpperCAmelCase = text_classifier(a__ , top_k=a__ )
UpperCAmelCase = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(a__ ) , [[{'''label''': ANY(a__ ), '''score''': ANY(a__ )}] * N, [{'''label''': ANY(a__ ), '''score''': ANY(a__ )}] * N] , )
UpperCAmelCase = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''}
UpperCAmelCase = text_classifier(a__ )
self.assertEqual(
nested_simplify(a__ ) , {'''label''': ANY(a__ ), '''score''': ANY(a__ )} , )
self.assertTrue(outputs['''label'''] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
UpperCAmelCase = [['''HuggingFace is in ''', '''Paris is in France''']]
with self.assertRaises(a__ ):
text_classifier(a__ )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
UpperCAmelCase = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] )
self.assertEqual(
nested_simplify(a__ ) , [{'''label''': ANY(a__ ), '''score''': ANY(a__ )}] , )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
| 51 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =LEDConfig
_lowerCamelCase ={}
_lowerCamelCase ="gelu"
def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = eos_token_id
UpperCAmelCase = pad_token_id
UpperCAmelCase = bos_token_id
UpperCAmelCase = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
UpperCAmelCase = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
UpperCAmelCase = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ )
UpperCAmelCase = tf.concat(
[tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , )
UpperCAmelCase = global_attention_mask
return config, inputs_dict
def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ):
UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder()
UpperCAmelCase = inputs_dict['''input_ids''']
UpperCAmelCase = input_ids[:1, :]
UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase = 1
# first forward pass
UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ )
UpperCAmelCase, UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase = model(a__ , attention_mask=a__ )[0]
UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(a__ , a__ , rtol=1e-3 )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict:
"""simple docstring"""
if attention_mask is None:
UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowerCamelCase =(
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = TFLEDModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ )
def __snake_case ( self : int ):
self.config_tester.run_common_tests()
def __snake_case ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] )
UpperCAmelCase = 2
UpperCAmelCase = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
UpperCAmelCase = True
UpperCAmelCase = self.model_tester.seq_length
UpperCAmelCase = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(a__ : Tuple ):
UpperCAmelCase = outputs.decoder_attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(a__ : int ):
UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions]
UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = len(a__ )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
if self.is_encoder_decoder:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_decoder_attentions_output(a__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
# Check attention is always last and order is fine
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) )
self.assertEqual(model.config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def __snake_case ( self : Any ):
pass
def __snake_case ( self : Union[str, Any] ):
# TODO: Head-masking not yet implement
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple:
"""simple docstring"""
return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa )
a__ : int = 1e-4
@slow
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, 768)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 )
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
| 51 | 1 |
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
a__ : Optional[Any] = pd.read_csv('sample_data.csv', header=None)
a__ : str = df.shape[:1][0]
# If you're using some other dataset input the target column
a__ : Dict = df.iloc[:, 1:2]
a__ : Tuple = actual_data.values.reshape(len_data, 1)
a__ : int = MinMaxScaler().fit_transform(actual_data)
a__ : int = 10
a__ : int = 5
a__ : Dict = 20
a__ : Union[str, Any] = len_data - periods * look_back
a__ : Optional[int] = actual_data[:division]
a__ : Union[str, Any] = actual_data[division - look_back :]
a__ , a__ : Any = [], []
a__ , a__ : Tuple = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
a__ : Any = np.array(train_x)
a__ : List[str] = np.array(test_x)
a__ : str = np.array([list(i.ravel()) for i in train_y])
a__ : Optional[int] = np.array([list(i.ravel()) for i in test_y])
a__ : int = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss='mean_squared_error', optimizer='adam')
a__ : Optional[Any] = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
a__ : List[Any] = model.predict(x_test)
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
import argparse
import json
from tqdm import tqdm
def __snake_case ( ) -> str:
"""simple docstring"""
UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--src_path''' , type=SCREAMING_SNAKE_CASE_ , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , )
parser.add_argument(
'''--evaluation_set''' , type=SCREAMING_SNAKE_CASE_ , help='''where to store parsed evaluation_set file''' , )
parser.add_argument(
'''--gold_data_path''' , type=SCREAMING_SNAKE_CASE_ , help='''where to store parsed gold_data_path file''' , )
UpperCAmelCase = parser.parse_args()
with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open(
args.gold_data_path , '''w''' ) as gold_file:
UpperCAmelCase = json.load(SCREAMING_SNAKE_CASE_ )
for dpr_record in tqdm(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = dpr_record['''question''']
UpperCAmelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']]
eval_file.write(question + '''\n''' )
gold_file.write('''\t'''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
if __name__ == "__main__":
main()
| 51 |
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a__ : List[Any] = 'sshleifer/mar_enro_6_3_student'
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : Dict ):
super().setUp()
UpperCAmelCase = cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , )
UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def __snake_case ( self : Optional[int] ):
MarianMTModel.from_pretrained(a__ )
@slow
@require_torch_gpu
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = {
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __snake_case ( self : Any ):
UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
UpperCAmelCase = {
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
UpperCAmelCase = (
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' )
UpperCAmelCase = 6
UpperCAmelCase = (
['''distillation.py''']
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
'''--gpus=1''',
'''--learning_rate=1e-3''',
f"--num_train_epochs={epochs}",
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
UpperCAmelCase = distill_main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 51 | 1 |
'''simple docstring'''
import os
def __snake_case ( ) -> Tuple:
"""simple docstring"""
with open(os.path.dirname(SCREAMING_SNAKE_CASE_ ) + '''/p022_names.txt''' ) as file:
UpperCAmelCase = str(file.readlines()[0] )
UpperCAmelCase = names.replace('''"''' , '''''' ).split(''',''' )
names.sort()
UpperCAmelCase = 0
UpperCAmelCase = 0
for i, name in enumerate(SCREAMING_SNAKE_CASE_ ):
for letter in name:
name_score += ord(SCREAMING_SNAKE_CASE_ ) - 64
total_score += (i + 1) * name_score
UpperCAmelCase = 0
return total_score
if __name__ == "__main__":
print(solution())
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 51 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase = MobileBertConfig.from_json_file(SCREAMING_SNAKE_CASE_ )
print(f"Building PyTorch model from configuration: {config}" )
UpperCAmelCase = MobileBertForPreTraining(SCREAMING_SNAKE_CASE_ )
# Load weights from tf checkpoint
UpperCAmelCase = load_tf_weights_in_mobilebert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}" )
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--mobilebert_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained MobileBERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
a__ : List[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 51 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 51 | 1 |
'''simple docstring'''
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'''
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert('''RGB''' )
UpperCAmelCase = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ),
] )
UpperCAmelCase = transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE_ )
return image
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict:
"""simple docstring"""
if "visual_encoder" in key:
UpperCAmelCase = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , SCREAMING_SNAKE_CASE_ )
if "blocks" in key:
UpperCAmelCase = re.sub(R'''blocks''' , '''layers''' , SCREAMING_SNAKE_CASE_ )
if "attn" in key:
UpperCAmelCase = re.sub(R'''attn''' , '''self_attn''' , SCREAMING_SNAKE_CASE_ )
if "norm1" in key:
UpperCAmelCase = re.sub(R'''norm1''' , '''layer_norm1''' , SCREAMING_SNAKE_CASE_ )
if "norm2" in key:
UpperCAmelCase = re.sub(R'''norm2''' , '''layer_norm2''' , SCREAMING_SNAKE_CASE_ )
if "encoder.norm" in key:
UpperCAmelCase = re.sub(R'''encoder.norm''' , '''post_layernorm''' , SCREAMING_SNAKE_CASE_ )
if "encoder.patch_embed.proj" in key:
UpperCAmelCase = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , SCREAMING_SNAKE_CASE_ )
if "encoder.pos_embed" in key:
UpperCAmelCase = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , SCREAMING_SNAKE_CASE_ )
if "encoder.cls_token" in key:
UpperCAmelCase = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , SCREAMING_SNAKE_CASE_ )
if "self_attn" in key:
UpperCAmelCase = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , SCREAMING_SNAKE_CASE_ )
return key
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any=None ) -> int:
"""simple docstring"""
if config_path is not None:
UpperCAmelCase = BlipConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={} )
UpperCAmelCase = BlipForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'''
UpperCAmelCase = blip_decoder(pretrained=SCREAMING_SNAKE_CASE_ , image_size=384 , vit='''base''' )
UpperCAmelCase = pt_model.eval()
UpperCAmelCase = pt_model.state_dict()
for key in modified_state_dict.copy():
UpperCAmelCase = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = rename_key(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = value
hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = 384
UpperCAmelCase = load_demo_image(image_size=SCREAMING_SNAKE_CASE_ , device='''cpu''' )
UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
UpperCAmelCase = tokenizer(['''a picture of'''] ).input_ids
UpperCAmelCase = hf_model.generate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
assert out[0].tolist() == [30_522, 1_037, 3_861, 1_997, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102]
UpperCAmelCase = hf_model.generate(SCREAMING_SNAKE_CASE_ )
assert out[0].tolist() == [30_522, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
UpperCAmelCase = (
'''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'''
)
UpperCAmelCase = blip_vqa(pretrained=SCREAMING_SNAKE_CASE_ , image_size=SCREAMING_SNAKE_CASE_ , vit='''base''' )
vqa_model.eval()
UpperCAmelCase = vqa_model.state_dict()
for key in modified_state_dict.copy():
UpperCAmelCase = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = rename_key(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = value
UpperCAmelCase = BlipForQuestionAnswering(SCREAMING_SNAKE_CASE_ )
hf_vqa_model.load_state_dict(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = ['''How many dogs are in this image?''']
UpperCAmelCase = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).input_ids
UpperCAmelCase = hf_vqa_model.generate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' )
UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'''
UpperCAmelCase = blip_itm(pretrained=SCREAMING_SNAKE_CASE_ , image_size=SCREAMING_SNAKE_CASE_ , vit='''base''' )
itm_model.eval()
UpperCAmelCase = itm_model.state_dict()
for key in modified_state_dict.copy():
UpperCAmelCase = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = rename_key(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = value
UpperCAmelCase = BlipForImageTextRetrieval(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = ['''A picture of a woman with a dog sitting in a beach''']
UpperCAmelCase = tokenizer(
SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE_ , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(SCREAMING_SNAKE_CASE_ )
hf_itm_model.eval()
UpperCAmelCase = hf_itm_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , use_itm_head=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = hf_itm_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , use_itm_head=SCREAMING_SNAKE_CASE_ )
assert out[0].item() == 0.2110687494277954
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' )
if __name__ == "__main__":
a__ : Dict = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
a__ : int = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 51 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ):
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str:
"""simple docstring"""
UpperCAmelCase = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict:
"""simple docstring"""
UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_lowerCamelCase =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ):
UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __snake_case ( self : int , a__ : Dict , a__ : Tuple ):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def __snake_case ( self : str ):
pass
@slow
@require_torch
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871}
] , )
# fmt: on
@require_torch
@slow
def __snake_case ( self : Dict ):
UpperCAmelCase = '''facebook/sam-vit-huge'''
UpperCAmelCase = pipeline('''mask-generation''' , model=a__ )
UpperCAmelCase = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
] , )
| 51 | 1 |
'''simple docstring'''
def __snake_case ( ) -> list[list[int]]:
"""simple docstring"""
return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )]
a__ : str = generate_large_matrix()
a__ : Any = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> None:
"""simple docstring"""
assert all(row == sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) for row in grid )
assert all(list(SCREAMING_SNAKE_CASE_ ) == sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) for col in zip(*SCREAMING_SNAKE_CASE_ ) )
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = 0
UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
UpperCAmelCase = (left + right) // 2
UpperCAmelCase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
UpperCAmelCase = mid + 1
else:
UpperCAmelCase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(SCREAMING_SNAKE_CASE_ )
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> int:
"""simple docstring"""
UpperCAmelCase = 0
UpperCAmelCase = len(grid[0] )
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
UpperCAmelCase = find_negative_index(grid[i][:bound] )
total += bound
return (len(SCREAMING_SNAKE_CASE_ ) * len(grid[0] )) - total
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> int:
"""simple docstring"""
return len([number for row in grid for number in row if number < 0] )
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> int:
"""simple docstring"""
UpperCAmelCase = 0
for row in grid:
for i, number in enumerate(SCREAMING_SNAKE_CASE_ ):
if number < 0:
total += len(SCREAMING_SNAKE_CASE_ ) - i
break
return total
def __snake_case ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Running benchmarks''' )
UpperCAmelCase = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
UpperCAmelCase = timeit(f"{func}(grid=grid)" , setup=SCREAMING_SNAKE_CASE_ , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 51 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE_ ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = offset
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ )
def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ):
UpperCAmelCase = image.astype(np.floataa )
if offset:
UpperCAmelCase = image - (scale / 2)
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(a__ )
if do_resize:
UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
UpperCAmelCase = self.center_crop(a__ , size=a__ )
if do_rescale:
UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ )
if do_normalize:
UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ )
UpperCAmelCase = to_channel_dimension_format(a__ , a__ )
return image
def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = offset if offset is not None else self.offset
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(a__ )
UpperCAmelCase = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 51 | 1 |
'''simple docstring'''
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Union[str, Any] , a__ : list[int] ):
UpperCAmelCase = len(a__ )
UpperCAmelCase = [0] * len_array
if len_array > 0:
UpperCAmelCase = array[0]
for i in range(1 , a__ ):
UpperCAmelCase = self.prefix_sum[i - 1] + array[i]
def __snake_case ( self : int , a__ : int , a__ : int ):
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def __snake_case ( self : List[str] , a__ : int ):
UpperCAmelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(a__ )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
import torch
from transformers import AutoModel
class lowerCAmelCase__ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ):
super(a__ , self ).__init__()
UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ )
UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 )
UpperCAmelCase = torch.nn.Softmax(dim=1 )
def __snake_case ( self : List[Any] , **a__ : Tuple ):
return self.bert(**a__ ).last_hidden_state
def __snake_case ( self : int , a__ : List[str] ):
return token_embeddings.sum(2 , keepdim=a__ )
def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ):
return self.softmax(T * self.cos(a__ , a__ ) )
def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ):
UpperCAmelCase = W_supports['''sizes'''].tolist()
UpperCAmelCase = W_supports['''start_token_id'''].item()
UpperCAmelCase = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = W_supports['''input_ids'''] == start_token_id
UpperCAmelCase = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(a__ ):
if i == 0:
UpperCAmelCase = 0
else:
UpperCAmelCase = support_sizes[i - 1]
UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]]
UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]]
UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCAmelCase = torch.vstack((p_starts, p_start) )
UpperCAmelCase = torch.vstack((p_ends, p_end) )
else:
UpperCAmelCase = p_start
UpperCAmelCase = p_end
return p_starts, p_ends
| 51 | 1 |
'''simple docstring'''
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =(UnCLIPScheduler,)
def __snake_case ( self : Tuple , **a__ : Dict ):
UpperCAmelCase = {
'''num_train_timesteps''': 1000,
'''variance_type''': '''fixed_small_log''',
'''clip_sample''': True,
'''clip_sample_range''': 1.0,
'''prediction_type''': '''epsilon''',
}
config.update(**a__ )
return config
def __snake_case ( self : Dict ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=a__ )
def __snake_case ( self : Optional[Any] ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=a__ )
def __snake_case ( self : Dict ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=a__ )
def __snake_case ( self : str ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=a__ )
def __snake_case ( self : Optional[int] ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=a__ )
def __snake_case ( self : Any ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=a__ , prev_timestep=a__ )
def __snake_case ( self : Any ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(variance_type='''fixed_small_log''' )
UpperCAmelCase = scheduler_class(**a__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5
def __snake_case ( self : List[Any] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(variance_type='''learned_range''' )
UpperCAmelCase = scheduler_class(**a__ )
UpperCAmelCase = 0.5
assert scheduler._get_variance(1 , predicted_variance=a__ ) - -10.1_712_790 < 1e-5
assert scheduler._get_variance(487 , predicted_variance=a__ ) - -5.7_998_052 < 1e-5
assert scheduler._get_variance(999 , predicted_variance=a__ ) - -0.0_010_011 < 1e-5
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
UpperCAmelCase = scheduler.timesteps
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter
UpperCAmelCase = torch.manual_seed(0 )
for i, t in enumerate(a__ ):
# 1. predict noise residual
UpperCAmelCase = model(a__ , a__ )
# 2. predict previous mean of sample x_t-1
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ).prev_sample
UpperCAmelCase = pred_prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2
assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(25 )
UpperCAmelCase = scheduler.timesteps
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter
UpperCAmelCase = torch.manual_seed(0 )
for i, t in enumerate(a__ ):
# 1. predict noise residual
UpperCAmelCase = model(a__ , a__ )
if i + 1 == timesteps.shape[0]:
UpperCAmelCase = None
else:
UpperCAmelCase = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
UpperCAmelCase = scheduler.step(
a__ , a__ , a__ , prev_timestep=a__ , generator=a__ ).prev_sample
UpperCAmelCase = pred_prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2
assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3
def __snake_case ( self : int ):
pass
def __snake_case ( self : List[Any] ):
pass
| 51 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =(EulerDiscreteScheduler,)
_lowerCamelCase =10
def __snake_case ( self : str , **a__ : Tuple ):
UpperCAmelCase = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**a__ )
return config
def __snake_case ( self : Dict ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=a__ )
def __snake_case ( self : Optional[int] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=a__ , beta_end=a__ )
def __snake_case ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=a__ )
def __snake_case ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 0.0_002 ) < 1e-2
assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
| 51 | 1 |
'''simple docstring'''
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
a__ : Union[str, Any] = logging.getLogger(__name__)
a__ : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
a__ : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
" scratch."
)
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase_ )} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "The input training data file (a text file)."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"The input training data files (multiple files in glob format). "
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
)
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} )
_lowerCamelCase =field(default=UpperCAmelCase_ , metadata={"help": "Whether ot not to use whole word mask."} )
_lowerCamelCase =field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} )
_lowerCamelCase =field(
default=1 / 6 , metadata={
"help": (
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
" modeling."
)
} , )
_lowerCamelCase =field(
default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} )
_lowerCamelCase =field(
default=-1 , metadata={
"help": (
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __snake_case ( SCREAMING_SNAKE_CASE_ : DataTrainingArguments , SCREAMING_SNAKE_CASE_ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[str] = None , ) -> Any:
"""simple docstring"""
def _dataset(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any]=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' )
return LineByLineWithRefDataset(
tokenizer=SCREAMING_SNAKE_CASE_ , file_path=SCREAMING_SNAKE_CASE_ , block_size=args.block_size , ref_path=SCREAMING_SNAKE_CASE_ , )
return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE_ , file_path=SCREAMING_SNAKE_CASE_ , block_size=args.block_size )
else:
return TextDataset(
tokenizer=SCREAMING_SNAKE_CASE_ , file_path=SCREAMING_SNAKE_CASE_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=SCREAMING_SNAKE_CASE_ , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE_ ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
'''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file '''
'''or remove the --do_eval argument.''' )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE_ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.tokenizer_name:
UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another'''
''' script, save it,and load it from here, using --tokenizer_name''' )
if model_args.model_name_or_path:
UpperCAmelCase = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , )
else:
logger.info('''Training new model from scratch''' )
UpperCAmelCase = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE_ )
model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
'''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the'''
'''--mlm flag (masked language modeling).''' )
if data_args.block_size <= 0:
UpperCAmelCase = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
UpperCAmelCase = min(data_args.block_size , tokenizer.max_len )
# Get datasets
UpperCAmelCase = (
get_dataset(SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
UpperCAmelCase = (
get_dataset(SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , evaluate=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
UpperCAmelCase = DataCollatorForPermutationLanguageModeling(
tokenizer=SCREAMING_SNAKE_CASE_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
UpperCAmelCase = DataCollatorForWholeWordMask(
tokenizer=SCREAMING_SNAKE_CASE_ , mlm_probability=data_args.mlm_probability )
else:
UpperCAmelCase = DataCollatorForLanguageModeling(
tokenizer=SCREAMING_SNAKE_CASE_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , prediction_loss_only=SCREAMING_SNAKE_CASE_ , )
# Training
if training_args.do_train:
UpperCAmelCase = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=SCREAMING_SNAKE_CASE_ )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate()
UpperCAmelCase = math.exp(eval_output['''eval_loss'''] )
UpperCAmelCase = {'''perplexity''': perplexity}
UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' )
if trainer.is_world_master():
with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key in sorted(result.keys() ):
logger.info(''' %s = %s''' , SCREAMING_SNAKE_CASE_ , str(result[key] ) )
writer.write('''%s = %s\n''' % (key, str(result[key] )) )
results.update(SCREAMING_SNAKE_CASE_ )
return results
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 51 |
'''simple docstring'''
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
metadata={"help": "The csv file to plot."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
_lowerCamelCase =list_field(
default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
try:
int(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str:
"""simple docstring"""
try:
float(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Dict , a__ : Optional[int] ):
UpperCAmelCase = args
UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
UpperCAmelCase = csv.DictReader(a__ )
for row in reader:
UpperCAmelCase = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
UpperCAmelCase = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
UpperCAmelCase = float(row['''result'''] )
def __snake_case ( self : Dict ):
UpperCAmelCase, UpperCAmelCase = plt.subplots()
UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage'''
UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
UpperCAmelCase = self.result_dict[model_name]['''result''']
((UpperCAmelCase), (UpperCAmelCase)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
UpperCAmelCase = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
UpperCAmelCase = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , )
else:
UpperCAmelCase = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((UpperCAmelCase), (UpperCAmelCase)) = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )]
plt.scatter(
a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" )
plt.plot(a__ , a__ , '''--''' )
title_str += f" {label_model_name} vs."
UpperCAmelCase = title_str[:-4]
UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(a__ )
plt.xlabel(a__ )
plt.ylabel(a__ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ )
plot.plot()
if __name__ == "__main__":
main()
| 51 | 1 |
'''simple docstring'''
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : str ):
UpperCAmelCase = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
UpperCAmelCase = Vector()
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(a__ ) , '''(0,0,0,0,0,1)''' )
def __snake_case ( self : List[str] ):
UpperCAmelCase = Vector([1, 2, 3, 4] )
self.assertEqual(len(a__ ) , 4 )
def __snake_case ( self : int ):
UpperCAmelCase = Vector([1, 2] )
UpperCAmelCase = Vector([1, 2, 3, 4, 5] )
UpperCAmelCase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
UpperCAmelCase = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = Vector([1, 2, 3] )
UpperCAmelCase = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = Vector([1, 2, 3] )
UpperCAmelCase = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = Vector([1, 2, 3] )
UpperCAmelCase = Vector([2, -1, 4] ) # for test of dot product
UpperCAmelCase = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' )
self.assertEqual((a * b) , 0 )
def __snake_case ( self : Dict ):
self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 )
def __snake_case ( self : Union[str, Any] ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' )
def __snake_case ( self : int ):
UpperCAmelCase = Vector([1, 2, 3] )
UpperCAmelCase = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , a__ , a__ ) ) , '''(3,4,7)''' )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = Vector([1, 0, 0, 0, 0, 0] )
UpperCAmelCase = x.copy()
self.assertEqual(str(a__ ) , str(a__ ) )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(a__ ) , '''(0,1,0)''' )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(a__ ) )
def __snake_case ( self : Tuple ):
UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
UpperCAmelCase = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(a__ , a__ ) )
def __snake_case ( self : int ):
UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
UpperCAmelCase = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(a__ , a__ ) )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
UpperCAmelCase = Vector([1, 2, 3] )
self.assertEqual('''(14,32,50)''' , str(a * x ) )
self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) )
def __snake_case ( self : Dict ):
UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(a__ ) )
def __snake_case ( self : Dict ):
UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
UpperCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) )
def __snake_case ( self : Tuple ):
UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
UpperCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) )
def __snake_case ( self : str ):
self.assertEqual(
'''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 51 |
'''simple docstring'''
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
print('''Loading config file...''' )
def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ):
UpperCAmelCase = []
for k, v in d.items():
UpperCAmelCase = parent_key + sep + k if parent_key else k
if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() )
else:
items.append((new_key, v) )
return dict(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = argparse.Namespace()
with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file:
try:
UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader )
UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ )
for k, v in flat_cfg.items():
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) )
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = MobileViTVaConfig()
UpperCAmelCase = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase = 151
UpperCAmelCase = 512
UpperCAmelCase = '''ade20k-id2label.json'''
UpperCAmelCase = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase = 21
UpperCAmelCase = 512
UpperCAmelCase = '''pascal-voc-id2label.json'''
UpperCAmelCase = True
# orig_config
UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ )
assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = val
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int:
"""simple docstring"""
if base_model:
UpperCAmelCase = ''''''
else:
UpperCAmelCase = '''mobilevitv2.'''
UpperCAmelCase = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase = k[8:]
else:
UpperCAmelCase = k
if ".block." in k:
UpperCAmelCase = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." )
for i in [1, 2]:
if f"layer_{i}." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f"layer_{i}.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if f"layer_{i}.1.local_rep.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if f"layer_{i}.1.local_rep.1." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase = [0, 1]
elif i == 4:
UpperCAmelCase = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase = [0, 1, 2]
for j in j_in:
if f"layer_{i}.1.global_rep.{j}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if f"layer_{i}.1.global_rep.{j+1}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." )
if f"layer_{i}.1.conv_proj." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(SCREAMING_SNAKE_CASE_ )
for k in keys_to_ignore:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
else:
UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
# remove and rename some keys of load the original model
UpperCAmelCase = checkpoint
remove_unused_keys(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load modified state_dict
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase = outputs.logits
UpperCAmelCase = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] )
assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task',
default='imagenet1k_256',
type=str,
help=(
'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '
'\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n '
),
choices=[
'imagenet1k_256',
'imagenet1k_384',
'imagenet21k_to_1k_256',
'imagenet21k_to_1k_384',
'ade20k_deeplabv3',
'voc_deeplabv3',
],
)
parser.add_argument(
'--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
a__ : str = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 51 | 1 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ):
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str:
"""simple docstring"""
UpperCAmelCase = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict:
"""simple docstring"""
UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_lowerCamelCase =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ):
UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __snake_case ( self : int , a__ : Dict , a__ : Tuple ):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def __snake_case ( self : str ):
pass
@slow
@require_torch
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871}
] , )
# fmt: on
@require_torch
@slow
def __snake_case ( self : Dict ):
UpperCAmelCase = '''facebook/sam-vit-huge'''
UpperCAmelCase = pipeline('''mask-generation''' , model=a__ )
UpperCAmelCase = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
] , )
| 51 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Optional[int] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="megatron-bert"
def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ):
super().__init__(pad_token_id=a__ , **a__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
| 51 | 1 |
'''simple docstring'''
from collections import deque
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : List[Any] , a__ : str , a__ : int , a__ : int ):
UpperCAmelCase = process_name # process name
UpperCAmelCase = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
UpperCAmelCase = arrival_time
UpperCAmelCase = burst_time # remaining burst time
UpperCAmelCase = 0 # total time of the process wait in ready queue
UpperCAmelCase = 0 # time from arrival time to completion time
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , a__ : int , a__ : list[int] , a__ : deque[Process] , a__ : int , ):
# total number of mlfq's queues
UpperCAmelCase = number_of_queues
# time slice of queues that round robin algorithm applied
UpperCAmelCase = time_slices
# unfinished process is in this ready_queue
UpperCAmelCase = queue
# current time
UpperCAmelCase = current_time
# finished process is in this sequence queue
UpperCAmelCase = deque()
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def __snake_case ( self : Any , a__ : list[Process] ):
UpperCAmelCase = []
for i in range(len(a__ ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def __snake_case ( self : Any , a__ : list[Process] ):
UpperCAmelCase = []
for i in range(len(a__ ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def __snake_case ( self : Optional[int] , a__ : list[Process] ):
UpperCAmelCase = []
for i in range(len(a__ ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def __snake_case ( self : List[Any] , a__ : deque[Process] ):
return [q.burst_time for q in queue]
def __snake_case ( self : Optional[int] , a__ : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def __snake_case ( self : Union[str, Any] , a__ : deque[Process] ):
UpperCAmelCase = deque() # sequence deque of finished process
while len(a__ ) != 0:
UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(a__ )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
UpperCAmelCase = 0
# set the process's turnaround time because it is finished
UpperCAmelCase = self.current_time - cp.arrival_time
# set the completion time
UpperCAmelCase = self.current_time
# add the process to queue that has finished queue
finished.append(a__ )
self.finish_queue.extend(a__ ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def __snake_case ( self : Dict , a__ : deque[Process] , a__ : int ):
UpperCAmelCase = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(a__ ) ):
UpperCAmelCase = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(a__ )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
UpperCAmelCase = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(a__ )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
UpperCAmelCase = 0
# set the finish time
UpperCAmelCase = self.current_time
# update the process' turnaround time because it is finished
UpperCAmelCase = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(a__ )
self.finish_queue.extend(a__ ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def __snake_case ( self : Union[str, Any] ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
UpperCAmelCase, UpperCAmelCase = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
a__ : int = Process('P1', 0, 53)
a__ : str = Process('P2', 0, 17)
a__ : int = Process('P3', 0, 68)
a__ : str = Process('P4', 0, 24)
a__ : Union[str, Any] = 3
a__ : Dict = [17, 25]
a__ : Union[str, Any] = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])})
a__ : List[str] = Process('P1', 0, 53)
a__ : int = Process('P2', 0, 17)
a__ : List[str] = Process('P3', 0, 68)
a__ : Tuple = Process('P4', 0, 24)
a__ : Optional[Any] = 3
a__ : Optional[int] = [17, 25]
a__ : List[str] = deque([Pa, Pa, Pa, Pa])
a__ : int = MLFQ(number_of_queues, time_slices, queue, 0)
a__ : List[str] = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F"""waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print completion times of processes(P1, P2, P3, P4)
print(
F"""completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F"""turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print sequence of finished processes
print(
F"""sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}"""
)
| 51 |
'''simple docstring'''
from __future__ import annotations
a__ : List[str] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ):
UpperCAmelCase = graph
# mapping node to its parent in resulting breadth first tree
UpperCAmelCase = {}
UpperCAmelCase = source_vertex
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = {self.source_vertex}
UpperCAmelCase = None
UpperCAmelCase = [self.source_vertex] # first in first out queue
while queue:
UpperCAmelCase = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(a__ )
UpperCAmelCase = vertex
queue.append(a__ )
def __snake_case ( self : Any , a__ : str ):
if target_vertex == self.source_vertex:
return self.source_vertex
UpperCAmelCase = self.parent.get(a__ )
if target_vertex_parent is None:
UpperCAmelCase = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(a__ )
return self.shortest_path(a__ ) + f"->{target_vertex}"
if __name__ == "__main__":
a__ : Tuple = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 51 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __snake_case ( self : List[Any] ):
UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
UpperCAmelCase = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] )
# The dog is cute and lives in the garden house
UpperCAmelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase = model(a__ )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , a__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , a__ , atol=1e-3 ) )
@slow
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
UpperCAmelCase = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] )
# The dog is cute and lives in the garden house
UpperCAmelCase = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase = model(a__ )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , a__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , a__ , atol=1e-3 ) )
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a__ : Any = {
'configuration_mask2former': [
'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Mask2FormerConfig',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['Mask2FormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'Mask2FormerForUniversalSegmentation',
'Mask2FormerModel',
'Mask2FormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Any = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any:
"""simple docstring"""
return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :]
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]="attention" ) -> Dict:
"""simple docstring"""
UpperCAmelCase = UpperCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] )
UpperCAmelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
UpperCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] )
UpperCAmelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
UpperCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] )
UpperCAmelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
UpperCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] )
UpperCAmelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> List[str]:
"""simple docstring"""
if split_mlp_wi:
UpperCAmelCase = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :]
UpperCAmelCase = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :]
UpperCAmelCase = (wi_a, wi_a)
else:
UpperCAmelCase = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :]
UpperCAmelCase = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :]
return wi, wo
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Any:
"""simple docstring"""
return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i]
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , *, SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = traverse_util.flatten_dict(variables['''target'''] )
UpperCAmelCase = {'''/'''.join(SCREAMING_SNAKE_CASE_ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
UpperCAmelCase = '''encoder/encoder/mlp/wi_0/kernel''' in old
print('''Split MLP:''' , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = collections.OrderedDict()
# Shared embeddings.
UpperCAmelCase = old['''token_embedder/embedding''']
# Encoder.
for i in range(SCREAMING_SNAKE_CASE_ ):
# Block i, layer 0 (Self Attention).
UpperCAmelCase = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''encoder''' , '''pre_attention_layer_norm''' )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''encoder''' , '''attention''' )
UpperCAmelCase = layer_norm
UpperCAmelCase = k.T
UpperCAmelCase = o.T
UpperCAmelCase = q.T
UpperCAmelCase = v.T
# Block i, layer 1 (MLP).
UpperCAmelCase = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''encoder''' , '''pre_mlp_layer_norm''' )
UpperCAmelCase, UpperCAmelCase = tax_mlp_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''encoder''' , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = layer_norm
if split_mlp_wi:
UpperCAmelCase = wi[0].T
UpperCAmelCase = wi[1].T
else:
UpperCAmelCase = wi.T
UpperCAmelCase = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCAmelCase = tax_relpos_bias_lookup(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''encoder''' ).T
UpperCAmelCase = old['''encoder/encoder_norm/scale''']
if not scalable_attention:
UpperCAmelCase = tax_relpos_bias_lookup(
SCREAMING_SNAKE_CASE_ , 0 , '''encoder''' ).T
UpperCAmelCase = tax_relpos_bias_lookup(
SCREAMING_SNAKE_CASE_ , 0 , '''decoder''' ).T
if not is_encoder_only:
# Decoder.
for i in range(SCREAMING_SNAKE_CASE_ ):
# Block i, layer 0 (Self Attention).
UpperCAmelCase = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , '''pre_self_attention_layer_norm''' )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , '''self_attention''' )
UpperCAmelCase = layer_norm
UpperCAmelCase = k.T
UpperCAmelCase = o.T
UpperCAmelCase = q.T
UpperCAmelCase = v.T
# Block i, layer 1 (Cross Attention).
UpperCAmelCase = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , '''pre_cross_attention_layer_norm''' )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , '''encoder_decoder_attention''' )
UpperCAmelCase = layer_norm
UpperCAmelCase = k.T
UpperCAmelCase = o.T
UpperCAmelCase = q.T
UpperCAmelCase = v.T
# Block i, layer 2 (MLP).
UpperCAmelCase = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , '''pre_mlp_layer_norm''' )
UpperCAmelCase, UpperCAmelCase = tax_mlp_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = layer_norm
if split_mlp_wi:
UpperCAmelCase = wi[0].T
UpperCAmelCase = wi[1].T
else:
UpperCAmelCase = wi.T
UpperCAmelCase = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCAmelCase = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''decoder''' ).T
UpperCAmelCase = old['''decoder/decoder_norm/scale''']
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
UpperCAmelCase = old['''decoder/logits_dense/kernel'''].T
return new
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : bool ) -> Any:
"""simple docstring"""
UpperCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
UpperCAmelCase = state_dict['''shared.weight''']
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
UpperCAmelCase = state_dict['''shared.weight''']
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print('''Using shared word embeddings as lm_head.''' )
UpperCAmelCase = state_dict['''shared.weight''']
return state_dict
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any:
"""simple docstring"""
UpperCAmelCase = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = convert_tax_to_pytorch(
SCREAMING_SNAKE_CASE_ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE_ , scalable_attention=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = make_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ )
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Dict:
"""simple docstring"""
UpperCAmelCase = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE_ )
print(f"Building PyTorch model from configuration: {config}" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
UpperCAmelCase = UMTaEncoderModel(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE_ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Verify that we can load the checkpoint.
model.from_pretrained(SCREAMING_SNAKE_CASE_ )
print('''Done''' )
if __name__ == "__main__":
a__ : List[str] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
parser.add_argument(
'--scalable_attention',
action='store_true',
help='Whether the model uses scaled attention (umt5 model)',
default=False,
)
a__ : List[str] = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 51 |
'''simple docstring'''
from math import factorial
def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int:
"""simple docstring"""
return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
a__ : List[str] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ):
UpperCAmelCase = graph
# mapping node to its parent in resulting breadth first tree
UpperCAmelCase = {}
UpperCAmelCase = source_vertex
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = {self.source_vertex}
UpperCAmelCase = None
UpperCAmelCase = [self.source_vertex] # first in first out queue
while queue:
UpperCAmelCase = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(a__ )
UpperCAmelCase = vertex
queue.append(a__ )
def __snake_case ( self : Any , a__ : str ):
if target_vertex == self.source_vertex:
return self.source_vertex
UpperCAmelCase = self.parent.get(a__ )
if target_vertex_parent is None:
UpperCAmelCase = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(a__ )
return self.shortest_path(a__ ) + f"->{target_vertex}"
if __name__ == "__main__":
a__ : Tuple = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 51 |
'''simple docstring'''
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =StableUnCLIPPipeline
_lowerCamelCase =TEXT_TO_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
_lowerCamelCase =False
def __snake_case ( self : str ):
UpperCAmelCase = 32
UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , )
torch.manual_seed(0 )
UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ )
UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , )
torch.manual_seed(0 )
UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , )
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL()
UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __snake_case ( self : List[Any] ):
UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=a__ )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' )
UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(a__ , a__ )
def __snake_case ( self : str ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 51 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : str , a__ : Optional[int] , a__ : List[Any]=13 , a__ : Optional[int]=7 , a__ : str=6 , a__ : Union[str, Any]=17 , a__ : List[Any]=23 , a__ : Tuple=11 , a__ : Optional[int]=True , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = act_dim
UpperCAmelCase = state_dim
UpperCAmelCase = hidden_size
UpperCAmelCase = max_length
UpperCAmelCase = is_training
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 )
UpperCAmelCase = random_attention_mask((self.batch_size, self.seq_length) )
UpperCAmelCase = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def __snake_case ( self : List[Any] ):
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def __snake_case ( self : Dict , a__ : Union[str, Any] , a__ : Dict , a__ : Dict , a__ : Dict , a__ : List[Any] , a__ : List[str] , a__ : Union[str, Any] , ):
UpperCAmelCase = DecisionTransformerModel(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ , a__ , a__ , a__ , a__ , a__ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
),
) = config_and_inputs
UpperCAmelCase = {
'''states''': states,
'''actions''': actions,
'''rewards''': rewards,
'''returns_to_go''': returns_to_go,
'''timesteps''': timesteps,
'''attention_mask''': attention_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(DecisionTransformerModel,) if is_torch_available() else ()
_lowerCamelCase =()
_lowerCamelCase ={"feature-extraction": DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
_lowerCamelCase =False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = DecisionTransformerModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ , hidden_size=37 )
def __snake_case ( self : str ):
self.config_tester.run_common_tests()
def __snake_case ( self : str ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
@slow
def __snake_case ( self : List[str] ):
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = DecisionTransformerModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
def __snake_case ( self : List[str] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase = [*signature.parameters.keys()]
UpperCAmelCase = [
'''states''',
'''actions''',
'''rewards''',
'''returns_to_go''',
'''timesteps''',
'''attention_mask''',
]
self.assertListEqual(arg_names[: len(a__ )] , a__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = 2 # number of steps of autoregressive prediction we will perform
UpperCAmelCase = 10 # defined by the RL environment, may be normalized
UpperCAmelCase = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' )
UpperCAmelCase = model.to(a__ )
UpperCAmelCase = model.config
torch.manual_seed(0 )
UpperCAmelCase = torch.randn(1 , 1 , config.state_dim ).to(device=a__ , dtype=torch.floataa ) # env.reset()
UpperCAmelCase = torch.tensor(
[[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=a__ )
UpperCAmelCase = torch.tensor(a__ , device=a__ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
UpperCAmelCase = state
UpperCAmelCase = torch.zeros(1 , 0 , config.act_dim , device=a__ , dtype=torch.floataa )
UpperCAmelCase = torch.zeros(1 , 0 , device=a__ , dtype=torch.floataa )
UpperCAmelCase = torch.tensor(0 , device=a__ , dtype=torch.long ).reshape(1 , 1 )
for step in range(a__ ):
UpperCAmelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=a__ )] , dim=1 )
UpperCAmelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=a__ )] , dim=1 )
UpperCAmelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = model(
states=a__ , actions=a__ , rewards=a__ , returns_to_go=a__ , timesteps=a__ , attention_mask=a__ , return_dict=a__ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=a__ , dtype=torch.floataa ),
1.0,
False,
{},
)
UpperCAmelCase = action_pred[0, -1]
UpperCAmelCase = torch.cat([states, state] , dim=1 )
UpperCAmelCase = returns_to_go[0, -1] - reward
UpperCAmelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
UpperCAmelCase = torch.cat(
[timesteps, torch.ones((1, 1) , device=a__ , dtype=torch.long ) * (step + 1)] , dim=1 )
| 51 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict:
"""simple docstring"""
if not head:
return True
# split the list to two parts
UpperCAmelCase, UpperCAmelCase = head.next, head
while fast and fast.next:
UpperCAmelCase = fast.next.next
UpperCAmelCase = slow.next
UpperCAmelCase = slow.next
UpperCAmelCase = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase = None
while second:
UpperCAmelCase = second.next
UpperCAmelCase = node
UpperCAmelCase = second
UpperCAmelCase = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase = node.next
UpperCAmelCase = head.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]:
"""simple docstring"""
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head
while fast and fast.next:
UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase = [slow.val]
while slow.next:
UpperCAmelCase = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase = cur.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
"""simple docstring"""
if not head or not head.next:
return True
UpperCAmelCase = {}
UpperCAmelCase = 0
while head:
if head.val in d:
d[head.val].append(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase = [pos]
UpperCAmelCase = head.next
pos += 1
UpperCAmelCase = pos - 1
UpperCAmelCase = 0
for v in d.values():
if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase = 0
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ):
if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 51 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a__ : Tuple = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST',
'SwinForImageClassification',
'SwinForMaskedImageModeling',
'SwinModel',
'SwinPreTrainedModel',
'SwinBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = [
'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFSwinForImageClassification',
'TFSwinForMaskedImageModeling',
'TFSwinModel',
'TFSwinPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swin import (
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinBackbone,
SwinForImageClassification,
SwinForMaskedImageModeling,
SwinModel,
SwinPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_swin import (
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSwinForImageClassification,
TFSwinForMaskedImageModeling,
TFSwinModel,
TFSwinPreTrainedModel,
)
else:
import sys
a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : str ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __snake_case ( self : Optional[int] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , )
return self.image_processor_class
@property
def __snake_case ( self : List[Any] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , )
return self.image_processor
| 51 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =StableDiffusionLatentUpscalePipeline
_lowerCamelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
_lowerCamelCase =PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
_lowerCamelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_lowerCamelCase =frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_lowerCamelCase =frozenset([] )
_lowerCamelCase =True
@property
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = 1
UpperCAmelCase = 4
UpperCAmelCase = (16, 16)
UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a__ )
return image
def __snake_case ( self : Tuple ):
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=a__ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
) , in_channels=8 , mid_block_type=a__ , only_cross_attention=a__ , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , )
UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
UpperCAmelCase = EulerDiscreteScheduler(prediction_type='''sample''' )
UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , )
UpperCAmelCase = CLIPTextModel(a__ )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase = {
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def __snake_case ( self : Any , a__ : Optional[int] , a__ : List[Any]=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = '''cpu'''
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**a__ )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = pipe(**a__ ).images
UpperCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 256, 256, 3) )
UpperCAmelCase = np.array(
[0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] )
UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(a__ , 1e-3 )
def __snake_case ( self : Dict ):
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def __snake_case ( self : Optional[Any] ):
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def __snake_case ( self : str ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def __snake_case ( self : Optional[int] ):
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def __snake_case ( self : List[Any] ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def __snake_case ( self : Optional[int] ):
super().test_save_load_local(expected_max_difference=3e-3 )
def __snake_case ( self : List[str] ):
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = [
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**a__ )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=a__ )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = 2
UpperCAmelCase = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
UpperCAmelCase = getattr(a__ , scheduler_enum.name )
UpperCAmelCase = scheduler_cls.from_config(pipe.scheduler.config )
UpperCAmelCase = pipe(**a__ )[0]
outputs.append(a__ )
assert check_same_shape(a__ )
@require_torch_gpu
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Union[str, Any] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : List[Any] ):
UpperCAmelCase = torch.manual_seed(33 )
UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
UpperCAmelCase = '''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
UpperCAmelCase = pipe(a__ , generator=a__ , output_type='''latent''' ).images
UpperCAmelCase = upscaler(
prompt=a__ , image=a__ , num_inference_steps=20 , guidance_scale=0 , generator=a__ , output_type='''np''' , ).images[0]
UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5e-2
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = torch.manual_seed(33 )
UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
UpperCAmelCase = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
UpperCAmelCase = upscaler(
prompt=a__ , image=a__ , num_inference_steps=20 , guidance_scale=0 , generator=a__ , output_type='''np''' , ).images[0]
UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5e-2
| 51 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : str = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =XGLMTokenizer
_lowerCamelCase =XGLMTokenizerFast
_lowerCamelCase =True
_lowerCamelCase =True
def __snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = '''<pad>'''
UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(a__ ) , 1008 )
def __snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(
a__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def __snake_case ( self : Optional[Any] ):
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def __snake_case ( self : Optional[int] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(a__ , f.name )
UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ )
UpperCAmelCase = pickle.dumps(a__ )
pickle.loads(a__ )
def __snake_case ( self : Tuple ):
if not self.test_rust_tokenizer:
return
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase = tokenizer.tokenize(a__ )
UpperCAmelCase = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = tokenizer.encode(a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
@slow
def __snake_case ( self : int ):
UpperCAmelCase = '''Hello World!'''
UpperCAmelCase = [2, 31227, 4447, 35]
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : List[str] ):
UpperCAmelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : Any ):
# fmt: off
UpperCAmelCase = {
'''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
| 51 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Dict = {
'configuration_blenderbot': [
'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BlenderbotConfig',
'BlenderbotOnnxConfig',
],
'tokenization_blenderbot': ['BlenderbotTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = ['BlenderbotTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BlenderbotForCausalLM',
'BlenderbotForConditionalGeneration',
'BlenderbotModel',
'BlenderbotPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
'TFBlenderbotForConditionalGeneration',
'TFBlenderbotModel',
'TFBlenderbotPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = [
'FlaxBlenderbotForConditionalGeneration',
'FlaxBlenderbotModel',
'FlaxBlenderbotPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
a__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a__ : str = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig:
"""simple docstring"""
UpperCAmelCase = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase = 192
UpperCAmelCase = 768
UpperCAmelCase = 12
UpperCAmelCase = 3
UpperCAmelCase = [800, 1_333]
UpperCAmelCase = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = 330
UpperCAmelCase = 14
UpperCAmelCase = 6
UpperCAmelCase = 1_320
elif "yolos_s" in yolos_name:
UpperCAmelCase = 384
UpperCAmelCase = 1_536
UpperCAmelCase = 12
UpperCAmelCase = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase = [800, 1_344]
UpperCAmelCase = 91
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''coco-detection-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase = in_proj_bias[: config.hidden_size]
UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
if "backbone" in name:
UpperCAmelCase = name.replace('''backbone''' , '''vit''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "det_token" in name:
UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' )
if "mid_pos_embed" in name:
UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
if "class_embed" in name:
UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' )
if "bbox_embed" in name:
UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' )
if "vit.norm" in name:
UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' )
return name
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[2] )
UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[
dim : dim * 2, :
]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def __snake_case ( ) -> torch.Tensor:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model''']
# load 🤗 model
UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512
UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes
UpperCAmelCase, UpperCAmelCase = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
UpperCAmelCase = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
UpperCAmelCase = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
UpperCAmelCase = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
UpperCAmelCase = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
UpperCAmelCase = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
UpperCAmelCase = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if push_to_hub:
UpperCAmelCase = {
'''yolos_ti''': '''yolos-tiny''',
'''yolos_s_200_pre''': '''yolos-small''',
'''yolos_s_300_pre''': '''yolos-small-300''',
'''yolos_s_dWr''': '''yolos-small-dwr''',
'''yolos_base''': '''yolos-base''',
}
print('''Pushing to the hub...''' )
UpperCAmelCase = model_mapping[yolos_name]
image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
if __name__ == "__main__":
a__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--yolos_name',
default='yolos_s_200_pre',
type=str,
help=(
'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','
' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'
),
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
a__ : Optional[Any] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 51 | 1 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : str = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =XGLMTokenizer
_lowerCamelCase =XGLMTokenizerFast
_lowerCamelCase =True
_lowerCamelCase =True
def __snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = '''<pad>'''
UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(a__ ) , 1008 )
def __snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(
a__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def __snake_case ( self : Optional[Any] ):
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def __snake_case ( self : Optional[int] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(a__ , f.name )
UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ )
UpperCAmelCase = pickle.dumps(a__ )
pickle.loads(a__ )
def __snake_case ( self : Tuple ):
if not self.test_rust_tokenizer:
return
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase = tokenizer.tokenize(a__ )
UpperCAmelCase = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = tokenizer.encode(a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
@slow
def __snake_case ( self : int ):
UpperCAmelCase = '''Hello World!'''
UpperCAmelCase = [2, 31227, 4447, 35]
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : List[str] ):
UpperCAmelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : Any ):
# fmt: off
UpperCAmelCase = {
'''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
| 51 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a__ : List[Any] = logging.get_logger(__name__)
a__ : int = {
'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json',
}
# fmt: off
a__ : Any = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377,
1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211,
4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786,
11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791,
17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409,
34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361
]
a__ : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627,
3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647,
7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793,
14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675,
22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865,
42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362
]
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="whisper"
_lowerCamelCase =["past_key_values"]
_lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ):
UpperCAmelCase = vocab_size
UpperCAmelCase = num_mel_bins
UpperCAmelCase = d_model
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = max_source_positions
UpperCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase = classifier_proj_size
UpperCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase = apply_spec_augment
UpperCAmelCase = mask_time_prob
UpperCAmelCase = mask_time_length
UpperCAmelCase = mask_time_min_masks
UpperCAmelCase = mask_feature_prob
UpperCAmelCase = mask_feature_length
UpperCAmelCase = mask_feature_min_masks
UpperCAmelCase = median_filter_width
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def __snake_case ( self : List[str] ):
UpperCAmelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(a__ , direction='''inputs''' )
return common_inputs
def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ):
UpperCAmelCase = OrderedDict()
UpperCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , )
UpperCAmelCase = encoder_inputs['''input_features'''].shape[2]
UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , a__ , a__ , a__ , a__ )
UpperCAmelCase = encoder_inputs.pop('''input_features''' )
UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
UpperCAmelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def __snake_case ( self : Dict ):
return 1e-3
| 51 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ : Dict = logging.get_logger(__name__)
a__ : Tuple = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="yolos"
def __init__( self : Any , a__ : List[Any]=768 , a__ : str=12 , a__ : Tuple=12 , a__ : Union[str, Any]=3072 , a__ : int="gelu" , a__ : Tuple=0.0 , a__ : Dict=0.0 , a__ : Dict=0.02 , a__ : Tuple=1e-1_2 , a__ : str=[512, 864] , a__ : List[Any]=16 , a__ : Dict=3 , a__ : str=True , a__ : Union[str, Any]=100 , a__ : Tuple=True , a__ : List[str]=False , a__ : Optional[Any]=1 , a__ : Dict=5 , a__ : int=2 , a__ : str=5 , a__ : Tuple=2 , a__ : Tuple=0.1 , **a__ : Optional[int] , ):
super().__init__(**a__ )
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = image_size
UpperCAmelCase = patch_size
UpperCAmelCase = num_channels
UpperCAmelCase = qkv_bias
UpperCAmelCase = num_detection_tokens
UpperCAmelCase = use_mid_position_embeddings
UpperCAmelCase = auxiliary_loss
# Hungarian matcher
UpperCAmelCase = class_cost
UpperCAmelCase = bbox_cost
UpperCAmelCase = giou_cost
# Loss coefficients
UpperCAmelCase = bbox_loss_coefficient
UpperCAmelCase = giou_loss_coefficient
UpperCAmelCase = eos_coefficient
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =version.parse("1.11" )
@property
def __snake_case ( self : str ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def __snake_case ( self : List[str] ):
return 1e-4
@property
def __snake_case ( self : Union[str, Any] ):
return 12
| 51 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =LEDConfig
_lowerCamelCase ={}
_lowerCamelCase ="gelu"
def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = eos_token_id
UpperCAmelCase = pad_token_id
UpperCAmelCase = bos_token_id
UpperCAmelCase = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
UpperCAmelCase = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
UpperCAmelCase = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ )
UpperCAmelCase = tf.concat(
[tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , )
UpperCAmelCase = global_attention_mask
return config, inputs_dict
def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ):
UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder()
UpperCAmelCase = inputs_dict['''input_ids''']
UpperCAmelCase = input_ids[:1, :]
UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase = 1
# first forward pass
UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ )
UpperCAmelCase, UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase = model(a__ , attention_mask=a__ )[0]
UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(a__ , a__ , rtol=1e-3 )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict:
"""simple docstring"""
if attention_mask is None:
UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowerCamelCase =(
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = TFLEDModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ )
def __snake_case ( self : int ):
self.config_tester.run_common_tests()
def __snake_case ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] )
UpperCAmelCase = 2
UpperCAmelCase = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
UpperCAmelCase = True
UpperCAmelCase = self.model_tester.seq_length
UpperCAmelCase = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(a__ : Tuple ):
UpperCAmelCase = outputs.decoder_attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(a__ : int ):
UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions]
UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = len(a__ )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
if self.is_encoder_decoder:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_decoder_attentions_output(a__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
# Check attention is always last and order is fine
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) )
self.assertEqual(model.config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def __snake_case ( self : Any ):
pass
def __snake_case ( self : Union[str, Any] ):
# TODO: Head-masking not yet implement
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple:
"""simple docstring"""
return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa )
a__ : int = 1e-4
@slow
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, 768)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 )
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
| 51 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split()
UpperCAmelCase = dict(zip(a__ , range(len(a__ ) ) ) )
UpperCAmelCase = {
'''unk_token''': '''<unk>''',
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
}
UpperCAmelCase = {
'''feature_size''': 1,
'''padding_value''': 0.0,
'''sampling_rate''': 16000,
'''return_attention_mask''': False,
'''do_normalize''': True,
}
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase = os.path.join(self.tmpdirname , a__ )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(a__ ) + '''\n''' )
with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(a__ ) + '''\n''' )
# load decoder from hub
UpperCAmelCase = '''hf-internal-testing/ngram-beam-search-decoder'''
def __snake_case ( self : int , **a__ : Optional[int] ):
UpperCAmelCase = self.add_kwargs_tokens_map.copy()
kwargs.update(a__ )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **a__ )
def __snake_case ( self : int , **a__ : str ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **a__ )
def __snake_case ( self : List[str] , **a__ : Optional[Any] ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **a__ )
def __snake_case ( self : int ):
shutil.rmtree(self.tmpdirname )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , a__ )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , a__ )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , a__ )
def __snake_case ( self : Any ):
UpperCAmelCase = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['''xx'''] )
with self.assertRaisesRegex(a__ , '''include''' ):
WavaVecaProcessorWithLM(
tokenizer=a__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = floats_list((3, 1000) )
UpperCAmelCase = feature_extractor(a__ , return_tensors='''np''' )
UpperCAmelCase = processor(a__ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __snake_case ( self : Any ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = '''This is a test string'''
UpperCAmelCase = processor(text=a__ )
UpperCAmelCase = tokenizer(a__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __snake_case ( self : int , a__ : int=(2, 10, 16) , a__ : List[Any]=77 ):
np.random.seed(a__ )
return np.random.rand(*a__ )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 )
UpperCAmelCase = processor.decode(a__ )
UpperCAmelCase = decoder.decode_beams(a__ )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual('''</s> <s> </s>''' , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ['''fork'''], ['''spawn''']] )
def __snake_case ( self : Any , a__ : str ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
UpperCAmelCase = processor.batch_decode(a__ )
else:
with get_context(a__ ).Pool() as pool:
UpperCAmelCase = processor.batch_decode(a__ , a__ )
UpperCAmelCase = list(a__ )
with get_context('''fork''' ).Pool() as p:
UpperCAmelCase = decoder.decode_beams_batch(a__ , a__ )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(a__ , decoded_processor.text )
self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text )
self.assertListEqual(a__ , decoded_processor.logit_score )
self.assertListEqual(a__ , decoded_processor.lm_score )
def __snake_case ( self : Dict ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = self._get_dummy_logits()
UpperCAmelCase = 15
UpperCAmelCase = -20.0
UpperCAmelCase = -4.0
UpperCAmelCase = processor.batch_decode(
a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , )
UpperCAmelCase = decoded_processor_out.text
UpperCAmelCase = list(a__ )
with get_context('''fork''' ).Pool() as pool:
UpperCAmelCase = decoder.decode_beams_batch(
a__ , a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , )
UpperCAmelCase = [d[0][0] for d in decoded_decoder_out]
UpperCAmelCase = [d[0][2] for d in decoded_decoder_out]
UpperCAmelCase = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(a__ , a__ )
self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , a__ )
self.assertTrue(np.array_equal(a__ , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , a__ , atol=1e-3 ) )
self.assertTrue(np.array_equal(a__ , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9_474] , a__ , atol=1e-3 ) )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = self._get_dummy_logits()
UpperCAmelCase = 2.0
UpperCAmelCase = 5.0
UpperCAmelCase = -20.0
UpperCAmelCase = True
UpperCAmelCase = processor.batch_decode(
a__ , alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , )
UpperCAmelCase = decoded_processor_out.text
UpperCAmelCase = list(a__ )
decoder.reset_params(
alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , )
with get_context('''fork''' ).Pool() as pool:
UpperCAmelCase = decoder.decode_beams_batch(
a__ , a__ , )
UpperCAmelCase = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(a__ , a__ )
self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , a__ )
UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , a__ )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key]
UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = ['''alphabet.json''', '''language_model''']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(a__ , a__ )
def __snake_case ( self : str ):
UpperCAmelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(a__ )
UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key]
UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = os.listdir(a__ )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(a__ , a__ )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = floats_list((3, 1000) )
UpperCAmelCase = processor_wavaveca(a__ , return_tensors='''np''' )
UpperCAmelCase = processor_auto(a__ , return_tensors='''np''' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
UpperCAmelCase = self._get_dummy_logits()
UpperCAmelCase = processor_wavaveca.batch_decode(a__ )
UpperCAmelCase = processor_auto.batch_decode(a__ )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
@staticmethod
def __snake_case ( a__ : Tuple , a__ : int ):
UpperCAmelCase = [d[key] for d in offsets]
return retrieved_list
def __snake_case ( self : Dict ):
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = self._get_dummy_logits()[0]
UpperCAmelCase = processor.decode(a__ , output_word_offsets=a__ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(a__ , a__ ) )
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] )
def __snake_case ( self : Any ):
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = self._get_dummy_logits()
UpperCAmelCase = processor.batch_decode(a__ , output_word_offsets=a__ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(a__ , a__ ) )
self.assertListEqual(
[''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def __snake_case ( self : Dict ):
import torch
UpperCAmelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=a__ )
UpperCAmelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) )
UpperCAmelCase = iter(a__ )
UpperCAmelCase = next(a__ )
UpperCAmelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
UpperCAmelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
UpperCAmelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values
with torch.no_grad():
UpperCAmelCase = model(a__ ).logits.cpu().numpy()
UpperCAmelCase = processor.decode(logits[0] , output_word_offsets=a__ )
UpperCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
UpperCAmelCase = [
{
'''start_time''': d['''start_offset'''] * time_offset,
'''end_time''': d['''end_offset'''] * time_offset,
'''word''': d['''word'''],
}
for d in output['''word_offsets''']
]
UpperCAmelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'''
# output words
self.assertEqual(''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) , a__ )
self.assertEqual(''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) , output.text )
# output times
UpperCAmelCase = torch.tensor(self.get_from_offsets(a__ , '''start_time''' ) )
UpperCAmelCase = torch.tensor(self.get_from_offsets(a__ , '''end_time''' ) )
# fmt: off
UpperCAmelCase = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] )
UpperCAmelCase = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(a__ , a__ , atol=0.01 ) )
self.assertTrue(torch.allclose(a__ , a__ , atol=0.01 ) )
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase = args.pruning_method
UpperCAmelCase = args.threshold
UpperCAmelCase = args.model_name_or_path.rstrip('''/''' )
UpperCAmelCase = args.target_model_path
print(f"Load fine-pruned model from {model_name_or_path}" )
UpperCAmelCase = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''pytorch_model.bin''' ) )
UpperCAmelCase = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
UpperCAmelCase = tensor
print(f"Copied layer {name}" )
elif "classifier" in name or "qa_output" in name:
UpperCAmelCase = tensor
print(f"Copied layer {name}" )
elif "bias" in name:
UpperCAmelCase = tensor
print(f"Copied layer {name}" )
else:
if pruning_method == "magnitude":
UpperCAmelCase = MagnitudeBinarizer.apply(inputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = tensor * mask
print(f"Pruned layer {name}" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
UpperCAmelCase = name[:-6]
UpperCAmelCase = model[f"{prefix_}mask_scores"]
UpperCAmelCase = TopKBinarizer.apply(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = tensor * mask
print(f"Pruned layer {name}" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
UpperCAmelCase = name[:-6]
UpperCAmelCase = model[f"{prefix_}mask_scores"]
UpperCAmelCase = ThresholdBinarizer.apply(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = tensor * mask
print(f"Pruned layer {name}" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
UpperCAmelCase = name[:-6]
UpperCAmelCase = model[f"{prefix_}mask_scores"]
UpperCAmelCase, UpperCAmelCase = -0.1, 1.1
UpperCAmelCase = torch.sigmoid(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = s * (r - l) + l
UpperCAmelCase = s_bar.clamp(min=0.0 , max=1.0 )
UpperCAmelCase = tensor * mask
print(f"Pruned layer {name}" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
UpperCAmelCase = os.path.join(
os.path.dirname(SCREAMING_SNAKE_CASE_ ) , f"bertarized_{os.path.basename(SCREAMING_SNAKE_CASE_ )}" )
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
shutil.copytree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
print(f"\nCreated folder {target_model_path}" )
torch.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
a__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
'--pruning_method',
choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'],
type=str,
required=True,
help=(
'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'
' sigmoied_threshold = Soft movement pruning)'
),
)
parser.add_argument(
'--threshold',
type=float,
required=False,
help=(
'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'
'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'
'Not needed for `l0`'
),
)
parser.add_argument(
'--model_name_or_path',
type=str,
required=True,
help='Folder containing the model that was previously fine-pruned',
)
parser.add_argument(
'--target_model_path',
default=None,
type=str,
required=False,
help='Folder containing the model that was previously fine-pruned',
)
a__ : List[Any] = parser.parse_args()
main(args)
| 51 |
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a__ : List[Any] = 'sshleifer/mar_enro_6_3_student'
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : Dict ):
super().setUp()
UpperCAmelCase = cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , )
UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def __snake_case ( self : Optional[int] ):
MarianMTModel.from_pretrained(a__ )
@slow
@require_torch_gpu
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = {
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __snake_case ( self : Any ):
UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
UpperCAmelCase = {
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
UpperCAmelCase = (
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' )
UpperCAmelCase = 6
UpperCAmelCase = (
['''distillation.py''']
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
'''--gpus=1''',
'''--learning_rate=1e-3''',
f"--num_train_epochs={epochs}",
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
UpperCAmelCase = distill_main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
a__ : int = {'UserAgent': UserAgent().random}
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> dict:
"""simple docstring"""
UpperCAmelCase = script.contents[0]
UpperCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : str , a__ : str ):
UpperCAmelCase = f"https://www.instagram.com/{username}/"
UpperCAmelCase = self.get_json()
def __snake_case ( self : Any ):
UpperCAmelCase = requests.get(self.url , headers=a__ ).text
UpperCAmelCase = BeautifulSoup(a__ , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ):
return f"{self.__class__.__name__}('{self.username}')"
def __str__( self : Optional[int] ):
return f"{self.fullname} ({self.username}) is {self.biography}"
@property
def __snake_case ( self : Tuple ):
return self.user_data["username"]
@property
def __snake_case ( self : List[str] ):
return self.user_data["full_name"]
@property
def __snake_case ( self : int ):
return self.user_data["biography"]
@property
def __snake_case ( self : Tuple ):
return self.user_data["business_email"]
@property
def __snake_case ( self : Union[str, Any] ):
return self.user_data["external_url"]
@property
def __snake_case ( self : str ):
return self.user_data["edge_followed_by"]["count"]
@property
def __snake_case ( self : List[Any] ):
return self.user_data["edge_follow"]["count"]
@property
def __snake_case ( self : List[str] ):
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def __snake_case ( self : List[str] ):
return self.user_data["profile_pic_url_hd"]
@property
def __snake_case ( self : Union[str, Any] ):
return self.user_data["is_verified"]
@property
def __snake_case ( self : int ):
return self.user_data["is_private"]
def __snake_case ( SCREAMING_SNAKE_CASE_ : str = "github" ) -> None:
"""simple docstring"""
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
UpperCAmelCase = InstagramUser(SCREAMING_SNAKE_CASE_ )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , SCREAMING_SNAKE_CASE_ )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120_000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
a__ : Optional[int] = InstagramUser('github')
print(instagram_user)
print(F"""{instagram_user.number_of_posts = }""")
print(F"""{instagram_user.number_of_followers = }""")
print(F"""{instagram_user.number_of_followings = }""")
print(F"""{instagram_user.email = }""")
print(F"""{instagram_user.website = }""")
print(F"""{instagram_user.profile_picture_url = }""")
print(F"""{instagram_user.is_verified = }""")
print(F"""{instagram_user.is_private = }""")
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[float] ) -> float:
"""simple docstring"""
UpperCAmelCase = 0.00
UpperCAmelCase = 0
for resistor in resistors:
if resistor <= 0:
UpperCAmelCase = f"Resistor at index {index} has a negative or zero value!"
raise ValueError(SCREAMING_SNAKE_CASE_ )
first_sum += 1 / float(SCREAMING_SNAKE_CASE_ )
index += 1
return 1 / first_sum
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[float] ) -> float:
"""simple docstring"""
UpperCAmelCase = 0.00
UpperCAmelCase = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
UpperCAmelCase = f"Resistor at index {index} has a negative value!"
raise ValueError(SCREAMING_SNAKE_CASE_ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 51 | 1 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a__ : List[str] = 16
a__ : int = 32
def __snake_case ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ) -> int:
"""simple docstring"""
UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' )
UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCAmelCase = datasets.map(
SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE_ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCAmelCase = 16
elif accelerator.mixed_precision != "no":
UpperCAmelCase = 8
else:
UpperCAmelCase = None
return tokenizer.pad(
SCREAMING_SNAKE_CASE_ , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(
tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = DataLoader(
tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
a__ : Optional[Any] = mocked_dataloaders # noqa: F811
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> Any:
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , SCREAMING_SNAKE_CASE_ ) == "1":
UpperCAmelCase = 2
# Initialize accelerator
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config['''lr''']
UpperCAmelCase = int(config['''num_epochs'''] )
UpperCAmelCase = int(config['''seed'''] )
UpperCAmelCase = int(config['''batch_size'''] )
UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
UpperCAmelCase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE
UpperCAmelCase = MAX_GPU_BATCH_SIZE
set_seed(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase, UpperCAmelCase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ )
# Instantiate scheduler
UpperCAmelCase = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Now we train the model
for epoch in range(SCREAMING_SNAKE_CASE_ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = outputs.loss
UpperCAmelCase = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
UpperCAmelCase = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = outputs.logits.argmax(dim=-1 )
UpperCAmelCase, UpperCAmelCase = accelerator.gather((predictions, batch['''labels''']) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(SCREAMING_SNAKE_CASE_ ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
UpperCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , )
UpperCAmelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:" , SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main()
| 51 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ):
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str:
"""simple docstring"""
UpperCAmelCase = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict:
"""simple docstring"""
UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_lowerCamelCase =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ):
UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __snake_case ( self : int , a__ : Dict , a__ : Tuple ):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def __snake_case ( self : str ):
pass
@slow
@require_torch
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871}
] , )
# fmt: on
@require_torch
@slow
def __snake_case ( self : Dict ):
UpperCAmelCase = '''facebook/sam-vit-huge'''
UpperCAmelCase = pipeline('''mask-generation''' , model=a__ )
UpperCAmelCase = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
] , )
| 51 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =ConsistencyModelPipeline
_lowerCamelCase =UNCONDITIONAL_IMAGE_GENERATION_PARAMS
_lowerCamelCase =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
_lowerCamelCase =frozenset(
[
"num_inference_steps",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
] )
@property
def __snake_case ( self : List[str] ):
UpperCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet''' , )
return unet
@property
def __snake_case ( self : int ):
UpperCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , )
return unet
def __snake_case ( self : int , a__ : List[Any]=False ):
if class_cond:
UpperCAmelCase = self.dummy_cond_unet
else:
UpperCAmelCase = self.dummy_uncond_unet
# Default to CM multistep sampler
UpperCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def __snake_case ( self : Any , a__ : Optional[Any] , a__ : List[str]=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''batch_size''': 1,
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''generator''': generator,
'''output_type''': '''np''',
}
return inputs
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = ConsistencyModelPipeline(**a__ )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __snake_case ( self : int ):
UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.get_dummy_components(class_cond=a__ )
UpperCAmelCase = ConsistencyModelPipeline(**a__ )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = 0
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __snake_case ( self : int ):
UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = ConsistencyModelPipeline(**a__ )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = 1
UpperCAmelCase = None
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.get_dummy_components(class_cond=a__ )
UpperCAmelCase = ConsistencyModelPipeline(**a__ )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = 1
UpperCAmelCase = None
UpperCAmelCase = 0
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Tuple ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : str , a__ : Optional[Any]=0 , a__ : List[str]=False , a__ : Tuple="cpu" , a__ : Optional[Any]=torch.floataa , a__ : List[Any]=(1, 3, 64, 64) ):
UpperCAmelCase = torch.manual_seed(a__ )
UpperCAmelCase = {
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''class_labels''': 0,
'''generator''': generator,
'''output_type''': '''np''',
}
if get_fixed_latents:
UpperCAmelCase = self.get_fixed_latents(seed=a__ , device=a__ , dtype=a__ , shape=a__ )
UpperCAmelCase = latents
return inputs
def __snake_case ( self : List[Any] , a__ : Optional[Any]=0 , a__ : int="cpu" , a__ : Any=torch.floataa , a__ : List[str]=(1, 3, 64, 64) ):
if type(a__ ) == str:
UpperCAmelCase = torch.device(a__ )
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ )
return latents
def __snake_case ( self : Tuple ):
UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
UpperCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ )
pipe.to(torch_device=a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_inputs()
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
UpperCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ )
pipe.to(torch_device=a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_inputs()
UpperCAmelCase = 1
UpperCAmelCase = None
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
UpperCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ )
pipe.to(torch_device=a__ , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_inputs(get_fixed_latents=a__ , device=a__ )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=a__ , enable_math=a__ , enable_mem_efficient=a__ ):
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def __snake_case ( self : Any ):
UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
UpperCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ )
pipe.to(torch_device=a__ , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_inputs(get_fixed_latents=a__ , device=a__ )
UpperCAmelCase = 1
UpperCAmelCase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=a__ , enable_math=a__ , enable_mem_efficient=a__ ):
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 51 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE_ ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = offset
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ )
def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ):
UpperCAmelCase = image.astype(np.floataa )
if offset:
UpperCAmelCase = image - (scale / 2)
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(a__ )
if do_resize:
UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
UpperCAmelCase = self.center_crop(a__ , size=a__ )
if do_rescale:
UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ )
if do_normalize:
UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ )
UpperCAmelCase = to_channel_dimension_format(a__ , a__ )
return image
def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = offset if offset is not None else self.offset
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(a__ )
UpperCAmelCase = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 51 | 1 |
'''simple docstring'''
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , a__ : Tuple , a__ : Optional[Any]=13 , a__ : Tuple=7 , a__ : Dict=True , a__ : Dict=True , a__ : List[Any]=False , a__ : int=True , a__ : Optional[Any]=99 , a__ : Union[str, Any]=64 , a__ : Optional[int]=5 , a__ : Union[str, Any]=4 , a__ : Any=64 , a__ : Optional[int]="gelu" , a__ : Optional[int]=0.1 , a__ : Dict=0.1 , a__ : Optional[Any]=512 , a__ : Optional[Any]=16 , a__ : Dict=2 , a__ : int=0.02 , a__ : int=3 , a__ : str=4 , a__ : List[str]=None , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
def __snake_case ( self : List[str] ):
return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' )
def __snake_case ( self : str ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __snake_case ( self : Union[str, Any] ):
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def __snake_case ( self : List[Any] , a__ : Dict , a__ : List[Any] , a__ : List[Any] , a__ : List[str] , a__ : str , a__ : str ):
UpperCAmelCase = MPNetModel(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = model(a__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __snake_case ( self : str , a__ : Tuple , a__ : List[str] , a__ : int , a__ : List[Any] , a__ : List[Any] , a__ : Union[str, Any] ):
UpperCAmelCase = MPNetForQuestionAnswering(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(
a__ , attention_mask=a__ , start_positions=a__ , end_positions=a__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __snake_case ( self : Union[str, Any] , a__ : Any , a__ : Optional[int] , a__ : Any , a__ : Union[str, Any] , a__ : int , a__ : Optional[Any] ):
UpperCAmelCase = self.num_labels
UpperCAmelCase = MPNetForSequenceClassification(a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ , attention_mask=a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __snake_case ( self : Any , a__ : int , a__ : Any , a__ : str , a__ : Dict , a__ : Tuple , a__ : List[Any] ):
UpperCAmelCase = self.num_choices
UpperCAmelCase = MPNetForMultipleChoice(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = model(
a__ , attention_mask=a__ , labels=a__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __snake_case ( self : List[str] , a__ : Dict , a__ : List[Any] , a__ : List[Any] , a__ : int , a__ : Dict , a__ : Any ):
UpperCAmelCase = self.num_labels
UpperCAmelCase = MPNetForTokenClassification(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ , attention_mask=a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __snake_case ( self : str ):
UpperCAmelCase = self.prepare_config_and_inputs()
((UpperCAmelCase), (UpperCAmelCase), (UpperCAmelCase), (UpperCAmelCase), (UpperCAmelCase), (UpperCAmelCase)) = config_and_inputs
UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
_lowerCamelCase =(
{
"feature-extraction": MPNetModel,
"fill-mask": MPNetForMaskedLM,
"question-answering": MPNetForQuestionAnswering,
"text-classification": MPNetForSequenceClassification,
"token-classification": MPNetForTokenClassification,
"zero-shot": MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
_lowerCamelCase =False
_lowerCamelCase =True
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = MPNetModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ , hidden_size=37 )
def __snake_case ( self : Optional[int] ):
self.config_tester.run_common_tests()
def __snake_case ( self : List[str] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*a__ )
def __snake_case ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*a__ )
def __snake_case ( self : Any ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*a__ )
def __snake_case ( self : int ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*a__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __snake_case ( self : Tuple ):
UpperCAmelCase = MPNetModel.from_pretrained('''microsoft/mpnet-base''' )
UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
UpperCAmelCase = model(a__ )[0]
UpperCAmelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , a__ )
UpperCAmelCase = torch.tensor(
[[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) )
| 51 |
'''simple docstring'''
import torch
from transformers import AutoModel
class lowerCAmelCase__ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ):
super(a__ , self ).__init__()
UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ )
UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 )
UpperCAmelCase = torch.nn.Softmax(dim=1 )
def __snake_case ( self : List[Any] , **a__ : Tuple ):
return self.bert(**a__ ).last_hidden_state
def __snake_case ( self : int , a__ : List[str] ):
return token_embeddings.sum(2 , keepdim=a__ )
def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ):
return self.softmax(T * self.cos(a__ , a__ ) )
def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ):
UpperCAmelCase = W_supports['''sizes'''].tolist()
UpperCAmelCase = W_supports['''start_token_id'''].item()
UpperCAmelCase = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = W_supports['''input_ids'''] == start_token_id
UpperCAmelCase = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(a__ ):
if i == 0:
UpperCAmelCase = 0
else:
UpperCAmelCase = support_sizes[i - 1]
UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]]
UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]]
UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCAmelCase = torch.vstack((p_starts, p_start) )
UpperCAmelCase = torch.vstack((p_ends, p_end) )
else:
UpperCAmelCase = p_start
UpperCAmelCase = p_end
return p_starts, p_ends
| 51 | 1 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : str , a__ : str , a__ : Optional[Any]=2 , a__ : Dict=8 , a__ : Optional[Any]=True , a__ : List[Any]=True , a__ : Optional[Any]=True , a__ : Optional[Any]=True , a__ : Optional[Any]=99 , a__ : Dict=16 , a__ : Optional[int]=5 , a__ : str=2 , a__ : List[Any]=36 , a__ : Optional[Any]="gelu" , a__ : List[str]=0.0 , a__ : Union[str, Any]=0.0 , a__ : int=512 , a__ : str=16 , a__ : str=2 , a__ : Any=0.02 , a__ : Tuple=3 , a__ : Any=4 , a__ : int=None , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
if self.use_token_type_ids:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __snake_case ( self : Any ):
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.get_config()
UpperCAmelCase = 300
return config
def __snake_case ( self : Optional[Any] ):
(
(
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
),
) = self.prepare_config_and_inputs()
UpperCAmelCase = True
UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __snake_case ( self : Tuple , a__ : str , a__ : Tuple , a__ : Dict , a__ : Any , a__ : Any , a__ : Tuple , a__ : Tuple ):
UpperCAmelCase = MraModel(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ )
UpperCAmelCase = model(a__ , token_type_ids=a__ )
UpperCAmelCase = model(a__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __snake_case ( self : Optional[Any] , a__ : int , a__ : str , a__ : Optional[Any] , a__ : Optional[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : Optional[int] , a__ : Union[str, Any] , a__ : str , ):
UpperCAmelCase = True
UpperCAmelCase = MraModel(a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(
a__ , attention_mask=a__ , token_type_ids=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , )
UpperCAmelCase = model(
a__ , attention_mask=a__ , token_type_ids=a__ , encoder_hidden_states=a__ , )
UpperCAmelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __snake_case ( self : Dict , a__ : List[str] , a__ : Tuple , a__ : List[str] , a__ : Union[str, Any] , a__ : Any , a__ : int , a__ : List[Any] ):
UpperCAmelCase = MraForMaskedLM(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __snake_case ( self : List[str] , a__ : str , a__ : int , a__ : List[str] , a__ : Optional[int] , a__ : Optional[Any] , a__ : List[Any] , a__ : List[str] ):
UpperCAmelCase = MraForQuestionAnswering(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(
a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __snake_case ( self : Dict , a__ : Dict , a__ : int , a__ : Optional[int] , a__ : Dict , a__ : List[Any] , a__ : Any , a__ : Any ):
UpperCAmelCase = self.num_labels
UpperCAmelCase = MraForSequenceClassification(a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __snake_case ( self : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] , a__ : Dict , a__ : Optional[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : Union[str, Any] ):
UpperCAmelCase = self.num_labels
UpperCAmelCase = MraForTokenClassification(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __snake_case ( self : Optional[int] , a__ : Any , a__ : int , a__ : Any , a__ : int , a__ : str , a__ : Any , a__ : Any ):
UpperCAmelCase = self.num_choices
UpperCAmelCase = MraForMultipleChoice(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = model(
a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
),
) = config_and_inputs
UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =()
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = MraModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ , hidden_size=37 )
def __snake_case ( self : Dict ):
self.config_tester.run_common_tests()
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase = type
self.model_tester.create_and_check_model(*a__ )
def __snake_case ( self : int ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*a__ )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*a__ )
def __snake_case ( self : int ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a__ )
def __snake_case ( self : List[str] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*a__ )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a__ )
@slow
def __snake_case ( self : str ):
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = MraModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
@unittest.skip(reason='''MRA does not output attentions''' )
def __snake_case ( self : int ):
return
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __snake_case ( self : str ):
UpperCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
UpperCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase = model(a__ )[0]
UpperCAmelCase = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , a__ )
UpperCAmelCase = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) )
@slow
def __snake_case ( self : Tuple ):
UpperCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
UpperCAmelCase = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase = model(a__ )[0]
UpperCAmelCase = 50265
UpperCAmelCase = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , a__ )
UpperCAmelCase = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) )
@slow
def __snake_case ( self : Any ):
UpperCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
UpperCAmelCase = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase = model(a__ )[0]
UpperCAmelCase = 50265
UpperCAmelCase = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , a__ )
UpperCAmelCase = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) )
| 51 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =(EulerDiscreteScheduler,)
_lowerCamelCase =10
def __snake_case ( self : str , **a__ : Tuple ):
UpperCAmelCase = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**a__ )
return config
def __snake_case ( self : Dict ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=a__ )
def __snake_case ( self : Optional[int] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=a__ , beta_end=a__ )
def __snake_case ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=a__ )
def __snake_case ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 0.0_002 ) < 1e-2
assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
| 51 | 1 |
'''simple docstring'''
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
a__ : Optional[int] = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]:
"""simple docstring"""
return [
int(1_000 * (box[0] / width) ),
int(1_000 * (box[1] / height) ),
int(1_000 * (box[2] / width) ),
int(1_000 * (box[3] / height) ),
]
def __snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Optional[str] , SCREAMING_SNAKE_CASE_ : Optional[str] ) -> int:
"""simple docstring"""
UpperCAmelCase = to_pil_image(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase, UpperCAmelCase = pil_image.size
UpperCAmelCase = pytesseract.image_to_data(SCREAMING_SNAKE_CASE_ , lang=SCREAMING_SNAKE_CASE_ , output_type='''dict''' , config=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
UpperCAmelCase = [idx for idx, word in enumerate(SCREAMING_SNAKE_CASE_ ) if not word.strip()]
UpperCAmelCase = [word for idx, word in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices]
UpperCAmelCase = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices]
UpperCAmelCase = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices]
UpperCAmelCase = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices]
UpperCAmelCase = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
UpperCAmelCase = []
for x, y, w, h in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = [x, y, x + w, y + h]
actual_boxes.append(SCREAMING_SNAKE_CASE_ )
# finally, normalize the bounding boxes
UpperCAmelCase = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : Union[str, Any] , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : float = 1 / 255 , a__ : bool = True , a__ : Union[float, Iterable[float]] = None , a__ : Union[float, Iterable[float]] = None , a__ : bool = True , a__ : Optional[str] = None , a__ : Optional[str] = "" , **a__ : str , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_value
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
UpperCAmelCase = apply_ocr
UpperCAmelCase = ocr_lang
UpperCAmelCase = tesseract_config
def __snake_case ( self : Any , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Union[str, Any] , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" )
UpperCAmelCase = (size['''height'''], size['''width'''])
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Tuple , a__ : np.ndarray , a__ : Union[int, float] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, Iterable[float]] , a__ : Union[float, Iterable[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : str , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : str=None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : Union[float, Iterable[float]] = None , a__ : Union[float, Iterable[float]] = None , a__ : bool = None , a__ : Optional[str] = None , a__ : Optional[str] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ )
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr
UpperCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang
UpperCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config
UpperCAmelCase = make_list_of_images(a__ )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(a__ ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , '''pytesseract''' )
UpperCAmelCase = []
UpperCAmelCase = []
for image in images:
UpperCAmelCase, UpperCAmelCase = apply_tesseract(a__ , a__ , a__ )
words_batch.append(a__ )
boxes_batch.append(a__ )
if do_resize:
UpperCAmelCase = [self.resize(image=a__ , size=a__ , resample=a__ ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=a__ , scale=a__ ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(a__ , a__ ) for image in images]
UpperCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=a__ )
if apply_ocr:
UpperCAmelCase = words_batch
UpperCAmelCase = boxes_batch
return data
| 51 |
'''simple docstring'''
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
metadata={"help": "The csv file to plot."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
_lowerCamelCase =list_field(
default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
try:
int(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str:
"""simple docstring"""
try:
float(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Dict , a__ : Optional[int] ):
UpperCAmelCase = args
UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
UpperCAmelCase = csv.DictReader(a__ )
for row in reader:
UpperCAmelCase = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
UpperCAmelCase = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
UpperCAmelCase = float(row['''result'''] )
def __snake_case ( self : Dict ):
UpperCAmelCase, UpperCAmelCase = plt.subplots()
UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage'''
UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
UpperCAmelCase = self.result_dict[model_name]['''result''']
((UpperCAmelCase), (UpperCAmelCase)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
UpperCAmelCase = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
UpperCAmelCase = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , )
else:
UpperCAmelCase = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((UpperCAmelCase), (UpperCAmelCase)) = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )]
plt.scatter(
a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" )
plt.plot(a__ , a__ , '''--''' )
title_str += f" {label_model_name} vs."
UpperCAmelCase = title_str[:-4]
UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(a__ )
plt.xlabel(a__ )
plt.ylabel(a__ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ )
plot.plot()
if __name__ == "__main__":
main()
| 51 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCAmelCase_ )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
_lowerCamelCase =field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_lowerCamelCase =Features({"text": Value("string" )} )
_lowerCamelCase =Features({"labels": ClassLabel} )
_lowerCamelCase ="text"
_lowerCamelCase ="labels"
def __snake_case ( self : str , a__ : str ):
if self.label_column not in features:
raise ValueError(f"Column {self.label_column} is not present in features." )
if not isinstance(features[self.label_column] , a__ ):
raise ValueError(f"Column {self.label_column} is not a ClassLabel." )
UpperCAmelCase = copy.deepcopy(self )
UpperCAmelCase = self.label_schema.copy()
UpperCAmelCase = features[self.label_column]
UpperCAmelCase = label_schema
return task_template
@property
def __snake_case ( self : Dict ):
return {
self.text_column: "text",
self.label_column: "labels",
}
| 51 |
'''simple docstring'''
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
print('''Loading config file...''' )
def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ):
UpperCAmelCase = []
for k, v in d.items():
UpperCAmelCase = parent_key + sep + k if parent_key else k
if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() )
else:
items.append((new_key, v) )
return dict(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = argparse.Namespace()
with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file:
try:
UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader )
UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ )
for k, v in flat_cfg.items():
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) )
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = MobileViTVaConfig()
UpperCAmelCase = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase = 151
UpperCAmelCase = 512
UpperCAmelCase = '''ade20k-id2label.json'''
UpperCAmelCase = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase = 21
UpperCAmelCase = 512
UpperCAmelCase = '''pascal-voc-id2label.json'''
UpperCAmelCase = True
# orig_config
UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ )
assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = val
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int:
"""simple docstring"""
if base_model:
UpperCAmelCase = ''''''
else:
UpperCAmelCase = '''mobilevitv2.'''
UpperCAmelCase = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase = k[8:]
else:
UpperCAmelCase = k
if ".block." in k:
UpperCAmelCase = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." )
for i in [1, 2]:
if f"layer_{i}." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f"layer_{i}.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if f"layer_{i}.1.local_rep.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if f"layer_{i}.1.local_rep.1." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase = [0, 1]
elif i == 4:
UpperCAmelCase = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase = [0, 1, 2]
for j in j_in:
if f"layer_{i}.1.global_rep.{j}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if f"layer_{i}.1.global_rep.{j+1}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." )
if f"layer_{i}.1.conv_proj." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(SCREAMING_SNAKE_CASE_ )
for k in keys_to_ignore:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
else:
UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
# remove and rename some keys of load the original model
UpperCAmelCase = checkpoint
remove_unused_keys(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load modified state_dict
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase = outputs.logits
UpperCAmelCase = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] )
assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task',
default='imagenet1k_256',
type=str,
help=(
'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '
'\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n '
),
choices=[
'imagenet1k_256',
'imagenet1k_384',
'imagenet21k_to_1k_256',
'imagenet21k_to_1k_384',
'ade20k_deeplabv3',
'voc_deeplabv3',
],
)
parser.add_argument(
'--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
a__ : str = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 51 | 1 |
'''simple docstring'''
from pathlib import Path
import fire
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> int:
"""simple docstring"""
UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ )
dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
for path in src_dir.iterdir():
UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n]
UpperCAmelCase = dest_dir.joinpath(path.name )
print(SCREAMING_SNAKE_CASE_ )
dest_path.open('''w''' ).write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 51 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Optional[int] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="megatron-bert"
def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ):
super().__init__(pad_token_id=a__ , **a__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
| 51 | 1 |
'''simple docstring'''
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ) -> Any:
"""simple docstring"""
assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match"
UpperCAmelCase = nn.Parameter(SCREAMING_SNAKE_CASE_ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match"
UpperCAmelCase = nn.Parameter(SCREAMING_SNAKE_CASE_ )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = np.asarray(weights[0] )
UpperCAmelCase = np.asarray(weights[1] )
UpperCAmelCase = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase = np.asarray(weights[0] )
UpperCAmelCase = np.asarray(weights[1] )
UpperCAmelCase = np.asarray(weights[2] )
UpperCAmelCase = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , )
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = weights[0][0][0]
UpperCAmelCase = np.asarray(layer_norm_a[0] )
UpperCAmelCase = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
# lsh weights + output
UpperCAmelCase = weights[0][1]
if len(SCREAMING_SNAKE_CASE_ ) < 4:
set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ )
else:
set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ )
# intermediate weighs
UpperCAmelCase = weights[2][0][1][2]
# Chunked Feed Forward
if len(SCREAMING_SNAKE_CASE_ ) == 4:
UpperCAmelCase = intermediate_weights[2]
# layernorm 2
UpperCAmelCase = np.asarray(intermediate_weights[0][0] )
UpperCAmelCase = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
# intermediate dense
UpperCAmelCase = np.asarray(intermediate_weights[1][0] )
UpperCAmelCase = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
# intermediate out
UpperCAmelCase = np.asarray(intermediate_weights[4][0] )
UpperCAmelCase = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = torch_model.reformer
# word embeds
UpperCAmelCase = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
if isinstance(weights[3] , SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
UpperCAmelCase = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), f"{position_embeddings[emb_idx]} emb does not match"
UpperCAmelCase = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE_ ) )
UpperCAmelCase = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
SCREAMING_SNAKE_CASE_ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
UpperCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# output layer norm
UpperCAmelCase = np.asarray(weights[7][0] )
UpperCAmelCase = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
# output embeddings
UpperCAmelCase = np.asarray(weights[9][0] )
UpperCAmelCase = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE_ )
print(f"Building PyTorch model from configuration: {config}" )
UpperCAmelCase = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE_ )
with open(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f:
UpperCAmelCase = pickle.load(SCREAMING_SNAKE_CASE_ )['''weights''']
set_model_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config.hidden_size )
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}" )
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained Reformer model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
a__ : Union[str, Any] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 51 |
'''simple docstring'''
from __future__ import annotations
a__ : List[str] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ):
UpperCAmelCase = graph
# mapping node to its parent in resulting breadth first tree
UpperCAmelCase = {}
UpperCAmelCase = source_vertex
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = {self.source_vertex}
UpperCAmelCase = None
UpperCAmelCase = [self.source_vertex] # first in first out queue
while queue:
UpperCAmelCase = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(a__ )
UpperCAmelCase = vertex
queue.append(a__ )
def __snake_case ( self : Any , a__ : str ):
if target_vertex == self.source_vertex:
return self.source_vertex
UpperCAmelCase = self.parent.get(a__ )
if target_vertex_parent is None:
UpperCAmelCase = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(a__ )
return self.shortest_path(a__ ) + f"->{target_vertex}"
if __name__ == "__main__":
a__ : Tuple = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =42
_lowerCamelCase =None
_lowerCamelCase =None
def __snake_case ( ) -> Node | None:
"""simple docstring"""
UpperCAmelCase = Node(1 )
UpperCAmelCase = Node(2 )
UpperCAmelCase = Node(3 )
UpperCAmelCase = Node(4 )
UpperCAmelCase = Node(5 )
return tree
def __snake_case ( SCREAMING_SNAKE_CASE_ : Node | None ) -> list[int]:
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def __snake_case ( SCREAMING_SNAKE_CASE_ : Node | None ) -> list[int]:
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def __snake_case ( SCREAMING_SNAKE_CASE_ : Node | None ) -> list[int]:
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def __snake_case ( SCREAMING_SNAKE_CASE_ : Node | None ) -> int:
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def __snake_case ( SCREAMING_SNAKE_CASE_ : Node | None ) -> Sequence[Node | None]:
"""simple docstring"""
UpperCAmelCase = []
if root is None:
return output
UpperCAmelCase = deque([root] )
while process_queue:
UpperCAmelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def __snake_case ( SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ) -> Sequence[Node | None]:
"""simple docstring"""
UpperCAmelCase = []
def populate_output(SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return output
def __snake_case ( SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ) -> Sequence[Node | None]:
"""simple docstring"""
UpperCAmelCase = []
def populate_output(SCREAMING_SNAKE_CASE_ : Node | None , SCREAMING_SNAKE_CASE_ : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return output
def __snake_case ( SCREAMING_SNAKE_CASE_ : Node | None ) -> Sequence[Node | None] | list[Any]:
"""simple docstring"""
if root is None:
return []
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = height(SCREAMING_SNAKE_CASE_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
UpperCAmelCase = 1
else:
output.append(get_nodes_from_right_to_left(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
UpperCAmelCase = 0
return output
def __snake_case ( ) -> None: # Main function for testing.
"""simple docstring"""
UpperCAmelCase = make_tree()
print(f"In-order Traversal: {inorder(SCREAMING_SNAKE_CASE_ )}" )
print(f"Pre-order Traversal: {preorder(SCREAMING_SNAKE_CASE_ )}" )
print(f"Post-order Traversal: {postorder(SCREAMING_SNAKE_CASE_ )}" , '''\n''' )
print(f"Height of Tree: {height(SCREAMING_SNAKE_CASE_ )}" , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(SCREAMING_SNAKE_CASE_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(SCREAMING_SNAKE_CASE_ ) + 1 ):
print(f"Level {level}:" , get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , level=SCREAMING_SNAKE_CASE_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(SCREAMING_SNAKE_CASE_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Any , a__ : List[str] , a__ : str ):
UpperCAmelCase = name
UpperCAmelCase = val
def __str__( self : Optional[Any] ):
return f"{self.__class__.__name__}({self.name}, {self.val})"
def __lt__( self : Union[str, Any] , a__ : Union[str, Any] ):
return self.val < other.val
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : List[Any] , a__ : Union[str, Any] ):
UpperCAmelCase = {}
UpperCAmelCase = {}
UpperCAmelCase = self.build_heap(a__ )
def __getitem__( self : int , a__ : Any ):
return self.get_value(a__ )
def __snake_case ( self : List[Any] , a__ : Optional[Any] ):
return (idx - 1) // 2
def __snake_case ( self : str , a__ : Optional[int] ):
return idx * 2 + 1
def __snake_case ( self : Optional[int] , a__ : Dict ):
return idx * 2 + 2
def __snake_case ( self : int , a__ : Dict ):
return self.heap_dict[key]
def __snake_case ( self : List[Any] , a__ : Optional[Any] ):
UpperCAmelCase = len(a__ ) - 1
UpperCAmelCase = self.get_parent_idx(a__ )
for idx, i in enumerate(a__ ):
UpperCAmelCase = idx
UpperCAmelCase = i.val
for i in range(a__ , -1 , -1 ):
self.sift_down(a__ , a__ )
return array
def __snake_case ( self : List[Any] , a__ : Optional[Any] , a__ : Optional[Any] ):
while True:
UpperCAmelCase = self.get_left_child_idx(a__ ) # noqa: E741
UpperCAmelCase = self.get_right_child_idx(a__ )
UpperCAmelCase = idx
if l < len(a__ ) and array[l] < array[idx]:
UpperCAmelCase = l
if r < len(a__ ) and array[r] < array[smallest]:
UpperCAmelCase = r
if smallest != idx:
UpperCAmelCase, UpperCAmelCase = array[smallest], array[idx]
(
(
UpperCAmelCase
), (
UpperCAmelCase
),
) = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
UpperCAmelCase = smallest
else:
break
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] ):
UpperCAmelCase = self.get_parent_idx(a__ )
while p >= 0 and self.heap[p] > self.heap[idx]:
UpperCAmelCase, UpperCAmelCase = self.heap[idx], self.heap[p]
UpperCAmelCase, UpperCAmelCase = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
UpperCAmelCase = p
UpperCAmelCase = self.get_parent_idx(a__ )
def __snake_case ( self : Optional[Any] ):
return self.heap[0]
def __snake_case ( self : List[str] ):
UpperCAmelCase, UpperCAmelCase = self.heap[-1], self.heap[0]
UpperCAmelCase, UpperCAmelCase = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
UpperCAmelCase = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def __snake_case ( self : Optional[Any] , a__ : Optional[Any] ):
self.heap.append(a__ )
UpperCAmelCase = len(self.heap ) - 1
UpperCAmelCase = node.val
self.sift_up(len(self.heap ) - 1 )
def __snake_case ( self : Tuple ):
return len(self.heap ) == 0
def __snake_case ( self : Any , a__ : List[Any] , a__ : int ):
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
UpperCAmelCase = new_value
UpperCAmelCase = new_value
self.sift_up(self.idx_of_element[node] )
a__ : List[Any] = Node('R', -1)
a__ : List[Any] = Node('B', 6)
a__ : Optional[Any] = Node('A', 3)
a__ : Any = Node('X', 1)
a__ : Any = Node('E', 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
a__ : Dict = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print('Min Heap - before decrease key')
for i in my_min_heap.heap:
print(i)
print('Min Heap - After decrease key of node [B -> -17]')
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Any = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
a__ : Union[str, Any] = 'Muhammad Umer Farooq'
a__ : Dict = 'MIT'
a__ : Optional[Any] = '1.0.0'
a__ : Tuple = 'Muhammad Umer Farooq'
a__ : Any = '[email protected]'
a__ : List[Any] = 'Alpha'
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , a__ : str ):
super().__init__()
UpperCAmelCase = []
UpperCAmelCase = domain
def __snake_case ( self : int , a__ : str , a__ : list[tuple[str, str | None]] ):
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
UpperCAmelCase = parse.urljoin(self.domain , a__ )
self.urls.append(a__ )
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return ".".join(get_sub_domain_name(SCREAMING_SNAKE_CASE_ ).split('''.''' )[-2:] )
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return parse.urlparse(SCREAMING_SNAKE_CASE_ ).netloc
def __snake_case ( SCREAMING_SNAKE_CASE_ : str = "https://github.com" ) -> list[str]:
"""simple docstring"""
UpperCAmelCase = get_domain_name(SCREAMING_SNAKE_CASE_ )
# Initialize the parser
UpperCAmelCase = Parser(SCREAMING_SNAKE_CASE_ )
try:
# Open URL
UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
UpperCAmelCase = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ )
# Get the valid email.
UpperCAmelCase = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(SCREAMING_SNAKE_CASE_ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : str = emails_from_url('https://github.com')
print(F"""{len(emails)} emails found:""")
print('\n'.join(sorted(emails)))
| 51 |
'''simple docstring'''
from math import factorial
def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int:
"""simple docstring"""
return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 51 | 1 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : str ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __snake_case ( self : Optional[int] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , )
return self.image_processor_class
@property
def __snake_case ( self : List[Any] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , )
return self.image_processor
| 51 |
'''simple docstring'''
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =StableUnCLIPPipeline
_lowerCamelCase =TEXT_TO_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
_lowerCamelCase =False
def __snake_case ( self : str ):
UpperCAmelCase = 32
UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , )
torch.manual_seed(0 )
UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ )
UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , )
torch.manual_seed(0 )
UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , )
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL()
UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __snake_case ( self : List[Any] ):
UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=a__ )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' )
UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(a__ , a__ )
def __snake_case ( self : str ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 51 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
a__ : int = logging.get_logger(__name__)
a__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
a__ : int = {
'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'},
'tokenizer_file': {
'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'
},
}
a__ : List[str] = {'mobilebert-uncased': 512}
a__ : Union[str, Any] = {}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =VOCAB_FILES_NAMES
_lowerCamelCase =PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase =PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase =MobileBertTokenizer
def __init__( self : Dict , a__ : Optional[int]=None , a__ : Tuple=None , a__ : Optional[Any]=True , a__ : Any="[UNK]" , a__ : int="[SEP]" , a__ : Optional[int]="[PAD]" , a__ : int="[CLS]" , a__ : List[str]="[MASK]" , a__ : Tuple=True , a__ : List[str]=None , **a__ : Any , ):
super().__init__(
a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , )
UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , a__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , a__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , a__ ) != tokenize_chinese_chars
):
UpperCAmelCase = getattr(a__ , normalizer_state.pop('''type''' ) )
UpperCAmelCase = do_lower_case
UpperCAmelCase = strip_accents
UpperCAmelCase = tokenize_chinese_chars
UpperCAmelCase = normalizer_class(**a__ )
UpperCAmelCase = do_lower_case
def __snake_case ( self : int , a__ : List[str] , a__ : Optional[int]=None ):
UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __snake_case ( self : List[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ):
UpperCAmelCase = [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __snake_case ( self : Tuple , a__ : str , a__ : Optional[str] = None ):
UpperCAmelCase = self._tokenizer.model.save(a__ , name=a__ )
return tuple(a__ )
| 51 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict:
"""simple docstring"""
if not head:
return True
# split the list to two parts
UpperCAmelCase, UpperCAmelCase = head.next, head
while fast and fast.next:
UpperCAmelCase = fast.next.next
UpperCAmelCase = slow.next
UpperCAmelCase = slow.next
UpperCAmelCase = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase = None
while second:
UpperCAmelCase = second.next
UpperCAmelCase = node
UpperCAmelCase = second
UpperCAmelCase = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase = node.next
UpperCAmelCase = head.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]:
"""simple docstring"""
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head
while fast and fast.next:
UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase = [slow.val]
while slow.next:
UpperCAmelCase = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase = cur.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
"""simple docstring"""
if not head or not head.next:
return True
UpperCAmelCase = {}
UpperCAmelCase = 0
while head:
if head.val in d:
d[head.val].append(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase = [pos]
UpperCAmelCase = head.next
pos += 1
UpperCAmelCase = pos - 1
UpperCAmelCase = 0
for v in d.values():
if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase = 0
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ):
if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 51 | 1 |
'''simple docstring'''
from collections import defaultdict
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple , a__ : Optional[int] , a__ : Union[str, Any] ):
UpperCAmelCase = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
UpperCAmelCase = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(a__ ) )
]
UpperCAmelCase = defaultdict(a__ ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
UpperCAmelCase = (1 << len(a__ )) - 1
def __snake_case ( self : List[Any] , a__ : Union[str, Any] , a__ : List[str] ):
# if mask == self.finalmask all persons are distributed tasks, return 1
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
UpperCAmelCase = self.count_ways_until(a__ , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
UpperCAmelCase = total_ways_util
return self.dp[mask][task_no]
def __snake_case ( self : int , a__ : Optional[Any] ):
# Store the list of persons for each task
for i in range(len(a__ ) ):
for j in task_performed[i]:
self.task[j].append(a__ )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
a__ : List[Any] = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
a__ : List[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : str ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __snake_case ( self : Optional[int] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , )
return self.image_processor_class
@property
def __snake_case ( self : List[Any] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , )
return self.image_processor
| 51 | 1 |
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , a__ : int , a__ : int , a__ : int , a__ : str=0.0 , a__ : Optional[int] = None , a__ : str = "geglu" , a__ : Optional[int] = None , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = True , a__ : str = "layer_norm" , a__ : bool = False , ):
super().__init__()
UpperCAmelCase = only_cross_attention
UpperCAmelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero'''
UpperCAmelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm'''
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
UpperCAmelCase = AdaLayerNorm(a__ , a__ )
elif self.use_ada_layer_norm_zero:
UpperCAmelCase = AdaLayerNormZero(a__ , a__ )
else:
UpperCAmelCase = nn.LayerNorm(a__ , elementwise_affine=a__ )
UpperCAmelCase = Attention(
query_dim=a__ , heads=a__ , dim_head=a__ , dropout=a__ , bias=a__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=a__ , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
UpperCAmelCase = (
AdaLayerNorm(a__ , a__ )
if self.use_ada_layer_norm
else nn.LayerNorm(a__ , elementwise_affine=a__ )
)
UpperCAmelCase = Attention(
query_dim=a__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=a__ , dim_head=a__ , dropout=a__ , bias=a__ , upcast_attention=a__ , ) # is self-attn if encoder_hidden_states is none
else:
UpperCAmelCase = None
UpperCAmelCase = None
# 3. Feed-forward
UpperCAmelCase = nn.LayerNorm(a__ , elementwise_affine=a__ )
UpperCAmelCase = FeedForward(a__ , dropout=a__ , activation_fn=a__ , final_dropout=a__ )
# let chunk size default to None
UpperCAmelCase = None
UpperCAmelCase = 0
def __snake_case ( self : Tuple , a__ : Optional[int] , a__ : int ):
# Sets chunk feed-forward
UpperCAmelCase = chunk_size
UpperCAmelCase = dim
def __snake_case ( self : Optional[Any] , a__ : torch.FloatTensor , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.LongTensor] = None , a__ : Dict[str, Any] = None , a__ : Optional[torch.LongTensor] = None , ):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
UpperCAmelCase = self.norma(a__ , a__ )
elif self.use_ada_layer_norm_zero:
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = self.norma(
a__ , a__ , a__ , hidden_dtype=hidden_states.dtype )
else:
UpperCAmelCase = self.norma(a__ )
UpperCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {}
UpperCAmelCase = self.attna(
a__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=a__ , **a__ , )
if self.use_ada_layer_norm_zero:
UpperCAmelCase = gate_msa.unsqueeze(1 ) * attn_output
UpperCAmelCase = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
UpperCAmelCase = (
self.norma(a__ , a__ ) if self.use_ada_layer_norm else self.norma(a__ )
)
UpperCAmelCase = self.attna(
a__ , encoder_hidden_states=a__ , attention_mask=a__ , **a__ , )
UpperCAmelCase = attn_output + hidden_states
# 3. Feed-forward
UpperCAmelCase = self.norma(a__ )
if self.use_ada_layer_norm_zero:
UpperCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." )
UpperCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
UpperCAmelCase = torch.cat(
[self.ff(a__ ) for hid_slice in norm_hidden_states.chunk(a__ , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
UpperCAmelCase = self.ff(a__ )
if self.use_ada_layer_norm_zero:
UpperCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output
UpperCAmelCase = ff_output + hidden_states
return hidden_states
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] , a__ : int , a__ : Optional[int] = None , a__ : int = 4 , a__ : float = 0.0 , a__ : str = "geglu" , a__ : bool = False , ):
super().__init__()
UpperCAmelCase = int(dim * mult )
UpperCAmelCase = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
UpperCAmelCase = GELU(a__ , a__ )
if activation_fn == "gelu-approximate":
UpperCAmelCase = GELU(a__ , a__ , approximate='''tanh''' )
elif activation_fn == "geglu":
UpperCAmelCase = GEGLU(a__ , a__ )
elif activation_fn == "geglu-approximate":
UpperCAmelCase = ApproximateGELU(a__ , a__ )
UpperCAmelCase = nn.ModuleList([] )
# project in
self.net.append(a__ )
# project dropout
self.net.append(nn.Dropout(a__ ) )
# project out
self.net.append(nn.Linear(a__ , a__ ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(a__ ) )
def __snake_case ( self : Any , a__ : List[Any] ):
for module in self.net:
UpperCAmelCase = module(a__ )
return hidden_states
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : int , a__ : int , a__ : int , a__ : str = "none" ):
super().__init__()
UpperCAmelCase = nn.Linear(a__ , a__ )
UpperCAmelCase = approximate
def __snake_case ( self : List[str] , a__ : Optional[int] ):
if gate.device.type != "mps":
return F.gelu(a__ , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def __snake_case ( self : Union[str, Any] , a__ : List[Any] ):
UpperCAmelCase = self.proj(a__ )
UpperCAmelCase = self.gelu(a__ )
return hidden_states
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] , a__ : int , a__ : int ):
super().__init__()
UpperCAmelCase = nn.Linear(a__ , dim_out * 2 )
def __snake_case ( self : List[Any] , a__ : List[str] ):
if gate.device.type != "mps":
return F.gelu(a__ )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def __snake_case ( self : Dict , a__ : Optional[Any] ):
UpperCAmelCase, UpperCAmelCase = self.proj(a__ ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(a__ )
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] , a__ : int , a__ : int ):
super().__init__()
UpperCAmelCase = nn.Linear(a__ , a__ )
def __snake_case ( self : Optional[int] , a__ : Union[str, Any] ):
UpperCAmelCase = self.proj(a__ )
return x * torch.sigmoid(1.702 * x )
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , a__ : Tuple , a__ : str ):
super().__init__()
UpperCAmelCase = nn.Embedding(a__ , a__ )
UpperCAmelCase = nn.SiLU()
UpperCAmelCase = nn.Linear(a__ , embedding_dim * 2 )
UpperCAmelCase = nn.LayerNorm(a__ , elementwise_affine=a__ )
def __snake_case ( self : int , a__ : Union[str, Any] , a__ : Optional[int] ):
UpperCAmelCase = self.linear(self.silu(self.emb(a__ ) ) )
UpperCAmelCase, UpperCAmelCase = torch.chunk(a__ , 2 )
UpperCAmelCase = self.norm(a__ ) * (1 + scale) + shift
return x
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , a__ : List[str] , a__ : List[str] ):
super().__init__()
UpperCAmelCase = CombinedTimestepLabelEmbeddings(a__ , a__ )
UpperCAmelCase = nn.SiLU()
UpperCAmelCase = nn.Linear(a__ , 6 * embedding_dim , bias=a__ )
UpperCAmelCase = nn.LayerNorm(a__ , elementwise_affine=a__ , eps=1e-6 )
def __snake_case ( self : List[str] , a__ : str , a__ : List[str] , a__ : List[str] , a__ : int=None ):
UpperCAmelCase = self.linear(self.silu(self.emb(a__ , a__ , hidden_dtype=a__ ) ) )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = emb.chunk(6 , dim=1 )
UpperCAmelCase = self.norm(a__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] , a__ : int , a__ : int , a__ : int , a__ : Optional[str] = None , a__ : float = 1e-5 ):
super().__init__()
UpperCAmelCase = num_groups
UpperCAmelCase = eps
if act_fn is None:
UpperCAmelCase = None
else:
UpperCAmelCase = get_activation(a__ )
UpperCAmelCase = nn.Linear(a__ , out_dim * 2 )
def __snake_case ( self : List[Any] , a__ : Optional[int] , a__ : int ):
if self.act:
UpperCAmelCase = self.act(a__ )
UpperCAmelCase = self.linear(a__ )
UpperCAmelCase = emb[:, :, None, None]
UpperCAmelCase, UpperCAmelCase = emb.chunk(2 , dim=1 )
UpperCAmelCase = F.group_norm(a__ , self.num_groups , eps=self.eps )
UpperCAmelCase = x * (1 + scale) + shift
return x
| 51 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : str = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =XGLMTokenizer
_lowerCamelCase =XGLMTokenizerFast
_lowerCamelCase =True
_lowerCamelCase =True
def __snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = '''<pad>'''
UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(a__ ) , 1008 )
def __snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(
a__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def __snake_case ( self : Optional[Any] ):
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def __snake_case ( self : Optional[int] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(a__ , f.name )
UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ )
UpperCAmelCase = pickle.dumps(a__ )
pickle.loads(a__ )
def __snake_case ( self : Tuple ):
if not self.test_rust_tokenizer:
return
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase = tokenizer.tokenize(a__ )
UpperCAmelCase = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = tokenizer.encode(a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
@slow
def __snake_case ( self : int ):
UpperCAmelCase = '''Hello World!'''
UpperCAmelCase = [2, 31227, 4447, 35]
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : List[str] ):
UpperCAmelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : Any ):
# fmt: off
UpperCAmelCase = {
'''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
| 51 | 1 |
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
a__ : int = input('Enter image url: ').strip()
print(F"""Downloading image from {url} ...""")
a__ : Dict = BeautifulSoup(requests.get(url).content, 'html.parser')
# The image URL is in the content field of the first meta tag with property og:image
a__ : List[str] = soup.find('meta', {'property': 'og:image'})['content']
a__ : Optional[int] = requests.get(image_url).content
a__ : Tuple = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, 'wb') as fp:
fp.write(image_data)
print(F"""Done. Image saved to disk as {file_name}.""")
| 51 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a__ : str = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig:
"""simple docstring"""
UpperCAmelCase = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase = 192
UpperCAmelCase = 768
UpperCAmelCase = 12
UpperCAmelCase = 3
UpperCAmelCase = [800, 1_333]
UpperCAmelCase = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = 330
UpperCAmelCase = 14
UpperCAmelCase = 6
UpperCAmelCase = 1_320
elif "yolos_s" in yolos_name:
UpperCAmelCase = 384
UpperCAmelCase = 1_536
UpperCAmelCase = 12
UpperCAmelCase = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase = [800, 1_344]
UpperCAmelCase = 91
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''coco-detection-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase = in_proj_bias[: config.hidden_size]
UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
if "backbone" in name:
UpperCAmelCase = name.replace('''backbone''' , '''vit''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "det_token" in name:
UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' )
if "mid_pos_embed" in name:
UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
if "class_embed" in name:
UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' )
if "bbox_embed" in name:
UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' )
if "vit.norm" in name:
UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' )
return name
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[2] )
UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[
dim : dim * 2, :
]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def __snake_case ( ) -> torch.Tensor:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model''']
# load 🤗 model
UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512
UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes
UpperCAmelCase, UpperCAmelCase = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
UpperCAmelCase = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
UpperCAmelCase = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
UpperCAmelCase = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
UpperCAmelCase = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
UpperCAmelCase = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
UpperCAmelCase = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if push_to_hub:
UpperCAmelCase = {
'''yolos_ti''': '''yolos-tiny''',
'''yolos_s_200_pre''': '''yolos-small''',
'''yolos_s_300_pre''': '''yolos-small-300''',
'''yolos_s_dWr''': '''yolos-small-dwr''',
'''yolos_base''': '''yolos-base''',
}
print('''Pushing to the hub...''' )
UpperCAmelCase = model_mapping[yolos_name]
image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
if __name__ == "__main__":
a__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--yolos_name',
default='yolos_s_200_pre',
type=str,
help=(
'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','
' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'
),
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
a__ : Optional[Any] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 51 | 1 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 1_000_000 ) -> int:
"""simple docstring"""
UpperCAmelCase = set(range(3 , SCREAMING_SNAKE_CASE_ , 2 ) )
primes.add(2 )
for p in range(3 , SCREAMING_SNAKE_CASE_ , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) )
UpperCAmelCase = [float(SCREAMING_SNAKE_CASE_ ) for n in range(limit + 1 )]
for p in primes:
for n in range(SCREAMING_SNAKE_CASE_ , limit + 1 , SCREAMING_SNAKE_CASE_ ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 51 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a__ : List[Any] = logging.get_logger(__name__)
a__ : int = {
'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json',
}
# fmt: off
a__ : Any = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377,
1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211,
4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786,
11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791,
17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409,
34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361
]
a__ : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627,
3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647,
7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793,
14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675,
22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865,
42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362
]
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="whisper"
_lowerCamelCase =["past_key_values"]
_lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ):
UpperCAmelCase = vocab_size
UpperCAmelCase = num_mel_bins
UpperCAmelCase = d_model
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = max_source_positions
UpperCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase = classifier_proj_size
UpperCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase = apply_spec_augment
UpperCAmelCase = mask_time_prob
UpperCAmelCase = mask_time_length
UpperCAmelCase = mask_time_min_masks
UpperCAmelCase = mask_feature_prob
UpperCAmelCase = mask_feature_length
UpperCAmelCase = mask_feature_min_masks
UpperCAmelCase = median_filter_width
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def __snake_case ( self : List[str] ):
UpperCAmelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(a__ , direction='''inputs''' )
return common_inputs
def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ):
UpperCAmelCase = OrderedDict()
UpperCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , )
UpperCAmelCase = encoder_inputs['''input_features'''].shape[2]
UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , a__ , a__ , a__ , a__ )
UpperCAmelCase = encoder_inputs.pop('''input_features''' )
UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
UpperCAmelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def __snake_case ( self : Dict ):
return 1e-3
| 51 | 1 |
'''simple docstring'''
from collections import deque
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> int:
"""simple docstring"""
UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = deque()
UpperCAmelCase = [False for _ in range(SCREAMING_SNAKE_CASE_ )]
UpperCAmelCase = [-1 for _ in range(SCREAMING_SNAKE_CASE_ )]
UpperCAmelCase = index_of[:]
def strong_connect(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict ):
UpperCAmelCase = index # the number when this node is seen
UpperCAmelCase = index # lowest rank node reachable from here
index += 1
stack.append(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase = strong_connect(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase = []
UpperCAmelCase = stack.pop()
UpperCAmelCase = False
component.append(SCREAMING_SNAKE_CASE_ )
while w != v:
UpperCAmelCase = stack.pop()
UpperCAmelCase = False
component.append(SCREAMING_SNAKE_CASE_ )
components.append(SCREAMING_SNAKE_CASE_ )
return index
UpperCAmelCase = []
for v in range(SCREAMING_SNAKE_CASE_ ):
if index_of[v] == -1:
strong_connect(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ )
return components
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE_ )]
for u, v in edges:
g[u].append(SCREAMING_SNAKE_CASE_ )
return g
if __name__ == "__main__":
# Test
a__ : Optional[int] = 7
a__ : Dict = [0, 0, 1, 2, 3, 3, 4, 4, 6]
a__ : List[str] = [1, 3, 2, 0, 1, 4, 5, 6, 5]
a__ : Optional[int] = [(u, v) for u, v in zip(source, target)]
a__ : str = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 51 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =LEDConfig
_lowerCamelCase ={}
_lowerCamelCase ="gelu"
def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = eos_token_id
UpperCAmelCase = pad_token_id
UpperCAmelCase = bos_token_id
UpperCAmelCase = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
UpperCAmelCase = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
UpperCAmelCase = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ )
UpperCAmelCase = tf.concat(
[tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , )
UpperCAmelCase = global_attention_mask
return config, inputs_dict
def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ):
UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder()
UpperCAmelCase = inputs_dict['''input_ids''']
UpperCAmelCase = input_ids[:1, :]
UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase = 1
# first forward pass
UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ )
UpperCAmelCase, UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase = model(a__ , attention_mask=a__ )[0]
UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(a__ , a__ , rtol=1e-3 )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict:
"""simple docstring"""
if attention_mask is None:
UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowerCamelCase =(
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = TFLEDModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ )
def __snake_case ( self : int ):
self.config_tester.run_common_tests()
def __snake_case ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] )
UpperCAmelCase = 2
UpperCAmelCase = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
UpperCAmelCase = True
UpperCAmelCase = self.model_tester.seq_length
UpperCAmelCase = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(a__ : Tuple ):
UpperCAmelCase = outputs.decoder_attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(a__ : int ):
UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions]
UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = len(a__ )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
if self.is_encoder_decoder:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_decoder_attentions_output(a__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
# Check attention is always last and order is fine
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) )
self.assertEqual(model.config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def __snake_case ( self : Any ):
pass
def __snake_case ( self : Union[str, Any] ):
# TODO: Head-masking not yet implement
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple:
"""simple docstring"""
return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa )
a__ : int = 1e-4
@slow
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, 768)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 )
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
| 51 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a__ : List[str] = logging.get_logger(__name__)
a__ : Any = {
'microsoft/table-transformer-detection': (
'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'
),
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="table-transformer"
_lowerCamelCase =["past_key_values"]
_lowerCamelCase ={
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : str , a__ : Any=True , a__ : str=None , a__ : Union[str, Any]=3 , a__ : Optional[Any]=100 , a__ : Optional[int]=6 , a__ : List[Any]=2048 , a__ : Optional[Any]=8 , a__ : Dict=6 , a__ : Any=2048 , a__ : List[Any]=8 , a__ : Dict=0.0 , a__ : Dict=0.0 , a__ : List[Any]=True , a__ : int="relu" , a__ : str=256 , a__ : Dict=0.1 , a__ : str=0.0 , a__ : List[Any]=0.0 , a__ : Dict=0.02 , a__ : Union[str, Any]=1.0 , a__ : Tuple=False , a__ : Any="sine" , a__ : Optional[int]="resnet50" , a__ : Dict=True , a__ : Dict=False , a__ : str=1 , a__ : List[str]=5 , a__ : Union[str, Any]=2 , a__ : Optional[int]=1 , a__ : Dict=1 , a__ : str=5 , a__ : List[Any]=2 , a__ : Optional[Any]=0.1 , **a__ : Optional[int] , ):
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
UpperCAmelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(a__ , a__ ):
UpperCAmelCase = backbone_config.get('''model_type''' )
UpperCAmelCase = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase = config_class.from_dict(a__ )
# set timm attributes to None
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = None, None, None
UpperCAmelCase = use_timm_backbone
UpperCAmelCase = backbone_config
UpperCAmelCase = num_channels
UpperCAmelCase = num_queries
UpperCAmelCase = d_model
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = init_xavier_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = encoder_layers
UpperCAmelCase = auxiliary_loss
UpperCAmelCase = position_embedding_type
UpperCAmelCase = backbone
UpperCAmelCase = use_pretrained_backbone
UpperCAmelCase = dilation
# Hungarian matcher
UpperCAmelCase = class_cost
UpperCAmelCase = bbox_cost
UpperCAmelCase = giou_cost
# Loss coefficients
UpperCAmelCase = mask_loss_coefficient
UpperCAmelCase = dice_loss_coefficient
UpperCAmelCase = bbox_loss_coefficient
UpperCAmelCase = giou_loss_coefficient
UpperCAmelCase = eos_coefficient
super().__init__(is_encoder_decoder=a__ , **a__ )
@property
def __snake_case ( self : Dict ):
return self.encoder_attention_heads
@property
def __snake_case ( self : Any ):
return self.d_model
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =version.parse("1.11" )
@property
def __snake_case ( self : Tuple ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def __snake_case ( self : int ):
return 1e-5
@property
def __snake_case ( self : Tuple ):
return 12
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
import collections
import importlib.util
import os
import re
from pathlib import Path
a__ : Any = 'src/transformers'
# Matches is_xxx_available()
a__ : Any = re.compile(R'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
a__ : List[str] = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
a__ : Optional[Any] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
a__ : Dict = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
a__ : Any = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
a__ : List[Any] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
a__ : Optional[int] = re.compile('^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
a__ : Tuple = re.compile('^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
a__ : Optional[Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
a__ : Dict = re.compile(R'^\s*try:')
# Catches a line with else:
a__ : Dict = re.compile(R'^\s*else:')
def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> str:
"""simple docstring"""
if _re_test_backend.search(SCREAMING_SNAKE_CASE_ ) is None:
return None
UpperCAmelCase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE_ )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE_ )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int:
"""simple docstring"""
with open(SCREAMING_SNAKE_CASE_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase = f.readlines()
UpperCAmelCase = 0
while line_index < len(SCREAMING_SNAKE_CASE_ ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE_ ):
return None
# First grab the objects without a specific backend in _import_structure
UpperCAmelCase = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
UpperCAmelCase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ).groups()[0]
UpperCAmelCase = re.findall('''\[([^\]]+)\]''' , SCREAMING_SNAKE_CASE_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
UpperCAmelCase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE_ )
if single_line_import_search is not None:
UpperCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(SCREAMING_SNAKE_CASE_ ) > 0]
objects.extend(SCREAMING_SNAKE_CASE_ )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
UpperCAmelCase = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
UpperCAmelCase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
UpperCAmelCase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
UpperCAmelCase = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ) is not None:
UpperCAmelCase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(''', ''' )
UpperCAmelCase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0]
objects.extend(SCREAMING_SNAKE_CASE_ )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ) is not None:
UpperCAmelCase = _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(''', ''' )
UpperCAmelCase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0]
objects.extend(SCREAMING_SNAKE_CASE_ )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE_ ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE_ ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
UpperCAmelCase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
UpperCAmelCase = []
while (
line_index < len(SCREAMING_SNAKE_CASE_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_import.search(SCREAMING_SNAKE_CASE_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
UpperCAmelCase = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE_ ):
# If the line is an if is_backend_available, we grab all objects associated.
UpperCAmelCase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
UpperCAmelCase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_import.search(SCREAMING_SNAKE_CASE_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
UpperCAmelCase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict:
"""simple docstring"""
def find_duplicates(SCREAMING_SNAKE_CASE_ : Any ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
UpperCAmelCase = []
for key in import_dict_objects.keys():
UpperCAmelCase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}" )
UpperCAmelCase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
UpperCAmelCase = '''base imports''' if key == '''none''' else f"{key} backend"
errors.append(f"Differences for {name}:" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f" {a} in TYPE_HINT but not in _import_structure." )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f" {a} in _import_structure but not in TYPE_HINT." )
return errors
def __snake_case ( ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE_ ):
if "__init__.py" in files:
UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''__init__.py''' )
UpperCAmelCase = parse_init(SCREAMING_SNAKE_CASE_ )
if objects is not None:
UpperCAmelCase = analyze_results(*SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCAmelCase = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append('''\n'''.join(SCREAMING_SNAKE_CASE_ ) )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
raise ValueError('''\n\n'''.join(SCREAMING_SNAKE_CASE_ ) )
def __snake_case ( ) -> int:
"""simple docstring"""
UpperCAmelCase = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE_ ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(SCREAMING_SNAKE_CASE_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE_ ) / folder).glob('''*.py''' ) ) ) == 0:
continue
UpperCAmelCase = str((Path(SCREAMING_SNAKE_CASE_ ) / folder).relative_to(SCREAMING_SNAKE_CASE_ ) )
UpperCAmelCase = short_path.replace(os.path.sep , '''.''' )
submodules.append(SCREAMING_SNAKE_CASE_ )
for fname in files:
if fname == "__init__.py":
continue
UpperCAmelCase = str((Path(SCREAMING_SNAKE_CASE_ ) / fname).relative_to(SCREAMING_SNAKE_CASE_ ) )
UpperCAmelCase = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE_ )
return submodules
a__ : Dict = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
]
def __snake_case ( ) -> Any:
"""simple docstring"""
UpperCAmelCase = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(SCREAMING_SNAKE_CASE_ , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
UpperCAmelCase = spec.loader.load_module()
UpperCAmelCase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCAmelCase = '''\n'''.join(f"- {module}" for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
f"{list_of_modules}\n"
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 51 |
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a__ : List[Any] = 'sshleifer/mar_enro_6_3_student'
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : Dict ):
super().setUp()
UpperCAmelCase = cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , )
UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def __snake_case ( self : Optional[int] ):
MarianMTModel.from_pretrained(a__ )
@slow
@require_torch_gpu
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = {
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __snake_case ( self : Any ):
UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
UpperCAmelCase = {
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
UpperCAmelCase = (
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' )
UpperCAmelCase = 6
UpperCAmelCase = (
['''distillation.py''']
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
'''--gpus=1''',
'''--learning_rate=1e-3''',
f"--num_train_epochs={epochs}",
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
UpperCAmelCase = distill_main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 51 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=UpperCAmelCase_ )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_lowerCamelCase =Features({"image": Image()} )
_lowerCamelCase =Features({"labels": ClassLabel} )
_lowerCamelCase ="image"
_lowerCamelCase ="labels"
def __snake_case ( self : int , a__ : Union[str, Any] ):
if self.label_column not in features:
raise ValueError(f"Column {self.label_column} is not present in features." )
if not isinstance(features[self.label_column] , a__ ):
raise ValueError(f"Column {self.label_column} is not a ClassLabel." )
UpperCAmelCase = copy.deepcopy(self )
UpperCAmelCase = self.label_schema.copy()
UpperCAmelCase = features[self.label_column]
UpperCAmelCase = label_schema
return task_template
@property
def __snake_case ( self : List[str] ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 51 | 1 |
'''simple docstring'''
import logging
import math
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from .tensor_utils import tensor_tree_map, tree_map
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]:
"""simple docstring"""
UpperCAmelCase = []
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for v in tree.values():
shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE_ ) )
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ):
for t in tree:
shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE_ ) )
elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ):
shapes.append(tree.shape )
else:
raise ValueError('''Not supported''' )
return shapes
@torch.jit.ignore
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple[int, ...] ) -> Tuple[int, ...]:
"""simple docstring"""
UpperCAmelCase = []
for d in reversed(SCREAMING_SNAKE_CASE_ ):
idx.append(flat_idx % d )
UpperCAmelCase = flat_idx // d
return tuple(reversed(SCREAMING_SNAKE_CASE_ ) )
@torch.jit.ignore
def __snake_case ( SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Optional[Sequence[bool]] = None , SCREAMING_SNAKE_CASE_ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]:
"""simple docstring"""
def reduce_edge_list(SCREAMING_SNAKE_CASE_ : List[bool] ) -> None:
UpperCAmelCase = True
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
UpperCAmelCase = -1 * (i + 1)
l[reversed_idx] &= tally
UpperCAmelCase = l[reversed_idx]
if start_edges is None:
UpperCAmelCase = [s == 0 for s in start]
reduce_edge_list(SCREAMING_SNAKE_CASE_ )
if end_edges is None:
UpperCAmelCase = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
reduce_edge_list(SCREAMING_SNAKE_CASE_ )
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return [()]
elif len(SCREAMING_SNAKE_CASE_ ) == 1:
return [(slice(start[0] , end[0] + 1 ),)]
UpperCAmelCase = []
UpperCAmelCase = []
# Dimensions common to start and end can be selected directly
for s, e in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if s == e:
path_list.append(slice(SCREAMING_SNAKE_CASE_ , s + 1 ) )
else:
break
UpperCAmelCase = tuple(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ )
# start == end, and we're done
if divergence_idx == len(SCREAMING_SNAKE_CASE_ ):
return [path]
def upper() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCAmelCase = start[divergence_idx]
return tuple(
path + (slice(SCREAMING_SNAKE_CASE_ , sdi + 1 ),) + s
for s in _get_minimal_slice_set(
start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) )
def lower() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCAmelCase = end[divergence_idx]
return tuple(
path + (slice(SCREAMING_SNAKE_CASE_ , edi + 1 ),) + s
for s in _get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) )
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if start_edges[divergence_idx] and end_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) )
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif start_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) )
slices.extend(lower() )
# Analogous to the previous case, but the top is ragged this time
elif end_edges[divergence_idx]:
slices.extend(upper() )
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) )
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper() )
UpperCAmelCase = end[divergence_idx] - start[divergence_idx]
if middle_ground > 1:
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) )
slices.extend(lower() )
return slices
@torch.jit.ignore
def __snake_case ( SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> torch.Tensor:
"""simple docstring"""
UpperCAmelCase = t.shape[:no_batch_dims]
UpperCAmelCase = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# _get_minimal_slice_set is inclusive
UpperCAmelCase = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE_ ) )
# Get an ordered list of slices to perform
UpperCAmelCase = _get_minimal_slice_set(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )
UpperCAmelCase = [t[s] for s in slices]
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : Dict[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Any = None , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Any:
"""simple docstring"""
if not (len(SCREAMING_SNAKE_CASE_ ) > 0):
raise ValueError('''Must provide at least one input''' )
UpperCAmelCase = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE_ )]
UpperCAmelCase = tuple([max(SCREAMING_SNAKE_CASE_ ) for s in zip(*SCREAMING_SNAKE_CASE_ )] )
def _prep_inputs(SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor:
if not low_mem:
if not sum(t.shape[:no_batch_dims] ) == no_batch_dims:
UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] )
UpperCAmelCase = t.reshape(-1 , *t.shape[no_batch_dims:] )
else:
UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] )
return t
UpperCAmelCase = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = None
if _out is not None:
UpperCAmelCase = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out )
UpperCAmelCase = 1
for d in orig_batch_dims:
flat_batch_dim *= d
UpperCAmelCase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
def _select_chunk(SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor:
return t[i : i + chunk_size] if t.shape[0] != 1 else t
UpperCAmelCase = 0
UpperCAmelCase = prepped_outputs
for _ in range(SCREAMING_SNAKE_CASE_ ):
# Chunk the input
if not low_mem:
UpperCAmelCase = _select_chunk
else:
UpperCAmelCase = partial(
_chunk_slice , flat_start=SCREAMING_SNAKE_CASE_ , flat_end=min(SCREAMING_SNAKE_CASE_ , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE_ ) , )
UpperCAmelCase = tensor_tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Run the layer on the chunk
UpperCAmelCase = layer(**SCREAMING_SNAKE_CASE_ )
# Allocate space for the output
if out is None:
UpperCAmelCase = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE_ )
# Put the chunk in its pre-allocated space
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
def assign(SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : dict ) -> None:
for k, v in da.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
assign(SCREAMING_SNAKE_CASE_ , da[k] )
else:
if _add_into_out:
v[i : i + chunk_size] += da[k]
else:
UpperCAmelCase = da[k]
assign(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for xa, xa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if _add_into_out:
xa[i : i + chunk_size] += xa
else:
UpperCAmelCase = xa
elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ):
if _add_into_out:
out[i : i + chunk_size] += output_chunk
else:
UpperCAmelCase = output_chunk
else:
raise ValueError('''Not supported''' )
i += chunk_size
UpperCAmelCase = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE_ )
return out
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : int , a__ : int = 512 , ):
UpperCAmelCase = max_chunk_size
UpperCAmelCase = None
UpperCAmelCase = None
def __snake_case ( self : Any , a__ : Callable , a__ : tuple , a__ : int ):
logging.info('''Tuning chunk size...''' )
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
UpperCAmelCase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )]
UpperCAmelCase = [c for c in candidates if c > min_chunk_size]
UpperCAmelCase = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(a__ : int ) -> bool:
try:
with torch.no_grad():
fn(*a__ , chunk_size=a__ )
return True
except RuntimeError:
return False
UpperCAmelCase = 0
UpperCAmelCase = len(a__ ) - 1
while i > min_viable_chunk_size_index:
UpperCAmelCase = test_chunk_size(candidates[i] )
if not viable:
UpperCAmelCase = (min_viable_chunk_size_index + i) // 2
else:
UpperCAmelCase = i
UpperCAmelCase = (i + len(a__ ) - 1) // 2
return candidates[min_viable_chunk_size_index]
def __snake_case ( self : List[Any] , a__ : Iterable , a__ : Iterable ):
UpperCAmelCase = True
for aa, aa in zip(a__ , a__ ):
assert type(a__ ) == type(a__ )
if isinstance(a__ , (list, tuple) ):
consistent &= self._compare_arg_caches(a__ , a__ )
elif isinstance(a__ , a__ ):
UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda a__ : x[0] )]
UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda a__ : x[0] )]
consistent &= self._compare_arg_caches(a__ , a__ )
else:
consistent &= aa == aa
return consistent
def __snake_case ( self : Any , a__ : Callable , a__ : tuple , a__ : int , ):
UpperCAmelCase = True
UpperCAmelCase = tree_map(lambda a__ : a.shape if isinstance(a__ , torch.Tensor ) else a , a__ , a__ )
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data ) == len(a__ )
UpperCAmelCase = self._compare_arg_caches(self.cached_arg_data , a__ )
else:
# Otherwise, we can reuse the precomputed value
UpperCAmelCase = False
if not consistent:
UpperCAmelCase = self._determine_favorable_chunk_size(
a__ , a__ , a__ , )
UpperCAmelCase = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
| 51 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 51 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =DiTPipeline
_lowerCamelCase =CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
_lowerCamelCase =PipelineTesterMixin.required_optional_params - {
"latents",
"num_images_per_prompt",
"callback",
"callback_steps",
}
_lowerCamelCase =CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
_lowerCamelCase =False
def __snake_case ( self : int ):
torch.manual_seed(0 )
UpperCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=a__ , )
UpperCAmelCase = AutoencoderKL()
UpperCAmelCase = DDIMScheduler()
UpperCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler}
return components
def __snake_case ( self : List[Any] , a__ : List[str] , a__ : str=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''class_labels''': [1],
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __snake_case ( self : int ):
UpperCAmelCase = '''cpu'''
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**a__ )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = pipe(**a__ ).images
UpperCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
UpperCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] )
UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(a__ , 1e-3 )
def __snake_case ( self : Optional[int] ):
self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __snake_case ( self : Dict ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Any ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : Any ):
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' )
pipe.to('''cuda''' )
UpperCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf''']
UpperCAmelCase = pipe.get_label_ids(a__ )
UpperCAmelCase = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type='''np''' ).images
for word, image in zip(a__ , a__ ):
UpperCAmelCase = load_numpy(
f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" )
assert np.abs((expected_image - image).max() ) < 1e-2
def __snake_case ( self : str ):
UpperCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' )
UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('''cuda''' )
UpperCAmelCase = ['''vase''', '''umbrella''']
UpperCAmelCase = pipe.get_label_ids(a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type='''np''' ).images
for word, image in zip(a__ , a__ ):
UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
f"/dit/{word}_512.npy" )
assert np.abs((expected_image - image).max() ) < 1e-1
| 51 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ):
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str:
"""simple docstring"""
UpperCAmelCase = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict:
"""simple docstring"""
UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_lowerCamelCase =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ):
UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __snake_case ( self : int , a__ : Dict , a__ : Tuple ):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def __snake_case ( self : str ):
pass
@slow
@require_torch
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871}
] , )
# fmt: on
@require_torch
@slow
def __snake_case ( self : Dict ):
UpperCAmelCase = '''facebook/sam-vit-huge'''
UpperCAmelCase = pipeline('''mask-generation''' , model=a__ )
UpperCAmelCase = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
] , )
| 51 | 1 |
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Optional[int] = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
if "model" in sd.keys():
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model''']
# pop unnecessary weights
UpperCAmelCase = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase = sd.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase = sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
UpperCAmelCase = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
UpperCAmelCase = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
UpperCAmelCase = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = torch.split(SCREAMING_SNAKE_CASE_ , depth // 3 , dim=0 )
UpperCAmelCase = q
UpperCAmelCase = k
UpperCAmelCase = v
del sd[key]
return sd
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int]=None ) -> int:
"""simple docstring"""
UpperCAmelCase = load_checkpoint(SCREAMING_SNAKE_CASE_ )
if config is not None:
UpperCAmelCase = OPTConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase = OPTConfig()
UpperCAmelCase = OPTModel(SCREAMING_SNAKE_CASE_ ).half().eval()
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check results
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--fairseq_path',
type=str,
help=(
'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:'
' https://huggingface.co/models?other=opt_metasq'
),
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.')
a__ : int = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 51 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE_ ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = offset
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ )
def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ):
UpperCAmelCase = image.astype(np.floataa )
if offset:
UpperCAmelCase = image - (scale / 2)
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(a__ )
if do_resize:
UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
UpperCAmelCase = self.center_crop(a__ , size=a__ )
if do_rescale:
UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ )
if do_normalize:
UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ )
UpperCAmelCase = to_channel_dimension_format(a__ , a__ )
return image
def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = offset if offset is not None else self.offset
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(a__ )
UpperCAmelCase = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 51 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : str = {
'configuration_informer': [
'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = [
'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'InformerForPrediction',
'InformerModel',
'InformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 |
'''simple docstring'''
import torch
from transformers import AutoModel
class lowerCAmelCase__ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ):
super(a__ , self ).__init__()
UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ )
UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 )
UpperCAmelCase = torch.nn.Softmax(dim=1 )
def __snake_case ( self : List[Any] , **a__ : Tuple ):
return self.bert(**a__ ).last_hidden_state
def __snake_case ( self : int , a__ : List[str] ):
return token_embeddings.sum(2 , keepdim=a__ )
def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ):
return self.softmax(T * self.cos(a__ , a__ ) )
def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ):
UpperCAmelCase = W_supports['''sizes'''].tolist()
UpperCAmelCase = W_supports['''start_token_id'''].item()
UpperCAmelCase = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = W_supports['''input_ids'''] == start_token_id
UpperCAmelCase = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(a__ ):
if i == 0:
UpperCAmelCase = 0
else:
UpperCAmelCase = support_sizes[i - 1]
UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]]
UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]]
UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCAmelCase = torch.vstack((p_starts, p_start) )
UpperCAmelCase = torch.vstack((p_ends, p_end) )
else:
UpperCAmelCase = p_start
UpperCAmelCase = p_end
return p_starts, p_ends
| 51 | 1 |
'''simple docstring'''
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : str , a__ : List[Any] , a__ : Optional[Any] , a__ : int ):
UpperCAmelCase = name
UpperCAmelCase = value
UpperCAmelCase = weight
def __repr__( self : str ):
return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"
def __snake_case ( self : Optional[Any] ):
return self.value
def __snake_case ( self : List[Any] ):
return self.name
def __snake_case ( self : List[Any] ):
return self.weight
def __snake_case ( self : Optional[int] ):
return self.value / self.weight
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str:
"""simple docstring"""
UpperCAmelCase = []
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase = sorted(SCREAMING_SNAKE_CASE_ , key=SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = []
UpperCAmelCase, UpperCAmelCase = 0.0, 0.0
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def __snake_case ( ) -> Optional[Any]:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =(EulerDiscreteScheduler,)
_lowerCamelCase =10
def __snake_case ( self : str , **a__ : Tuple ):
UpperCAmelCase = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**a__ )
return config
def __snake_case ( self : Dict ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=a__ )
def __snake_case ( self : Optional[int] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=a__ , beta_end=a__ )
def __snake_case ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=a__ )
def __snake_case ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 0.0_002 ) < 1e-2
assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
| 51 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.